1
|
Halabitska I, Petakh P, Lushchak O, Kamyshna I, Oksenych V, Kamyshnyi O. Metformin in Antiviral Therapy: Evidence and Perspectives. Viruses 2024; 16:1938. [PMCID: PMC11680154 DOI: 10.3390/v16121938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025] Open
Abstract
Metformin, a widely used antidiabetic medication, has emerged as a promising broad-spectrum antiviral agent due to its ability to modulate cellular pathways essential for viral replication. By activating AMPK, metformin depletes cellular energy reserves that viruses rely on, effectively limiting the replication of pathogens such as influenza, HIV, SARS-CoV-2, HBV, and HCV. Its role in inhibiting the mTOR pathway, crucial for viral protein synthesis and reactivation, is particularly significant in managing infections caused by HIV, CMV, and EBV. Furthermore, metformin reduces oxidative stress and reactive oxygen species (ROS), which are critical for replicating arboviruses such as Zika and dengue. The drug also regulates immune responses, cellular differentiation, and inflammation, disrupting the life cycle of HPV and potentially other viruses. These diverse mechanisms suppress viral replication, enhance immune system functionality, and contribute to better clinical outcomes. This multifaceted approach highlights metformin’s potential as an adjunctive therapy in treating a wide range of viral infections.
Collapse
Affiliation(s)
- Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, 88017 Uzhhorod, Ukraine
| | - Oleh Lushchak
- MRC Laboratory of Medical Sciences, London W12 0HS, UK
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Valentyn Oksenych
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
2
|
Qi J, Dong M, Gou Q, Zhu H. Multi-omics analysis of the lipid-regulating effects of metformin in a glucose concentration-dependent manner in macrophage-derived foam cells. Cell Biochem Biophys 2024; 82:3235-3249. [PMID: 39235508 DOI: 10.1007/s12013-024-01269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 09/06/2024]
Abstract
Metformin has a long history of clinical application and has been shown to have outstanding ability in lowering glucose. Recent advances have further revealed its broad modulatory ability beyond glucose-lowering, expanding the scope of metformin applications. Metformin has now been applied as a viable lipid-lowering strategy in non-hyperglycemic obese patients. However, the benefits and underlying pharmacological mechanisms of metformin administration in non-hyperglycemic populations remain to be explained. Our study aimed to systematically investigate the differences in the lipid-lowering function and pharmacological mechanisms of metformin in high- and low-sugar conditions to facilitate the development of individualized metformin use regimens for different clinical patients. We constructed macrophage-derived foam cell models in vitro for subsequent analysis. ORO results showed that metformin significantly reduced lipid accumulation in macrophages in both high and low glucose environments, but the lipid decline was higher in the high glucose environment. By mutual validation and joint analysis of transcriptomics and metabolomics, significant differences in metformin transcriptional and metabolic patterns existed among high and normal glucose environments. The significant alterations of genes such as DGKA, LPL, DGAT2 and lipid metabolites such as LysPA and LysPC partially explained the glucose-dependent pharmacological function of metformin. In conclusion, our study confirmed that the lipid-lowering effect of metformin depends on the extracellular glucose concentration, and systematically studied the molecular mechanism of metformin in different glycemic environments, which provides a certain reference value for the subsequent in-depth study and clinical application.
Collapse
Affiliation(s)
- Jie Qi
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Mengya Dong
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Qiling Gou
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Huolan Zhu
- Department of Geriatrics, Shaanxi Provincial People's Hospital, Xi'an, China.
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi'an, China.
| |
Collapse
|
3
|
Mahendran MIMS, Gopalakrishnan V, Saravanan V, Dhamodharan R, Jothimani P, Balasubramanian M, Singh AK, Vaithianathan R. Managing drug therapy-related problems and assessment of chronic diabetic wounds. Curr Med Res Opin 2024; 40:2077-2093. [PMID: 39402701 DOI: 10.1080/03007995.2024.2414893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/12/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024]
Abstract
Type 2 diabetes mellitus (T2DM), responsible for most diabetes cases recorded worldwide, increases the risk of chronic wounds and amputation. Patients with T2DM appear to be more susceptible to delayed wound healing due to their treatment adherence. This review explores the specifics of polypharmacy, side effects, possible drug interactions and the importance of medication adherence for therapeutic efficacy. We discuss the effects of anti-diabetes medications on wound healing as well as the role that biofilms and microbial infections play in diabetic wounds. Inconsistent use of medications can lead to poor glycaemic control, which negatively affects the healing process of diabetic foot ulcers. Managing chronic wounds represents a substantial portion of healthcare expenditures. Biofilm-associated infections are difficult for the immune system to treat and respond inconsistently to antibiotics as these infections are slow growing and persistent. Additionally, we emphasize the critical role pharmacists play in enhancing patient adherence and optimizing diabetes treatment by offering comprehensive coverage of drugs associated with problems related to pharmacological therapy in type 2 diabetes.
Collapse
Affiliation(s)
| | - Vinoj Gopalakrishnan
- MGM Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| | - Vaijayanthi Saravanan
- MGM Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| | - Ramasamy Dhamodharan
- MGM Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| | - Pradeep Jothimani
- MGM Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| | - M Balasubramanian
- MGM Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| | - Abhimanyu Kumar Singh
- MGM Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| | - Rajan Vaithianathan
- Department of Surgery, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| |
Collapse
|
4
|
AboTaleb HA, Alturkistani HA, Abd El-Aziz GS, Hindi EA, Halawani MM, Al-Thepyani MA, Alghamdi BS. The Antinociceptive Effects and Sex-Specific Neurotransmitter Modulation of Metformin in a Mouse Model of Fibromyalgia. Cells 2024; 13:1986. [PMID: 39682734 DOI: 10.3390/cells13231986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/06/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Fibromyalgia (FM) is a chronic and debilitating condition characterized by diffuse pain, often associated with symptoms such as fatigue, cognitive disturbances, and mood disorders. Metformin, an oral hypoglycemic agent, has recently gained attention for its potential benefits beyond glucose regulation. It has shown promise in alleviating neuropathic and inflammatory pain, suggesting that it could offer a novel approach to managing chronic pain conditions like FM. This study aimed to further explore metformin's analgesic potential by evaluating its effects in an experimental FM model induced by reserpine in both male and female mice. After the administration of 200 mg/kg metformin to male and female mice, the FM-related symptoms were assessed, including mechanical allodynia, thermal hyperalgesia, and depressive-like behaviors. A histological examination of the thalamus, hippocampus, and spinal cord was conducted using haematoxylin and eosin staining. The neurotransmitter and proinflammatory cytokines levels were measured in the brains and spinal cords. Our results have shown that metformin treatment for seven days significantly reversed these FM-like symptoms, reducing pain sensitivity and improving mood-related behaviors in both the male and female mice. Additionally, metformin exhibited neuroprotective effects, mitigating reserpine-induced damage in the hippocampus, thalamus, and spinal cord. It also significantly lowered the levels of the proinflammatory cytokine interleukin 1-beta (IL-1β) in the brain and spinal cord. Notably, metformin modulated the neurotransmitter levels differently between the sexes, decreasing glutamate and increasing serotonin and norepinephrine in the male mice, but not in the females. These findings underscore metformin's potential as an alternative therapy for FM, with sex-specific differences suggesting distinct mechanisms of action.
Collapse
Affiliation(s)
- Hanin Abdulbaset AboTaleb
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hani A Alturkistani
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Gamal S Abd El-Aziz
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Emad A Hindi
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Mervat M Halawani
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Mona Ali Al-Thepyani
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Badrah S Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
DeMartino AG, Chatterjee D, De Ravin L, Babick O, Shiva A, Shah N, Nagarsheth K. Assessing the Predictive Value of the Neutrophil-to-Lymphocyte Ratio for Post-Thrombotic Syndrome following Iliofemoral Deep Venous Thrombosis. Ann Vasc Surg 2024; 111:393-401. [PMID: 39617298 DOI: 10.1016/j.avsg.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/29/2024] [Accepted: 11/10/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Post-thrombotic syndrome (PTS) is a common complication of deep vein thrombosis (DVT) that occurs in 20-50% of patients and results in a decreased quality of life. Even with the progressive identification of PTS risk factors, clinically useful predictors of PTS continue to be limited, unobjective, and ill-defined. The neutrophil-to-lymphocyte ratio (NLR) is an emerging prognostic biomarker used in a variety of diseases that reflects acute systemic inflammation. This pilot study aimed to evaluate the utility of the NLR at the time of iliofemoral DVT diagnosis in predicting PTS incidence in patients. METHODS A retrospective chart review was performed on patients identified with iliofemoral DVT at the University of Maryland Medical Center between 2020 and 2022. Patients with at least one follow-up visit between 3 and 6 months after initial DVT diagnosis were included. Diagnosis of PTS was determined based on Villalta Score. The Youden index with receiver operating characteristic curve analysis was used to determine the NLR cut-off value that may be predictive of PTS. A multivariable logistic regression model was then performed to assess the utility of this NLR cut-off value and other common clinical markers in predicting the presence of PTS symptoms. RESULTS Four hundred and eighteen patients with positive iliofemoral DVT venous duplex ultrasounds were screened for eligibility. One hundred and eighteen patients were eligible with a mean age of 53.18 ± 15.45 years. A total of 43 patients (36.44%) were found to have PTS. An NLR cut-off of 7.71 was determined with an area under the receiver operating characteristic curve (area under the curve) of 0.63 (P = 0.046). When the NLR was assessed jointly with other clinical markers at the time of DVT diagnosis, NLR was a statistically significant positive predictor, measured using odds ratio (1.83; 95% confidence interval, 1.20-2.78; P = 0.005). CONCLUSIONS Our study found that when stratified by a determined cutoff value, the NLR at the time of DVT diagnosis was significantly associated with the development of PTS in patients with iliofemoral DVT. This result is consistent with one prior research finding yet is novel in its specificity for iliofemoral DVTs and its acute lab collection for NLR calculation. The NLR should be further investigated as a potential inexpensive prognostic tool to aid in the improvement of treatment and prophylactic strategies for PTS.
Collapse
Affiliation(s)
| | | | - Laura De Ravin
- University of Maryland School of Medicine, Baltimore, MD
| | - Olivia Babick
- University of Maryland School of Medicine, Baltimore, MD
| | - Anahita Shiva
- University of Maryland School of Medicine, Baltimore, MD
| | - Nisarg Shah
- University of Maryland School of Medicine, Baltimore, MD
| | - Khanjan Nagarsheth
- University of Maryland School of Medicine, Baltimore, MD; Division of Vascular Surgery, Department of Surgery, University of Maryland Medical Center, Baltimore, MD
| |
Collapse
|
6
|
Chavda VP, Feehan J, Apostolopoulos V. Inflammation: The Cause of All Diseases. Cells 2024; 13:1906. [PMID: 39594654 PMCID: PMC11592557 DOI: 10.3390/cells13221906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Inflammation is an essential biological process that serves as the body's first line of defence against harmful stimuli, including pathogens, damaged cells, and irritants [...].
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad 380009, Gujarat, India;
| | - Jack Feehan
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia;
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia;
| |
Collapse
|
7
|
La Vecchia M, Sala G, Sculco M, Aspesi A, Dianzani I. Genetics, diet, microbiota, and metabolome: partners in crime for colon carcinogenesis. Clin Exp Med 2024; 24:248. [PMID: 39470880 PMCID: PMC11522171 DOI: 10.1007/s10238-024-01505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024]
Abstract
Colorectal cancer (CRC) ranks among the most prevalent malignant tumors worldwide, with a multifactorial etiology encompassing genetic, environmental, and life-style factors, as well as the intestinal microbiota and its metabolome. These risk factors often work together in specific groups of patients, influencing how CRC develops and progresses. Importantly, alterations in the gut microbiota act as a critical nexus in this interplay, significantly affecting susceptibility to CRC. This review highlights recent insights into unmodifiable and modifiable risk factors for CRC and how they might interact with the gut microbiota and its metabolome. Understanding the mechanisms of these interactions will help us develop targeted, precision-medicine strategies that can adjust the composition of the gut microbiota to meet individual health needs, preventing or treating CRC more effectively.
Collapse
Affiliation(s)
- Marta La Vecchia
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Gloria Sala
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Marika Sculco
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Anna Aspesi
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Irma Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy.
| |
Collapse
|
8
|
Sotomayor-Lugo F, Iglesias-Barrameda N, Casado-Hernandez I, Villegas-Valverde CA, Ventura-Carmenate Y, Rivero-Jimenez RA. Aging: Disease or "natural" process? A glimpse from regenerative medicine. Rev Esp Geriatr Gerontol 2024; 60:101543. [PMID: 39369641 DOI: 10.1016/j.regg.2024.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 10/08/2024]
Abstract
We explore aging as a global phenomenon, questioning whether it constitutes a treatable condition or follows a natural course. Acknowledging its multifactorial nature, we delve into the challenges and opportunities inherent in this intricate biological process. The inclusion of old age in the 11th International Classification of Diseases sparks debate, categorizing it as a disease based on mechanistic explanations, blood-based biomarkers, and anti-aging products. Ethical dilemmas arise, emphasizing the difficulty of defining the transition from normal to pathological states during this process. We suggest that aging should be regarded as a treatable condition without necessarily labeling it a 'disease.' While anti-aging research unveils promising interventions like Metformin, Rapamycin, and cellular therapy, achieving biological immortality remains a formidable challenge. The future promises to prolong life and enhance quality by comprehensively understanding aging's implications for human health.
Collapse
Affiliation(s)
| | | | | | | | - Yendry Ventura-Carmenate
- Abu Dhabi Stem Cells Center, Abu Dhabi, United Arab Emirates; Yas Clinic Khalifa City Hospital, Abu Dhabi, United Arab Emirates; United Arab Emirates University, Office of Research and Graduate Studies, College of Medicine and Health Science, Abu Dhabi, United Arab Emirates
| | - Rene Antonio Rivero-Jimenez
- Abu Dhabi Stem Cells Center, Abu Dhabi, United Arab Emirates; United Arab Emirates University, Office of Research and Graduate Studies, College of Medicine and Health Science, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
9
|
Gorbatenko VO, Goriainov SV, Babenko VA, Plotnikov EY, Chistyakov DV, Sergeeva MG. TLR3-mediated Astrocyte Responses in High and Normal Glucose Adaptation Differently Regulated by Metformin. Cell Biochem Biophys 2024; 82:2701-2715. [PMID: 38918312 DOI: 10.1007/s12013-024-01380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Toll-like receptors 3 (TLR3) are innate immune receptors expressed on a wide range of cell types, including glial cells. Inflammatory responses altered by hyperglycemia highlight the need to explore the molecular underpinnings of these changes in cellular models. Therefore, here we estimated TLR3-mediated response of astrocytes cultured at normal (NG, 5 mM) and high (HG, 22.5 mM) glucose concentrations for 48 h before stimulation with polyinosinic:polycytidylic acid Poly(I:C) (PIC) for 6 h. Seahorse Extracellular Flux Analyzer (Seahorse XFp) was used to estimate the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR). Although adaptation to HG affected ECAR and OCR, the stimulation of cells with PIC had no effect on ECAR. PIC reduced maximal OCR, but this effect disappeared upon adaptation to HG. PIC-stimulated release of cytokines IL-1β, IL-10 was reduced, and that of IL-6 and iNOS was increased in the HG model. Adaptation to HG reduced PIC-stimulated synthesis of COX-derived oxylipins measured by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Adaptation to HG did not alter PIC-stimulated p38 activity, ERK mitogen-activated protein kinase, STAT3 and ROS production. Metformin exhibited anti-inflammatory activity, reducing PIC-stimulated synthesis of cytokines and oxylipins. Cell adaptation to high glucose concentration altered the sensitivity of astrocytes to TLR3 receptor activation, and the hypoglycemic drug metformin may exert anti-inflammatory effects under these conditions.
Collapse
Affiliation(s)
- Vladislav O Gorbatenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Sergey V Goriainov
- Peoples' Friendship University of Russia (RUDN University), 117198, Moscow, Russia
| | - Valentina A Babenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Dmitry V Chistyakov
- Peoples' Friendship University of Russia (RUDN University), 117198, Moscow, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia.
| | - Marina G Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| |
Collapse
|
10
|
Van Dyne A, Wu TC, Adamowicz DH, Lee EE, Tu XM, Eyler LT. Longitudinal relationships between BMI and hs-CRP among people with schizophrenia. Schizophr Res 2024; 271:337-344. [PMID: 39089101 DOI: 10.1016/j.schres.2024.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
In people with schizophrenia (PwS), inflammation and metabolic issues significantly increase morbidity and mortality. However, our ability to understand inflammatory-metabolic mechanisms in this population has been limited to cross-sectional studies. This study involved 169 PwS and 156 non-psychiatric comparisons (NCs), aged 25-65, observed between 2012 and 2022 with 0 to 5 follow-ups post-baseline. High-sensitivity C-reactive protein (hs-CRP), a marker of inflammation, was measured via a particle-enhanced immuno-turbidimetric assay. Body mass index (BMI) was used as a proxy for metabolic function. The measurement intervals for hs-CRP and BMI ranged between 6 and 48 months. Linear mixed models (LMM) results revealed that at all time points, PwS has a higher hs-CRP (t (316) = 4.73, p < .001) and BMI (t (315) = 4.13, p < .001) than NCs; however, for BMI, this difference decreased over time (t (524) = -5.15, p < .001). To study interrelationships between hs-CRP and BMI, continuous time structural equational modeling (CTSEM) was used, accounting for uneven measurement intervals. CTSEM results showed that both hs-CRP predicted future BMI (Est. = 12.91, 95 % CI [7.70; 17.88]) and BMI predicted future hs-CRP (Est. = 1.54, 95 % CI [1.00; 2.04]), indicating a bidirectional relationship between inflammation and metabolic function. Notably, the influence of hs-CRP on future BMI was more robust than the other lagged relationship (p = .015), especially in PwS (Est. = 2.43, 95 % CI [0.39; 0.97]). Our study highlights the important role of inflammation in metabolic function and offers insights into potential interventions targeting inflammation in PwS.
Collapse
Affiliation(s)
- Angelina Van Dyne
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America.
| | - Tsung-Chin Wu
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, United States of America
| | - David H Adamowicz
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - Ellen E Lee
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America; VA San Diego Healthcare System, La Jolla, CA, United States of America
| | - Xin M Tu
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, United States of America
| | - Lisa T Eyler
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America; VA San Diego Healthcare System, La Jolla, CA, United States of America
| |
Collapse
|
11
|
Jonusas J, Patasius A, Drevinskaite M, Ladukas A, Linkeviciute-Ulinskiene D, Zabuliene L, Smailyte G. Metformin in Chemoprevention of Lung Cancer: A Retrospective Population-Based Cohort Study in Lithuania. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1275. [PMID: 39202556 PMCID: PMC11356288 DOI: 10.3390/medicina60081275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: This study aimed to evaluate the potential chemopreventive effect of antidiabetic medications, specifically metformin and pioglitazone, on lung cancer in patients with type 2 diabetes mellitus (T2DM). Additionally, the potential dose-response relationship for metformin use was analyzed. Methods: We conducted a retrospective cohort study utilizing comprehensive national health insurance and cancer registry databases to gather a large cohort of T2DM patients. Cox proportional hazards regression models were used to assess the risk of lung cancer across different antidiabetic medication groups, adjusting for potential confounders such as age and gender. A dose-response analysis was conducted for metformin users. Results: Our results indicated that metformin users had a significantly lower lung cancer risk than the reference group (HR = 0.69, 95% CI [0.55-0.86], p = 0.001). The risk reduction increased with higher cumulative metformin doses: a metformin cumulative dose between 1,370,000 and 2,976,000 had an HR of 0.61 (95% CI [0.49-0.75], p < 0.001) vs. cumulative metformin dose >2,976,000 which had an HR of 0.35 (95% CI [0.21-0.59], p < 0.001). No significant association between pioglitazone use and the risk of lung cancer was found (HR = 1.00, 95% CI [0.25-4.02]). Conclusions: This study shows that metformin may have a dose-dependent chemopreventive effect against lung cancer in T2DM, while the impact of pioglitazone remains unclear and requires further investigation.
Collapse
Affiliation(s)
- Justinas Jonusas
- Laboratory of Cancer Epidemiology, National Cancer Institute, LT-08406 Vilnius, Lithuania
- Department of Brachytherapy, National Cancer Institute, LT-08406 Vilnius, Lithuania
| | - Ausvydas Patasius
- Laboratory of Cancer Epidemiology, National Cancer Institute, LT-08406 Vilnius, Lithuania
- Department of Public Health, Institute of Health Sciences, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| | - Mingaile Drevinskaite
- Laboratory of Cancer Epidemiology, National Cancer Institute, LT-08406 Vilnius, Lithuania
| | - Adomas Ladukas
- Laboratory of Cancer Epidemiology, National Cancer Institute, LT-08406 Vilnius, Lithuania
| | | | - Lina Zabuliene
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| | - Giedre Smailyte
- Laboratory of Cancer Epidemiology, National Cancer Institute, LT-08406 Vilnius, Lithuania
- Department of Public Health, Institute of Health Sciences, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| |
Collapse
|
12
|
Srdić T, Đurašević S, Lakić I, Ružičić A, Vujović P, Jevđović T, Dakić T, Đorđević J, Tosti T, Glumac S, Todorović Z, Jasnić N. From Molecular Mechanisms to Clinical Therapy: Understanding Sepsis-Induced Multiple Organ Dysfunction. Int J Mol Sci 2024; 25:7770. [PMID: 39063011 PMCID: PMC11277140 DOI: 10.3390/ijms25147770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Sepsis-induced multiple organ dysfunction arises from the highly complex pathophysiology encompassing the interplay of inflammation, oxidative stress, endothelial dysfunction, mitochondrial damage, cellular energy failure, and dysbiosis. Over the past decades, numerous studies have been dedicated to elucidating the underlying molecular mechanisms of sepsis in order to develop effective treatments. Current research underscores liver and cardiac dysfunction, along with acute lung and kidney injuries, as predominant causes of mortality in sepsis patients. This understanding of sepsis-induced organ failure unveils potential therapeutic targets for sepsis treatment. Various novel therapeutics, including melatonin, metformin, palmitoylethanolamide (PEA), certain herbal extracts, and gut microbiota modulators, have demonstrated efficacy in different sepsis models. In recent years, the research focus has shifted from anti-inflammatory and antioxidative agents to exploring the modulation of energy metabolism and gut microbiota in sepsis. These approaches have shown a significant impact in preventing multiple organ damage and mortality in various animal sepsis models but require further clinical investigation. The accumulation of this knowledge enriches our understanding of sepsis and is anticipated to facilitate the development of effective therapeutic strategies in the future.
Collapse
Affiliation(s)
- Tijana Srdić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Siniša Đurašević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Iva Lakić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Aleksandra Ružičić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Predrag Vujović
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tanja Jevđović
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tamara Dakić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Jelena Đorđević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tomislav Tosti
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sofija Glumac
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (S.G.); (Z.T.)
| | - Zoran Todorović
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (S.G.); (Z.T.)
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| |
Collapse
|
13
|
Adler AI, Coleman RL, Leal J, Whiteley WN, Clarke P, Holman RR. Post-trial monitoring of a randomised controlled trial of intensive glycaemic control in type 2 diabetes extended from 10 years to 24 years (UKPDS 91). Lancet 2024; 404:145-155. [PMID: 38772405 DOI: 10.1016/s0140-6736(24)00537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND The 20-year UK Prospective Diabetes Study showed major clinical benefits for people with newly diagnosed type 2 diabetes randomly allocated to intensive glycaemic control with sulfonylurea or insulin therapy or metformin therapy, compared with conventional glycaemic control. 10-year post-trial follow-up identified enduring and emerging glycaemic and metformin legacy treatment effects. We aimed to determine whether these effects would wane by extending follow-up for another 14 years. METHODS 5102 patients enrolled between 1977 and 1991, of whom 4209 (82·5%) participants were originally randomly allocated to receive either intensive glycaemic control (sulfonylurea or insulin, or if overweight, metformin) or conventional glycaemic control (primarily diet). At the end of the 20-year interventional trial, 3277 surviving participants entered a 10-year post-trial monitoring period, which ran until Sept 30, 2007. Eligible participants for this study were all surviving participants at the end of the 10-year post-trial monitoring period. An extended follow-up of these participants was done by linking them to their routinely collected National Health Service (NHS) data for another 14 years. Clinical outcomes were derived from records of deaths, hospital admissions, outpatient visits, and accident and emergency unit attendances. We examined seven prespecified aggregate clinical outcomes (ie, any diabetes-related endpoint, diabetes-related death, death from any cause, myocardial infarction, stroke, peripheral vascular disease, and microvascular disease) by the randomised glycaemic control strategy on an intention-to-treat basis using Kaplan-Meier time-to-event and log-rank analyses. This study is registered with the ISRCTN registry, number ISRCTN75451837. FINDINGS Between Oct 1, 2007, and Sept 30, 2021, 1489 (97·6%) of 1525 participants could be linked to routinely collected NHS administrative data. Their mean age at baseline was 50·2 years (SD 8·0), and 41·3% were female. The mean age of those still alive as of Sept 30, 2021, was 79·9 years (SD 8·0). Individual follow-up from baseline ranged from 0 to 42 years, median 17·5 years (IQR 12·3-26·8). Overall follow-up increased by 21%, from 66 972 to 80 724 person-years. For up to 24 years after trial end, the glycaemic and metformin legacy effects showed no sign of waning. Early intensive glycaemic control with sulfonylurea or insulin therapy, compared with conventional glycaemic control, showed overall relative risk reductions of 10% (95% CI 2-17; p=0·015) for death from any cause, 17% (6-26; p=0·002) for myocardial infarction, and 26% (14-36; p<0·0001) for microvascular disease. Corresponding absolute risk reductions were 2·7%, 3·3%, and 3·5%, respectively. Early intensive glycaemic control with metformin therapy, compared with conventional glycaemic control, showed overall relative risk reductions of 20% (95% CI 5-32; p=0·010) for death from any cause and 31% (12-46; p=0·003) for myocardial infarction. Corresponding absolute risk reductions were 4·9% and 6·2%, respectively. No significant risk reductions during or after the trial for stroke or peripheral vascular disease were observed for both intensive glycaemic control groups, and no significant risk reduction for microvascular disease was observed for metformin therapy. INTERPRETATION Early intensive glycaemic control with sulfonylurea or insulin, or with metformin, compared with conventional glycaemic control, appears to confer a near-lifelong reduced risk of death and myocardial infarction. Achieving near normoglycaemia immediately following diagnosis might be essential to minimise the lifetime risk of diabetes-related complications to the greatest extent possible. FUNDING University of Oxford Nuffield Department of Population Health Pump Priming.
Collapse
Affiliation(s)
- Amanda I Adler
- Diabetes Trials Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Ruth L Coleman
- Diabetes Trials Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jose Leal
- NIHR Oxford Biomedical Research Centre, Oxford, UK; Health Economics Research Centre, University of Oxford, Oxford, UK
| | - William N Whiteley
- Health Economics Research Centre, University of Oxford, Oxford, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK; British Heart Foundation Data Science Centre, Health Data Research UK, London, UK
| | - Philip Clarke
- NIHR Oxford Biomedical Research Centre, Oxford, UK; Health Economics Research Centre, University of Oxford, Oxford, UK
| | - Rury R Holman
- Diabetes Trials Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Diabetes Trials Unit, OCDEM, Churchill Hospital, Oxford, UK.
| |
Collapse
|
14
|
Liu X, Yuan M, Zhao D, Zeng Q, Li W, Li T, Li Q, Zhuo Y, Luo M, Chen P, Wang L, Feng W, Zhou Z. Single-Nucleus Transcriptomic Atlas of Human Pericoronary Epicardial Adipose Tissue in Normal and Pathological Conditions. Arterioscler Thromb Vasc Biol 2024; 44:1628-1645. [PMID: 38813696 PMCID: PMC11208064 DOI: 10.1161/atvbaha.124.320923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Pericoronary epicardial adipose tissue (EAT) is a unique visceral fat depot that surrounds the adventitia of the coronary arteries without any anatomic barrier. Clinical studies have demonstrated the association between EAT volume and increased risks for coronary artery disease (CAD). However, the cellular and molecular mechanisms underlying the association remain elusive. METHODS We performed single-nucleus RNA sequencing on pericoronary EAT samples collected from 3 groups of subjects: patients undergoing coronary bypass surgery for severe CAD (n=8), patients with CAD with concomitant type 2 diabetes (n=8), and patients with valvular diseases but without concomitant CAD and type 2 diabetes as the control group (n=8). Comparative analyses were performed among groups, including cellular compositional analysis, cell type-resolved transcriptomic changes, gene coexpression network analysis, and intercellular communication analysis. Immunofluorescence staining was performed to confirm the presence of CAD-associated subclusters. RESULTS Unsupervised clustering of 73 386 nuclei identified 15 clusters, encompassing all known cell types in the adipose tissue. Distinct subpopulations were identified within primary cell types, including adipocytes, adipose stem and progenitor cells, and macrophages. CD83high macrophages and FOSBhigh adipocytes were significantly expanded in CAD. In comparison to normal controls, both disease groups exhibited dysregulated pathways and altered secretome in the primary cell types. Nevertheless, minimal differences were noted between the disease groups in terms of cellular composition and transcriptome. In addition, our data highlight a potential interplay between dysregulated circadian clock and altered physiological functions in adipocytes of pericoronary EAT. ANXA1 (annexin A1) and SEMA3B (semaphorin 3B) were identified as important adipokines potentially involved in functional changes of pericoronary EAT and CAD pathogenesis. CONCLUSIONS We built a complete single-nucleus transcriptomic atlas of human pericoronary EAT in normal and diseased conditions of CAD. Our study lays the foundation for developing novel therapeutic strategies for treating CAD by targeting and modifying pericoronary EAT functions.
Collapse
Affiliation(s)
- Xuanyu Liu
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| | - Meng Yuan
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| | - Danni Zhao
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| | - Qingyi Zeng
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| | - Wenke Li
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| | - Tianjiao Li
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| | - Qi Li
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Department of Cardiac Surgery (Q.L., P.C., L.W., W.F.), Fuwai Hospital, Beijing, China
| | - Yue Zhuo
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Center of Vascular Surgery (Y.Z., M.L.), Fuwai Hospital, Beijing, China
| | - Mingyao Luo
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Center of Vascular Surgery (Y.Z., M.L.), Fuwai Hospital, Beijing, China
- Department of Vascular Surgery, Central-China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, China (M.L.)
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, China (M.L.)
| | - Pengfei Chen
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Department of Cardiac Surgery (Q.L., P.C., L.W., W.F.), Fuwai Hospital, Beijing, China
| | - Liqing Wang
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Department of Cardiac Surgery (Q.L., P.C., L.W., W.F.), Fuwai Hospital, Beijing, China
| | - Wei Feng
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Department of Cardiac Surgery (Q.L., P.C., L.W., W.F.), Fuwai Hospital, Beijing, China
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| |
Collapse
|
15
|
Syed SU, Cortez JI, Wilson SJ. Depression, Inflammation, and the Moderating Role of Metformin: Results From the Midlife in the United States Study and Sacramento Area Latino Study on Aging. Psychosom Med 2024; 86:473-483. [PMID: 37910133 PMCID: PMC11039570 DOI: 10.1097/psy.0000000000001257] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
OBJECTIVE Depression can promote inflammation and accelerate aging. Metformin, a widely prescribed antidiabetic, has shown promising preclinical evidence of aging-related health benefits, including decreased inflammation. The current study examined whether metformin usage buffers the association between depressive symptoms and inflammatory markers in two large samples of middle-aged and older, primarily White adults, and older Latino adults. METHODS Data from the Midlife in the United States Study ( N = 1255) and the Sacramento Area Latino Study on Aging ( N = 1786) included information on medication use, depressive symptoms, and inflammatory markers, namely, interleukin 6 (IL-6), tumor necrosis factor α, and C-reactive protein (CRP). These data were merged into a harmonized sample, and the sample group variable was included in a three-way interaction for analysis. RESULTS Specifically, in the Midlife in the United States Study sample, metformin buffered the association between depressive symptoms and CRP ( b = -0.029, standard error [SE] = 0.013, p = .007) and IL-6 ( b = 0.21, SE = 0.010, p = .046), whereas no significant association was found with tumor necrosis factor α. Metformin nonusers displayed higher depressive symptoms associated with elevated CRP ( b = 0.01, SE = 0.003, p < .001) and IL-6 ( b = 0.011, SE = 0.003, p < .001), whereas this association was not present among metformin users ( p values > .068). Conversely, in the Sacramento Area Latino Study on Aging sample, metformin use did not show a significant protective link. CONCLUSIONS Results from mostly White, highly educated adults supported a mitigating role of metformin in ties between depression, a well-known behavioral risk factor, and inflammation, a key source of biological aging. However, the benefits did not extend to a large sample of older Mexican Americans. The findings reveal a hidden potential benefit of this therapeutic agent and raise important questions around its health equity. TRIAL REGISTRATION The study was preregistered on OSF ( https://osf.io/c92vw/ ).
Collapse
Affiliation(s)
- Sumaiyah U. Syed
- Department of Psychology, Southern Methodist University, Dallas, TX, USA
| | - Jared I. Cortez
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | | |
Collapse
|
16
|
Asemare S, Belay A, Kebede A, Sherfedin U. Ground and Excited State Dipole Moments of Metformin Hydrochloride using Solvatochromic Effects and Density Functional Theory. J Fluoresc 2024; 34:1207-1217. [PMID: 37505362 DOI: 10.1007/s10895-023-03355-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
In this research, the ground (µg) and excited (µe) state dipole moments of metformin hydrochlorides were determined using Lippert-Mataga, Bakhshiev's, Kawski-Chamma-Viallet, and Reichardt models from fluorescence emission and UV-Vis absorption spectra in various solvents. From solvatochromic effects the calculated excited (µe ) dipole moment of metformin hydrochloride were, 8.55 D, 8.34 D, 6.08 D, and 6.40 D using the Lippert-Mataga, Bakhshiev's, Kawski-Chamma-Viallet and Reichardt models respectively. The results also indicated that the dipole moment at the ground state is smaller than the excited state. This is due to solvent polarity having a stronger effect on fluorescence emission than absorption spectra. Similarly, from density functional theory, the calculated ground and excited states dipole moments of metformin hydrochloride using (DFT-B3LYP- 3-21+G*(μg = 10.02 D and μe = 11.94 D), DFT-B3LYP- 6-31+G (d, p) (μg = 8.44 D and μe = 10.87 D), and DFT-B3LYP- 6-311+G (d, p) (μg = 8.24 D and μe = 18.74 D)) analyzed by Gaussian 09W. From the optimized geometry of the molecule, the HOMO-LUMO energy band gap of metformin hydrochloride were computed using DFT [DFT-B3LYP- 3-21+G*(5.51 eV), DFT-B3LYP- 6-31+G (d, p) (5.66 eV), and DFT-B3LYP- 6-311+G (d, p) (5.70 eV)] respectively.
Collapse
Affiliation(s)
- Semahegn Asemare
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University, PO Box 1888, Adama, Ethiopia.
| | - Abebe Belay
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University, PO Box 1888, Adama, Ethiopia.
| | - Alemu Kebede
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University, PO Box 1888, Adama, Ethiopia
| | - Umer Sherfedin
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University, PO Box 1888, Adama, Ethiopia
| |
Collapse
|
17
|
Liu Y, Dai L, Dong Y, Ma C, Cheng P, Jiang C, Liao H, Li Y, Wang X, Xu X. Coronary inflammation based on pericoronary adipose tissue attenuation in type 2 diabetic mellitus: effect of diabetes management. Cardiovasc Diabetol 2024; 23:108. [PMID: 38553738 PMCID: PMC10981289 DOI: 10.1186/s12933-024-02199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/12/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Coronary inflammation plays crucial role in type 2 diabetes mellitus (T2DM) induced cardiovascular complications. Both glucose-lowering drug interventions (GLDIS) and glycemic control (GC) status potentially correlate coronary inflammation, as indicated by changes in pericoronary adipose tissue (PCAT) attenuation, and thus influence cardiovascular risk. This study evaluated the impact of GLDIS and GC status on PCAT attenuation in T2DM patients. METHODS This retrospective study collected clinical data and coronary computed tomography angiography (CCTA) images of 1,342 patients, including 547 T2DM patients and 795 non-T2DM patients in two tertiary hospitals. T2DM patients were subgroup based on two criteria: (1) GC status: well: HbA1c < 7%, moderate: 7 ≤ HbA1c ≤ 9%, and poor: HbA1c > 9%; (2) GLDIS and non-GLDIS. PCAT attenuations of the left anterior descending artery (LAD-PCAT), left circumflex artery (LCX-PCAT), and right coronary artery (RCA-PCAT) were measured. Propensity matching (PSM) was used to cross compare PCAT attenuation of non-T2DM and all subgroups of T2DM patients. Linear regressions were conducted to evaluate the impact of GC status and GLDIS on PCAT attenuation in T2DM patients. RESULTS Significant differences were observed in RCA-PCAT and LCX-PCAT between poor GC-T2DM and non-T2DM patients (LCX: - 68.75 ± 7.59 HU vs. - 71.93 ± 7.25 HU, p = 0.008; RCA: - 74.37 ± 8.44 HU vs. - 77.2 ± 7.42 HU, p = 0.026). Higher PCAT attenuation was observed in LAD-PCAT, LCX-PCAT, and RCA-PCAT in non-GLDIS T2DM patients compared with GLDIS T2DM patients (LAD: - 78.11 ± 8.01 HU vs. - 75.04 ± 8.26 HU, p = 0.022; LCX: - 71.10 ± 8.13 HU vs. - 68.31 ± 7.90 HU, p = 0.037; RCA: - 78.17 ± 8.64 HU vs. - 73.35 ± 9.32 HU, p = 0.001). In the linear regression, other than sex and duration of diabetes, both metformin and acarbose were found to be significantly associated with lower LAD-PCAT (metformin: β coefficient = - 2.476, p=0.021; acarbose: β coefficient = - 1.841, p = 0.031). CONCLUSION Inadequate diabetes management, including poor GC and lack of GLDIS, may be associated with increased coronary artery inflammation in T2DM patients, as indicated by PCAT attenuation on CCTA, leading to increased cardiovascular risk. This finding could help healthcare providers identify T2DM patients with increased cardiovascular risk, develop improved cardiovascular management programs, and reduce subsequent cardiovascular related mortality.
Collapse
Affiliation(s)
- Yuankang Liu
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Yanhu Avenue, Wuchang District, Wuhan, 430077, China
| | - Lisong Dai
- Department of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Xuhui District, Shanghai, Shanghai, 200233, China
| | - Yue Dong
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Yanhu Avenue, Wuchang District, Wuhan, 430077, China
| | - Cong Ma
- Department of Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Yanhu Avenue, Wuchang District, Wuhan, 430077, China
| | - Panpan Cheng
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Yanhu Avenue, Wuchang District, Wuhan, 430077, China
| | - Cuiping Jiang
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Yanhu Avenue, Wuchang District, Wuhan, 430077, China
| | - Hongli Liao
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Shengli Road No. 26, Jiangan District, Wuhan, 430014, China
| | - Ying Li
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Yanhu Avenue, Wuchang District, Wuhan, 430077, China
| | - Xiang Wang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Shengli Road No. 26, Jiangan District, Wuhan, 430014, China.
| | - Xiangyang Xu
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Yanhu Avenue, Wuchang District, Wuhan, 430077, China.
| |
Collapse
|
18
|
Tsang YP, Hao T, Mao Q, Kelly EJ, Unadkat JD. Dysregulation of the mRNA Expression of Human Renal Drug Transporters by Proinflammatory Cytokines in Primary Human Proximal Tubular Epithelial Cells. Pharmaceutics 2024; 16:285. [PMID: 38399338 PMCID: PMC10893102 DOI: 10.3390/pharmaceutics16020285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Proinflammatory cytokines, which are elevated during inflammation or infections, can affect drug pharmacokinetics (PK) due to the altered expression or activity of drug transporters and/or metabolizing enzymes. To date, such studies have focused on the effect of cytokines on the activity and/or mRNA expression of hepatic transporters and drug-metabolizing enzymes. However, many antibiotics and antivirals used to treat infections are cleared by renal transporters, including the basal organic cation transporter 2 (OCT2), organic anion transporters 1 and 3 (OAT1 and 3), the apical multidrug and toxin extrusion proteins 1 and 2-K (MATE1/2-K), and multidrug resistance-associated protein 2 and 4 (MRP2/4). Here, we determined the concentration-dependent effect of interleukin-6 (IL-6), IL-1β, tumor necrosis factor (TNF)-α, and interferon-γ (IFN-γ) on the mRNA expression of human renal transporters in freshly isolated primary human renal proximal tubular epithelial cells (PTECs, n = 3-5). PTECs were exposed to either a cocktail of cytokines, each at 0.01, 0.1, 1, or 10 ng/mL or individually at the same concentrations. Exposure to the cytokine cocktail for 48 h was found to significantly downregulate the mRNA expression, in a concentration-dependent manner, of OCT2, the organic anion transporting polypeptides 4C1 (OATP4C1), OAT4, MATE2-K, P-glycoprotein (P-gp), and MRP2 and upregulate the mRNA expression of the organic cation/carnitine transporter 1 (OCTN1) and MRP3. OAT1 and OAT3 also appeared to be significantly downregulated but only at 0.1 and 10 ng/mL, respectively, without a clear concentration-dependent trend. Among the cytokines, IL-1β appeared to be the most potent at down- and upregulating the mRNA expression of the transporters. Taken together, our results demonstrate for the first time that proinflammatory cytokines transcriptionally dysregulate renal drug transporters in PTECs. Such dysregulation could potentially translate into changes in transporter protein abundance or activity and alter renal transporter-mediated drug PK during inflammation or infections.
Collapse
Affiliation(s)
| | | | | | | | - Jashvant D. Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA; (Y.P.T.); (T.H.); (E.J.K.)
| |
Collapse
|
19
|
Petakh P, Kamyshna I, Oksenych V, Kamyshnyi O. Metformin Alters mRNA Expression of FOXP3, RORC, and TBX21 and Modulates Gut Microbiota in COVID-19 Patients with Type 2 Diabetes. Viruses 2024; 16:281. [PMID: 38400056 PMCID: PMC10893440 DOI: 10.3390/v16020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
COVID-19 remains a significant global concern, particularly for individuals with type 2 diabetes who face an elevated risk of hospitalization and mortality. Metformin, a primary treatment for type 2 diabetes, demonstrates promising pleiotropic properties that may substantially mitigate disease severity and expedite recovery. Our study of the gut microbiota and the mRNA expression of pro-inflammatory and anti-inflammatory T-lymphocyte subpopulations showed that metformin increases bacterial diversity while modulating gene expression related to T-lymphocytes. This study found that people who did not take metformin had a downregulated expression of FOXP3 by 6.62-fold, upregulated expression of RORC by 29.0-fold, and upregulated TBX21 by 1.78-fold, compared to the control group. On the other hand, metformin patients showed a 1.96-fold upregulation in FOXP3 expression compared to the control group, along with a 1.84-fold downregulation in RORC expression and an 11.4-fold downregulation in TBX21 expression. Additionally, we found a correlation with gut microbiota (F/B ratio and alpha-diversity index) and pro-inflammatory biomarkers. This novel observation of metformin's impact on T-cells and gut microbiota opens new horizons for further exploration through clinical trials to validate and confirm our data. The potential of metformin to modulate immune responses and enhance gut microbiota diversity suggests a promising avenue for therapeutic interventions in individuals with type 2 diabetes facing an increased risk of severe outcomes from COVID-19.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, 88000 Uzhhorod, Ukraine
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
20
|
Buczyńska A, Sidorkiewicz I, Krętowski AJ, Adamska A. Examining the clinical relevance of metformin as an antioxidant intervention. Front Pharmacol 2024; 15:1330797. [PMID: 38362157 PMCID: PMC10867198 DOI: 10.3389/fphar.2024.1330797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
In physiological concentrations, reactive oxygen species play a vital role in regulating cell signaling and gene expression. Nevertheless, oxidative stress is implicated in the pathogenesis of numerous diseases and can inflict damage on diverse cell types and tissues. Thus, understanding the factors that mitigate the deleterious effects of oxidative stress is imperative for identifying new therapeutic targets. In light of the absence of direct treatment recommendations for reducing oxidative stress, there is a continuing need for fundamental research that utilizes innovative therapeutic approaches. Metformin, known for its multifaceted beneficial properties, is acknowledged for its ability to counteract the adverse effects of increased oxidative stress at both molecular and cellular levels. In this review, we delve into recent insights regarding metformin's antioxidant attributes, aiming to expand its clinical applicability. Our review proposes that metformin holds promise as a potential adjunctive therapy for various diseases, given its modulation of oxidative stress characteristics and regulation of diverse metabolic pathways. These pathways include lipid metabolism, hormone synthesis, and immunological responses, all of which may experience dysregulation in disease states, contributing to increased oxidative stress. Furthermore, our review introduces potential novel metformin-based interventions that may merit consideration in future research. Nevertheless, the necessity for clinical trials involving this drug remains imperative, as they are essential for establishing therapeutic dosages and addressing challenges associated with dose-dependent effects.
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Iwona Sidorkiewicz
- Clinical Research Support Centre, Medical University of Bialystok, Bialystok, Poland
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Adamska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
21
|
Petakh P, Kamyshna I, Kamyshnyi A. Gene expression of protein kinase AMP-activated catalytic subunit alpha 1 (PRKAA1), solute carrier family 2 member 1 (SLC2A1) and mechanistic target of rapamycin (MTOR) in metformin-treated type 2 diabetes patients with COVID-19: impact on inflammation markers. Inflammopharmacology 2024; 32:885-891. [PMID: 37773574 DOI: 10.1007/s10787-023-01341-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
The COVID-19 pandemic has resulted in a global health crisis that has severely impacted patients with type 2 diabetes (T2D). T2D patients have a higher risk of experiencing severe COVID-19 symptoms, hospitalization, and mortality compared to patients without diabetes. The dysregulated immune response in T2D patients can exacerbate the severity of COVID-19 symptoms. Insulin therapy, a common treatment for T2D patients, has been linked to increased mortality in COVID-19 patients with T2D. However, metformin, an anti-diabetic medication, has been shown to have anti-inflammatory properties that may mitigate the cytokine storm observed in severe COVID-19 cases. In this study, we investigated how the PRKAA1, SLC2A1, and MTOR genes contribute to inflammation markers in COVID-19 patients with T2D, who were receiving either insulin or metformin therapy. Our findings revealed that metformin treatment was associated with reduced expression of genes involved in Th1/Th17 cell differentiation. These results suggest that metformin could be a potential treatment option for T2D patients with COVID-19 due to its anti-inflammatory properties, which may improve patient outcomes.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine.
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, 46001, Ukraine.
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Aleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, 46001, Ukraine.
| |
Collapse
|
22
|
Kaczmarek K, Więckiewicz J, Que I, Gałuszka-Bulaga A, Chan A, Siedlar M, Baran J. Human Soluble TRAIL Secreted by Modified Lactococcus lactis Bacteria Promotes Tumor Growth in the Orthotopic Mouse Model of Colorectal Cancer. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0002. [PMID: 38299562 DOI: 10.2478/aite-2024-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/30/2023] [Indexed: 02/02/2024]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis of sensitive cancer cells, including colorectal cancer (CRC). Due to its short biological half-life after intravenous administration and related clinical ineffectiveness, novel formulations of TRAIL need to be developed. Here we propose Lactococcus lactis bacteria as a vehicle for local delivery of human soluble TRAIL (hsTRAIL) in CRC. The use of common probiotics targeting guts as carriers for TRAIL could ensure its sustained release at the tumor site and extend the duration of its activity. We have already engineered hsTRAIL-secreting L.lactis bacteria and showed their effectiveness in elimination of human CRC cells in vitro and in vivo in a mouse subcutaneous model. Here, L.lactis(hsTRAIL+) were administered by gastric gavage to SCID mice with orthotopically developed HCT116 tumor in cecum, in monotherapy or in combination with metformin (MetF), already shown to enhance the hsTRAIL anti-tumor activity in subcutaneous CRC model. Oral administration of L.lactis(hsTRAIL+) resulted in significant progression of HCT116 tumors and shortening of the colon crypts. Secretion of hsTRAIL in the colon was accompanied by infiltration of the primary tumor with M2-macrophages, while MetF promoted transient colonization of the gut by L.lactis. Our study indicates that L.lactis bacteria after oral administration enable delivery of biologically active hsTRAIL to colon, however its potential therapeutic effect in CRC treatment is abolished by its pro-tumorigenic signalling, leading to the recruitment of M2-macrophages and tumor growth promotion.
Collapse
Affiliation(s)
- Katarzyna Kaczmarek
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Jerzy Więckiewicz
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Ivo Que
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
- Currently: Department of Radiology and Nuclear Medicine, Department of Molecular Genetics, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Adrianna Gałuszka-Bulaga
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Alan Chan
- Percuros B.V., Zernikedreef 8, 2333 CL Leiden, The Netherlands
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Jarek Baran
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
23
|
Zhang J, Brown R, Hogan MV, Wang JHC. Mitigating Scar Tissue Formation in Tendon Injuries: Targeting HMGB1, AMPK Activation, and Myofibroblast Migration All at Once. Pharmaceuticals (Basel) 2023; 16:1739. [PMID: 38139865 PMCID: PMC10748062 DOI: 10.3390/ph16121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Tendon injuries, while prevalent, present significant challenges regarding their structural and functional restoration. Utilizing alpha-smooth muscle actin (α-SMA)-Ai9-scleraxis (Scx)-green fluorescent protein (GFP) transgenic mice, which exhibit both Scx (a tendon cell marker) and α-SMA (a myofibroblast marker), we explored the effects of metformin (Met) on tendon healing, repair, and its mechanisms of action. Our findings revealed that intraperitoneal (IP) injections of Met, administered before or after injury, as well as both, effectively prevented the release of HMGB1 into the tendon matrix and reduced circulating levels of HMGB1. Additionally, Met treatment increased and activated AMPK and suppressed TGF-β1 levels within the healing tendon. Tendon healing was also improved by blocking the migration of α-SMA+ myofibroblasts, reducing the prevalence of disorganized collagen fibers and collagen type III. It also enhanced the presence of collagen type I. These outcomes highlight Met's anti-fibrotic properties in acutely injured tendons and suggest its potential for repurposing as a therapeutic agent to minimize scar tissue formation in tendon injuries, which could have profound implications in clinical practice.
Collapse
Affiliation(s)
- Jianying Zhang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, E-1640 BST, 200 Lothrop Street, Pittsburgh, PA 15213, USA; (J.Z.); (R.B.); (M.V.H.)
| | - Roshawn Brown
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, E-1640 BST, 200 Lothrop Street, Pittsburgh, PA 15213, USA; (J.Z.); (R.B.); (M.V.H.)
| | - MaCalus V. Hogan
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, E-1640 BST, 200 Lothrop Street, Pittsburgh, PA 15213, USA; (J.Z.); (R.B.); (M.V.H.)
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - James H-C. Wang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, E-1640 BST, 200 Lothrop Street, Pittsburgh, PA 15213, USA; (J.Z.); (R.B.); (M.V.H.)
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
24
|
Zeng L, Chen L, Gao F, Li J, Song Y, Wei L, Qu N, Li Y, Jiang H. The Comparation of Renal Anti-Senescence Effects and Blood Metabolites between Dapagliflozin and Metformin in Non-Diabetes Environment. Adv Biol (Weinh) 2023; 7:e2300199. [PMID: 37688360 DOI: 10.1002/adbi.202300199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Indexed: 09/10/2023]
Abstract
Delaying kidney senescence process will benefit renal physiologic conditions, and prompt the kidney recovering from different pathological states. The renal anti-senescence effects of sodium-glucose cotransporter-2 inhibitors (SGLT2i) and metformin have been proven in diabetic settings, but the roles of each one and combination of two drugs in natural kidney aging process remain undefined and deserve further research. Senescence-accelerated mouse prone 8 (SAMP8) were orally administered dapagliflozin, metformin, and a combination of them for 16 weeks. Dapagliflozin exhibits better effects than metformin in lowering senescence related markers, and the combination therapy shows the best results. In vitro experiments demonstrate the same results that the combination of dapagliflozin and metformin can exert a better anti-senescence effect. Blood metabolites detection in vivo shows dapagliflozin mainly leads to the change of blood metabolites enriched in choline metabolism, and metformin tends to induce change of blood metabolites enriched in purine metabolism. In conclusion, the results suggest dapagliflozin may have a better renal anti-senescence effect than metformin in non-diabetes environment, and the combination of the two drugs can strengthen the effect. The two drugs can lead to different blood metabolites alteration, which may lead to different systemic effects.
Collapse
Affiliation(s)
- Lu Zeng
- Department of Critical Care Nephrology and Blood Purification, the First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, China
| | - Lei Chen
- Department of Critical Care Nephrology and Blood Purification, the First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, China
| | - Fanfan Gao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, China
| | - Jie Li
- Department of Nephrology, Henan Provincial people's hospital, Henan, 450003, China
| | - Yangyang Song
- Department of Critical Care Nephrology and Blood Purification, the First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, China
| | - Limin Wei
- Department of Critical Care Nephrology and Blood Purification, the First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, China
| | - Ning Qu
- Department of Medical Examination, the First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, China
| | - Yan Li
- Department of Nephrology, the First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, China
| | - Hongli Jiang
- Department of Critical Care Nephrology and Blood Purification, the First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, China
| |
Collapse
|
25
|
Zeber-Lubecka N, Ciebiera M, Hennig EE. Polycystic Ovary Syndrome and Oxidative Stress-From Bench to Bedside. Int J Mol Sci 2023; 24:14126. [PMID: 37762427 PMCID: PMC10531631 DOI: 10.3390/ijms241814126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress (OS) is a condition that occurs as a result of an imbalance between the production of reactive oxygen species (ROS) and the body's ability to detoxify and neutralize them. It can play a role in a variety of reproductive system conditions, including polycystic ovary syndrome (PCOS), endometriosis, preeclampsia, and infertility. In this review, we briefly discuss the links between oxidative stress and PCOS. Mitochondrial mutations may lead to impaired oxidative phosphorylation (OXPHOS), decreased adenosine triphosphate (ATP) production, and an increased production of ROS. These functional consequences may contribute to the metabolic and hormonal dysregulation observed in PCOS. Studies have shown that OS negatively affects ovarian follicles and disrupts normal follicular development and maturation. Excessive ROS may damage oocytes and granulosa cells within the follicles, impairing their quality and compromising fertility. Impaired OXPHOS and mitochondrial dysfunction may contribute to insulin resistance (IR) by disrupting insulin signaling pathways and impairing glucose metabolism. Due to dysfunctional OXPHOS, reduced ATP production, may hinder insulin-stimulated glucose uptake, leading to IR. Hyperandrogenism promotes inflammation and IR, both of which can increase the production of ROS and lead to OS. A detrimental feedback loop ensues as IR escalates, causing elevated insulin levels that exacerbate OS. Exploring the relations between OS and PCOS is crucial to fully understand the role of OS in the pathophysiology of PCOS and to develop effective treatment strategies to improve the quality of life of women affected by this condition. The role of antioxidants as potential therapies is also discussed.
Collapse
Affiliation(s)
- Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
| | - Ewa E. Hennig
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| |
Collapse
|
26
|
Yi Y, Zhang H, Chen M, Chen B, Chen Y, Li P, Zhou H, Ma Z, Jiang H. Inhibition of multiple uptake transporters in cardiomyocytes/mitochondria alleviates doxorubicin-induced cardiotoxicity. Chem Biol Interact 2023; 382:110627. [PMID: 37453608 DOI: 10.1016/j.cbi.2023.110627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Doxorubicin (DOX) has been widely used to treat various tumors; however, DOX-induced cardiotoxicity limits its utilization. Since high accumulation of DOX in cardiomyocytes/mitochondria is the key reason, we aimed to clarify the mechanisms of DOX uptake and explore whether selectively inhibiting DOX uptake transporters would attenuate DOX accumulation and cardiotoxicity. Our results demonstrated that OCTN1/OCTN2/PMAT (organic cation/carnitine transporter 1/2 or plasma membrane monoamine transporter), especially OCTN2, played crucial roles in DOX uptake in cardiomyocytes, while OCTN2 and OCTN1 contributed to DOX transmembrane transport in mitochondria. Metformin (1-100 μM) concentration-dependently reduced DOX (5 μM for accumulation, 500 nM for cytotoxicity) concentration and toxicity in cardiomyocytes/mitochondria via inhibition of OCTN1-, OCTN2- and PMAT-mediated DOX uptake but did not affect its efflux. Furthermore, metformin (iv: 250 and 500 mg/kg or ig: 50, 100 and 200 mg/kg) could dose-dependently reduce DOX (8 mg/kg) accumulation in mouse myocardium and attenuated its cardiotoxicity. In addition, metformin (1-100 μM) did not impair DOX efficacy in breast cancer or leukemia cells. In conclusion, our study clarified the role of multiple transporters, especially OCTN2, in DOX uptake in cardiomyocytes/mitochondria; metformin alleviated DOX-induced cardiotoxicity without compromising its antitumor efficacy by selective inhibition of multiple transporters mediated DOX accumulation in myocardium/mitochondria.
Collapse
Affiliation(s)
- Yaodong Yi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Hengbin Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Mingyang Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Binxin Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Yingchun Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Ping Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Hui Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Jinhua Institute of Zhejiang University, PR China
| | - Zhiyuan Ma
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
| | - Huidi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Jinhua Institute of Zhejiang University, PR China.
| |
Collapse
|
27
|
Drzał A, Dziurman G, Hoła P, Lechowski J, Delalande A, Swakoń J, Pichon C, Elas M. Murine Breast Cancer Radiosensitization Using Oxygen Microbubbles and Metformin: Vessels Are the Key. Int J Mol Sci 2023; 24:12156. [PMID: 37569531 PMCID: PMC10418665 DOI: 10.3390/ijms241512156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Radiotherapy is a cornerstone of cancer treatment, but tumor hypoxia and resistance to radiation remain significant challenges. Vascular normalization has emerged as a strategy to improve oxygenation and enhance therapeutic outcomes. In this study, we examine the radiosensitization potential of vascular normalization using metformin, a widely used anti-diabetic drug, and oxygen microbubbles (OMBs). We investigated the synergistic action of metformin and OMBs and the impact of this therapeutic combination on the vasculature, oxygenation, invasiveness, and radiosensitivity of murine 4T1 breast cancer. We employed in vivo Doppler ultrasonographic imaging for vasculature analysis, electron paramagnetic resonance oximetry, and immunohistochemical assessment of microvessels, perfusion, and invasiveness markers. Our findings demonstrate that both two-week metformin therapy and oxygen microbubble treatment normalize abnormal cancer vasculature. The combination of metformin and OMB yielded more pronounced and sustained effects than either treatment alone. The investigated therapy protocols led to nearly twice the radiosensitivity of 4T1 tumors; however, no significant differences in radiosensitivity were observed between the various treatment groups. Despite these improvements, resistance to treatment inevitably emerged, leading to the recurrence of hypoxia and an increased incidence of metastasis.
Collapse
Affiliation(s)
- Agnieszka Drzał
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, 30-387 Krakow, Poland; (A.D.); (G.D.); (P.H.); (J.L.)
| | - Gabriela Dziurman
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, 30-387 Krakow, Poland; (A.D.); (G.D.); (P.H.); (J.L.)
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Paweł Hoła
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, 30-387 Krakow, Poland; (A.D.); (G.D.); (P.H.); (J.L.)
| | - Jakub Lechowski
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, 30-387 Krakow, Poland; (A.D.); (G.D.); (P.H.); (J.L.)
| | - Anthony Delalande
- UFR Sciences and Techniques, University of Orleans, 45067 Orleans, France; (A.D.); (C.P.)
- Center for Molecular Biophysics, CNRS Orleans, 45071 Orleans, France
| | - Jan Swakoń
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland;
| | - Chantal Pichon
- UFR Sciences and Techniques, University of Orleans, 45067 Orleans, France; (A.D.); (C.P.)
- Center for Molecular Biophysics, CNRS Orleans, 45071 Orleans, France
- Institut Universitaire de France, 75231 Paris, France
| | - Martyna Elas
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, 30-387 Krakow, Poland; (A.D.); (G.D.); (P.H.); (J.L.)
| |
Collapse
|
28
|
Siwakoti B, Lien TS, Lin YY, Pethaperumal S, Hung SC, Sun DS, Cheng CF, Chang HH. The Role of Activating Transcription Factor 3 in Metformin's Alleviation of Gastrointestinal Injury Induced by Restraint Stress in Mice. Int J Mol Sci 2023; 24:10995. [PMID: 37446172 DOI: 10.3390/ijms241310995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Metformin is one of the most commonly used drugs for type 2 diabetes mellitus. In addition to its anti-diabetic property, evidence suggests more potential applications for metformin, such as antiaging, cellular protection, and anti-inflammation. Studies have reported that metformin activates pathways with anti-inflammatory effects, enhances the integrity of gut epithelial tight junctions, and promotes a healthy gut microbiome. These actions contribute to the protective effect of metformin against gastrointestinal (GI) tract injury. However, whether metformin plays a protective role in psychological-stress-associated GI tract injury remains elusive. We aim to elucidate the potential protective effect of metformin on the GI system and develop an effective intervention strategy to counteract GI injury induced by acute psychological stress. By monitoring the levels of GI-nonabsorbable Evans blue dye in the bloodstream, we assessed the progression of GI injury in live mice. Our findings demonstrate that the administration of metformin effectively mitigated GI leakage caused by psychological stress. The GI protective effect of metformin is more potent when used on wild-type mice than on activating-transcription-factor 3 (ATF3)-deficient (ATF3-/-) mice. As such, metformin-mediated rescue was conducted in an ATF3-dependent manner. In addition, metformin-mediated protection is associated with the induction of stress-induced GI mRNA expressions of the stress-induced genes ATF3 and AMP-activated protein kinase. Furthermore, metformin treatment-mediated protection of CD326+ GI epithelial cells against stress-induced apoptotic cell death was observed in wild-type but not in ATF3-/- mice. These results suggest that metformin plays a protective role in stress-induced GI injury and that ATF3 is an essential regulator for metformin-mediated rescue of stress-induced GI tract injury.
Collapse
Affiliation(s)
- Bijaya Siwakoti
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 97004, Taiwan
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 97004, Taiwan
| | - You-Yen Lin
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 97004, Taiwan
| | - Subhashree Pethaperumal
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 97004, Taiwan
| | - Shih-Che Hung
- Institute of Medical Sciences, Tzu-Chi University, Hualien 97004, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 97004, Taiwan
- Institute of Medical Sciences, Tzu-Chi University, Hualien 97004, Taiwan
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 23142, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 97004, Taiwan
- Institute of Medical Sciences, Tzu-Chi University, Hualien 97004, Taiwan
| |
Collapse
|
29
|
Krysiak R, Basiak M, Machnik G, Okopień B. Impaired Gonadotropin-Lowering Effects of Metformin in Postmenopausal Women with Autoimmune Thyroiditis: A Pilot Study. Pharmaceuticals (Basel) 2023; 16:922. [PMID: 37513834 PMCID: PMC10383171 DOI: 10.3390/ph16070922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Metformin has been found to reduce elevated gonadotropin levels. Hashimoto's thyroiditis is the most common thyroid disorder in iodine-sufficient areas, and it often develops in postmenopausal women. The aim of this study was to investigate whether autoimmune thyroiditis determines the impact of metformin on gonadotrope secretory function. Two matched groups of postmenopausal women were studied: 35 with euthyroid Hashimoto's thyroiditis (group A) and 35 without thyroid disorders (group B). Throughout the study, all participants received oral metformin (2.55-3 g daily). Plasma glucose, insulin, gonadotropins, estradiol, progesterone, thyrotropin, free thyroid hormones, prolactin, adrenocorticotropic hormone, insulin-like growth factor-1, hsCRP, thyroid peroxidase, and thyroglobulin antibody titers were measured at the beginning of the study and six months later. At entry, both groups differed in thyroid peroxidase antibody titers, thyroglobulin antibody titers, and hsCRP levels. In group A, baseline antibody titers correlated positively with hsCRP and negatively with insulin sensitivity. Although metformin improved glucose homeostasis and reduced hsCRP levels in both study groups, these effects were more pronounced in group B than in group A. Only in group B did metformin decrease FSH levels and tend to reduce LH levels. Thyroid antibody titers and the levels of the remaining hormones did not change throughout the study. The impact of metformin on gonadotropin levels correlated with their baseline values and the degree of improvement in insulin sensitivity, as well as with the baseline and treatment-induced reduction in hsCRP. Moreover, the impact on gonadotropins and insulin sensitivity in group A depended on baseline antibody titers. The obtained results indicate that coexisting autoimmune thyroiditis impairs the gonadotropin-lowering effects of metformin in postmenopausal women.
Collapse
Affiliation(s)
- Robert Krysiak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, 40-752 Katowice, Poland
| | - Marcin Basiak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, 40-752 Katowice, Poland
| | - Grzegorz Machnik
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, 40-752 Katowice, Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
30
|
Chen P, Wu M, He Y, Jiang B, He ML. Metabolic alterations upon SARS-CoV-2 infection and potential therapeutic targets against coronavirus infection. Signal Transduct Target Ther 2023; 8:237. [PMID: 37286535 DOI: 10.1038/s41392-023-01510-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/18/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by coronavirus SARS-CoV-2 infection has become a global pandemic due to the high viral transmissibility and pathogenesis, bringing enormous burden to our society. Most patients infected by SARS-CoV-2 are asymptomatic or have mild symptoms. Although only a small proportion of patients progressed to severe COVID-19 with symptoms including acute respiratory distress syndrome (ARDS), disseminated coagulopathy, and cardiovascular disorders, severe COVID-19 is accompanied by high mortality rates with near 7 million deaths. Nowadays, effective therapeutic patterns for severe COVID-19 are still lacking. It has been extensively reported that host metabolism plays essential roles in various physiological processes during virus infection. Many viruses manipulate host metabolism to avoid immunity, facilitate their own replication, or to initiate pathological response. Targeting the interaction between SARS-CoV-2 and host metabolism holds promise for developing therapeutic strategies. In this review, we summarize and discuss recent studies dedicated to uncovering the role of host metabolism during the life cycle of SARS-CoV-2 in aspects of entry, replication, assembly, and pathogenesis with an emphasis on glucose metabolism and lipid metabolism. Microbiota and long COVID-19 are also discussed. Ultimately, we recapitulate metabolism-modulating drugs repurposed for COVID-19 including statins, ASM inhibitors, NSAIDs, Montelukast, omega-3 fatty acids, 2-DG, and metformin.
Collapse
Affiliation(s)
- Peiran Chen
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Mandi Wu
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Binghua Jiang
- Cell Signaling and Proteomic Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China.
| |
Collapse
|
31
|
Gilbert EAB, Livingston J, Garcia-Flores E, Kehtari T, Morshead CM. Metformin Improves Functional Outcomes, Activates Neural Precursor Cells, and Modulates Microglia in a Sex-Dependent Manner After Spinal Cord Injury. Stem Cells Transl Med 2023:7174953. [PMID: 37209417 DOI: 10.1093/stcltm/szad030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/20/2023] [Indexed: 05/22/2023] Open
Abstract
Spinal cord injury (SCI) results in devastating patient outcomes with few treatment options. A promising approach to improve outcomes following SCI involves the activation of endogenous precursor populations including neural stem and progenitor cells (NSPCs) which are located in the periventricular zone (PVZ), and oligodendrocyte precursor cells (OPCs) found throughout the parenchyma. In the adult spinal cord, resident NSPCs are primarily mitotically quiescent and aneurogenic, while OPCs contribute to ongoing oligodendrogenesis into adulthood. Each of these populations is responsive to SCI, increasing their proliferation and migration to the site of injury; however, their activation is not sufficient to support functional recovery. Previous work has shown that administration of the FDA-approved drug metformin is effective at promoting endogenous brain repair following injury, and this is correlated with enhanced NSPC activation. Here, we ask whether metformin can promote functional recovery and neural repair following SCI in both males and females. Our results reveal that acute, but not delayed metformin administration improves functional outcomes following SCI in both sexes. The functional improvement is concomitant with OPC activation and oligodendrogenesis. Our data also reveal sex-dependent effects of metformin following SCI with increased activation of NSPCs in females and reduced microglia activation in males. Taken together, these findings support metformin as a viable therapeutic strategy following SCI and highlight its pleiotropic effects in the spinal cord.
Collapse
Affiliation(s)
- Emily A B Gilbert
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Jessica Livingston
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Emilio Garcia-Flores
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Tarlan Kehtari
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Cindi M Morshead
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
32
|
Cadar AN, Martin DE, Bartley JM. Targeting the hallmarks of aging to improve influenza vaccine responses in older adults. Immun Ageing 2023; 20:23. [PMID: 37198683 PMCID: PMC10189223 DOI: 10.1186/s12979-023-00348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Age-related declines in immune response pose a challenge in combating diseases later in life. Influenza (flu) infection remains a significant burden on older populations and often results in catastrophic disability in those who survive infection. Despite having vaccines designed specifically for older adults, the burden of flu remains high and overall flu vaccine efficacy remains inadequate in this population. Recent geroscience research has highlighted the utility in targeting biological aging to improve multiple age-related declines. Indeed, the response to vaccination is highly coordinated, and diminished responses in older adults are likely not due to a singular deficit, but rather a multitude of age-related declines. In this review we highlight deficits in the aged vaccine responses and potential geroscience guided approaches to overcome these deficits. More specifically, we propose that alternative vaccine platforms and interventions that target the hallmarks of aging, including inflammation, cellular senescence, microbiome disturbances, and mitochondrial dysfunction, may improve vaccine responses and overall immunological resilience in older adults. Elucidating novel interventions and approaches that enhance immunological protection from vaccination is crucial to minimize the disproportionate effect of flu and other infectious diseases on older adults.
Collapse
Affiliation(s)
- Andreia N Cadar
- UConn Center On Aging and Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Dominique E Martin
- UConn Center On Aging and Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Jenna M Bartley
- UConn Center On Aging and Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| |
Collapse
|
33
|
Hambly R, Kearney N, Hughes R, Fletcher JM, Kirby B. Metformin Treatment of Hidradenitis Suppurativa: Effect on Metabolic Parameters, Inflammation, Cardiovascular Risk Biomarkers, and Immune Mediators. Int J Mol Sci 2023; 24:ijms24086969. [PMID: 37108132 PMCID: PMC10138328 DOI: 10.3390/ijms24086969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a common cutaneous and systemic inflammatory disease with a significant impact on mental health and quality of life. It is associated with obesity, insulin resistance, metabolic syndrome, cardiovascular (CV) disease, and increased all-cause mortality. Metformin is used frequently in HS treatment and is effective for some patients. The mechanism of action of metformin in HS is unknown. A case-control study of 40 patients with HS (20 on metformin and 20 controls) was conducted to assess differences in metabolic markers, inflammation (C-reactive protein [CRP], serum adipokines, and CV risk biomarkers), and serum immune mediators. Body mass index (BMI), insulin resistance (77%), and metabolic syndrome (44%) were high overall, but not significantly different between the groups. This highlights the need for co-morbidity screening and management. A significant reduction in fasting insulin and a trend towards a reduction in insulin resistance were identified in the metformin group compared with pre-treatment levels. CV risk biomarkers were significantly favourable in the metformin group (lymphocytes, monocyte-lymphocyte ratio, neutrophil-lymphocyte ratio, and platelet-lymphocyte ratio). CRP was lower in the metformin group but was not statistically significant. Adipokines were dysregulated overall but were not different between the two groups. Serum IFN-γ, IL-8, TNF-α, and CXCL1 trended lower in the metformin group but did not reach significance. These results suggest that metformin improves CV risk biomarkers and insulin resistance in patients with HS. When the results of this study are considered alongside other studies in HS and related conditions, it is likely that metformin also has beneficial effects on metabolic markers and systemic inflammation in HS (CRP, serum adipokines, and immune mediators), warranting further research.
Collapse
Affiliation(s)
- Roisin Hambly
- The Charles Centre, Department of Dermatology, St Vincent's University Hospital, D04 T6F4 Dublin, Ireland
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Niamh Kearney
- The Charles Centre, Department of Dermatology, St Vincent's University Hospital, D04 T6F4 Dublin, Ireland
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Rosalind Hughes
- The Charles Centre, Department of Dermatology, St Vincent's University Hospital, D04 T6F4 Dublin, Ireland
| | - Jean M Fletcher
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Brian Kirby
- The Charles Centre, Department of Dermatology, St Vincent's University Hospital, D04 T6F4 Dublin, Ireland
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
34
|
Ernst LM, Mondragón L, Ramis J, Gustà MF, Yudina T, Casals E, Bastús NG, Fernández-Varo G, Casals G, Jiménez W, Puntes V. Exploring the Long-Term Tissue Accumulation and Excretion of 3 nm Cerium Oxide Nanoparticles after Single Dose Administration. Antioxidants (Basel) 2023; 12:765. [PMID: 36979013 PMCID: PMC10045098 DOI: 10.3390/antiox12030765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Nanoparticle (NP) pharmacokinetics significantly differ from traditional small molecule principles. From this emerges the need to create new tools and concepts to harness their full potential and avoid unnecessary risks. Nanoparticle pharmacokinetics strongly depend on size, shape, surface functionalisation, and aggregation state, influencing their biodistribution, accumulation, transformations, and excretion profile, and hence their efficacy and safety. Today, while NP biodistribution and nanoceria biodistribution have been studied often at short times, their long-term accumulation and excretion have rarely been studied. In this work, 3 nm nanoceria at 5.7 mg/kg of body weight was intravenously administrated in a single dose to healthy mice. Biodistribution was measured in the liver, spleen, kidney, lung, brain, lymph nodes, ovary, bone marrow, urine, and faeces at different time points (1, 9, 30, and 100 days). Biodistribution and urinary and faecal excretion were also studied in rats placed in metabolic cages at shorter times. The similarity of results of different NPs in different models is shown as the heterogeneous nanoceria distribution in organs. After the expectable accumulation in the liver and spleen, the concentration of cerium decays exponentially, accounting for about a 50% excretion of cerium from the body in 100 days. Cerium ions, coming from NP dissolution, are most likely excreted via the urinary tract, and ceria nanoparticles accumulated in the liver are most likely excreted via the hepatobiliary route. In addition, nanoceria looks safe and does not damage the target organs. No weight loss or apathy was observed during the course of the experiments.
Collapse
Affiliation(s)
- Lena M. Ernst
- Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
| | - Laura Mondragón
- Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Joana Ramis
- Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
| | - Muriel F. Gustà
- Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Tetyana Yudina
- Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Eudald Casals
- Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Neus G. Bastús
- Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Guillermo Fernández-Varo
- Service of Biochemistry and Molecular Genetics, Hospital Clinic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Gregori Casals
- Service of Biochemistry and Molecular Genetics, Hospital Clinic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Department of Fundamental Care and Medical-Surgical Nursing, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Wladimiro Jiménez
- Service of Biochemistry and Molecular Genetics, Hospital Clinic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Departament de Biomedicina, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Victor Puntes
- Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
35
|
Antar SA, Abd-Elsalam M, Abdo W, Abdeen A, Abdo M, Fericean L, Raslan NA, Ibrahim SF, Sharif AF, Elalfy A, Nasr HE, Zaid AB, Atia R, Atwa AM, Gebba MA, Alzokaky AA. Modulatory Role of Autophagy in Metformin Therapeutic Activity toward Doxorubicin-Induced Nephrotoxicity. TOXICS 2023; 11:273. [PMID: 36977038 PMCID: PMC10052439 DOI: 10.3390/toxics11030273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Doxorubicin (DOX) is a frequent chemotherapeutic drug used to treat various malignant tumors. One of the key factors that diminish its therapeutic importance is DOX-induced nephrotoxicity. The first-line oral antidiabetic drug is metformin (Met), which also has antioxidant properties. The purpose of our study was to investigate the underlying molecular mechanisms for the potential protective effects of Met on DOX-triggered nephrotoxicity. Four animal groups were assigned as follows; animals received vehicle (control group), 200 mg/kg Met (Met group), DOX 15 mg/kg DOX (DOX group), and a combination of DOX and Met (DOX/Met group). Our results demonstrated that DOX administration caused marked histological alterations of widespread inflammation and tubular degeneration. Notably, the DOX-induced dramatic up-regulation of the nuclear factor-kappa B/P65 (NF-κB/P65), microtubule-associated protein light chain 3B (LC3B), neutrophil gelatinase-associated lipocalin (NGAL), interleukin-1beta (IL-1β), 8-hydroxy-2' -deoxyguanosine (8-OHdG), and Beclin-1 in renal tissue. A marked increase in the malondialdehyde (MDA) tissue level and a decrease in the total antioxidant capacity (TAC) were also recorded in DOX-exposed animals. Interestingly, Met could minimize all histopathological changes as well as the disruptions caused by DOX in the aforementioned measures. Thus, Met provided a workable method for suppressing the nephrotoxicity that occurred during the DOX regimen via the deactivation of the Beclin-1/LC3B pathway.
Collapse
Affiliation(s)
- Samar A. Antar
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA
| | - Marwa Abd-Elsalam
- Department of Histology, Faculty of Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City 32897, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Calea Aradului 119, CUI 3487181, 300645 Timisoara, Romania
| | - Nahed A. Raslan
- Clinical Pharmacy Program, College of Health Sciences and Nursing, Al-Rayan Colleges, Medina 42541, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt
| | - Samah F. Ibrahim
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Asmaa F. Sharif
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Tanta University, Tanta 31111, Egypt
| | - Amira Elalfy
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Hend E. Nasr
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Ahmed B. Zaid
- Department of Clinical Pathology, National Liver Institute, Menoufia University, Shibin Elkom 32511, Egypt
| | - Rania Atia
- Department of Physiology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
- Department of Basic Medical Science, Faculty of Applied Medical Science, Al-Baha University, Al-Baha 65779, Saudi Arabia
| | - Ahmed M. Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Mohammed A. Gebba
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Amany A. Alzokaky
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt
| |
Collapse
|
36
|
Naseri A, Sanaie S, Hamzehzadeh S, Seyedi-Sahebari S, Hosseini MS, Gholipour-Khalili E, Rezazadeh-Gavgani E, Majidazar R, Seraji P, Daneshvar S, Rezazadeh-Gavgani E. Metformin: new applications for an old drug. J Basic Clin Physiol Pharmacol 2023; 34:151-160. [PMID: 36474458 DOI: 10.1515/jbcpp-2022-0252] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Metformin is a biguanide, evolved as one of the most widely used medicines. The applications of this component include but are not limited to reducing blood glucose, weight loss, and polycystic ovary syndrome. Studies about other probable indications have emerged, indicating that this agent can also be utilized for other purposes. In this review, applications of metformin are noticed based on the current evidence. Metformin commonly is used as an off-label drug in non-alcoholic fatty liver disease (NAFLD), but it worsens inflammation and should not be used for this purpose, according to the latest research. Metformin decreased the risk of death in patients with liver cirrhosis. It is an effective agent in the prevention and improvement of survival in patients suffering hepatocellular carcinoma. There is evidence of the beneficial effects of metformin in colorectal cancer, early-stage prostate cancer, breast cancer, urothelial cancer, blood cancer, melanoma, and bone cancer, suggesting metformin as a potent anti-tumor agent. Metformin shows neuroprotective effects and provides a potential therapeutic benefit for mild cognitive impairment and Alzheimer's disease (AD). It also has been shown to improve mental function and reduce the incidence of dementia. Another condition that metformin has been shown to slow the progression of is Duchenne muscular dystrophy. Regarding infectious diseases, tuberculosis (TB) and coronavirus disease (COVID-19) are among the conditions suggested to be affected by metformin. The beneficial effects of metformin in cardiovascular diseases were also reported in the literature. Concerning renal function, studies showed that daily oral administration of metformin could ameliorate kidney fibrosis and normalize kidney structure and function. This study reviewed the clinical and preclinical evidence about the possible benefits of metformin based on recent studies. Numerous questions like whether these probable indications of metformin can be observed in non-diabetics, need to be described by future basic experiments and clinical studies.
Collapse
Affiliation(s)
- Amirreza Naseri
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Hamzehzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | - Ehsan Rezazadeh-Gavgani
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Majidazar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parya Seraji
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Daneshvar
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
37
|
TRUONG NC, HUYNH NT, PHAM KD, PHAM PV. Roles of cancer stem cells in cancer immune surveillance. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2023. [DOI: 10.23736/s2724-542x.23.02944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
38
|
Karmanova E, Chernikov A, Usacheva A, Ivanov V, Bruskov V. Metformin counters oxidative stress and mitigates adverse effects of radiation exposure: An overview. Fundam Clin Pharmacol 2023. [PMID: 36852652 DOI: 10.1111/fcp.12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/19/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Metformin (1,1-dimethylbiguanidine hydrochloride) (MF) is a drug that has long been in use for the treatment of type 2 diabetes mellitus and recently is coming into use in the radiation therapy of cancer and other conditions. Exposure to ionizing radiation disturbs the redox homeostasis of cells and causes damage to proteins, membranes, and mitochondria, destroying a number of biological processes. After irradiation, MF activates cellular antioxidant and repair systems by signaling to eliminate the harmful consequences of disruption of redox homeostasis. The use of MF in the treatment of the negative effects of irradiation has great potential in medical patients after radiotherapy and in victims of nuclear accidents or radiologic terrorism.
Collapse
Affiliation(s)
- Ekaterina Karmanova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.,Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research, Federal Research Center of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Anatoly Chernikov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Anna Usacheva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Vladimir Ivanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Vadim Bruskov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
39
|
Mangion D, Pace NP, Formosa MM. The relationship between adipokine levels and bone mass-A systematic review. Endocrinol Diabetes Metab 2023; 6:e408. [PMID: 36759562 PMCID: PMC10164433 DOI: 10.1002/edm2.408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION Adipose tissue is the source of a broad array of signalling molecules (adipokines), which mediate interorgan communication and regulate metabolic homeostasis. Alterations in adipokine levels have been causally implicated in various metabolic disorders, including changes in bone mass. Osteoporosis is the commonest progressive metabolic bone disease, characterized by elevated risk of fragility fractures as a result of a reduced bone mass and microarchitectural deterioration. The effects of different adipokines on bone mass have been studied in an attempt to identify novel modulators of bone mass or diagnostic biomarkers of osteoporosis. METHODS In this review, we sought to aggregate and assess evidence from independent studies that quantify specific adipokines and their effect on bone mineral density (BMD). RESULTS A literature search identified 57 articles that explored associations between different adipokines and BMD. Adiponectin and leptin were the most frequently studied adipokines, with most studies demonstrating that adiponectin levels are associated with decreased BMD at the lumbar spine and femoral neck. Conversely, leptin levels are associated with increased BMD at these sites. However, extensive heterogeneity with regards to sample size, characteristics of study subjects, ethnicity, as well as direction and magnitude of effect at specific skeletal anatomical sites was identified. The broad degree of conflicting findings reported in this study can be attributed several factors. These include differences in study design and ascertainment criteria, the analytic challenges of quantifying specific adipokines and their isoforms, pre-analytical variables (in particular patient preparation) and confounding effects of co-existing disease. CONCLUSIONS This review highlights the biological relevance of adipokines in bone metabolism and reinforces the need for longitudinal research to elucidate the causal relationship of adipokines on bone mass.
Collapse
Affiliation(s)
- Darren Mangion
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Nikolai P Pace
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta.,Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Melissa M Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta.,Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| |
Collapse
|
40
|
Kaplan ABU, Cetin M, Bayram C, Yildirim S, Taghizadehghalehjoughi A, Hacimuftuoglu A. In Vivo Evaluation of Nanoemulsion Formulations for Metformin and Repaglinide Alone and Combination. J Pharm Sci 2023; 112:1411-1426. [PMID: 36649792 DOI: 10.1016/j.xphs.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Repaglinide and Metformin are used to treat Type 2 diabetes. Repaglinide with poor water solubility has relatively low oral bioavailability (56%) and undergoes hepatic first-pass metabolism. The oral bioavailability of metformin HCl is also low (about 50-60%). The purpose of this study was to prepare nanoemulsion formulations containing metformin HCl or repaglinide alone or in combination and characterize them in vitro and in vivo. Nanoemulsion formulations containing metformin HCl and/or repaglinide were successfully prepared and in vitro characterized. In addition, in vivo efficacy of nanoemulsion formulations was evaluated in a streptozotocin-nicotinamide-induced diabetic rat model. Biochemical, histopathological, and immunohistochemical evaluations were also performed. The mean droplet size and zeta potential values of nanoemulsion formulations were in the range of 110.15±2.64-120.23±2.16 nm and -21.95 - -24.33 mV, respectively. The percent entrapment efficiency values of nanoemulsion formulations were in the range of 93.600%-96.152%. All nanoemulsion formulations had a PDI of ≤0.223. A statistically significant decrease was observed in the blood glucose values of the diabetic rats treated with nanoemulsion formulations containing active substance/substances, compared to diabetic rats (control) (p<0.05). Nanoemulsion formulations (especially nanoemulsion containing metformin HCl and repaglinide combination) have a better antidiabetic activity and are more effective in reducing oxidative stress caused by diabetes.
Collapse
Affiliation(s)
| | - Meltem Cetin
- Atatürk University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Turkey.
| | - Cemil Bayram
- Atatürk University, Faculty of Medicine, Department of Medical Pharmacology, Turkey
| | - Serkan Yildirim
- Atatürk University, Faculty of Veterinary Medicine, Department of Pathology, Turkey
| | | | - Ahmet Hacimuftuoglu
- Atatürk University, Faculty of Medicine, Department of Medical Pharmacology, Turkey
| |
Collapse
|
41
|
Liu J, Lu J, Zhang L, Liu Y, Zhang Y, Gao Y, Yuan X, Xiang M, Tang Q. The combination of exercise and metformin inhibits TGF-β1/Smad pathway to attenuate myocardial fibrosis in db/db mice by reducing NF-κB-mediated inflammatory response. Biomed Pharmacother 2023; 157:114080. [PMID: 36481406 DOI: 10.1016/j.biopha.2022.114080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Persistent hyperglycemia increases inflammation response, promoting the development of myocardial fibrosis. Based on our previous research that exercise and metformin alone or their combination intervention could attenuate myocardial fibrosis in db/db mice, this study aimed to further explore the underlying mechanisms by which these interventions attenuate myocardial fibrosis in early diabetic cardiomyopathy. Forty BKS db/db mice were randomly divided into four groups. Diabetic db/db mice without intervention were in the C group. Aerobic exercise (7-12 m/min, 30-40 min/day, 5 days/week) was performed in the E group. Metformin (300 mg·kg-1·day-1) was administered in the M group. Exercise combined with metformin was performed in the EM group. Ten wild-type mice were in the WT group. All interventions were administered for 8 weeks. Results showed that the expression levels of α-SMA, Collagen I, and Collagen III were increased in 16-week-old db/db mice, which were reversed by exercise and metformin alone or their combination intervention. All interventions attenuated the level of TGF-β1/Smad2/3 pathway-related proteins and reduced the expression of inflammatory signaling pathway-regulated proteins TNF-α, p-IκBα/IκBα, and p-NF-κB p65/NF-κB p65 in db/db mice. Furthermore, metformin intervention inhibited HNF4α expression via AMPK activation, whereas exercise intervention increased the expression of IL-6 instead of activating AMPK. In conclusion, exercise and metformin alone or their combination intervention inhibited the TGF-β1/Smad pathway to attenuate myocardial fibrosis by reducing NF-κB-mediated inflammatory response. The anti-fibrotic effects were regulated by metformin-activated AMPK or exercise-induced elevation of IL-6, whereas their combination intervention showed no synergistic effects.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China.
| | - Jiao Lu
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Sport and Health Project, Nanjing 210014, China.
| | - Liumei Zhang
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China.
| | - Yuting Liu
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China.
| | - Yuan Zhang
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China.
| | - Yaran Gao
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China.
| | - Xinmeng Yuan
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China.
| | - Mengqi Xiang
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China.
| | - Qiang Tang
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Sport and Health Project, Nanjing 210014, China.
| |
Collapse
|
42
|
El-Khateeb E, El-Berri EI, Mosalam EM, Nooh MZ, Abdelsattar S, Alghamdi AM, Alrubia S, Abdallah MS. Evaluating the safety and efficacy of the leukotriene receptor antagonist montelukast as adjuvant therapy in obese patients with type 2 diabetes mellitus: A double-blind, randomized, placebo-controlled trial. Front Pharmacol 2023; 14:1153653. [PMID: 37113754 PMCID: PMC10126434 DOI: 10.3389/fphar.2023.1153653] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Background: Type 2 diabetes mellitus (T2DM) is common with obesity. Metformin is a first-line therapy for this condition. However, it has only a minor impact on weight loss in some patients. Aim: This study aimed to evaluate the effectiveness, tolerability, and safety of combining montelukast therapy with metformin in obese diabetic patients. Methods: One hundred obese diabetic adult patients were recruited and randomized into two equal groups. Group 1 received placebo plus metformin 2 g/d, and Group 2 received 2 g/d metformin plus 10 mg/d montelukast. Demographic, anthropometric measurements (e.g., body weight, body mass index [BMI], and visceral adiposity index), lipid profile, diabetes control measures (fasting blood glucose, glycated hemoglobin [HbA1c], and homeostatic model assessment for insulin resistance [HOMA-IR]), adiponectin, and inflammatory markers (e.g., TNF-α, IL-6, and leukotriene B4) were assessed and reported for each group at baseline and after 12 weeks of treatment. Results: Both interventions significantly reduced all the measured parameters, except for adiponectin and HDL-C, levels of which increased compared to baseline data (p < 0.001). The montelukast group significantly improved in all parameters compared to the placebo group (ANCOVA test p < 0.001). The percentage changes in BMI, HbA1c, HOMA-IR, and inflammatory markers were 5%, 9%, 41%, and 5%-30%, respectively, in the placebo group compared to 8%, 16%, 58%, and 50%-70%, respectively, in the montelukast group. Conclusion: Montelukast adjuvant therapy was superior to metformin-only therapy in diabetes control and weight loss, most likely due to its increased insulin sensitivity and anti-inflammatory properties. The combination was tolerable and safe throughout the study duration. Clinical Trial Registration: [Clinicaltrial.gov], identifier [NCT04075110].
Collapse
Affiliation(s)
- Eman El-Khateeb
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Al-Gharbia, Egypt
- Certara UK Limited (Simcyp Division), Sheffield, United Kingdom
- *Correspondence: Eman El-Khateeb,
| | - Eman I. El-Berri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Al-Gharbia, Egypt
| | - Esraa M. Mosalam
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Shebin ElKoum, Egypt
| | - Mohamed Z. Nooh
- Department of Internal Medicine, Faculty of Medicine, Menoufia University, Shebin ElKoum, Egypt
| | - Shimaa Abdelsattar
- Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Shebin ElKoum, Egypt
| | - Amira M. Alghamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarah Alrubia
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud S. Abdallah
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufia, Egypt
| |
Collapse
|
43
|
Chen Z, Zhu Y, Lu M, Yu L, Tan S, Ren T. Effects of Rosa roxburghii Tratt glycosides and quercetin on D-galactose-induced aging mice model. J Food Biochem 2022; 46:e14425. [PMID: 36125966 DOI: 10.1111/jfbc.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 01/13/2023]
Abstract
To investigate the effects of RRT (Rosa roxburghii Tratt) glucosides and quercetin on oxidative stress and chronic inflammation in D-galactose-induced aging mice, 90 mice (8 weeks old) were randomly divided into the normal group (NC), aging model group (D-gal), isoquercitrin group (D-gal+isoquercitrin), quercitrin group (D-gal+quercitrin), quercetin group (D-gal+quercetin) and positive control group (D-gal+Metformin). The aging model was established by subcutaneous injection of D-galactose (100 mg/kg). After 42 days of the administration, antioxidant and inflammatory indexes were measured, HE staining was used to investigate pathological changes in liver and brain tissue, and Western blot was used to determine the protein abundance of nuclear factor E2-related factor (Nrf2) and heme oxygenase (HO-1) in the brain. The results showed that, when compared to the NC group, the D-gal group had a significantly lower brain, liver, kidney, and spleen indexes; the contents of MDA, L-1β, IL-6, and TNF-α in serum, liver, and brain were significantly higher, but the levels of CAT, SOD, and GSH-Px were significantly lower. Isoquercitrin, quercitrin, and quercetin significantly increased organ indexes and activities of CAT, SOD, and GSH-Px while decreasing MDA, IL-1β, IL-6, and TNF-α levels in serum, liver, and brain tissues compared to the D-gal group. The morphological changes in the brain and liver tissue were significantly restored by glycosides and quercetin, as observed in HE staining. Furthermore, Western blot results revealed that glycosides and quercetin increased the protein levels of Nrf2, HO-1, and NQO1. Finally, the antioxidant and anti-inflammatory effects of RRT glycoside and quercetin in aging may be attributed to an activated Nrf2/HO-1 signaling pathway. PRACTICAL APPLICATIONS: Aging is characterized by physical changes and dysfunction of numerous biological systems caused by a variety of factors. The oxidative stress and inflammatory effects of RRT glycosides and quercetin on D-galactose-induced aging mice were investigated in this study. RRT glycosides and quercetin were found to protect organ atrophy, liver, and brain tissue in aging mice by regulating oxidative stress and chronic inflammation. It served as the theoretical foundation for the investigation of Rosa roxburghii Tratt as a health product and pharmaceutical raw material.
Collapse
Affiliation(s)
- Zhen Chen
- College of Brewing and Food Engineering, Guizhou University, Guiyang, P. R. China
| | - Yuping Zhu
- College of Basic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Mintao Lu
- College of Brewing and Food Engineering, Guizhou University, Guiyang, P. R. China
| | - Lu Yu
- College of Brewing and Food Engineering, Guizhou University, Guiyang, P. R. China
| | - Shuming Tan
- College of Brewing and Food Engineering, Guizhou University, Guiyang, P. R. China
| | - Tingyuan Ren
- College of Brewing and Food Engineering, Guizhou University, Guiyang, P. R. China
- Institute of Guizhou Distinctive Plant Resources Conservation, Guizhou Academy of Agricultural Science, Guiyang, P. R. China
| |
Collapse
|
44
|
Martins AF, Neto AC, Rodrigues AR, Oliveira SM, Sousa-Mendes C, Leite-Moreira A, Gouveia AM, Almeida H, Neves D. Metformin Prevents Endothelial Dysfunction in Endometriosis through Downregulation of ET-1 and Upregulation of eNOS. Biomedicines 2022; 10:2782. [PMID: 36359302 PMCID: PMC9687337 DOI: 10.3390/biomedicines10112782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 09/28/2023] Open
Abstract
This study aimed to evaluate if the treatment with metformin affects the morphologic structure, endothelial function, angiogenesis, inflammation and oxidation-responsive pathways in the heart of mice with surgically induced endometriosis. B6CBA/F1 mice (n = 37) were divided into four groups; Sham (S), Metformin (M), Endometriosis (E) and Metformin/Endometriosis (ME). The cross-sectional area of cardiomyocytes was assessed after Hematoxylin-Eosin staining and fibrosis after Picrosirius-Red staining. ET-1, nitric oxide synthases-iNOS and eNOS, and VEGF and VEGFR-2 were detected by immunofluorescence. Semi-quantification of ET-1, eNOS, VEGF, NF-kB, Ikβα and KEAP-1 was performed by Western blotting. MIR199a, MIR16-1, MIR18a, MIR20a, MIR155, MIR200a, MIR342, MIR24-1 and MIR320a were quantified by Real-Time qPCR. The interaction of endometriosis and metformin effects was assessed by a two-way ANOVA test. Compared with the other groups, M-treated mice presented a higher cross-sectional area of cardiomyocytes. Heart fibrosis increased with endometriosis. Treatment of endometriosis with metformin in the ME group downregulates ET-1 and upregulates eNOS expression comparatively with the E group. However, metformin failed to mitigate NF-kB expression significantly incremented by endometriosis. The expression of MIR199a, MIR16-1 and MIR18a decreased with endometriosis, whereas MIR20a showed an equivalent trend, altogether reducing cardioprotection. In summary, metformin diminished endometriosis-associated endothelial dysfunction but did not mitigate the increase in NF-kB expression and cardiac fibrosis in mice with endometriosis.
Collapse
Affiliation(s)
- Ana Filipa Martins
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal
| | - Ana Catarina Neto
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal
| | - Adriana Raquel Rodrigues
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal
| | - Sandra Marisa Oliveira
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Cláudia Sousa-Mendes
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Alexandra Maria Gouveia
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal
| | - Henrique Almeida
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal
| | - Delminda Neves
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal
| |
Collapse
|
45
|
Hadad R, Akobe SF, Weber P, Madsen CV, Larsen BS, Madsbad S, Nielsen OW, Dominguez MH, Haugaard SB, Sajadieh A. Parasympathetic tonus in type 2 diabetes and pre-diabetes and its clinical implications. Sci Rep 2022; 12:18020. [PMID: 36289393 PMCID: PMC9605979 DOI: 10.1038/s41598-022-22675-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
Autonomic imbalance reflected by higher resting heart rate and reduced parasympathetic tone may be driven by low-grade inflammation (LGI) and impaired glycemic control in type 2 diabetes mellitus (T2DM) and pre-diabetes. We examined the interaction of parasympathetic components of heart rate variability (HRV), variables of LGI, and glucose metabolism in people with T2DM, pre-diabetes, and normal glucose metabolism (NGM). We recorded HRV by Holter (48 h) in 633 community-dwelling people of whom T2DM n = 131, pre-diabetes n = 372, and NGM n = 130 and mean HbA1c of 7.2, 6.0 and 5.3%, respectively. Age was 55-75 years and all were without known cardiovascular disease except from hypertension. Fasting plasma glucose, fasting insulin, HOMA-IR, HbA1c and LGI (CRP, Interleukin-18 (IL-18), and white blood cells) were measured. Root-mean-square-of-normal-to-normal-beats (RMSSD), and proportion of normal-to-normal complexes differing by more than 50 ms (pNN50) are accepted measures of parasympathetic activity. In univariate analyses, RMSSD and pNN50 were significantly inversely correlated with level of HbA1c and CRP among people with T2DM and pre-diabetes, but not among NGM. RMSSD and pNN50 remained significantly inversely associated with level of HbA1c after adjusting for age, sex, smoking, and BMI among people with T2DM (β = - 0.22) and pre-diabetes (β = - 0.11); adjustment for LGI, HOMA-IR, and FPG did not attenuate these associations. In backward elimination models, age and level of HbA1c remained associated with RMSSD and pNN50. In people with well controlled diabetes and pre-diabetes, a lower parasympathetic activity was more related to age and HbA1c than to markers of LGI. Thus, this study shows that the driver of parasympathetic tonus may be more the level of glycemic control than inflammation in people with prediabetes and well controlled diabetes.
Collapse
Affiliation(s)
- Rakin Hadad
- grid.411702.10000 0000 9350 8874Department of Cardiology, Copenhagen University Hospital of Bispebjerg, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark
| | - Sarah F. Akobe
- grid.411702.10000 0000 9350 8874Department of Cardiology, Copenhagen University Hospital of Bispebjerg, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark
| | - Philip Weber
- grid.411702.10000 0000 9350 8874Department of Endocrinology, Copenhagen University Hospital of Bispebjerg, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark
| | - Christoffer V. Madsen
- grid.411702.10000 0000 9350 8874Department of Cardiology, Copenhagen University Hospital of Bispebjerg, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark
| | - Bjørn Strøier Larsen
- grid.411702.10000 0000 9350 8874Department of Cardiology, Copenhagen University Hospital of Bispebjerg, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark
| | - Sten Madsbad
- grid.5254.60000 0001 0674 042XDepartment of Endocrinology, Copenhagen University of Hvidovre, Kettegård Alle 30, 2650 Hvidovre, Denmark ,grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olav W. Nielsen
- grid.411702.10000 0000 9350 8874Department of Cardiology, Copenhagen University Hospital of Bispebjerg, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark
| | - Maria Helena Dominguez
- grid.411702.10000 0000 9350 8874Department of Cardiology, Copenhagen University Hospital of Bispebjerg, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark ,grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen B. Haugaard
- grid.411702.10000 0000 9350 8874Department of Endocrinology, Copenhagen University Hospital of Bispebjerg, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark ,grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ahmad Sajadieh
- grid.411702.10000 0000 9350 8874Department of Cardiology, Copenhagen University Hospital of Bispebjerg, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark ,grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Joseph N, Cicchetti A, McWilliam A, Webb A, Seibold P, Fiorino C, Cozzarini C, Veldeman L, Bultijnck R, Fonteyne V, Talbot CJ, Symonds PR, Johnson K, Rattay T, Lambrecht M, Haustermans K, De Meerleer G, Elliott RM, Sperk E, Herskind C, Veldwijk M, Avuzzi B, Giandini T, Valdagni R, Azria D, Jacquet MPF, Charissoux M, Vega A, Aguado-Barrera ME, Gómez-Caamaño A, Franco P, Garibaldi E, Girelli G, Iotti C, Vavassori V, Chang-Claude J, West CML, Rancati T, Choudhury A. High weekly integral dose and larger fraction size increase risk of fatigue and worsening of functional outcomes following radiotherapy for localized prostate cancer. Front Oncol 2022; 12:937934. [PMID: 36387203 PMCID: PMC9645430 DOI: 10.3389/fonc.2022.937934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction We hypothesized that increasing the pelvic integral dose (ID) and a higher dose per fraction correlate with worsening fatigue and functional outcomes in localized prostate cancer (PCa) patients treated with external beam radiotherapy (EBRT). Methods The study design was a retrospective analysis of two prospective observational cohorts, REQUITE (development, n=543) and DUE-01 (validation, n=228). Data were available for comorbidities, medication, androgen deprivation therapy, previous surgeries, smoking, age, and body mass index. The ID was calculated as the product of the mean body dose and body volume. The weekly ID accounted for differences in fractionation. The worsening (end of radiotherapy versus baseline) of European Organisation for Research and Treatment of Cancer EORTC) Quality of Life Questionnaire (QLQ)-C30 scores in physical/role/social functioning and fatigue symptom scales were evaluated, and two outcome measures were defined as worsening in ≥2 (WS2) or ≥3 (WS3) scales, respectively. The weekly ID and clinical risk factors were tested in multivariable logistic regression analysis. Results In REQUITE, WS2 was seen in 28% and WS3 in 16% of patients. The median weekly ID was 13.1 L·Gy/week [interquartile (IQ) range 10.2-19.3]. The weekly ID, diabetes, the use of intensity-modulated radiotherapy, and the dose per fraction were significantly associated with WS2 [AUC (area under the receiver operating characteristics curve) =0.59; 95% CI 0.55-0.63] and WS3 (AUC=0.60; 95% CI 0.55-0.64). The prevalence of WS2 (15.3%) and WS3 (6.1%) was lower in DUE-01, but the median weekly ID was higher (15.8 L·Gy/week; IQ range 13.2-19.3). The model for WS2 was validated with reduced discrimination (AUC=0.52 95% CI 0.47-0.61), The AUC for WS3 was 0.58. Conclusion Increasing the weekly ID and the dose per fraction lead to the worsening of fatigue and functional outcomes in patients with localized PCa treated with EBRT.
Collapse
Affiliation(s)
- Nuradh Joseph
- Department of Clinical Oncology, District General Hambantota, Hambantota, Sri Lanka
- Sri Lanka Cancer Research Group, Sri Lanka College of Oncologists, Maharagama, Sri Lanka
| | - Alessandro Cicchetti
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Hambantota, Italy
| | - Alan McWilliam
- Department of Medical Physics, University of Manchester, Manchester, United Kingdom
| | - Adam Webb
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudio Fiorino
- Department of Medical Physics, San Raffaele Scientific Institute - IRCCS, Milan, Italy
| | - Cesare Cozzarini
- Department of Radiation Oncology, San Raffaele Scientific Institute - IRCCS, Milan, Italy
| | - Liv Veldeman
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Renée Bultijnck
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Valérie Fonteyne
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Christopher J. Talbot
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Paul R. Symonds
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Kerstie Johnson
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Tim Rattay
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Maarten Lambrecht
- Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Karin Haustermans
- Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Gert De Meerleer
- Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Rebecca M. Elliott
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, and The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Elena Sperk
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Herskind
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marlon Veldwijk
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Barbara Avuzzi
- Department of Radiation Oncology 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Tommaso Giandini
- Department of Medical Physics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Riccardo Valdagni
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Hambantota, Italy
- Department of Radiation Oncology 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | - David Azria
- Department of Radiation Oncology, University Federation of Radiation Oncology, Montpellier Cancer Institute, Univ Montpellier MUSE, Grant INCa_Inserm_DGOS_12553, Inserm U1194, Montpellier, France
| | | | - Marie Charissoux
- University Federation of Radiation Oncology of Mediterranean Occitanie, ICM Montpellier, Univ Montpellier, Montpellier, France
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica, Grupo de Medicina Xenómica (USC), Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Miguel E. Aguado-Barrera
- Fundación Pública Galega de Medicina Xenómica, Grupo de Medicina Xenómica (USC), Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antonio Gómez-Caamaño
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Radiation Oncology, Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Pierfrancesco Franco
- Department of Radiation Oncology, Ospedale Regionale U. Parini-AUSL Valle d’Aosta, Aosta, Italy
| | - Elisabetta Garibaldi
- Department of Radiation Oncology, Istituto di Candiolo - Fondazione del Piemonte per l’Oncologia IRCCS, Candiolo, Italy
| | | | - Cinzia Iotti
- Department of Radiation Oncology, Azienda USL – IRCCS di Reggio Emilia, Emilia-Romagna, Italy
| | | | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catharine M. L. West
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, and The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Tiziana Rancati
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Hambantota, Italy
| | - Ananya Choudhury
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, and The Christie NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
47
|
Zheng E, Cai Z, Li W, Ni C, Fang Q. Achaete-scute complex-like 2 regulated inflammatory mechanism through Toll-like receptor 4 activating in stomach adenocarcinoma. World J Surg Oncol 2022; 20:266. [PMID: 36008864 PMCID: PMC9404661 DOI: 10.1186/s12957-022-02722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Background To investigate the role of achaete-scute complex-like 2 (ASCL2) in stomach adenocarcinoma (STAD), we analyze whether ASCL2 suppression could retard cancer development and further observe the relevance between ASCL2 and inflammation via Toll-like receptor 4 (TLR4) activation in STAD, both in vitro and in vivo. Methods Proliferation, development, inflammation, and apoptosis in STAD are observed using sh-ASCL2 lentivirus via TLR4 activation in vitro and in vivo. The relationship between ASCL2 and inflammation is analyzed. Western blotting of ASCL2 with the target protein of immune-associated cells is performed. The prognosis of STAD and associated ASCL2 mutation are analyzed. Results The ASCL2 level in STAD tumor tissues is increased, compared to normal tissues, and brings a worse prognosis. The ASCL2 shows a negative correlation with inflammation, and TLR4 reveals a positive correlation with gastric cancer. ASCL2 expression is high in MGC803 cells. Sh-ASCL2 could reduce STAD development by decreasing proliferation, tumor volume, and biomarker levels and increasing apoptosis in vitro and in vivo. The inflammatory role of ASCL2 is regulated through TLR4 activation. ASCL2 levels may be related to CNTNAP3, CLIP1, C9orf84, ARIH2, and IL1R2 mutations; positively correlated with M2 macrophage and T follicular helper cell levels; negatively correlated with neutrophil, dendritic cell, monocyte, CD8 T cell, and M1 macrophage levels; and involved in STAD prognosis. Conclusions The ASCL2 may adjust inflammation in STAD through TLR4 activation and may be associated with related immune cells. ASCL2 is possibly an upstream target factor of the TLR4 signaling pathway.
Collapse
Affiliation(s)
- Enqi Zheng
- Department of General Surgery, The First People's Hospital of Wenling, No.333 south Chuan-an road, Chengxi street, Wenling, 317500, Zhejinag Province, People's Republic of China
| | - Zhun Cai
- Department of General Surgery, The First People's Hospital of Wenling, No.333 south Chuan-an road, Chengxi street, Wenling, 317500, Zhejinag Province, People's Republic of China
| | - Wangyong Li
- Department of General Surgery, The First People's Hospital of Wenling, No.333 south Chuan-an road, Chengxi street, Wenling, 317500, Zhejinag Province, People's Republic of China
| | - Chuandou Ni
- Department of General Surgery, The First People's Hospital of Wenling, No.333 south Chuan-an road, Chengxi street, Wenling, 317500, Zhejinag Province, People's Republic of China
| | - Qian Fang
- Department of General Surgery, The First People's Hospital of Wenling, No.333 south Chuan-an road, Chengxi street, Wenling, 317500, Zhejinag Province, People's Republic of China.
| |
Collapse
|
48
|
Metformin Reverses the Effects of Angiotensin 2 in Human Mammary Arteries by Modulating the Expression of Nitric Oxide Synthases. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2022-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Angiotensin 2 impairs vascular function by activation of reactive oxygen species (ROS) production and development of endothelial dysfunction. Metformin, the first-line therapeutic agent for type 2 diabetes mellitus, has vascular protective properties, beyond its glucose lowering effects. The aim of the present study was to in-vestigate the interaction between metformin and angiotensin 2 in human internal mammary arteries harvested from patients with coronary heart disease undergoing revascularization procedure, by evaluation of vascular function, reactive oxygen species (ROS) production and the gene expression of nitric oxide (NO) synthases (endothelial – eNOS, neuronal – nNOS and inducible – iNOS). To this aim, vascular samples were incubated with angiotensin 2 (Ang2, 12 h) with/without metformin (Metf, 10 μM) and used for ROS measurement (FOX assay), vascular reactivity in organ bath (contractility to phenylephrine, relaxation to acetylcholine, con-tractility to NG-nitro-L-arginine methyl ester/L-NAME) and RT-PCT studies. Acute incubation of the vascular rings with Ang2 im-paired vascular reactivity (increase contractility, decrease relax-ation), increased ROS production, supressed eNOS/nNOS and in-creased iNOS mRNA expression. Ex vivo incubation with metfor-min at a clinically relevant concentration reversed all these ef-fects. These data suggest that Metformin might be useful in allevi-ating endothelial dysfunction by improving the endothelial-de-pendent relaxation and mitigating oxidative stress in clinical set-ting associated with cardiovascular disease regardless the pres-ence of impaired glucose metabolism.
Collapse
|
49
|
Lyu Q, Wen Y, He B, Zhang X, Chen J, Sun Y, Zhao Y, Xu L, Xiao Q, Deng H. The ameliorating effects of metformin on disarrangement ongoing in gastrocnemius muscle of sarcopenic and obese sarcopenic mice. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166508. [PMID: 35905940 DOI: 10.1016/j.bbadis.2022.166508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/15/2022]
Abstract
Sarcopenia and obese sarcopenia are increasingly prevalent chronic diseases with multifactorial pathogenesis, and no approved therapeutic drug to date. In the established sarcopenic mice models, muscle weakness, ectopic lipid deposition, and inflammatory responses in both serum and gastrocnemius muscle were observed, which were even deteriorated in obese sarcopenic models. With metformin intervention for 5 months, metformin exhibited benefits and restoring effects on gastrocnemius muscle of sarcopenic mice, but less effective on that of obese sarcopenic mice, as reflected in the increased percentage of muscle mass and enlarged fiber cross-sectional area, enhanced grip strength and exercise capacities, as well as the ameliorated ectopic lipid deposition and partially restored level of TNF-α, IL-1β, IL-6, MCP-1 and IL-1α, which may be via the activation of phospho-AMPKα (Thr172). The significant up-regulated mRNA and protein level of lipolysis related proteins like hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) may contribute to the ameliorated ectopic lipid deposition with metformin intervention. The uptake of free fatty acid may be also inhibited in obese sarcopenic mice with metformin administration, as reflected in down-regulated mRNA and protein level of fatty acid transporter CD36. Furthermore, NF-κB signaling pathway was involved in the anti-inflammatory effect of metformin. These findings suggest that metformin treatment may be conducive to the prevention of age-related sarcopenia by regulating lipid metabolism in skeletal muscle, i.e. enhanced lipolysis and attenuated hyper-inflammatory responses, which may be AMPK-dependent processes. Moreover, high-fat diet would aggravate the damage to ageing in skeletal muscles and reduced their reactivity to metformin.
Collapse
Affiliation(s)
- Qiong Lyu
- Department of General Practice, The First Affiliated Hospital of Chongqing Medical University, No.1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China.
| | - Ya Wen
- Department of Physiology and Pharmacology, Karolinska Institutet, Bioclinicum, J8:30, SE-171 77 Stockholm, Sweden
| | - Bin He
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, No.1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China
| | - Xiang Zhang
- Department of Physiology and Pharmacology, Karolinska Institutet, Bioclinicum, J8:30, SE-171 77 Stockholm, Sweden
| | - Jinliang Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China
| | - Yue Sun
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China
| | - Yuxing Zhao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China
| | - Lingjie Xu
- Department of General Practice, The First Affiliated Hospital of Chongqing Medical University, No.1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China
| | - Huisheng Deng
- Department of General Practice, The First Affiliated Hospital of Chongqing Medical University, No.1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China
| |
Collapse
|
50
|
Metformin Serves as a Novel Drug Treatment for Arterial Thrombosis: Inhibitory Mechanisms on Collagen-Induced Human Platelet Activation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metformin is widely used as first-line medication for type 2 diabetes (T2D), the main disease comorbid with kidney disease, cardiovascular diseases (CVDs), and retinopathy. Platelets are crucial in platelet-dependent arterial thrombosis, which causes CVDs and cerebrovascular diseases. Research indicates that metformin may improve these diseases; metformin reportedly reduced platelet activation in rats. However, no reports have included human platelets. We investigated the mechanisms underlying metformin’s effects on platelet activation by using human platelets and evaluated its in vivo effectiveness in experimental mice. Metformin inhibited platelet aggregation stimulated by collagen but not by arachidonic acid, U46619, or thrombin. Metformin suppressed ATP release, [Ca2+]i mobilization, and P-selectin expression, as well as phospholipase C (PLC)γ2/protein kinase C (PKC), p38 mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/Akt/glycogen synthase kinase-3β (GSK3β) phosphorylation. Metformin did not affect vasodilator-stimulated phosphoprotein (VASP) phosphorylation. In the animal studies, metformin reduced acute pulmonary thromboembolism mortality without increasing bleeding times. These results provide insights into the role and mechanisms of metformin in human platelet activation. Metformin decreased platelet activation by interfering with the PLCγ2/PKC, PI3K/Akt/GSK3β, and p38 MAPK pathways through a VASP-independent mechanism. Metformin demonstrates promise as a new class of antiplatelet agent that can inhibit platelet activation.
Collapse
|