1
|
Chen J, Wang B, Meng T, Li C, Liu C, Liu Q, Wang J, Liu Z, Zhou Y. Oxidative Stress and Inflammation in Myocardial Ischemia-Reperfusion Injury: Protective Effects of Plant-Derived Natural Active Compounds. J Appl Toxicol 2024. [PMID: 39482870 DOI: 10.1002/jat.4719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024]
Abstract
Acute myocardial infarction (AMI) remains a leading cause of death among patients with cardiovascular diseases. Percutaneous coronary intervention (PCI) has been the preferred clinical treatment for AMI due to its safety and efficiency. However, research indicates that the rapid restoration of myocardial oxygen supply following PCI can lead to secondary myocardial injury, termed myocardial ischemia-reperfusion injury (MIRI), posing a grave threat to patient survival. Despite ongoing efforts, the mechanisms underlying MIRI are not yet fully elucidated. Among them, oxidative stress and inflammation stand out as critical pathophysiological mechanisms, playing significant roles in MIRI. Natural compounds have shown strong clinical therapeutic potential due to their high efficacy, availability, and low side effects. Many current studies indicate that natural compounds can mitigate MIRI by reducing oxidative stress and inflammatory responses. Therefore, this paper reviews the mechanisms of oxidative stress and inflammation during MIRI and the role of natural compounds in intervening in these processes, aiming to provide a basis and reference for future research and development of drugs for treating MIRI.
Collapse
Affiliation(s)
- Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Boyu Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tianwei Meng
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengjia Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Changxing Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qingnan Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiameng Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhiping Liu
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yabin Zhou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Khan AH, Basak A, Zaman A, Das PK. Inherently targeted estradiol-derived carbon dots for selective killing of ER (+) breast cancer cells via oridonin-triggered p53 pathway activation. J Mater Chem B 2024. [PMID: 39435655 DOI: 10.1039/d4tb01415d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
One of the most prevalent cancers globally is breast cancer and approximately two thirds of the breast cancers are hormone receptor positive with estrogen receptors (ER) being a prominent target. Notably, p53 that controls several cellular functions and prevents tumor formation, gets suppressed in breast cancers. Reactivation of p53 can lead to cell cycle arrest as well as apoptosis. Therefore, targeting the estrogen receptor for selective delivery of anticancer drugs that can reactivate p53 in ER (+) breast cancers can be a crucial method in breast cancer therapy. Herein, we have designed and developed estradiol-derived inherently targeted specific carbon dots (E2-CA-CD) from 17β-estradiol and citric acid following a solvothermal method. The synthesized carbon dots were characterized using spectroscopic and microscopic techniques. The water soluble, intrinsically fluorescent E2-CA-CD showed excellent biocompatibility in MCF-7, MDA-MB-231 as well as NIH3T3 cells and demonstrated target specific bioimaging in ER (+) MCF-7 cells due to the overexpressed ER receptors. Furthermore, oridonin, a well-known hydrophobic anticancer drug capable of upregulating the p53 pathway, was loaded on the carbon dots to increase its bioavailability. E2-CA-CD-Ori caused ∼2.2 times higher killing in ER (+) MCF-7 cells compared to ER (-) MDA-MB-231 cells and normal cells NIH3T3. Also, E2-CA-CD-Ori showed ∼3 fold better killing in MCF-7 cells compared to native oridonin. E2-CA-CD-Ori-induced killing of MCF-7 cells took place through the early to late apoptotic pathway along with the elevation of the intracellular ROS level. Importantly, E2-CA-CD-Ori triggered the activation of the p53 pathway in MCF-7 cells, which in turn induced apoptosis involving the upregulation of Bax and downregulation of Bcl-2 leading to the selective and efficient killing of ER (+) MCF-7 cells.
Collapse
Affiliation(s)
- Aftab Hossain Khan
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| | - Ambalika Basak
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| | - Afreen Zaman
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| |
Collapse
|
3
|
Peng L, Hu XZ, Liu ZQ, Liu WK, Huang Q, Wen Y. Therapeutic potential of resveratrol through ferroptosis modulation: insights and future directions in disease therapeutics. Front Pharmacol 2024; 15:1473939. [PMID: 39386035 PMCID: PMC11461341 DOI: 10.3389/fphar.2024.1473939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Resveratrol, a naturally occurring polyphenolic compound, has captivated the scientific community with its promising therapeutic potential across a spectrum of diseases. This review explores the complex role of resveratrol in modulating ferroptosis, a newly identified form of programmed cell death, and its potential implications for managing cardiovascular and cerebrovascular disorders, cancer, and other conditions. Ferroptosis is intricately linked to the pathogenesis of diverse diseases, with resveratrol exerting multifaceted effects on this process. It mitigates ferroptosis by modulating lipid peroxidation, iron accumulation, and engaging with specific cellular receptors, thereby manifesting profound therapeutic benefits in cardiovascular and cerebrovascular conditions, as well as oncological settings. Moreover, resveratrol's capacity to either suppress or induce ferroptosis through the modulation of signaling pathways, including Sirt1 and Nrf2, unveils novel therapeutic avenues. Despite resveratrol's limited bioavailability, advancements in molecular modification and drug delivery optimization have amplified its clinical utility. Future investigations are poised to unravel the comprehensive mechanisms underpinning resveratrol's action and expand its therapeutic repertoire. We hope this review could furnish a detailed and novel insight into the exploration of resveratrol in the regulation of ferroptosis and its therapeutic prospects.
Collapse
Affiliation(s)
- Liu Peng
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xi-Zhuo Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhi-Qiang Liu
- Department of General Surgery, Deyang Sixth People’s Hospital, Deyang, China
| | - Wen-Kai Liu
- Department of General Surgery, Deyang Sixth People’s Hospital, Deyang, China
| | - Qun Huang
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Wen
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Guo J, Huang M, Hou S, Yuan J, Chang X, Gao S, Zhang Z, Wu Z, Li J. Therapeutic Potential of Terpenoids in Cancer Treatment: Targeting Mitochondrial Pathways. Cancer Rep (Hoboken) 2024; 7:e70006. [PMID: 39234662 PMCID: PMC11375335 DOI: 10.1002/cnr2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND In recent decades, natural compounds have been considered a significant source of new antitumor medicines due to their unique advantages. Several in vitro and in vivo studies have focused on the effect of terpenoids on apoptosis mediated by mitochondria in malignant cells. RECENT FINDINGS In this review article, we focused on six extensively studied terpenoids, including sesquiterpenes (dihydroartemisinin and parthenolide), diterpenes (oridonin and triptolide), and triterpenes (betulinic acid and oleanolic acid), and their efficacy in targeting mitochondria to induce cell death. Terpenoid-induced mitochondria-related cell death includes apoptosis, pyroptosis, necroptosis, ferroptosis, autophagy, and necrosis caused by mitochondrial permeability transition. Apoptosis and autophagy interact in meaningful ways. In addition, in view of several disadvantages of terpenoids, such as low stability and bioavailability, advances in research on combination chemotherapy and chemical modification were surveyed. CONCLUSION This article deepens our understanding of the association between terpenoids and mitochondrial cell death, presenting a hypothetical basis for the use of terpenoids in anticancer management.
Collapse
Affiliation(s)
- Jianxin Guo
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ming Huang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Shuang Hou
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jianfeng Yuan
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyue Chang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Shuang Gao
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zhenhan Zhang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zhongbing Wu
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jing Li
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Wang J, Wang L, Zhang Y, Pan S, Lin Y, Wu J, Bu M. Design, Synthesis, and Anticancer Activity of Novel Enmein-Type Diterpenoid Derivatives Targeting the PI3K/Akt/mTOR Signaling Pathway. Molecules 2024; 29:4066. [PMID: 39274913 PMCID: PMC11396751 DOI: 10.3390/molecules29174066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
The enmein-type diterpenoids are a class of anticancer ent-Kaurane diterpnoids that have received much attention in recent years. Herein, a novel 1,14-epoxy enmein-type diterpenoid 4, was reported in this project for the first time. A series of novel enmein-type diterpenoid derivatives were also synthesized and tested for anticancer activities. Among all the derivatives, compound 7h exhibited the most significant inhibitory effect against A549 cells (IC50 = 2.16 µM), being 11.03-folds better than its parental compound 4. Additionally, 7h exhibited relatively weak anti-proliferative activity (IC50 > 100 µM) against human normal L-02 cells, suggesting that it had excellent anti-proliferative selectivity for cancer cells. Mechanism studies suggested that 7h induced G0/G1 arrest and apoptosis in A549 cells by inhibiting the PI3K/AKT/mTOR pathway. This process was associated with elevated intracellular ROS levels and collapsed MMP. In summary, these data identified 7h as a promising lead compound that warrants further investigation of its anticancer properties.
Collapse
Affiliation(s)
- Jiafeng Wang
- College of Pathology, Qiqihar Medical University, Qiqihar 161006, China
| | - Lu Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Yingbo Zhang
- College of Pathology, Qiqihar Medical University, Qiqihar 161006, China
| | - Siwen Pan
- College of Pathology, Qiqihar Medical University, Qiqihar 161006, China
| | - Yu Lin
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Jiale Wu
- College of Life and Health, Hainan University, Haikou 570228, China
| | - Ming Bu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| |
Collapse
|
6
|
Selgrade DF, Fullenkamp DE, Chychula IA, Li B, Dellefave-Castillo L, Dubash AD, Ohiri J, Monroe TO, Blancard M, Tomar G, Holgren C, Burridge PW, George AL, Demonbreun AR, Puckelwartz MJ, George SA, Efimov IR, Green KJ, McNally EM. Susceptibility to innate immune activation in genetically mediated myocarditis. J Clin Invest 2024; 134:e180254. [PMID: 38768074 PMCID: PMC11213508 DOI: 10.1172/jci180254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Myocarditis is clinically characterized by chest pain, arrhythmias, and heart failure, and treatment is often supportive. Mutations in DSP, a gene encoding the desmosomal protein desmoplakin, have been increasingly implicated in myocarditis. To model DSP-associated myocarditis and assess the role of innate immunity, we generated engineered heart tissues (EHTs) using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from patients with heterozygous DSP truncating variants (DSPtvs) and a gene-edited homozygous deletion cell line (DSP-/-). At baseline, DSP-/- EHTs displayed a transcriptomic signature of innate immune activation, which was mirrored by cytokine release. Importantly, DSP-/- EHTs were hypersensitive to Toll-like receptor (TLR) stimulation, demonstrating more contractile dysfunction compared with isogenic controls. Relative to DSP-/- EHTs, heterozygous DSPtv EHTs had less functional impairment. DSPtv EHTs displayed heightened sensitivity to TLR stimulation, and when subjected to strain, DSPtv EHTs developed functional deficits, indicating reduced contractile reserve compared with healthy controls. Colchicine or NF-κB inhibitors improved strain-induced force deficits in DSPtv EHTs. Genomic correction of DSP p.R1951X using adenine base editing reduced inflammatory biomarker release from EHTs. Thus, EHTs replicate electrical and contractile phenotypes seen in human myocarditis, implicating cytokine release as a key part of the myogenic susceptibility to inflammation. The heightened innate immune activation and sensitivity are targets for clinical intervention.
Collapse
Affiliation(s)
| | - Dominic E. Fullenkamp
- Center for Genetic Medicine and
- Bluhm Cardiovascular Institute, Department of Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Binjie Li
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Lisa Dellefave-Castillo
- Center for Genetic Medicine and
- Bluhm Cardiovascular Institute, Department of Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Adi D. Dubash
- Department of Biology, Furman University, Greenville, South Carolina, USA
- Department of Pathology
| | | | | | | | | | | | | | | | | | | | - Sharon A. George
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Igor R. Efimov
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Kathleen J. Green
- Department of Pathology
- Department of Dermatology, and
- R.H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine and
- Bluhm Cardiovascular Institute, Department of Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
7
|
Wu Q, Gao X, Lin Y, Wu C, Zhang J, Chen M, Wen J, Wu Y, Tian K, Bao W, Sun P, Zhu A. Integrating Epigenetics, Proteomics, and Metabolomics to Reveal the Involvement of Wnt/β-Catenin Signaling Pathway in Oridonin-Induced Reproductive Toxicity. TOXICS 2024; 12:339. [PMID: 38787118 PMCID: PMC11126149 DOI: 10.3390/toxics12050339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
Oridonin is the primary active component in the traditional Chinese medicine Rabdosia rubescens, displaying anti-inflammatory, anti-tumor, and antibacterial effects. It is widely employed in clinical therapy for acute and chronic pharyngitis, tonsillitis, as well as bronchitis. Nevertheless, the clinical application of oridonin is significantly restricted due to its reproductive toxicity, with the exact mechanism remaining unclear. The aim of this study was to investigate the mechanism of oridonin-induced damage to HTR-8/SVneo cells. Through the integration of epigenetics, proteomics, and metabolomics methodologies, the mechanisms of oridonin-induced reproductive toxicity were discovered and confirmed through fluorescence imaging, RT-qPCR, and Western blotting. Experimental findings indicated that oridonin altered m6A levels, gene and protein expression levels, along with metabolite levels within the cells. Additionally, oridonin triggered oxidative stress and mitochondrial damage, leading to a notable decrease in WNT6, β-catenin, CLDN1, CCND1, and ZO-1 protein levels. This implied that the inhibition of the Wnt/β-catenin signaling pathway and disruption of tight junction might be attributed to the cytotoxicity induced by oridonin and mitochondrial dysfunction, ultimately resulting in damage to HTR-8/SVneo cells.
Collapse
Affiliation(s)
- Qibin Wu
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350108, China
- Fujian Key Laboratory of Women and Children’s Critical Diseases Research, Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Women and Children’s Hospital), Fuzhou 350108, China
| | - Xinyue Gao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Yifan Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Caijin Wu
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350108, China
- Fujian Key Laboratory of Women and Children’s Critical Diseases Research, Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Women and Children’s Hospital), Fuzhou 350108, China
| | - Jian Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
- School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Mengting Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Jiaxin Wen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Yajiao Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Kun Tian
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Wenqiang Bao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350108, China
- Fujian Key Laboratory of Women and Children’s Critical Diseases Research, Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Women and Children’s Hospital), Fuzhou 350108, China
| | - An Zhu
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350108, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
- School of Public Health, Fujian Medical University, Fuzhou 350108, China
| |
Collapse
|
8
|
Lai C, Xu L, Dai S. The nuclear export protein exportin-1 in solid malignant tumours: From biology to clinical trials. Clin Transl Med 2024; 14:e1684. [PMID: 38783482 PMCID: PMC11116501 DOI: 10.1002/ctm2.1684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Exportin-1 (XPO1), a crucial protein regulating nuclear-cytoplasmic transport, is frequently overexpressed in various cancers, driving tumor progression and drug resistance. This makes XPO1 an attractive therapeutic target. Over the past few decades, the number of available nuclear export-selective inhibitors has been increasing. Only KPT-330 (selinexor) has been successfully used for treating haematological malignancies, and KPT-8602 (eltanexor) has been used for treating haematologic tumours in clinical trials. However, the use of nuclear export-selective inhibitors for the inhibition of XPO1 expression has yet to be thoroughly investigated in clinical studies and therapeutic outcomes for solid tumours. METHODS We collected numerous literatures to explain the efficacy of XPO1 Inhibitors in preclinical and clinical studies of a wide range of solid tumours. RESULTS In this review, we focus on the nuclear export function of XPO1 and results from clinical trials of its inhibitors in solid malignant tumours. We summarized the mechanism of action and therapeutic potential of XPO1 inhibitors, as well as adverse effects and response biomarkers. CONCLUSION XPO1 inhibition has emerged as a promising therapeutic strategy in the fight against cancer, offering a novel approach to targeting tumorigenic processes and overcoming drug resistance. SINE compounds have demonstrated efficacy in a wide range of solid tumours, and ongoing research is focused on optimizing their use, identifying response biomarkers, and developing effective combination therapies. KEY POINTS Exportin-1 (XPO1) plays a critical role in mediating nucleocytoplasmic transport and cell cycle. XPO1 dysfunction promotes tumourigenesis and drug resistance within solid tumours. The therapeutic potential and ongoing researches on XPO1 inhibitors in the treatment of solid tumours. Additional researches are essential to address safety concerns and identify biomarkers for predicting patient response to XPO1 inhibitors.
Collapse
Affiliation(s)
- Chuanxi Lai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Lingna Xu
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Sheng Dai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
9
|
Ali MA, Khan N, Ali A, Akram H, Zafar N, Imran K, Khan T, Khan K, Armaghan M, Palma‐Morales M, Rodríguez‐Pérez C, Caunii A, Butnariu M, Habtemariam S, Sharifi‐Rad J. Oridonin from Rabdosia rubescens: An emerging potential in cancer therapy - A comprehensive review. Food Sci Nutr 2024; 12:3046-3067. [PMID: 38726411 PMCID: PMC11077219 DOI: 10.1002/fsn3.3986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 05/12/2024] Open
Abstract
Cancer incidences are rising each year. In 2020, approximately 20 million new cancer cases and 10 million cancer-related deaths were recorded. The World Health Organization (WHO) predicts that by 2024 the incidence of cancer will increase to 30.2 million individuals annually. Considering the invasive characteristics of its diagnostic procedures and therapeutic methods side effects, scientists are searching for different solutions, including using plant-derived bioactive compounds, that could reduce the probability of cancer occurrence and make its treatment more comfortable. In this regard, oridonin (ORI), an ent-kaurane diterpenoid, naturally found in the leaves of Rabdosia rubescens species, has been found to have antitumor, antiangiogenesis, antiasthmatic, antiinflammatory, and apoptosis induction properties. Extensive research has been performed on ORI to find various mechanisms involved in its anticancer activities. This review article provides an overview of ORI's effectiveness on murine and human cancer populations from 1976 to 2022 and provides insight into the future application of ORI in different cancer therapies.
Collapse
Affiliation(s)
| | - Noohela Khan
- Department of Nutrition SciencesRashid Latif Medical CollegeLahorePakistan
| | - Ahmad Ali
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Hira Akram
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Noushaba Zafar
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Kinza Imran
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Tooba Khan
- Department of Healthcare Biotechnology, Atta‐ur‐Rahman School of Applied BiosciencesNational University of Sciences and TechnologyIslamabadPakistan
| | | | - Muhammad Armaghan
- Department of Healthcare Biotechnology, Atta‐ur‐Rahman School of Applied BiosciencesNational University of Sciences and TechnologyIslamabadPakistan
| | - Marta Palma‐Morales
- Departamento de Nutrición y Bromatología, Facultad de FarmaciaUniversidad de GranadaGranadaSpain
- Instituto de Nutrición y Tecnología de los Alimentos ‘José Mataix’Universidad de GranadaGranadaSpain
| | - Celia Rodríguez‐Pérez
- Departamento de Nutrición y Bromatología, Facultad de FarmaciaUniversidad de GranadaGranadaSpain
- Instituto de Nutrición y Tecnología de los Alimentos ‘José Mataix’Universidad de GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
| | - Angela Caunii
- “Victor Babes” University of Medicine and PharmacyTimisoaraRomania
| | - Monica Butnariu
- University of Life Sciences "King Mihai I" from TimisoaraTimisoaraRomania
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UKUniversity of GreenwichKentUK
| | | |
Collapse
|
10
|
Khan F, Pandey P, Verma M, Upadhyay TK. Terpenoid-Mediated Targeting of STAT3 Signaling in Cancer: An Overview of Preclinical Studies. Biomolecules 2024; 14:200. [PMID: 38397437 PMCID: PMC10886526 DOI: 10.3390/biom14020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer has become one of the most multifaceted and widespread illnesses affecting human health, causing substantial mortality at an alarming rate. After cardiovascular problems, the condition has a high occurrence rate and ranks second in terms of mortality. The development of new drugs has been facilitated by increased research and a deeper understanding of the mechanisms behind the emergence and advancement of the disease. Numerous preclinical and clinical studies have repeatedly demonstrated the protective effects of natural terpenoids against a range of malignancies. Numerous potential bioactive terpenoids have been investigated in natural sources for their chemopreventive and chemoprotective properties. In practically all body cells, the signaling molecule referred to as signal transducer and activator of transcription 3 (STAT3) is widely expressed. Numerous studies have demonstrated that STAT3 regulates its downstream target genes, including Bcl-2, Bcl-xL, cyclin D1, c-Myc, and survivin, to promote the growth of cells, differentiation, cell cycle progression, angiogenesis, and immune suppression in addition to chemotherapy resistance. Researchers viewed STAT3 as a primary target for cancer therapy because of its crucial involvement in cancer formation. This therapy primarily focuses on directly and indirectly preventing the expression of STAT3 in tumor cells. By explicitly targeting STAT3 in both in vitro and in vivo settings, it has been possible to explain the protective effect of terpenoids against malignant cells. In this study, we provide a complete overview of STAT3 signal transduction processes, the involvement of STAT3 in carcinogenesis, and mechanisms related to STAT3 persistent activation. The article also thoroughly summarizes the inhibition of STAT3 signaling by certain terpenoid phytochemicals, which have demonstrated strong efficacy in several preclinical cancer models.
Collapse
Affiliation(s)
- Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India;
| | - Pratibha Pandey
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
- Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali 140413, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara 391760, India;
| |
Collapse
|
11
|
Zhang L, Yu Y, Wang Q, Huang X, Feng Z, Li Z. Oridonin loaded peptide nanovesicles alleviate nonalcoholic fatty liver disease in mice. Pharm Dev Technol 2024; 29:123-130. [PMID: 38327230 DOI: 10.1080/10837450.2024.2315460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
This study was to construct a nanovesicle delivery system to improve the loading efficiency and stability of ORI for the treatment of nonalcoholic fatty liver disease (NAFLD). This nanovesicles (NVs) exerted a narrow size distribution (195.6 ± 11.49 nm) and high entrapment efficiency (84.46 ± 1.34%). In vitro cell studies demonstrated that the NVs treatment enhanced the cellular uptake of ORI and reduced lipid over-accumulation and total cholesterol levels in NAFLD cell model. At the same time, in vivo study proved that, compared with the normal group, the model group mice showed a decrease in body weight, a significant increase in liver index (6.71 ± 0.62, p < 0.01), and symptoms of liver lipid accumulation, lipid vesicles, and liver tissue fibrosis. Compared with the model group, after high-dose ORI NVs intervention, mice gained weight, decreased liver index (4.69 ± 0.55, p < 0.01), reduced hepatic lipid droplet vacuoles, reduced lipid accumulation (reduced oil red area, p < 0.001), and alleviated the degree of liver fibrosis (reduced blue collagen area, p < 0.001). In conclusion, ORI/HP-β-CD/H9-HePC NVs showed specific liver accumulation and improved therapeutic effects, the nano drug loading system provides a promising strategy for the encapsulation of ORI to effectively alleviate the process of NAFLD.
Collapse
Affiliation(s)
- Lifen Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yao Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qi Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xi Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zheng Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhi Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou, China
| |
Collapse
|
12
|
Zhang H, Hu Y, Liu X, Li R, Pan Y, Liu C, Yang T. Pharmacokinetic study of five components of Fuzheng Huayu tablets in healthy human plasma. Biomed Chromatogr 2024; 38:e5782. [PMID: 38016814 DOI: 10.1002/bmc.5782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/17/2023] [Accepted: 10/28/2023] [Indexed: 11/30/2023]
Abstract
Natural medicines play a crucial role in clinical drug applications, serving as a primary traditional Chinese medicine for the clinical treatment of liver fibrosis. Understanding the in vivo metabolic process of the Fuzheng Huayu (FZHY) formula is essential for delving into its material basis and mechanism. In recent years, there has been a growing body of research focused on the mechanisms and component analysis of FZHY. This study aimed to examine the pharmacokinetics of FZHY in healthy volunteers following oral administration. Blood samples were collected at designated time intervals after the oral intake of 9.6-g FZHY tablets. A UHPLC-Q/Exactive method was developed to assess the plasma concentrations of five components post-FZHY ingestion. The peak time for all components occurred within 10 min. The peak concentration (Cmax ) values for amygdalin, schisandrin, and schisandrin A ranged from 3.47 to 28.80 ng/mL, with corresponding AUC(0-t) values ranging from 10.63 to 103.20 ng h/mL. For schisandrin B and prunasin, Cmax values were in the range of 86.52 to 229.10 ng/mL, and their AUC(0-t) values ranged from 375.26 to 1875.54 ng h/mL, indicating significant exposure within the body. These findings demonstrate that the developed method enables rapid and accurate detection and quantification of the five components in FZHY, offering a valuable reference for its clinical study.
Collapse
Affiliation(s)
- Haibo Zhang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Yeqing Hu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Xueying Liu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Rongsheng Li
- Shanghai Huanghai Pharmaceutical Co., LTD., Shanghai, China
| | - Yifeng Pan
- Shanghai Huanghai Pharmaceutical Co., LTD., Shanghai, China
| | - Chenghai Liu
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Yang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| |
Collapse
|
13
|
Kou B, Shi Y, Zhou Z, Yun Y, Wu Q, Zhou J, Liu W. Oridonin inhibited epithelial-mesenchymal transition of laryngeal carcinoma by positively regulating LKB1/AMPK signaling. Int J Med Sci 2024; 21:623-632. [PMID: 38464825 PMCID: PMC10920846 DOI: 10.7150/ijms.92182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/06/2024] [Indexed: 03/12/2024] Open
Abstract
Oridonin is the main bioactive component of Rabdosia rubescens, and its anticancer activity has been reported in a variety of cancers. However, the molecular mechanism of oridonin in laryngeal carcinoma remains unclear. In the present study, the cytotoxic effect of oridonin on laryngeal carcinoma Hep-2 and TU212 cell lines were initially detected by modified MTT assay. The results showed that oridonin had a dose-dependent anti-proliferative effect on laryngeal carcinoma Hep-2 and TU212 cells. Next, we found that oridonin significantly inhibited the migration and invasion of human laryngeal carcinoma Hep-2 and TU212 cell lines by wound healing assay and transwell assay. Subsequently, the results of quantitative real-time PCR assay and western blotting assay confirmed that oridonin upregulated the expression of E-cadherin while downregulated the expression of N-cadherin in a concentration-dependent manner at mRNA and protein levels. In addition, phosphorylation levels of liver kinase B1 (p-LKB1) and AMP-activated protein kinase (p-AMPK) were also elevated upon oridonin treatment. To further verify the role of LKB1/AMPK signaling pathway in laryngeal carcinoma, overexpression of LKB1 was constructed by plasmid transfection. The data exhibited that overexpression of LKB1 could further reinforce the increase of E-cadherin level and decrease of N-cadherin level mediated by oridonin. Additionally, AMPK inhibitor compound C could reverse anti-metastatic effect of oridonin on laryngeal carcinoma, and antagonise EMT expression. In contrast, AMPK activator AICAR presented the opposite effect. In conclusion, our study revealed that oridonin could remarkably reverse the epithelial-mesenchymal transition of laryngeal carcinoma by positively regulating LKB1/AMPK signaling pathway, which suggested that oridonin may be a potential candidate for the treatment of laryngeal carcinoma in the future.
Collapse
Affiliation(s)
- Bo Kou
- Department of Otorhinolaryngology-Head&Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuhan Shi
- Department of Otorhinolaryngology-Head&Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Department of Legal Affairs, Shaanxi Provincial People's Hospital, Xi 'an 710054, China
| | - Zhaoyue Zhou
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - Yanning Yun
- Department of Otorhinolaryngology-Head&Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qun Wu
- Department of Otorhinolaryngology-Head&Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jinsong Zhou
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - Wei Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
14
|
Jia XM, Hao H, Zhang Q, Yang MX, Wang N, Sun SL, Yang ZN, Jin YR, Wang J, Du YF. The bioavailability enhancement and insight into the action mechanism of poorly soluble natural compounds from co-crystals preparation: Oridonin as an example. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155179. [PMID: 37925890 DOI: 10.1016/j.phymed.2023.155179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/04/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Natural bioactive molecules are important sources for the development of new drugs. However, most of them were limited in clinical applications due to their low aqueous solubility and bioavailability. Oridonin (ORI) is a powerful anticancer compound with above characteristics. OBJECTIVE This study aimed to find an effective method to improve the bioavailability of poorly soluble natural compounds, and explore the action mechanisms of them to promote their application. RESULTS In this study, ORI-nicotinamide (NCT) cocrystal was successfully prepared for the first time to overcome the defects of ORI. The solubility and oral bioavailability of cocrystal (COC) increased 1.34 and 1.18 times compared with ORI. Moreover, MTT assay was applied to compare the cytotoxicity of positive control drug sorafenib with ORI and COC. The IC50 values of sorafenib, ORI and COC on HepG2 cells were 7.61, 8.79 and 7.36 nmol·mL-1, which indicated that the cytotoxicity of ORI could be enhanced by cocrystal preparation. The cellular metabolomics was innovatively introduced to gain insight into the difference of cytotoxicity mechanism between ORI and COC. The results showed that there were 78 metabolites with significant differences in content between the two groups, while these differential metabolites were related to 11 metabolic pathways. Among these, glycerophospholipid metabolism and cysteine and methionine metabolism were the significant differential pathways, and the downregulation of PC(14:0/16:1(9z)) and upregulation of homocysteine were the likely main reasons for higher cytotoxicity of COC. CONCLUSIONS This study has presented novel approaches for enhancing the bioavailability and drug efficacy of natural compounds, while also offering fresh insights into the underlying action mechanisms of pharmaceutical cocrystals.
Collapse
Affiliation(s)
- Xin-Ming Jia
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China
| | - Han Hao
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China
| | - Qian Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China
| | - Meng-Xin Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China
| | - Nan Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China
| | - Shi-Lin Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China
| | - Ze-Nan Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China
| | - Yi-Ran Jin
- Department of Clinical Pharmacy, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, PR China.
| | - Jing Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China.
| | - Ying-Feng Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China.
| |
Collapse
|
15
|
He S, Huang C, Tan N, Zhang J. Oridonin Promotes Apoptosis in Rheumatoid Arthritis Fibroblast-like Synoviocytes Through PERK/eIF2α/CHOP of Endoplasmic Reticulum Stress Pathway. DNA Cell Biol 2023; 42:711-719. [PMID: 37862122 DOI: 10.1089/dna.2023.0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
Oridonin (ORI), derived from Chinese herbs Rabdosia rubescens, has anti-inflammatory, proapoptotic, anticancer effects. Previous studies have found that ORI induces apoptosis in rheumatoid arthritis fibroblast synovial cells (RA-FLSs), but this mechanism is not clear. We will investigate the apoptosis mechanism of ORI on RA-FLSs. RA-FLSs were treated with various concentrations of ORI (0, 5, 10, 15, 20, 25, and 30 μM) for 24 h. CCK8, LDH, and hochest/PI assay determined the viability, cytotoxicity, and death of ORI on RA-FLSs. The endoplasmic reticulum probe was used to observe structural changes of endoplasmic reticulum in RA-FLSs. RNA expression was detected with RNA sequencing analysis and quantitative real-time PCR. The PERK/eIF2α/CHOP pathway protein of the endoplasmic reticulum was verified with Western Blot. Our results show that ORI induced the apoptosis of RA-FLSs from CCK8, LDH, and Hochest/PI. The endoplasmic reticulum distribution was altered in RA-FLSs after being treated with ORI. Bioinformatics analysis of RNA sequencing data found that 1453 genes were elevated. The PERK/eIF2α/CHOP pathway of the endoplasmic reticulum was regulated from the Gene ontology and KEGG analysis. The results of quantitative real-time PCR and Western blot analysis verified the regulation of PERK/eIF2α/CHOP pathway in RA-FLSs. Our data imply that the endoplasmic reticulum's PERK/eIF2α/CHOP signaling pathway is certainly implicated in the induction of RA-FLS apoptosis by ORI. This study has important implications for the pharmacological effects of ORI and the treatment of RA.
Collapse
Affiliation(s)
- Shoudi He
- The Department of Rheumatology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Guangzhou University of Chinese Medicine, Shenzhen, China
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Changsheng Huang
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Ning Tan
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Jianyong Zhang
- The Department of Rheumatology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
16
|
Lin J, Qu Z, Pu H, Shen LS, Yi X, Lin YS, Gong RH, Chen GQ, Chen S. In Vitro and In Vivo Anti-Cancer Activity of Lasiokaurin in a Triple-Negative Breast Cancer Model. Molecules 2023; 28:7701. [PMID: 38067432 PMCID: PMC10707582 DOI: 10.3390/molecules28237701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 12/18/2023] Open
Abstract
Due to its intricate heterogeneity, high invasiveness, and poor prognosis, triple-negative breast cancer (TNBC) stands out as the most formidable subtype of breast cancer. At present, chemotherapy remains the prevailing treatment modality for TNBC, primarily due to its lack of estrogen receptors (ERs), progesterone receptors (PRs), and human epidermal growth receptor 2 (HER2). However, clinical chemotherapy for TNBC is marked by its limited efficacy and a pronounced incidence of adverse effects. Consequently, there is a pressing need for novel drugs to treat TNBC. Given the rich repository of diverse natural compounds in traditional Chinese medicine, identifying potential anti-TNBC agents is a viable strategy. This study investigated lasiokaurin (LAS), a natural diterpenoid abundantly present in Isodon plants, revealing its significant anti-TNBC activity both in vitro and in vivo. Notably, LAS treatment induced cell cycle arrest, apoptosis, and DNA damage in TNBC cells, while concurrently inhibiting cell metastasis. In addition, LAS effectively inhibited the activation of the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway and signal transducer and activator of transcription 3 (STAT3), thus establishing its potential for multitarget therapy against TNBC. Furthermore, LAS demonstrated its ability to reduce tumor growth in a xenograft mouse model without exerting detrimental effects on the body weight or vital organs, confirming its safe applicability for TNBC treatment. Overall, this study shows that LAS is a potent candidate for treating TNBC.
Collapse
Affiliation(s)
- Jinrong Lin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhao Qu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang 443002, China
| | - Huanhuan Pu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Li-Sha Shen
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Xianguo Yi
- College of Animal Science and Technology, Xinyang Agricultural and Forestry University, Xinyang 464000, China;
| | - Yu-Shan Lin
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Rui-Hong Gong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Guo-Qing Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Sibao Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| |
Collapse
|
17
|
Parisi V, Donadio G, Bellone ML, Belaabed S, Bader A, Bisio A, Iobbi V, Gazzillo E, Chini MG, Bifulco G, Faraone I, Vassallo A. Exploring the Anticancer Potential of Premna resinosa (Hochst.) Leaf Surface Extract: Discovering New Diterpenes as Heat Shock Protein 70 (Hsp70) Binding Agents. PLANTS (BASEL, SWITZERLAND) 2023; 12:2421. [PMID: 37446982 DOI: 10.3390/plants12132421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Premna, a genus consisting of approximately 200 species, predominantly thrives in tropical and subtropical areas. Many of these species have been utilized in ethnopharmacology for diverse medicinal applications. In Saudi Arabia, Premna resinosa (Hochst.) Schauer (Lamiaceae) grows wildly, and its slightly viscid leaves are attributed to the production of leaf accession. In this study, we aimed to extract the surface accession from fresh leaves using dichloromethane to evaluate the anticancer potential. The plant exudate yielded two previously unknown labdane diterpenes, Premnaresone A and B, in addition to three already described congeners and four known flavonoids. The isolation process was accomplished using a combination of silica gel column chromatography and semi-preparative HPLC, the structures of which were identified by NMR and HRESIMS analyses and a comparison with the literature data of associated compounds. Furthermore, we employed a density functional theory (DFT)/NMR approach to suggest the relative configuration of different compounds. Consequently, we investigated the possibility of developing new chaperone inhibitors by subjecting diterpenes 1-5 to a Surface Plasmon Resonance-screening, based on the knowledge that oridonin, a diterpene, interacts with Heat Shock Protein 70 (Hsp70) 1A in cancer cells. Additionally, we studied the anti-proliferative activity of compounds 1-5 on human Jurkat (human T-cell lymphoma) and HeLa (epithelial carcinoma) cell lines, where diterpene 3 exhibited activity in Jurkat cell lines after 48 h, with an IC50 of 15.21 ± 1.0 µM. Molecular docking and dynamic simulations revealed a robust interaction between compound 3 and Hsp70 key residues.
Collapse
Affiliation(s)
- Valentina Parisi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Giuliana Donadio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Maria Laura Bellone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Soumia Belaabed
- Department of Chemistry, Research Unit, Development of Natural Resources, Bioactive Molecules Physicochemical and Biological Analysis, University Brothers Mentouri, Route Ain ElBey, Constantine 25000, Algeria
| | - Ammar Bader
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Angela Bisio
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Valeria Iobbi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Erica Gazzillo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone, 86090 Pesche, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Immacolata Faraone
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Innovative Startup Farmis s.r.l., Via Nicola Vaccaro 40, 85100 Potenza, Italy
| | - Antonio Vassallo
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Spinoff TNcKILLERS s.r.l., Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
18
|
Chen G, Yang Z, Wen D, Li P, Xiong Q, Wu C. Oridonin Inhibits Mycobacterium marinum Infection-Induced Oxidative Stress In Vitro and In Vivo. Pathogens 2023; 12:799. [PMID: 37375489 DOI: 10.3390/pathogens12060799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Prior to the COVID-19 pandemic, tuberculosis (TB) was the leading cause of death globally attributable to a single infectious agent, ranking higher than HIV/AIDS. Consequently, TB remains an urgent public health crisis worldwide. Oridonin (7a,20-Epoxy-1a,6b,7,14-tetrahydroxy-Kaur-16-en-15-one Isodonol, C20H28O6, Ori), derived from the Rabdosia Rrubescens plant, is a natural compound that exhibits antioxidant, anti-inflammatory, and antibacterial properties. Our objective was to investigate whether Ori's antioxidant and antibacterial effects could be effective against the infection Mycobacterium marinum (Mm)-infected cells and zebrafish. We observed that Ori treatment significantly impeded Mm infection in lung epithelial cells, while also suppressing inflammatory response and oxidative stress in Mm-infected macrophages. Further investigation revealed that Ori supplementation inhibited the proliferation of Mm in zebrafish, as well as reducing oxidative stress levels in infected zebrafish. Additionally, Ori promoted the expression of NRF2/HO-1/NQO-1 and activated the AKT/AMPK-α1/GSK-3β signaling pathway, which are both associated with anti-inflammatory and antioxidant effects. In summary, our results demonstrate that Ori exerts inhibitory effects on Mm infection and proliferation in cells and zebrafish, respectively. Additionally, Ori regulates oxidative stress by modulating the NRF2/HO-1/NQO-1 and AKT/AMPK-α1/GSK-3β signaling pathways.
Collapse
Affiliation(s)
- Guangxin Chen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Ziyue Yang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Da Wen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Ping Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Qiuhong Xiong
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Taiyuan 030006, China
| |
Collapse
|
19
|
Tanase DM, Valasciuc E, Gosav EM, Ouatu A, Buliga-Finis ON, Floria M, Maranduca MA, Serban IL. Portrayal of NLRP3 Inflammasome in Atherosclerosis: Current Knowledge and Therapeutic Targets. Int J Mol Sci 2023; 24:ijms24098162. [PMID: 37175869 PMCID: PMC10179095 DOI: 10.3390/ijms24098162] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
We are witnessing the globalization of a specific type of arteriosclerosis with rising prevalence, incidence and an overall cardiovascular disease burden. Currently, atherosclerosis increasingly affects the younger generation as compared to previous decades. While early preventive medicine has seen improvements, research advances in laboratory and clinical investigation promise to provide us with novel diagnosis tools. Given the physio-pathological complexity and epigenetic patterns of atherosclerosis and the discovery of new molecules involved, the therapeutic field of atherosclerosis has room for substantial growth. Thus, the scientific community is currently investigating the role of nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a crucial component of the innate immune system in different inflammatory disorders. NLRP3 is activated by distinct factors and numerous cellular and molecular events which trigger NLRP3 inflammasome assembly with subsequent cleavage of pro-interleukin (IL)-1β and pro-IL-18 pathways via caspase-1 activation, eliciting endothelial dysfunction, promotion of oxidative stress and the inflammation process of atherosclerosis. In this review, we introduce the basic cellular and molecular mechanisms of NLRP3 inflammasome activation and its role in atherosclerosis. We also emphasize its promising therapeutic pharmaceutical potential.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Oana Nicoleta Buliga-Finis
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Department of Morpho-Functional Sciences II, Discipline of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
20
|
Li L, Song JJ, Zhang MX, Zhang HW, Zhu HY, Guo W, Pan CL, Liu X, Xu L, Zhang ZY. Oridonin ameliorates caspase-9-mediated brain neuronal apoptosis in mouse with ischemic stroke by inhibiting RIPK3-mediated mitophagy. Acta Pharmacol Sin 2023; 44:726-740. [PMID: 36216897 PMCID: PMC10042824 DOI: 10.1038/s41401-022-00995-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/02/2022] [Indexed: 12/11/2022] Open
Abstract
Neuronal loss is a primary factor in determining the outcome of ischemic stroke. Oridonin (Ori), a natural diterpenoid compound extracted from the Chinese herb Rabdosia rubescens, has been shown to exert anti-inflammatory and neuroregulatory effects in various models of neurological diseases. In this study we investigated whether Ori exerted a protective effect against reperfusion injury-induced neuronal loss and the underlying mechanisms. Mice were subjected to transient middle cerebral artery occlusion (tMCAO), and were injected with Ori (5, 10, 20 mg/kg, i.p.) at the beginning of reperfusion. We showed that Ori treatment rescued neuronal loss in a dose-dependent manner by specifically inhibiting caspase-9-mediated neuronal apoptosis and exerted neuroprotective effects against reperfusion injury. Furthermore, we found that Ori treatment reversed neuronal mitochondrial damage and loss after reperfusion injury. In N2a cells and primary neurons, Ori (1, 3, 6 μM) exerted similar protective effects against oxygen-glucose deprivation and reoxygenation (OGD/R)-induced injury. We then conducted an RNA-sequencing assay of the ipsilateral brain tissue of tMCAO mice, and identified receptor-interacting protein kinase-3 (RIPK3) as the most significantly changed apoptosis-associated gene. In N2a cells after OGD/R and in the ipsilateral brain region, we found that RIPK3 mediated excessive neuronal mitophagy by activating AMPK mitophagy signaling, which was inhibited by Ori or 3-MA. Using in vitro and in vivo RIPK3 knockdown models, we demonstrated that the anti-apoptotic and neuroprotective effects of Ori were RIPK3-dependent. Collectively, our results show that Ori effectively inhibits RIPK3-induced excessive mitophagy and thereby rescues the neuronal loss in the early stage of ischemic stroke.
Collapse
Affiliation(s)
- Lei Li
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jing-Jing Song
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Meng-Xue Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Hui-Wen Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Hai-Yan Zhu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Wei Guo
- Department of Urology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Cai-Long Pan
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Xue Liu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Lu Xu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Zhi-Yuan Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- Department of Neurology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
21
|
Jiang J, Zhang N, Song H, Yang Y, Li J, Hu X. Oridonin alleviates the inhibitory effect of lipopolysaccharide on the proliferation and osteogenic potential of periodontal ligament stem cells by inhibiting endoplasmic reticulum stress and NF-κB/NLRP3 inflammasome signaling. BMC Oral Health 2023; 23:137. [PMID: 36894905 PMCID: PMC9999511 DOI: 10.1186/s12903-023-02827-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the protective effect and mechanism of oridonin in an in vitro lipopolysaccharide (LPS)-induced human periodontal ligament stem cells (hPDLSCs) model of periodontitis. METHODS Primary hPDLSCs were isolated and cultured, and then the expression of surface antigens CD146, STRO-1 and CD45 of hPDLSCs was detected by flow cytometry. The mRNA expression level of Runx2, OPN, Col-1, GRP78, CHOP, ATF4 and ATF6 in the cells was tested by qRT-PCR. MTT was taken to determine the cytotoxicity of oridonin at different concentrations (0-4 μM) on hPDLSCs. Besides, ALP staining, alizarin red staining and Oil Red O staining were utilized to assess the osteogenic differentiation (ALP concentration, mineralized calcium nodule formation) and adipogenic differentiation abilities of the cells. The proinflammatory factors level in the cells was measured by ELISA. The protein expression level of NF-κB/NLRP3 pathway-related proteins and endoplasmic reticulum (ER) stress-related markers in the cells were detected by Western blot. RESULTS hPDLSCs with positive CD146 and STRO-1 expression and negative CD45 expression were successfully isolated in this study. 0.1-2 μM of oridonin had no significant cytotoxicity on the growth of hPDLSCs, while 2 μM of oridonin could not only greatly reduce the inhibitory effect of LPS on the proliferation and osteogenic differentiation of hPDLSCs cells, but also inhibit LPS-induced inflammation and ER stress in hPDLSCs cells. Moreover, further mechanism research showed that 2 μM of oridonin suppressed NF-κB/NLRP3 signaling pathway activity in LPS-induced hPDLSCs cells. CONCLUSIONS Oridonin promotes proliferation and osteogenic differentiation of LPS-induced hPDLSCs in an inflammatory environment, possibly by inhibiting ER stress and NF-κB/NLRP3 pathway. Oridonin may have a potential role in the repair and regeneration of hPDLSCs.
Collapse
Affiliation(s)
- Junhao Jiang
- Department of Stomatology, Shenzhen Longgang District Maternity & Child Healthcare Hospital(Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China.
| | - Nong Zhang
- Department of Stomatology, Shenzhen Longgang District Maternity & Child Healthcare Hospital(Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China
| | - Haibo Song
- Department of Stomatology, Shenzhen Longgang District Maternity & Child Healthcare Hospital(Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China
| | - Ya Yang
- Department of Stomatology, Shenzhen Longgang District Maternity & Child Healthcare Hospital(Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China
| | - Juan Li
- Department of Stomatology, Shenzhen Longgang District Maternity & Child Healthcare Hospital(Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China
| | - Xiaoli Hu
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, China.
| |
Collapse
|
22
|
Sobral PJM, Vicente ATS, Salvador JAR. Recent advances in oridonin derivatives with anticancer activity. Front Chem 2023; 11:1066280. [PMID: 36846854 PMCID: PMC9947293 DOI: 10.3389/fchem.2023.1066280] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Cancer is a leading cause of mortality responsible for an estimated 10 million deaths worldwide in 2020, and its incidence has been rapidly growing over the last decades. Population growth and aging, as well as high systemic toxicity and chemoresistance associated with conventional anticancer therapies reflect these high levels of incidence and mortality. Thus, efforts have been made to search for novel anticancer drugs with fewer side effects and greater therapeutic effectiveness. Nature continues to be the main source of biologically active lead compounds, and diterpenoids are considered one of the most important families since many have been reported to possess anticancer properties. Oridonin is an ent-kaurane tetracyclic diterpenoid isolated from Rabdosia rubescens and has been a target of extensive research over the last few years. It displays a broad range of biological effects including neuroprotective, anti-inflammatory, and anticancer activity against a variety of tumor cells. Several structural modifications on the oridonin and biological evaluation of its derivatives have been performed, creating a library of compounds with improved pharmacological activities. This mini-review aims to highlight the recent advances in oridonin derivatives as potential anticancer drugs, while succinctly exploring their proposed mechanisms of action. To wind up, future research perspectives in this field are also disclosed.
Collapse
Affiliation(s)
- Pedro J. M. Sobral
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - André T. S. Vicente
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal,*Correspondence: Jorge A. R. Salvador,
| |
Collapse
|
23
|
Zhang X, Xing M, Ma Y, Zhang Z, Qiu C, Wang X, Zhao Z, Ji Z, Zhang JY. Oridonin Induces Apoptosis in Esophageal Squamous Cell Carcinoma by Inhibiting Cytoskeletal Protein LASP1 and PDLIM1. Molecules 2023; 28:805. [PMID: 36677861 PMCID: PMC9862004 DOI: 10.3390/molecules28020805] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Esophageal squamous cell carcinoma is a severe malignancy for its high mortality and poor prognosis. Mainstay chemotherapies cause serious side effects for their ways of inducing cell death. Oridonin is the main bioactive constituent from natural plants that has anticancer ability and weak side effects. The proteomics method is efficient to understand the anticancer mechanism. However, proteins identified by proteomics aimed at understanding oridonin's anticancer mechanism is seldom overlapped by different groups. This study used proteomics based on two-dimensional electrophoresis sodium dodecyl sulfate-polyacrylamide gel electrophoresis (2-DE SDS-PAGE) integrated with mass spectrometry and Gene Set Enrichment Analysis (GSEA) to understand the anticancer mechanism of oridonin on esophageal squamous cell carcinoma (ESCC). The results showed that oridonin induced ESCC cell death via apoptosis by decreasing the protein expression of LASP1 and PDLIM1.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Mengtao Xing
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Yangcheng Ma
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Zhuangli Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Cuipeng Qiu
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Xiao Wang
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Zhihong Zhao
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Zhenyu Ji
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Jian-Ying Zhang
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
24
|
Ye Y, Ma Y, Kong M, Wang Z, Sun K, Li F. Effects of Dietary Phytochemicals on DNA Damage in Cancer Cells. Nutr Cancer 2023; 75:761-775. [PMID: 36562548 DOI: 10.1080/01635581.2022.2157024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With the increasing incidence of cancer worldwide, the prevention and treatment of cancer have garnered considerable scientific attention. Traditional chemotherapeutic drugs are highly toxic and associated with substantial side effects; therefore, there is an urgent need for developing new therapeutic agents. Dietary phytochemicals are important in tumor prevention and treatment because of their low toxicity and side effects at low concentrations; however, their exact mechanisms of action remain obscure. DNA damage is mainly caused by physical or chemical factors in the environment, such as ultraviolet light, alkylating agents and reactive oxygen species that cause changes in the DNA structure of cells. Several phytochemicals have been shown inhibit the occurrence and development of tumors by inducing DNA damage. This article reviews the advances in phytochemical research; particularly regarding the mechanisms related to DNA damage and provide a theoretical basis for future chemoprophylaxis research.
Collapse
Affiliation(s)
- Yang Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ying Ma
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Mei Kong
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhihua Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Kang Sun
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fang Li
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
25
|
Lin J, Lai X, Fan X, Ye B, Zhong L, Zhang Y, Shao R, Shi S, Huang W, Su L, Ying M. Oridonin Protects against Myocardial Ischemia-Reperfusion Injury by Inhibiting GSDMD-Mediated Pyroptosis. Genes (Basel) 2022; 13:2133. [PMID: 36421808 PMCID: PMC9690185 DOI: 10.3390/genes13112133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 10/12/2023] Open
Abstract
Pyroptosis serves a crucial function in various types of ischemia and reperfusion injuries. Oridonin, a tetracycline diterpene derived from Rabdosia rubescens, can significantly inhibit the aggregation of NLRP3-mediated inflammasome. This experiment is aimed at investigating the effect of oridonin on pyroptosis in mice cardiomyocytes. Based on the models of myocardial ischemia/reperfusion (I/R) and hypoxia/reoxygenation (H/R), Evans Blue/TTC double staining, TUNEL staining, and Western blotting were applied to determine the effects of oridonin on myocardial damage, cellular activity and signaling pathways involved in pyroptosis. During I/R and H/R treatments, the extent of gasdermin D-N domains was upregulated in cardiomyocytes. Apart from that, oridonin improved cell survival in vitro and decreased the myocardial infarct size in vivo by also downregulating the activation of pyroptosis. Finally, the expression levels of ASC, NLRP3 and p-p65 were markedly upregulated in cardiomyocytes after H/R treatment, whereas oridonin suppressed the expression of these proteins. The present experiment revealed that myocardial I/R injury and pyroptosis can be alleviated and inhibited by oridonin pretreatment via NF-κB/NLRP3 signaling pathway, both in vivo and in vitro. Therefore, oridonin may serve as a potentially novel agent for the clinical treatment of myocardial ischemia-reperfusion injuries.
Collapse
Affiliation(s)
- Jiahui Lin
- First School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Xianhui Lai
- Department of Cardiology, Yuhuan County People’s Hospital of Zhejiang Province, Taizhou 318000, China
| | - Xiaoxi Fan
- Key Laboratory of Cardiovascular Disease, Department of Cardiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Bozhi Ye
- Key Laboratory of Cardiovascular Disease, Department of Cardiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lingfeng Zhong
- Key Laboratory of Cardiovascular Disease, Department of Cardiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yucong Zhang
- Key Laboratory of Cardiovascular Disease, Department of Cardiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ruiyin Shao
- Key Laboratory of Cardiovascular Disease, Department of Cardiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Si Shi
- First School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Weijian Huang
- Key Laboratory of Cardiovascular Disease, Department of Cardiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lan Su
- Key Laboratory of Cardiovascular Disease, Department of Cardiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Miaomiao Ying
- Department of Pathology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
26
|
Qi L, Zhong F, Liu N, Wang J, Nie K, Tan Y, Ma Y, Xia L. Characterization of the anti-AChE potential and alkaloids in Rhizoma Coptidis from different Coptis species combined with spectrum-effect relationship and molecular docking. FRONTIERS IN PLANT SCIENCE 2022; 13:1020309. [PMID: 36388527 PMCID: PMC9659949 DOI: 10.3389/fpls.2022.1020309] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Coptis species are the main source of Rhizoma Coptidis (RC) drugs, which have always been used to treat Alzheimer's disease in the clinical experience of ancient China. However, many species of this genus have been largely underutilized until now. With this fact, this research has been designed to investigate for the first time the anti-acetylcholinesterase (AChE) property of different extracts for RC drugs from four Coptis species (C. chinensis, C. deltoidea, C. teeta and C. omeiensis) and to quantify the main alkaloids. Petroleum ether, ethyl acetate and n-butanol fractions of RC drugs were sequentially collected using an accelerated solvent extraction technique. Spectrum-effect relationship and molecular docking were applied to analyse the relationships between alkaloids and AChE inhibitory activity. The N-butanol extract was proven to be the main active fraction, and C. teeta may be the best source of RC drugs for Alzheimer's disease treatment, with significantly lower IC 20, IC 50 and IC 80 values for AChE inhibition. The UPLC/QqQ-MS quantitative analysis showed that the accumulations of 10 alkaloids in RC drugs from different sources greatly varied. Three data processing methods (Random forest, Boruta and Pearson correlation) comprehensively analysed the spectrum-effect relationship and revealed that columbamine, berberine and palmatine were the most important AChE inhibitors that could be used as quality markers to select RC drugs for Alzheimer's disease treatment. In addition, the dominant compounds were successfully docked against AChE to verify the binding affinity and interactions with the active site. The present study can contribute to the reasonable development and utilization of RC drugs from different sources, especially to provide certain evidence for their application in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Luming Qi
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Furong Zhong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nannan Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Wang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kaidi Nie
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youli Tan
- Department of Pharmacy, Affiliated Sport Hospital of CDSU, Chengdu Sport University, Chengdu, China
| | - Yuntong Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lina Xia
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
27
|
Bellone ML, Fiengo L, Cerchia C, Cotugno R, Bader A, Lavecchia A, De Tommasi N, Piaz FD. Impairment of Nucleolin Activity and Phosphorylation by a Trachylobane Diterpene from Psiadia punctulata in Cancer Cells. Int J Mol Sci 2022; 23:ijms231911390. [PMID: 36232690 PMCID: PMC9570042 DOI: 10.3390/ijms231911390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Human nucleolin (hNcl) is a multifunctional protein involved in the progression of various cancers and plays a key role in other pathologies. Therefore, there is still unsatisfied demand for hNcl modulators. Recently, we demonstrated that the plant ent-kaurane diterpene oridonin inhibits hNcl but, unfortunately, this compound is quite toxic for healthy cells. Trachylobane diterpene 6,19-dihydroxy-ent-trachiloban-17-oic acid (compound 12) extracted from Psiadia punctulata (DC.) Vatke (Asteraceae) emerged as a ligand of hNcl from a cellular thermal shift assay (CETSA)-based screening of a small library of diterpenes. Effective interaction between this compound and the protein was demonstrated to occur both in vitro and inside two different types of cancer cells. Based on the experimental and computational data, a model of the hNcl/compound 12 complex was built. Because of this binding, hNcl mRNA chaperone activity was significantly reduced, and the level of phosphorylation of the protein was affected. At the biological level, cancer cell incubation with compound 12 produced a cell cycle block in the subG0/G1 phase and induced early apoptosis, whereas no cytotoxicity towards healthy cells was observed. Overall, these results suggested that 6,19-dihydroxy-ent-trachiloban-17-oic could represent a selective antitumoral agent and a promising lead for designing innovative hNcl inhibitors also usable for therapeutic purposes.
Collapse
Affiliation(s)
- Maria Laura Bellone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Lorenzo Fiengo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Carmen Cerchia
- “Drug Discovery” Laboratory, Department of Pharmacy, University of Napoli “Federico II”, Via D. Montesano, 49, 80131 Napoli, Italy
| | - Roberta Cotugno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Ammar Bader
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Mecca 21995, Saudi Arabia
| | - Antonio Lavecchia
- “Drug Discovery” Laboratory, Department of Pharmacy, University of Napoli “Federico II”, Via D. Montesano, 49, 80131 Napoli, Italy
| | - Nunziatina De Tommasi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Correspondence:
| |
Collapse
|
28
|
Cai M, Liang W, Wang K, Yin D, Fu T, Zhu R, Qu C, Dong X, Ni J, Yin X. Aperture Modulation of Isoreticular Metal Organic Frameworks for Targeted Antitumor Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36366-36378. [PMID: 35897121 DOI: 10.1021/acsami.2c07450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The introduction of different pore diameters in metal organic frameworks (MOFs) could adjust their drug delivery performance. MOFs with customized structures have potential application value in targeted drug delivery. However, no research on this topic has been found so far. In this report, isoreticular metal organic frameworks (IRMOFs) have been taken as a typical case of tailor-made MOFs, the pore size of which is enlarged (average BJH pore sizes of about 2.43, 3.06, 5.47, and 6.50 nm were determined for IRMOF-1, IRMOF-8, IRMOF-10, and IRMOF-16, respectively), emphasizing the relationship between pore size and model drugs (Oridonin, ORI) and clarifying its potential working mechanism. IRMOF-1, whose pore size matches the size of ORI, has an outstanding drug loading capacity (57.93% by wt) and release profile (about 90% in 24 h at pH 7.4). IRMOF-1 was further coated with polyethylene glycol (PEG) modified with a cell penetrating peptide (CPP44) bound to M160 (CD163L1) protein for targeting of hepatic tumor lines. This nanoplatform (CPP44-PEG@ORI@IRMOF-1) exhibited acid-responsive drug release behavior (37.86% in 10 h at pH 7.4 and 66.66% in 10 h at pH 5.5) and significantly enhanced antitumor effects. The results of cell targeting and in vivo animal imaging indicated that CPP44-PEG@ORI@IRMOF-1 may serve as a tumor-selective drug delivery nanoplatform. Toxicity assessment confirmed that PEGylated IRMOF-1 did not cause organ or systemic toxicity. Furthermore, it is encouraging that the IRMOF-based targeted drug delivery system with pore size modulation showed rapid clearance (most administered NPs are metabolized from urine and feces within 1 week) and avoided accumulation in the body, indicating their promise for biomedical applications. This MOF-based aperture modulation combined with a targeted modification strategy might find broad applications in cancer theranostics. Thus, it is convenient to customize personalized MOFs according to the size of drug molecules in future research.
Collapse
Affiliation(s)
- Mengru Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wulin Liang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Kaixin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dongge Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tingting Fu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rongyue Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Changhai Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoxv Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jian Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
29
|
Kazantseva L, Becerra J, Santos-Ruiz L. Traditional Medicinal Plants as a Source of Inspiration for Osteosarcoma Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155008. [PMID: 35956961 PMCID: PMC9370649 DOI: 10.3390/molecules27155008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Osteosarcoma is one of the most common types of bone cancers among paediatric patients. Despite the advances made in surgery, chemo-, and radiotherapy, the mortality rate of metastatic osteosarcoma remains unchangeably high. The standard drug combination used to treat this bone cancer has remained the same for the last 20 years, and it produces many dangerous side effects. Through history, from ancient to modern times, nature has been a remarkable source of chemical diversity, used to alleviate human disease. The application of modern scientific technology to the study of natural products has identified many specific molecules with anti-cancer properties. This review describes the latest discovered anti-cancer compounds extracted from traditional medicinal plants, with a focus on osteosarcoma research, and on their cellular and molecular mechanisms of action. The presented compounds have proven to kill osteosarcoma cells by interfering with different pathways: apoptosis induction, stimulation of autophagy, generation of reactive oxygen species, etc. This wide variety of cellular targets confer natural products the potential to be used as chemotherapeutic drugs, and also the ability to act as sensitizers in drug combination treatments. The major hindrance for these molecules is low bioavailability. A problem that may be solved by chemical modification or nano-encapsulation.
Collapse
Affiliation(s)
- Liliya Kazantseva
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - José Becerra
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Cell Biology, Genetics and Physiology, Universidad de Málaga, 29071 Málaga, Spain
| | - Leonor Santos-Ruiz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Cell Biology, Genetics and Physiology, Universidad de Málaga, 29071 Málaga, Spain
- Correspondence:
| |
Collapse
|
30
|
Zhao X, Liu Y, Wang L, Yan C, Liu H, Zhang W, Zhao H, Cheng C, Chen Z, Xu T, Li K, Cai J, Qiao T. Oridonin attenuates hind limb ischemia-reperfusion injury by modulating Nrf2-mediated oxidative stress and NLRP3-mediated inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115206. [PMID: 35301099 DOI: 10.1016/j.jep.2022.115206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oridonin (Ori), extracted from Isodon rubescens (Hemsl.) H.Hara, is a well-known traditional Chinese herbal medicinal product that possesses antioxidant and anti-inflammatory activities. Oxidative stress and inflammation are the main pathophysiological mechanisms in hindlimb IR injury. However, whether Ori has a protective effect on hind limb IR injury is unknown. AIM OF THE STUDY The present study was designed to determine the effect of Ori on hindlimb IR injury and its relationship with oxidative stress and inflammation. MATERIALS AND METHODS The hind limb IR injury model in mice was used to evaluate the protective effect and related mechanisms of Ori. Forty-eight C57BL/6 mice (n = 12 per group) were randomly divided into four groups: Sham group; IR group; IR + Ori (10 mg/kg) group and IR + Ori (20 mg/kg) group. Mice in the IR and IR + Ori groups were subjected to hindlimb IR injury, while mice in the Sham group were subjected to no hindlimb IR injury. HE staining, Masson's staining, TTC staining, DHE staining, TUNEL staining, western blotting analysis and quantitative real-time PCR were employed to explore the mechanisms by which Ori exerts a protective effect on a classical hindlimb IR model in mice. RESULTS We found that Ori pretreatment prevented muscle damage and decreased cell apoptosis levels compared with the vehicle control. Moreover, the SOD2, CAT, MDA and ROS levels in muscle showed that Ori could significantly reduce oxidative stress in hindlimb IR mice, while the IL-1β and TNF-α levels in muscle showed that Ori could significantly attenuate IR-induced inflammation. We also found that Ori could increase the expression of Nrf2 and its downstream protein HO-1 and inhibit the expression levels of NLRP3-related proteins (NLRP3, ASC and Caspase-1) in vivo. CONCLUSIONS Our study suggested that Ori has a protective effect on hindlimb IR injury, which may be related to Nrf2-mediated oxidative stress and NLRP3-mediated inflammasome activation.
Collapse
Affiliation(s)
- Xiaoqi Zhao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Yutong Liu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Lei Wang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Chaolong Yan
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Han Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Wenxin Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Hongting Zhao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Chen Cheng
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Zhipeng Chen
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Tianze Xu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Kuanyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Jing Cai
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Tong Qiao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
31
|
Blevins HM, Xu Y, Biby S, Zhang S. The NLRP3 Inflammasome Pathway: A Review of Mechanisms and Inhibitors for the Treatment of Inflammatory Diseases. Front Aging Neurosci 2022; 14:879021. [PMID: 35754962 PMCID: PMC9226403 DOI: 10.3389/fnagi.2022.879021] [Citation(s) in RCA: 147] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
The NLRP3 inflammasome is a multiprotein complex that plays a pivotal role in regulating the innate immune system and inflammatory signaling. Upon activation by PAMPs and DAMPs, NLRP3 oligomerizes and activates caspase-1 which initiates the processing and release of pro-inflammatory cytokines IL-1β and IL-18. NLRP3 is the most extensively studied inflammasome to date due to its array of activators and aberrant activation in several inflammatory diseases. Studies using small molecules and biologics targeting the NLRP3 inflammasome pathway have shown positive outcomes in treating various disease pathologies by blocking chronic inflammation. In this review, we discuss the recent advances in understanding the NLRP3 mechanism, its role in disease pathology, and provide a broad review of therapeutics discovered to target the NLRP3 pathway and their challenges.
Collapse
Affiliation(s)
| | | | | | - Shijun Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
32
|
Ikoma K, Takahama M, Kimishima A, Pan Y, Taura M, Nakayama A, Arai M, Takemura N, Saitoh T. Oridonin suppresses particulate-induced NLRP3-independent IL-1α release to prevent crystallopathy in the lung. Int Immunol 2022; 34:493-504. [PMID: 35639943 DOI: 10.1093/intimm/dxac018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/24/2022] [Indexed: 11/12/2022] Open
Abstract
The human body is exposed to various particulates of industrial, environmental, or endogenous origin. Invading or intrinsic particulates can induce inflammation by aberrantly activating the immune system, thereby causing crystallopathies. When immune cells such as macrophages phagocytose the particulates, their phagolysosomal membranes undergo mechanical damage, eventually leading to pyroptotic cell death accompanied by the release of inflammatory cytokines, including interleukin (IL)-1αand IL-1β. The Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is responsible for particulate-induced IL-1βrelease and is therefore regarded as a potential therapeutic target for inflammation-mediated crystallopathies. However, IL-1α is released after particulate stimulation in an NLRP3 inflammasome-independent manner and plays a critical role in disease development. Therefore, drugs that exert potent anti-inflammatory effects by comprehensively suppressing particulate-induced responses, including IL-1βrelease and IL-1αrelease, should be developed. Here, we found that oridonin, a diterpenoid isolated from Isodon japonicus HARA, strongly suppressed particulate-induced cell death, accompanied by the release of IL-1αand IL-1β in mouse and human macrophages. Oridonin reduced particulate-induced phagolysosomal membrane damage in macrophages without affecting phagocytosis of particulates. Furthermore, oridonin treatment markedly suppressed the symptoms of silica particle-induced pneumonia, which was attributed to the release of IL-1α independently of NLRP3. Thus, oridonin is a potential lead compound for developing effective therapeutics for crystallopathies attributed to NLRP3-dependent as well as NLRP3-independent inflammation.
Collapse
Affiliation(s)
- Kenta Ikoma
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Michihiro Takahama
- Division of Inflammation Biology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan.,Pritzker School of Molecular Engineering, the University of Chicago, Chicago, IL 60637, USA
| | - Atsushi Kimishima
- Laboratory of Natural Products for Drug Discovery, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Yixi Pan
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Manabu Taura
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Akiyoshi Nakayama
- Division of Inflammation Biology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan.,Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, 359-8513, Japan
| | - Masayoshi Arai
- Laboratory of Natural Products for Drug Discovery, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Naoki Takemura
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Tatsuya Saitoh
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan.,Division of Inflammation Biology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
33
|
A Review of Twenty Years of Research on the Regulation of Signaling Pathways by Natural Products in Breast Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113412. [PMID: 35684353 PMCID: PMC9182524 DOI: 10.3390/molecules27113412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/21/2022]
Abstract
Breast cancer (BC) is the second leading cause of death among women, and it has become a global health issue due to the increasing number of cases. Different treatment options, including radiotherapy, surgery, chemotherapy and anti-estrogen therapy, aromatase inhibitors, anti-angiogenesis drugs, and anthracyclines, are available for BC treatment. However, due to its high occurrence and disease progression, effective therapeutic options for metastatic BC are still lacking. Considering this scenario, there is an urgent need for an effective therapeutic strategy to meet the current challenges of BC. Natural products have been screened as anticancer agents as they are cost-effective, possess low toxicity and fewer side effects, and are considered alternative therapeutic options for BC therapy. Natural products showed anticancer activities against BC through the inhibition of angiogenesis, cell migrations, proliferations, and tumor growth; cell cycle arrest by inducing apoptosis and cell death, the downstream regulation of signaling pathways (such as Notch, NF-κB, PI3K/Akt/mTOR, MAPK/ERK, and NFAT-MDM2), and the regulation of EMT processes. Natural products also acted synergistically to overcome the drug resistance issue, thus improving their efficacy as an emerging therapeutic option for BC therapy. This review focused on the emerging roles of novel natural products and derived bioactive compounds as therapeutic agents against BC. The present review also discussed the mechanism of action through signaling pathways and the synergistic approach of natural compounds to improve their efficacy. We discussed the recent in vivo and in vitro studies for exploring the overexpression of oncogenes in the case of BC and the current status of newly discovered natural products in clinical investigations.
Collapse
|
34
|
Mezzasoma L, Bellezza I, Romani R, Talesa VN. Extracellular Vesicles and the Inflammasome: An Intricate Network Sustaining Chemoresistance. Front Oncol 2022; 12:888135. [PMID: 35530309 PMCID: PMC9072732 DOI: 10.3389/fonc.2022.888135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane enclosed spherical particles devoted to intercellular communication. Cancer-derived EVs (Ca-EVs) are deeply involved in tumor microenvironment remodeling, modifying the inflammatory phenotype of cancerous and non-cancerous residing cells. Inflammation plays a pivotal role in initiation, development, and progression of many types of malignancies. The key feature of cancer-related inflammation is the production of cytokines that incessantly modify of the surrounding environment. Interleukin-1β (IL-1β) is one of the most powerful cytokines, influencing all the initiation-to-progression stages of many types of cancers and represents an emerging critical contributor to chemoresistance. IL-1β production strictly depends on the activation of inflammasome, a cytoplasmic molecular platform sensing exogenous and endogenous danger signals. It has been recently shown that Ca-EVs can activate the inflammasome cascade and IL-1β production in tumor microenvironment-residing cells. Since inflammasome dysregulation has been established as crucial regulator in inflammation-associated tumorigenesis and chemoresistance, it is conceivable that the use of inflammasome-inhibiting drugs may be employed as adjuvant chemotherapy to counteract chemoresistance. This review focuses on the role of cancer-derived EVs in tuning tumor microenvironment unveiling the intricate network between inflammasome and chemoresistance.
Collapse
|
35
|
Oridonin Attenuates Cisplatin-Induced Acute Kidney Injury via Inhibiting Oxidative Stress, Apoptosis, and Inflammation in Mice. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3002962. [PMID: 35469348 PMCID: PMC9034941 DOI: 10.1155/2022/3002962] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/25/2022] [Accepted: 03/30/2022] [Indexed: 12/30/2022]
Abstract
The use of cisplatin, a chemotherapy drug, is often limited due to its renal side effects such as acute kidney injury (AKI). However, there are no validated medications to prevent or treat cisplatin-induced AKI. Oridonin is the major bioactive component of Isodon rubescens (Rabdosia rubescens) and exhibits anticancer, antioxidative, and anti-inflammatory effects. Recent studies have shown that oridonin alleviated a variety of inflammatory diseases, including renal diseases, in rodents. This study was aimed at investigating the potential renoprotective effect of oridonin on cisplatin-induced AKI. Male C57BL/6 mice were administered with cisplatin (20 mg/kg) with or without oridonin (15 mg/kg). Oridonin administration to mice after cisplatin injection attenuated renal dysfunction and histopathological changes. Upregulation of tubular injury markers was also suppressed by oridonin. Mechanistically, oridonin suppressed lipid peroxidation and reversed the decreased ratio of reduced to oxidized glutathione in cisplatin-injected mice. The increase in cisplatin-induced apoptosis was also alleviated by the compound. Moreover, oridonin inhibited cytokine overproduction and attenuated immune cell infiltration in cisplatin-injected mice. Altogether, these data demonstrated that oridonin alleviates cisplatin-induced kidney injury via inhibiting oxidative stress, apoptosis, and inflammation.
Collapse
|
36
|
Zhong F, Chen Y, Chen J, Liao H, Li Y, Ma Y. Jatrorrhizine: A Review of Sources, Pharmacology, Pharmacokinetics and Toxicity. Front Pharmacol 2022; 12:783127. [PMID: 35095493 PMCID: PMC8793695 DOI: 10.3389/fphar.2021.783127] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/14/2021] [Indexed: 02/02/2023] Open
Abstract
Jatrorrhizine, an isoquinoline alkaloid, is a bioactive metabolite in common medicinal plants, such as Berberis vernae Schneid., Tinospora sagittata (Oliv.) Gagnep. and Coptis chinensis Franch. These plants have been used for centuries in traditional medicine for their wide-ranging pharmacological properties. This review emphasizes the latest and comprehensive information on the sources, pharmacology, pharmacokinetics and toxicity of jatrorrhizine. Studies on this alkaloid were collected from scientific internet databases, including the Web of Science, PubMed, ScienceDirect, Google Scholar, Elsevier, Springer, Wiley Online Library and Europe PMC and CNKI, using a combination of keywords involving “jatrorrhizine”, “sources”, “pharmacology,” “pharmacokinetics,” and “toxicology”. Jatrorrhizine exhibits anti-diabetic, antimicrobial, antiprotozoal, anticancer, anti-obesity and hypolipidemic properties, along with central nervous system activities and other beneficial activity. Studies of jatrorrhizine have laid the foundation for its application to the treatment of various diseases, but some issues still exist. Further investigations might emphasize 1) specific curative mechanisms of jatrorrhizine and clinical utility, 2) application prospect in the treatment of metabolic disorders, 3) comprehensive investigations of the toxicity mechanisms and 4) interactions of jatrorrhizine with other pharmaceuticals and development of derivatives.
Collapse
Affiliation(s)
- Furong Zhong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hailang Liao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yirou Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuntong Ma
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|