1
|
Ceccarelli MC, Lefevre MC, Marino A, Pignatelli F, Krukiewicz K, Battaglini M, Ciofani G. Real-time monitoring of a 3D blood-brain barrier model maturation and integrity with a sensorized microfluidic device. LAB ON A CHIP 2024; 24:5085-5100. [PMID: 39412878 PMCID: PMC11482549 DOI: 10.1039/d4lc00633j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024]
Abstract
A significant challenge in the treatment of central nervous system (CNS) disorders is represented by the presence of the blood-brain barrier (BBB), a highly selective membrane that regulates molecular transport and restricts the passage of pathogens and therapeutic compounds. Traditional in vivo models are constrained by high costs, lengthy experimental timelines, ethical concerns, and interspecies variations. In vitro models, particularly microfluidic BBB-on-a-chip devices, have been developed to address these limitations. These advanced models aim to more accurately replicate human BBB conditions by incorporating human cells and physiological flow dynamics. In this framework, here we developed an innovative microfluidic system that integrates thin-film electrodes for non-invasive, real-time monitoring of BBB integrity using electrochemical impedance spectroscopy (EIS). EIS measurements showed frequency-dependent impedance changes, indicating BBB integrity and distinguishing well-formed from non-mature barriers. The data from EIS monitoring was confirmed by permeability assays performed with a fluorescence tracer. The model incorporates human endothelial cells in a vessel-like arrangement to mimic the vascular component and three-dimensional cell distribution of human astrocytes and microglia to simulate the parenchymal compartment. By modeling the BBB-on-a-chip with an equivalent circuit, a more accurate trans-endothelial electrical resistance (TEER) value was extracted. The device demonstrated successful BBB formation and maturation, confirmed through live/dead assays, immunofluorescence and permeability assays. Computational fluid dynamics (CFD) simulations confirmed that the device mimics in vivo shear stress conditions. Drug crossing assessment was performed with two chemotherapy drugs: doxorubicin, with a known poor BBB penetration, and temozolomide, conversely a specific drug for CNS disorders and able to cross the BBB, to validate the model predictive capability for drug crossing behavior. The proposed sensorized microfluidic device represents a significant advancement in BBB modeling, offering a versatile platform for CNS drug development, disease modeling, and personalized medicine.
Collapse
Affiliation(s)
- Maria Cristina Ceccarelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Marie Celine Lefevre
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Francesca Pignatelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Księdza Marcina Strzody 9, 44-100 Gliwice, Poland
| | - Matteo Battaglini
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| |
Collapse
|
2
|
Madadi AK, Sohn MJ. Advances in Intrathecal Nanoparticle Delivery: Targeting the Blood-Cerebrospinal Fluid Barrier for Enhanced CNS Drug Delivery. Pharmaceuticals (Basel) 2024; 17:1070. [PMID: 39204177 PMCID: PMC11357388 DOI: 10.3390/ph17081070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
The blood-cerebrospinal fluid barrier (BCSFB) tightly regulates molecular exchanges between the bloodstream and cerebrospinal fluid (CSF), creating challenges for effective central nervous system (CNS) drug delivery. This review assesses intrathecal (IT) nanoparticle (NP) delivery systems that aim to enhance drug delivery by circumventing the BCSFB, complementing approaches that target the blood-brain barrier (BBB). Active pharmaceutical ingredients (APIs) face hurdles like restricted CNS distribution and rapid clearance, which diminish the efficacy of IT therapies. NPs can be engineered to extend drug circulation times, improve CNS penetration, and facilitate sustained release. This review discusses key pharmacokinetic (PK) parameters essential for the effectiveness of these systems. NPs can quickly traverse the subarachnoid space and remain within the leptomeninges for extended periods, often exceeding three weeks. Some designs enable deeper brain parenchyma penetration. Approximately 80% of NPs in the CSF are cleared through the perivascular glymphatic pathway, with microglia-mediated transport significantly contributing to their paravascular clearance. This review synthesizes recent progress in IT-NP delivery across the BCSFB, highlighting critical findings, ongoing challenges, and the therapeutic potential of surface modifications and targeted delivery strategies.
Collapse
Affiliation(s)
- Ahmad Khalid Madadi
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjingu, Busan 47392, Republic of Korea;
| | - Moon-Jun Sohn
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjingu, Busan 47392, Republic of Korea;
- Department of Neurosurgery, Neuroscience & Radiosurgery Hybrid Research Center, Inje University Ilsan Paik Hospital, College of Medicine, Juhwa-ro 170, Ilsanseo-gu, Goyang City 10380, Republic of Korea
| |
Collapse
|
3
|
Pudełek M, Ryszawy D, Piwowarczyk K, Lasota S, Madeja Z, Kędracka-Krok S, Czyż J. Metabolic reprogramming of poly(morpho)nuclear giant cells determines glioblastoma recovery from doxorubicin-induced stress. J Transl Med 2024; 22:757. [PMID: 39135106 PMCID: PMC11318163 DOI: 10.1186/s12967-024-05541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Multi-drug resistance of poly(morpho)nuclear giant cells (PGCs) determines their cytoprotective and generative potential in cancer ecosystems. However, mechanisms underlying the involvement of PGCs in glioblastoma multiforme (GBM) adaptation to chemotherapeutic regimes remain largely obscure. In particular, metabolic reprogramming of PGCs has not yet been considered in terms of GBM recovery from doxorubicin (DOX)-induced stress. METHODS Long-term proteomic and metabolic cell profiling was applied to trace the phenotypic dynamics of GBM populations subjected to pulse DOX treatment in vitro, with a particular focus on PGC formation and its metabolic background. The links between metabolic reprogramming, drug resistance and drug retention capacity of PGCs were assessed, along with their significance for GBM recovery from DOX-induced stress. RESULTS Pulse DOX treatment triggered the transient formation of PGCs, followed by the appearance of small expanding cell (SEC) clusters. Development of PGCs was accompanied by the mobilization of their metabolic proteome, transient induction of oxidative phosphorylation (OXPHOS), and differential intracellular accumulation of NADH, NADPH, and ATP. The metabolic background of PGC formation was confirmed by the attenuation of GBM recovery from DOX-induced stress following the chemical inhibition of GSK-3β, OXPHOS, and the pentose phosphate pathway. Concurrently, the mobilization of reactive oxygen species (ROS) scavenging systems and fine-tuning of NADPH-dependent ROS production systems in PGCs was observed. These processes were accompanied by perinuclear mobilization of ABCB1 and ABCG2 transporters and DOX retention in the perinuclear PGC compartments. CONCLUSIONS These data demonstrate the cooperative pattern of GBM recovery from DOX-induced stress and the crucial role of metabolic reprogramming of PGCs in this process. Metabolic reprogramming enhances the efficiency of self-defense systems and increases the DOX retention capacity of PGCs, potentially reducing DOX bioavailability in the proximity of SECs. Consequently, the modulation of PGC metabolism is highlighted as a potential target for intervention in glioblastoma treatment.
Collapse
Affiliation(s)
- Maciej Pudełek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Damian Ryszawy
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Katarzyna Piwowarczyk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Sławomir Lasota
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Sylwia Kędracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jarosław Czyż
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland.
| |
Collapse
|
4
|
Tribe AKW, Peng L, Teesdale-Spittle PH, McConnell MJ. BCL6 is a context-dependent mediator of the glioblastoma response to irradiation therapy. Int J Biol Macromol 2024; 270:131782. [PMID: 38734343 DOI: 10.1016/j.ijbiomac.2024.131782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/14/2023] [Accepted: 04/21/2024] [Indexed: 05/13/2024]
Abstract
Glioblastoma is a rapidly fatal brain cancer that does not respond to therapy. Previous research showed that the transcriptional repressor protein BCL6 is upregulated by chemo and radiotherapy in glioblastoma, and inhibition of BCL6 enhances the effectiveness of these therapies. Therefore, BCL6 is a promising target to improve the efficacy of current glioblastoma treatment. BCL6 acts as a transcriptional repressor in germinal centre B cells and as an oncogene in lymphoma and other cancers. However, in glioblastoma, BCL6 induced by therapy may not be able to repress transcription. Using a BCL6 inhibitor, the whole proteome response to irradiation was compared with and without BCL6 activity. Acute high dose irradiation caused BCL6 to switch from repressing the DNA damage response to promoting stress response signalling. Rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) enabled comparison of BCL6 partner proteins between untreated and irradiated glioblastoma cells. BCL6 was associated with transcriptional coregulators in untreated glioblastoma including the known partner NCOR2. However, this association was lost in response to acute irradiation, where BCL6 unexpectedly associated with synaptic and plasma membrane proteins. These results reveal the activity of BCL6 under therapy-induced stress is context-dependent, and potentially altered by the intensity of that stress.
Collapse
Affiliation(s)
- Anna K W Tribe
- School of Biological Sciences, Te Herenga Waka Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| | - Lifeng Peng
- School of Biological Sciences, Te Herenga Waka Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| | - Paul H Teesdale-Spittle
- School of Biological Sciences, Te Herenga Waka Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| | - Melanie J McConnell
- School of Biological Sciences, Te Herenga Waka Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| |
Collapse
|
5
|
Wang QY, Liu SY, Yu DH, Chen PP, Wang Y, Lu F, Liu SM. Evaluation of drug interactions of Saposhnikoviae Radix and its major components with astragaloside IV and paeoniflorin using in vitro and in vivo experiments. J Chromatogr A 2024; 1723:464716. [PMID: 38640881 DOI: 10.1016/j.chroma.2024.464716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 04/21/2024]
Abstract
Saposhnikoviae Radix (SR) may enhance the pharmacodynamics of Huangqi Chifeng Tang (HQCFT) in the treatment of cerebral infarction according to our previous research, but the underlying mechanism is unknown. Herein, an in vivo pharmacokinetic assay in rats and in vitro MDCK-MDR1 cell assays were used to investigate the possible mechanism of SR, its main components, and its interactions with Astragali Radix (AR) and Paeoniae Radix (PR). An ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC‒MS/MS)-based analytical method for quantifying astragaloside IV (ASIV) and paeoniflorin (PAE) in microdialysis and transport samples was developed. The pharmacokinetic parameters of SR were determined using noncompartmental analyses CCK-8 assays were used to detect the cytotoxicity of ASIV, PAE, cimifugin (CIM), prim-o-glucosylcimifugin (POG) and their combinations. Moreover, drug transport was studied using MDCK-MDR1 cells. Western blotting was performed to measure the protein expression levels of P-GP and MRP1. Claudin-5, ZO-1, and F-actin expression was determined via immunohistochemical staining of MDCK-MDR1 cells. harmacokinetic studies revealed that, compared with those of Huangqi Chifeng Tang-Saposhnikoviae Radix (HQCFT-SR), the Tmax of ASIV increased by 11.11 %, and the MRT0-t and Tmax of PAE increased by 11.19 % and 20 %, respectively, in the HQCFT group. Transport studies revealed that when ASIV was coincubated with 28 μM CIM or POG, the apparent permeability coefficient (Papp) increased by 71.52 % and 50.33 %, respectively. Coincubation of PAE with 120 μM CIM or POG increased the Papp by 87.62 % and 60.95 %, respectively. Moreover, CIM and POG significantly downregulated P-gp and MRP1 (P < 0.05), inhibited the expression of Claudin-5, ZO-1, and F-actin (P < 0.05), and affected intercellular tight junctions (TJs). In conclusion, our study successfully established a selective, sensitive and reproducible UPLC‒MS/MS analytical method to detect drug‒drug interactions between SR, AR and PR in vivo and in vitro, which is beneficial for enhancing the therapeutic efficacies of AR and PR. Moreover, this study provides a theoretical basis for further research on the use of SR as a drug carrier.
Collapse
Affiliation(s)
- Qiu-Yue Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, PR China; College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, PR China
| | - Shu-Yu Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Dong-Hua Yu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Ping-Ping Chen
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Yu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, PR China.
| | - Shu-Min Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, PR China.
| |
Collapse
|
6
|
WADHWA KARAN, CHAUHAN PAYAL, KUMAR SHOBHIT, PAHWA RAKESH, VERMA RAVINDER, GOYAL RAJAT, SINGH GOVIND, SHARMA ARCHANA, RAO NEHA, KAUSHIK DEEPAK. Targeting brain tumors with innovative nanocarriers: bridging the gap through the blood-brain barrier. Oncol Res 2024; 32:877-897. [PMID: 38686045 PMCID: PMC11056000 DOI: 10.32604/or.2024.047278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 05/02/2024] Open
Abstract
Background Glioblastoma multiforme (GBM) is recognized as the most lethal and most highly invasive tumor. The high likelihood of treatment failure arises from the presence of the blood-brain barrier (BBB) and stem cells around GBM, which avert the entry of chemotherapeutic drugs into the tumor mass. Objective Recently, several researchers have designed novel nanocarrier systems like liposomes, dendrimers, metallic nanoparticles, nanodiamonds, and nanorobot approaches, allowing drugs to infiltrate the BBB more efficiently, opening up innovative avenues to prevail over therapy problems and radiation therapy. Methods Relevant literature for this manuscript has been collected from a comprehensive and systematic search of databases, for example, PubMed, Science Direct, Google Scholar, and others, using specific keyword combinations, including "glioblastoma," "brain tumor," "nanocarriers," and several others. Conclusion This review also provides deep insights into recent advancements in nanocarrier-based formulations and technologies for GBM management. Elucidation of various scientific advances in conjunction with encouraging findings concerning the future perspectives and challenges of nanocarriers for effective brain tumor management has also been discussed.
Collapse
Affiliation(s)
- KARAN WADHWA
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - PAYAL CHAUHAN
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - SHOBHIT KUMAR
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET) NH-58, Delhi-Roorkee Highway, Meerut, 250005, India
| | - RAKESH PAHWA
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - RAVINDER VERMA
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| | - RAJAT GOYAL
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - GOVIND SINGH
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - ARCHANA SHARMA
- Delhi Pharmaceutical Sciences and Research University (DIPSAR), Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - NEHA RAO
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - DEEPAK KAUSHIK
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| |
Collapse
|
7
|
Rios SA, Oyervides S, Uribe D, Reyes AM, Fanniel V, Vazquez J, Keniry M. Emerging Therapies for Glioblastoma. Cancers (Basel) 2024; 16:1485. [PMID: 38672566 PMCID: PMC11048459 DOI: 10.3390/cancers16081485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma is most commonly a primary brain tumor and the utmost malignant one, with a survival rate of approximately 12-18 months. Glioblastoma is highly heterogeneous, demonstrating that different types of cells from the same tumor can manifest distinct gene expression patterns and biological behaviors. Conventional therapies such as temozolomide, radiation, and surgery have limitations. As of now, there is no cure for glioblastoma. Alternative treatment methods to eradicate glioblastoma are discussed in this review, including targeted therapies to PI3K, NFKβ, JAK-STAT, CK2, WNT, NOTCH, Hedgehog, and TGFβ pathways. The highly novel application of oncolytic viruses and nanomaterials in combating glioblastoma are also discussed. Despite scores of clinical trials for glioblastoma, the prognosis remains poor. Progress in breaching the blood-brain barrier with nanomaterials and novel avenues for targeted and combination treatments hold promise for the future development of efficacious glioblastoma therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Megan Keniry
- School of Integrative Biological and Chemical Sciences, College of Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (S.A.R.); (D.U.); (A.M.R.)
| |
Collapse
|
8
|
Mosca L, Pagano C, Tranchese RV, Grillo R, Cadoni F, Navarra G, Coppola L, Pagano M, Mele L, Cacciapuoti G, Laezza C, Porcelli M. Antitumoral Activity of the Universal Methyl Donor S-Adenosylmethionine in Glioblastoma Cells. Molecules 2024; 29:1708. [PMID: 38675528 PMCID: PMC11052366 DOI: 10.3390/molecules29081708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma (GBM), the most frequent and lethal brain cancer in adults, is characterized by short survival times and high mortality rates. Due to the resistance of GBM cells to conventional therapeutic treatments, scientific interest is focusing on the search for alternative and efficient adjuvant treatments. S-Adenosylmethionine (AdoMet), the well-studied physiological methyl donor, has emerged as a promising anticancer compound and a modulator of multiple cancer-related signaling pathways. We report here for the first time that AdoMet selectively inhibited the viability and proliferation of U87MG, U343MG, and U251MG GBM cells. In these cell lines, AdoMet induced S and G2/M cell cycle arrest and apoptosis and downregulated the expression and activation of proteins involved in homologous recombination DNA repair, including RAD51, BRCA1, and Chk1. Furthermore, AdoMet was able to maintain DNA in a damaged state, as indicated by the increased γH2AX/H2AX ratio. AdoMet promoted mitotic catastrophe through inhibiting Aurora B kinase expression, phosphorylation, and localization causing GBM cells to undergo mitotic catastrophe-induced death. Finally, AdoMet inhibited DNA repair and induced cell cycle arrest, apoptosis, and mitotic catastrophe in patient-derived GBM cells. In light of these results, AdoMet could be considered a potential adjuvant in GBM therapy.
Collapse
Affiliation(s)
- Laura Mosca
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| | - Cristina Pagano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (C.P.); (G.N.); (L.C.)
| | - Roberta Veglia Tranchese
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| | - Roberta Grillo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| | - Francesca Cadoni
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| | - Giovanna Navarra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (C.P.); (G.N.); (L.C.)
| | - Laura Coppola
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (C.P.); (G.N.); (L.C.)
| | - Martina Pagano
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Luciano Armanni 5, 80138 Naples, Italy;
| | - Giovanna Cacciapuoti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), Via Pansini 5, 80131 Naples, Italy;
| | - Marina Porcelli
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| |
Collapse
|
9
|
Zhao K, Braun M, Meyer L, Otte K, Raifer H, Helmprobst F, Möschl V, Pagenstecher A, Urban H, Ronellenfitsch MW, Steinbach JP, Pesek J, Watzer B, Nockher WA, Taudte RV, Neubauer A, Nimsky C, Bartsch JW, Rusch T. A Novel Approach for Glioblastoma Treatment by Combining Apoptosis Inducers (TMZ, MTX, and Cytarabine) with E.V.A. (Eltanexor, Venetoclax, and A1210477) Inhibiting XPO1, Bcl-2, and Mcl-1. Cells 2024; 13:632. [PMID: 38607071 PMCID: PMC11011525 DOI: 10.3390/cells13070632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Adjuvant treatment for Glioblastoma Grade 4 with Temozolomide (TMZ) inevitably fails due to therapeutic resistance, necessitating new approaches. Apoptosis induction in GB cells is inefficient, due to an excess of anti-apoptotic XPO1/Bcl-2-family proteins. We assessed TMZ, Methotrexate (MTX), and Cytarabine (Ara-C) (apoptosis inducers) combined with XPO1/Bcl-2/Mcl-1-inhibitors (apoptosis rescue) in GB cell lines and primary GB stem-like cells (GSCs). Using CellTiter-Glo® and Caspase-3 activity assays, we generated dose-response curves and analyzed the gene and protein regulation of anti-apoptotic proteins via PCR and Western blots. Optimal drug combinations were examined for their impact on the cell cycle and apoptosis induction via FACS analysis, paralleled by the assessment of potential toxicity in healthy mouse brain slices. Ara-C and MTX proved to be 150- to 10,000-fold more potent in inducing apoptosis than TMZ. In response to inhibitors Eltanexor (XPO1; E), Venetoclax (Bcl-2; V), and A1210477 (Mcl-1; A), genes encoding for the corresponding proteins were upregulated in a compensatory manner. TMZ, MTX, and Ara-C combined with E, V, and A evidenced highly lethal effects when combined. As no significant cell death induction in mouse brain slices was observed, we conclude that this drug combination is effective in vitro and expected to have low side effects in vivo.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Madita Braun
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Leonie Meyer
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Katharina Otte
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Hartmann Raifer
- FACS Core Facility, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Frederik Helmprobst
- Department of Neuropathology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Vincent Möschl
- Department of Neuropathology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Axel Pagenstecher
- Department of Neuropathology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Hans Urban
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neurooncology, Goethe-University of Frankfurt, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany
| | - Michael W. Ronellenfitsch
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neurooncology, Goethe-University of Frankfurt, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany
| | - Joachim P. Steinbach
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neurooncology, Goethe-University of Frankfurt, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany
| | - Jelena Pesek
- Medical Mass Spectrometry Core Facility, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Bernhard Watzer
- Medical Mass Spectrometry Core Facility, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Wolfgang A. Nockher
- Medical Mass Spectrometry Core Facility, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - R. Verena Taudte
- Medical Mass Spectrometry Core Facility, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Andreas Neubauer
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jörg W. Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Tillmann Rusch
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
10
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
11
|
Abdel-Rahman SA, Gabr M. Small Molecule Immunomodulators as Next-Generation Therapeutics for Glioblastoma. Cancers (Basel) 2024; 16:435. [PMID: 38275876 PMCID: PMC10814352 DOI: 10.3390/cancers16020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Glioblastoma (GBM), the most aggressive astrocytic glioma, remains a therapeutic challenge despite multimodal approaches. Immunotherapy holds promise, but its efficacy is hindered by the highly immunosuppressive GBM microenvironment. This review underscores the urgent need to comprehend the intricate interactions between glioma and immune cells, shaping the immunosuppressive tumor microenvironment (TME) in GBM. Immunotherapeutic advancements have shown limited success, prompting exploration of immunomodulatory approaches targeting tumor-associated macrophages (TAMs) and microglia, constituting a substantial portion of the GBM TME. Converting protumor M2-like TAMs to antitumor M1-like phenotypes emerges as a potential therapeutic strategy for GBM. The blood-brain barrier (BBB) poses an additional challenge to successful immunotherapy, restricting drug delivery to GBM TME. Research efforts to enhance BBB permeability have mainly focused on small molecules, which can traverse the BBB more effectively than biologics. Despite over 200 clinical trials for GBM, studies on small molecule immunomodulators within the GBM TME are scarce. Developing small molecules with optimal brain penetration and selectivity against immunomodulatory pathways presents a promising avenue for combination therapies in GBM. This comprehensive review discusses various immunomodulatory pathways in GBM progression with a focus on immune checkpoints and TAM-related targets. The exploration of such molecules, with the capacity to selectively target key immunomodulatory pathways and penetrate the BBB, holds the key to unlocking new combination therapy approaches for GBM.
Collapse
Affiliation(s)
- Somaya A. Abdel-Rahman
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Moustafa Gabr
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
12
|
Rathnam SS, Deepak T, Sahoo BN, Meena T, Singh Y, Joshi A. Metallic Nanocarriers for Therapeutic Peptides: Emerging Solutions Addressing the Delivery Challenges in Brain Ailments. J Pharmacol Exp Ther 2024; 388:39-53. [PMID: 37875308 DOI: 10.1124/jpet.123.001689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
Peptides and proteins have recently emerged as efficient therapeutic alternatives to conventional therapies. Although they emerged a few decades back, extensive exploration of various ailments or disorders began recently. The drawbacks of current chemotherapies and irradiation treatments, such as drug resistance and damage to healthy tissues, have enabled the rise of peptides in the quest for better prospects. The chemical tunability and smaller size make them easy to design selectively for target tissues. Other remarkable properties include antifungal, antiviral, anti-inflammatory, protection from hemorrhage stroke, and as therapeutic agents for gastric disorders and Alzheimer and Parkinson diseases. Despite these unmatched properties, their practical applicability is often hindered due to their weak susceptibility to enzymatic digestion, serum degradation, liver metabolism, kidney clearance, and immunogenic reactions. Several methods are adapted to increase the half-life of peptides, such as chemical modifications, fusing with Fc fragment, change in amino acid composition, and carrier-based delivery. Among these, nanocarrier-mediated encapsulation not only increases the half-life of the peptides in vivo but also aids in the targeted delivery. Despite its structural complexity, they also efficiently deliver therapeutic molecules across the blood-brain barrier. Here, in this review, we tried to emphasize the possible potentiality of metallic nanoparticles to be used as an efficient peptide delivery system against brain tumors and neurodegenerative disorders. SIGNIFICANCE STATEMENT: In this review, we have emphasized the various therapeutic applications of peptides/proteins, including antimicrobial, anticancer, anti-inflammatory, and neurodegenerative diseases. We also focused on these peptides' challenges under physiological conditions after administration. We highlighted the importance and potentiality of metallic nanocarriers in the ability to cross the blood-brain barrier, increasing the stability and half-life of peptides, their efficiency in targeting the delivery, and their diagnostic applications.
Collapse
Affiliation(s)
- Shanmuga Sharan Rathnam
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Thirumalai Deepak
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Badri Narayana Sahoo
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Tanishq Meena
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Yogesh Singh
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
13
|
Dong C, Yu X, Jin K, Qian J. Overcoming brain barriers through surface-functionalized liposomes for glioblastoma therapy; current status, challenges and future perspective. Nanomedicine (Lond) 2023; 18:2161-2184. [PMID: 38180008 DOI: 10.2217/nnm-2023-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Glioblastoma (GB) originating from astrocytes is considered a grade IV astrocytoma tumor with severe consequences. The blood-brain barrier (BBB) offers a major obstacle in drug delivery to the brain to overcome GB. The current treatment options possess limited efficacy and maximal systemic toxic effects in GB therapy. Emerging techniques such as targeted drug delivery offer significant advantages, including enhanced drug delivery to the tumor site by overcoming the BBB. This review article focuses on the status of surface-modified lipid nanocarriers with functional ligands to efficiently traverse the BBB and improve brain targeting for successful GB treatment. The difficulties with surface-functionalized liposomes and potential future directions for opening up novel treatment options for GB are highlighted.
Collapse
Affiliation(s)
- Changming Dong
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Xuebin Yu
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang, 312500, China
| |
Collapse
|
14
|
Shireman JM, Cheng L, Goel A, Garcia DM, Partha S, Quiñones-Hinojosa A, Kendziorski C, Dey M. Spatial transcriptomics in glioblastoma: is knowing the right zip code the key to the next therapeutic breakthrough? Front Oncol 2023; 13:1266397. [PMID: 37916170 PMCID: PMC10618006 DOI: 10.3389/fonc.2023.1266397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
Spatial transcriptomics, the technology of visualizing cellular gene expression landscape in a cells native tissue location, has emerged as a powerful tool that allows us to address scientific questions that were elusive just a few years ago. This technological advance is a decisive jump in the technological evolution that is revolutionizing studies of tissue structure and function in health and disease through the introduction of an entirely new dimension of data, spatial context. Perhaps the organ within the body that relies most on spatial organization is the brain. The central nervous system's complex microenvironmental and spatial architecture is tightly regulated during development, is maintained in health, and is detrimental when disturbed by pathologies. This inherent spatial complexity of the central nervous system makes it an exciting organ to study using spatial transcriptomics for pathologies primarily affecting the brain, of which Glioblastoma is one of the worst. Glioblastoma is a hyper-aggressive, incurable, neoplasm and has been hypothesized to not only integrate into the spatial architecture of the surrounding brain, but also possess an architecture of its own that might be actively remodeling the surrounding brain. In this review we will examine the current landscape of spatial transcriptomics in glioblastoma, outline novel findings emerging from the rising use of spatial transcriptomics, and discuss future directions and ultimate clinical/translational avenues.
Collapse
Affiliation(s)
- Jack M. Shireman
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison (UW) Carbone Cancer Center, Madison, WI, United States
| | - Lingxin Cheng
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Amiti Goel
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison (UW) Carbone Cancer Center, Madison, WI, United States
| | - Diogo Moniz Garcia
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, United States
| | - Sanil Partha
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison (UW) Carbone Cancer Center, Madison, WI, United States
| | | | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Mahua Dey
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison (UW) Carbone Cancer Center, Madison, WI, United States
| |
Collapse
|
15
|
Singh S, Barik D, Lawrie K, Mohapatra I, Prasad S, Naqvi AR, Singh A, Singh G. Unveiling Novel Avenues in mTOR-Targeted Therapeutics: Advancements in Glioblastoma Treatment. Int J Mol Sci 2023; 24:14960. [PMID: 37834408 PMCID: PMC10573615 DOI: 10.3390/ijms241914960] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
The mTOR signaling pathway plays a pivotal and intricate role in the pathogenesis of glioblastoma, driving tumorigenesis and proliferation. Mutations or deletions in the PTEN gene constitutively activate the mTOR pathway by expressing growth factors EGF and PDGF, which activate their respective receptor pathways (e.g., EGFR and PDGFR). The convergence of signaling pathways, such as the PI3K-AKT pathway, intensifies the effect of mTOR activity. The inhibition of mTOR has the potential to disrupt diverse oncogenic processes and improve patient outcomes. However, the complexity of the mTOR signaling, off-target effects, cytotoxicity, suboptimal pharmacokinetics, and drug resistance of the mTOR inhibitors pose ongoing challenges in effectively targeting glioblastoma. Identifying innovative treatment strategies to address these challenges is vital for advancing the field of glioblastoma therapeutics. This review discusses the potential targets of mTOR signaling and the strategies of target-specific mTOR inhibitor development, optimized drug delivery system, and the implementation of personalized treatment approaches to mitigate the complications of mTOR inhibitors. The exploration of precise mTOR-targeted therapies ultimately offers elevated therapeutic outcomes and the development of more effective strategies to combat the deadliest form of adult brain cancer and transform the landscape of glioblastoma therapy.
Collapse
Affiliation(s)
- Shilpi Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Debashis Barik
- Center for Computational Natural Science and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Karl Lawrie
- College of Saint Benedict, Saint John’s University, Collegeville, MN 56321, USA
| | - Iteeshree Mohapatra
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Sujata Prasad
- MLM Medical Laboratories, LLC, Oakdale, MN 55128, USA
| | - Afsar R. Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois, Chicago, IL 60612, USA
| | - Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gatikrushna Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
16
|
Liu WS, Wu LL, Chen CM, Zheng H, Gao J, Lu ZM, Li M. Lipid-hybrid cell-derived biomimetic functional materials: A state-of-the-art multifunctional weapon against tumors. Mater Today Bio 2023; 22:100751. [PMID: 37636983 PMCID: PMC10448342 DOI: 10.1016/j.mtbio.2023.100751] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Tumors are among the leading causes of death worldwide. Cell-derived biomimetic functional materials have shown great promise in the treatment of tumors. These materials are derived from cell membranes, extracellular vesicles and bacterial outer membrane vesicles and may evade immune recognition, improve drug targeting and activate antitumor immunity. However, their use is limited owing to their low drug-loading capacity and complex preparation methods. Liposomes are artificial bionic membranes that have high drug-loading capacity and can be prepared and modified easily. Although they can overcome the disadvantages of cell-derived biomimetic functional materials, they lack natural active targeting ability. Lipids can be hybridized with cell membranes, extracellular vesicles or bacterial outer membrane vesicles to form lipid-hybrid cell-derived biomimetic functional materials. These materials negate the disadvantages of both liposomes and cell-derived components and represent a promising delivery platform in the treatment of tumors. This review focuses on the design strategies, applications and mechanisms of action of lipid-hybrid cell-derived biomimetic functional materials and summarizes the prospects of their further development and the challenges associated with it.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, 200011, China
| | - Li-Li Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Cui-Min Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Hao Zheng
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Zheng-Mao Lu
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, 200011, China
| |
Collapse
|
17
|
Rabah N, Ait Mohand FE, Kravchenko-Balasha N. Understanding Glioblastoma Signaling, Heterogeneity, Invasiveness, and Drug Delivery Barriers. Int J Mol Sci 2023; 24:14256. [PMID: 37762559 PMCID: PMC10532387 DOI: 10.3390/ijms241814256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The most prevalent and aggressive type of brain cancer, namely, glioblastoma (GBM), is characterized by intra- and inter-tumor heterogeneity and strong spreading capacity, which makes treatment ineffective. A true therapeutic answer is still in its infancy despite various studies that have made significant progress toward understanding the mechanisms behind GBM recurrence and its resistance. The primary causes of GBM recurrence are attributed to the heterogeneity and diffusive nature; therefore, monitoring the tumor's heterogeneity and spreading may offer a set of therapeutic targets that could improve the clinical management of GBM and prevent tumor relapse. Additionally, the blood-brain barrier (BBB)-related poor drug delivery that prevents effective drug concentrations within the tumor is discussed. With a primary emphasis on signaling heterogeneity, tumor infiltration, and computational modeling of GBM, this review covers typical therapeutic difficulties and factors contributing to drug resistance development and discusses potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (N.R.); (F.-E.A.M.)
| |
Collapse
|
18
|
Seemann KM, Kovács A, Schmid TE, Ilicic K, Multhoff G, Dunin-Borkowski RE, Michelagnoli C, Cieplicka-Oryńczak N, Jana S, Colombi G, Jentschel M, Schneider CM, Kuhn B. Neutron-activated, plasmonically excitable Fe-Pt-Yb 2O 3 nanoparticles delivering anti-cancer radiation against human glioblastoma cells. iScience 2023; 26:107683. [PMID: 37680485 PMCID: PMC10481348 DOI: 10.1016/j.isci.2023.107683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Magnetic nanoparticles can be functionalized in many ways for biomedical applications. Here, we combine four advantageous features in a novel Fe-Pt-Yb2O3 core-shell nanoparticle. (a) The nanoparticles have a size of 10 nm allowing them to diffuse through neuronal tissue. (b) The particles are superparamagnetic after synthesis and ferromagnetic after annealing, enabling directional control by magnetic fields, enhance NMRI contrast, and hyperthermia treatment. (c) After neutron-activation of the shell, they carry low-energetic, short half-life β-radiation from 175Yb, 177Yb, and 177Lu. (d) Additionally, the particles can be optically visualized by plasmonic excitation and luminescence. To demonstrate the potential of the particles for cancer treatment, we exposed cultured human glioblastoma cells (LN-18) to non-activated and activated particles to confirm that the particles are internalized, and that the β-radiation of the radioisotopes incorporated in the neutron-activated shell of the nanoparticles kills more than 98% of the LN-18 cancer cells, promising for future anti-cancer applications.
Collapse
Affiliation(s)
- Klaus M. Seemann
- Peter Grünberg Institute PGI-6, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Université de Lorraine, CNRS, IJL, 54000 Nancy, France
| | - András Kovács
- Ernst-Ruska-Centre for Microscopy and Spectroscopy with Electrons, Peter Grünberg Institute, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Thomas E. Schmid
- Dpt. Radiation Oncology and TranslaTUM, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 München, Germany
| | - Katarina Ilicic
- Dpt. Radiation Oncology and TranslaTUM, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 München, Germany
| | - Gabriele Multhoff
- Dpt. Radiation Oncology and TranslaTUM, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 München, Germany
| | - Rafal E. Dunin-Borkowski
- Ernst-Ruska-Centre for Microscopy and Spectroscopy with Electrons, Peter Grünberg Institute, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Caterina Michelagnoli
- Institut Laue-Langevin, 71, Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Natalia Cieplicka-Oryńczak
- Institut Laue-Langevin, 71, Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
- Institute of Nuclear Physics Polish Academy of Sciences, 31342 Krakow, Poland
| | - Soumen Jana
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Giacomo Colombi
- Institut Laue-Langevin, 71, Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Michael Jentschel
- Institut Laue-Langevin, 71, Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Claus M. Schneider
- Peter Grünberg Institute PGI-6, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Bernd Kuhn
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
19
|
Miki K, Yagi M, Noguchi N, Do Y, Otsuji R, Kuga D, Kang D, Yoshimoto K, Uchiumi T. Induction of glioblastoma cell ferroptosis using combined treatment with chloramphenicol and 2-deoxy-D-glucose. Sci Rep 2023; 13:10497. [PMID: 37380755 DOI: 10.1038/s41598-023-37483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
Glioblastoma, a malignant tumor, has no curative treatment. Recently, mitochondria have been considered a potential target for treating glioblastoma. Previously, we reported that agents initiating mitochondrial dysfunction were effective under glucose-starved conditions. Therefore, this study aimed to develop a mitochondria-targeted treatment to achieve normal glucose conditions. This study used U87MG (U87), U373, and patient-derived stem-like cells as well as chloramphenicol (CAP) and 2-deoxy-D-glucose (2-DG). We investigated whether CAP and 2-DG inhibited the growth of cells under normal and high glucose concentrations. In U87 cells, 2-DG and long-term CAP administration were more effective under normal glucose than high-glucose conditions. In addition, combined CAP and 2-DG treatment was significantly effective under normal glucose concentration in both normal oxygen and hypoxic conditions; this was validated in U373 and patient-derived stem-like cells. 2-DG and CAP acted by influencing iron dynamics; however, deferoxamine inhibited the efficacy of these agents. Thus, ferroptosis could be the underlying mechanism through which 2-DG and CAP act. In conclusion, combined treatment of CAP and 2-DG drastically inhibits cell growth of glioblastoma cell lines even under normal glucose conditions; therefore, this treatment could be effective for glioblastoma patients.
Collapse
Affiliation(s)
- Kenji Miki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Naoki Noguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yura Do
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan.
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
20
|
Das S, Dash BS, Premji TP, Chen JP. Immunotherapeutic Approaches for the Treatment of Glioblastoma Multiforme: Mechanism and Clinical Applications. Int J Mol Sci 2023; 24:10546. [PMID: 37445721 DOI: 10.3390/ijms241310546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Glioma is one of the most aggressive types of primary brain tumor with a high-grade glioma known as glioblastoma multiforme (GBM). Patients diagnosed with GBM usually have an overall survival rate of less than 18 months after conventional therapy. This bleak prognosis underlines the need to consider new therapeutic interventions for GBM treatment to overcome current treatment limitations. By highlighting different immunotherapeutic approaches currently in preclinical and clinical trials, including immune checkpoint inhibitors, chimeric antigen receptors T cells, natural killer cells, vaccines, and combination therapy, this review aims to discuss the mechanisms, benefits, and limitations of immunotherapy in treating GBM patients.
Collapse
Affiliation(s)
- Suprava Das
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Thejas P Premji
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
21
|
Kerr BN, Duffy D, McInerney CE, Hutchinson A, Dabaja I, Bazzi R, Roux S, Prise KM, Butterworth KT. Evaluation of Radiosensitization and Cytokine Modulation by Differentially PEGylated Gold Nanoparticles in Glioblastoma Cells. Int J Mol Sci 2023; 24:10032. [PMID: 37373179 DOI: 10.3390/ijms241210032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma (GBM) is known as the most aggressive type of malignant brain tumour, with an extremely poor prognosis of approximately 12 months following standard-of-care treatment with surgical resection, radiotherapy (RT), and temozolomide treatment. Novel RT-drug combinations are urgently needed to improve patient outcomes. Gold nanoparticles (GNPs) have demonstrated significant preclinical potential as radiosensitizers due to their unique physicochemical properties and their ability to pass the blood-brain barrier. The modification of GNP surface coatings with poly(ethylene) glycol (PEG) confers several therapeutic advantages including immune avoidance and improved cellular localisation. This study aimed to characterise both the radiosensitizing and immunomodulatory properties of differentially PEGylated GNPs in GBM cells in vitro. Two GBM cell lines were used, U-87 MG and U-251 MG. The radiobiological response was evaluated by clonogenic assay, immunofluorescent staining of 53BP1 foci, and flow cytometry. Changes in the cytokine expression levels were quantified by cytokine arrays. PEGylation improved the radiobiological efficacy, with double-strand break induction being identified as an underlying mechanism. PEGylated GNPs also caused the greatest boost in RT immunogenicity, with radiosensitization correlating with a greater upregulation of inflammatory cytokines. These findings demonstrate the radiosensitizing and immunostimulatory potential of ID11 and ID12 as candidates for RT-drug combination in future GBM preclinical investigations.
Collapse
Affiliation(s)
- Bríanna N Kerr
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, Northern Ireland, UK
| | - Daniel Duffy
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, Northern Ireland, UK
| | - Caitríona E McInerney
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, Northern Ireland, UK
| | - Ashton Hutchinson
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, Northern Ireland, UK
| | - Inaya Dabaja
- Institute Utinam, UMR 6213 CNRS-UFC, University of Franche, 25000 Comté, France
| | - Rana Bazzi
- Institute Utinam, UMR 6213 CNRS-UFC, University of Franche, 25000 Comté, France
| | - Stéphane Roux
- Institute Utinam, UMR 6213 CNRS-UFC, University of Franche, 25000 Comté, France
| | - Kevin M Prise
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, Northern Ireland, UK
| | - Karl T Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, Northern Ireland, UK
| |
Collapse
|
22
|
Avgoulas DI, Tasioulis KS, Papi RM, Pantazaki AA. Therapeutic and Diagnostic Potential of Exosomes as Drug Delivery Systems in Brain Cancer. Pharmaceutics 2023; 15:pharmaceutics15051439. [PMID: 37242681 DOI: 10.3390/pharmaceutics15051439] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is designated as one of the principal causes of mortality universally. Among different types of cancer, brain cancer remains the most challenging one due to its aggressiveness, the ineffective permeation ability of drugs through the blood-brain barrier (BBB), and drug resistance. To overcome the aforementioned issues in fighting brain cancer, there is an imperative need for designing novel therapeutic approaches. Exosomes have been proposed as prospective "Trojan horse" nanocarriers of anticancer theranostics owing to their biocompatibility, increased stability, permeability, negligible immunogenicity, prolonged circulation time, and high loading capacity. This review provides a comprehensive discussion on the biological properties, physicochemical characteristics, isolation methods, biogenesis and internalization of exosomes, while it emphasizes their therapeutic and diagnostic potential as drug vehicle systems in brain cancer, highlighting recent advances in the research field. A comparison of the biological activity and therapeutic effectiveness of several exosome-encapsulated cargo including drugs and biomacromolecules underlines their great supremacy over the non-exosomal encapsulated cargo in the delivery, accumulation, and biological potency. Various studies on cell lines and animals give prominence to exosome-based nanoparticles (NPs) as a promising and alternative approach in the management of brain cancer.
Collapse
Affiliation(s)
- Dimitrios I Avgoulas
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos S Tasioulis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Rigini M Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
23
|
Padmakumar S, Amiji MM. Long-Acting Therapeutic Delivery Systems for the Treatment of Gliomas. Adv Drug Deliv Rev 2023; 197:114853. [PMID: 37149040 DOI: 10.1016/j.addr.2023.114853] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Despite the emergence of cutting-edge therapeutic strategies and tremendous progress in research, a complete cure of glioma remains elusive. The heterogenous nature of tumor, immunosuppressive state and presence of blood brain barrier are few of the major obstacles in this regard. Long-acting depot formulations such as injectables and implantables are gaining attention for drug delivery to brain owing to their ease in administration and ability to elute drug locally for extended durations in a controlled manner with minimal toxicity. Hybrid matrices fabricated by incorporating nanoparticulates within such systems help to enhance pharmaceutical advantages. Utilization of long-acting depots as monotherapy or in conjunction with existing strategies rendered significant survival benefits in many preclinical studies and some clinical trials. The discovery of novel targets, immunotherapeutic strategies and alternative drug administration routes are now coupled with several long-acting systems with an ultimate aim to enhance patient survival and prevent glioma recurrences.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115; Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, 02115.
| |
Collapse
|
24
|
Rodgers TM, Muzzio N, Valero A, Ahmad I, Lüdtke TU, Moya SE, Romero G. Poly (β-amino Ester) Nanoparticles Modified with a Rabies Virus-derived peptide for the Delivery of ASCL1 Across a 3D In Vitro Model of the Blood Brain Barrier. ACS APPLIED NANO MATERIALS 2023; 6:6299-6311. [PMID: 37274933 PMCID: PMC10234607 DOI: 10.1021/acsanm.3c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Gene editing has emerged as a therapeutic approach to manipulate the genome for killing cancer cells, protecting healthy tissues, and improving immune response to a tumor. The gene editing tool achaete-scute family bHLH transcription factor 1 CRISPR guide RNA (ASCL1-gRNA) is known to restore neuronal lineage potential, promote terminal differentiation, and attenuate tumorigenicity in glioblastoma tumors. Here, we fabricated a polymeric nonviral carrier to encapsulate ASCL1-gRNA by electrostatic interactions and deliver it into glioblastoma cells across a 3D in vitro model of the blood-brain barrier (BBB). To mimic rabies virus (RV) neurotropism, gene-loaded poly (β-amino ester) nanoparticles are surface functionalized with a peptide derivative of rabies virus glycoprotein (RVG29). The capability of the obtained NPs, hereinafter referred to as RV-like NPs, to travel across the BBB, internalize into glioblastoma cells and deliver ASCL1-gRNA are investigated in a 3D BBB in vitro model through flow cytometry and CLSM microscopy. The formation of nicotinic acetylcholine receptors in the 3D BBB in vitro model is confirmed by immunochemistry. These receptors are known to bind to RVG29. Unlike Lipofectamine that primarily internalizes and transfects endothelial cells, RV-like NPs are capable to travel across the BBB, preferentially internalize glioblastoma cells and deliver ASCL1-gRNA at an efficiency of 10 % causing non-cytotoxic effects.
Collapse
Affiliation(s)
- Tina M Rodgers
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, 78249, USA
| | - Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, 78249, USA
| | - Andrea Valero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, 78249, USA
| | - Ikram Ahmad
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, 78249, USA
| | - Tanja Ursula Lüdtke
- Soft Matter Nanotechnology, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, Donostia/San Sebastian, Gipuzkoa, 20014 Spain
| | - Sergio E Moya
- Soft Matter Nanotechnology, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, Donostia/San Sebastian, Gipuzkoa, 20014 Spain
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, 78249, USA
| |
Collapse
|
25
|
A new IRES-mediated truncated Cx32 isoform inhibits global mRNA translation to suppress glioblastoma. Biomed Pharmacother 2023; 161:114513. [PMID: 36931032 DOI: 10.1016/j.biopha.2023.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Glioblastoma (GBM) is the most lethal malignant primary brain tumor. Although multimodal therapy has been applied for GBM, the median survival time remains less than 16 months. Thus, better therapeutic targets in GBM are urgently needed. Herein, we first identified five new N-terminal-truncated Cx32 isoforms (GJB1-28k, GJB1-22k, GJB1-20k, GJB1-15k, and GJB1-13k) and further demonstrated that they were generated via cap-independent internal translation through internal ribosome entry sites (IRESs) in the coding sequence of GJB1 mRNA. Among these isoforms, GJB1-13k inhibited proliferation, promoted apoptosis, and limited cell cycle progression in GBM cells by inhibiting global mRNA translation. In vivo experiments further confirmed the antitumor activity of GJB1-13k against GBM cells. In addition, TSR3, a ribosomal maturation factor, was demonstrated to directly interact with GJB1-13k. Moreover, GBM cells with high TSR3 expression exhibited low sensitivity to GJB1-13k treatment, while GJB1-13k sensitivity was restored by TSR3 knockdown. Our work identifies a new IRES-mediated protein, GJB1-13k, and suggests that overexpression of GJB1-13k in GBM cells with low TSR3 expression or combined targeting of GJB1-13k and TSR3 in GBM cells with high TSR3 expression constitutes a potential therapeutic strategy for GBM.
Collapse
|
26
|
Gugleva V, Andonova V. Drug delivery to the brain – lipid nanoparticles-based approach. PHARMACIA 2023. [DOI: 10.3897/pharmacia.70.e98838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The complex structure of the human brain defines it as one of the most inaccessible organs in terms of drug delivery. The blood-brain barrier (BBB) represents a microvascular network involved in transporting substances between the blood and the central nervous system (CNS) – enabling the entry of nutrients and simultaneously restricting the influx of pathogens and toxins. However, its role as a protective shield for CNS also restricts drug access to the brain. Since many drugs cannot cross the BBB due to unsuitable physicochemical characteristics (i.e., high molecular weight, aqueous solubility, etc.), different technological strategies have been developed to ensure sufficient drug bioavailability. Among these, solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are promising approaches thanks to their lipid nature, facilitating their brain uptake, small sizes, and the possibilities for subsequent functionalization to achieve targeted delivery. The review focuses on applying SLNs and NLCs as nanocarriers for brain delivery, outlining the physiological factors of BBB and the physicochemical characteristics of nanocarriers influencing this process. Recent advances in this area have also been summarized.
Collapse
|
27
|
Lv Z, Cao Y, Xue D, Zhang H, Zhou S, Yin N, Li W, Jin L, Wang Y, Zhang H. A multiphoton transition activated iron based metal organic framework for synergistic therapy of photodynamic therapy/chemodynamic therapy/chemotherapy for orthotopic gliomas. J Mater Chem B 2023; 11:1100-1107. [PMID: 36629834 DOI: 10.1039/d2tb02273g] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although photodynamic therapy (PDT) has exhibited good potential in therapy of gliomas, the limited penetration depth of light and the obstacle of the blood-brain barrier (BBB) lead to unsatisfactory treatment effects. Herein, a multifunctional nanodrug (UMD) was constructed with up-conversion nanoparticles (NaGdF4:Yb,Tm@NaYF4:Yb,Nd@NaYF4, UCNPs) as the core, the photosensitizer NH2-MIL-53 (Fe) as the shell and a carrier for loading chemotherapy drug doxorubicin hydrochloride (Dox) for synergistic therapy of gliomas. Lactoferrin (LF) was finally modified on the surface of the UMD to endow it with the ability to traverse the BBB and target cells (UMDL). The UCNP core can convert 808 nm near-infrared (NIR) light to ultraviolet light (UV light) for exciting NH2-MIL-53 (Fe), achieving NIR-mediated PDT. In addition, Fe3+ on the surface of the NH2-MIL-53 (Fe) shell could be reduced to Fe2+ in a tumor microenvironment (TME), and then reacted with over-expressed H2O2 in the TME to generate hydroxyl radicals (˙OH) for chemodynamic therapy (CDT). The Dox drug could be released in response to acidic conditions in the TME, inhibiting the growth of gliomas with low side effects. The synergistic effect of PDT/CDT/chemotherapy leads to effective suppression of orthotopic gliomas.
Collapse
Affiliation(s)
- Zhijia Lv
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, P. R. China
| | - Yue Cao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130041, P. R. China
| | - Dongzhi Xue
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Hao Zhang
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Shijie Zhou
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, P. R. China
| | - Na Yin
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Wanying Li
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Longhai Jin
- Department of Radiology, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yinghui Wang
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Hongjie Zhang
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, 130022, P. R. China. .,Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
28
|
Wu C, Shen Y, Shi L, Zhang J, Guo T, Zhou L, Wang W, Zhang X, Yu R, Liu X. UBA1 inhibition contributes radiosensitization of glioblastoma cells via blocking DNA damage repair. Front Pharmacol 2023; 14:1073929. [PMID: 36959858 PMCID: PMC10027716 DOI: 10.3389/fphar.2023.1073929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a brain tumor with high mortality and recurrence rate. Radiotherapy and chemotherapy after surgery are the main treatment options available for GBM. However, patients with glioblastoma have a grave prognosis. The major reason is that most GBM patients are resistant to radiotherapy. UBA1 is considered an attractive potential anti-tumor therapeutic target and a key regulator of DNA double-strand break repair and genome replication in human cells. Therefore, we hypothesized that TAK-243, the first-in-class UBA1 inhibitor, might increase GBM sensitivity to radiation. The combined effect of TAK-243 and ionizing radiation on GBM cell proliferation, and colony formation ability was detected using CCK-8, colony formation, and EdU assays. The efficacy of TAK-243 combined with ionizing radiation for GBM was further evaluated in vivo, and the mechanism of TAK-243 sensitizing radiotherapy was preliminarily discussed. The results showed that TAK-243, in combination with ionizing radiation, significantly inhibited GBM cell proliferation, colony formation, cell cycle arrest in the G2/M phase, and increased the proportion of apoptosis. In addition, UBA1 inhibition by TAK-243 substantially increased the radiation-induced γ-H2AX expression and impaired the recruitment of the downstream effector molecule 53BP1. Therefore, TAK-243 inhibited the radiation-induced DNA double-strand break repair and thus inhibited the growth of GBM cells. Our results provided a new therapeutic strategy for improving the radiation sensitivity of GBM and laid a theoretical foundation and experimental basis for further clinical trials.
Collapse
Affiliation(s)
- Changyong Wu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Shen
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Shi
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of general surgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junhao Zhang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tongxuan Guo
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lingni Zhou
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wanzhou Wang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xu Zhang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Rutong Yu, ; Xuejiao Liu,
| | - Xuejiao Liu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Rutong Yu, ; Xuejiao Liu,
| |
Collapse
|
29
|
Diep YN, Kim TJ, Cho H, Lee LP. Nanomedicine for advanced cancer immunotherapy. J Control Release 2022; 351:1017-1037. [DOI: 10.1016/j.jconrel.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/09/2022]
|
30
|
Therapeutic Options for Brain Metastases in Gynecologic Cancers. Curr Treat Options Oncol 2022; 23:1601-1613. [PMID: 36255665 DOI: 10.1007/s11864-022-01013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 01/30/2023]
Abstract
OPINION STATEMENT Brain metastases (BM) are rare in gynecologic cancers. Overall BM confers a poor prognosis but other factors such as number of brain lesions, patient age, the presence of extracranial metastasis, the Karnofsky Performance Status (KPS) score, and the type of primary cancer also impact prognosis. Taking a patient's whole picture into perspective is crucial in deciding the appropriate management strategy. The management of BM requires an interdisciplinary approach that frequently includes oncology, neurosurgery, radiation oncology and palliative care. Treatment includes both direct targeted therapies to the lesion(s) as well as management of the neurologic side effects caused by mass effect. There is limited evidence of when screening for BM in the gynecology oncology patient is warranted but it is recommended that any cancer patient with new focal neurologic deficit or increasing headaches should be evaluated. The primary imaging modality for detection of BM is MRI, but other imaging modalities such as CT and PET scan can be used for certain scenarios. New advances in radiation techniques, improved imaging modalities, and systemic therapies are helping to discover BM earlier and provide treatments with less detrimental side effects.
Collapse
|
31
|
Dabbagh F, Schroten H, Schwerk C. In Vitro Models of the Blood–Cerebrospinal Fluid Barrier and Their Applications in the Development and Research of (Neuro)Pharmaceuticals. Pharmaceutics 2022; 14:pharmaceutics14081729. [PMID: 36015358 PMCID: PMC9412499 DOI: 10.3390/pharmaceutics14081729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
The pharmaceutical research sector has been facing the challenge of neurotherapeutics development and its inherited high-risk and high-failure-rate nature for decades. This hurdle is partly attributable to the presence of brain barriers, considered both as obstacles and opportunities for the entry of drug substances. The blood–cerebrospinal fluid (CSF) barrier (BCSFB), an under-studied brain barrier site compared to the blood–brain barrier (BBB), can be considered a potential therapeutic target to improve the delivery of CNS therapeutics and provide brain protection measures. Therefore, leveraging robust and authentic in vitro models of the BCSFB can diminish the time and effort spent on unproductive or redundant development activities by a preliminary assessment of the desired physiochemical behavior of an agent toward this barrier. To this end, the current review summarizes the efforts and progresses made to this research area with a notable focus on the attribution of these models and applied techniques to the pharmaceutical sector and the development of neuropharmacological therapeutics and diagnostics. A survey of available in vitro models, with their advantages and limitations and cell lines in hand will be provided, followed by highlighting the potential applications of such models in the (neuro)therapeutics discovery and development pipelines.
Collapse
|
32
|
Caraway CA, Gaitsch H, Wicks EE, Kalluri A, Kunadi N, Tyler BM. Polymeric Nanoparticles in Brain Cancer Therapy: A Review of Current Approaches. Polymers (Basel) 2022; 14:2963. [PMID: 35890738 PMCID: PMC9322801 DOI: 10.3390/polym14142963] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022] Open
Abstract
Translation of novel therapies for brain cancer into clinical practice is of the utmost importance as primary brain tumors are responsible for more than 200,000 deaths worldwide each year. While many research efforts have been aimed at improving survival rates over the years, prognosis for patients with glioblastoma and other primary brain tumors remains poor. Safely delivering chemotherapeutic drugs and other anti-cancer compounds across the blood-brain barrier and directly to tumor cells is perhaps the greatest challenge in treating brain cancer. Polymeric nanoparticles (NPs) are powerful, highly tunable carrier systems that may be able to overcome those obstacles. Several studies have shown appropriately-constructed polymeric NPs cross the blood-brain barrier, increase drug bioavailability, reduce systemic toxicity, and selectively target central nervous system cancer cells. While no studies relating to their use in treating brain cancer are in clinical trials, there is mounting preclinical evidence that polymeric NPs could be beneficial for brain tumor therapy. This review includes a variety of polymeric NPs and how their associated composition, surface modifications, and method of delivery impact their capacity to improve brain tumor therapy.
Collapse
Affiliation(s)
- Chad A. Caraway
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
| | - Hallie Gaitsch
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
- NIH-Oxford-Cambridge Scholars Program, Wellcome—MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Elizabeth E. Wicks
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
- University of Mississippi School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Anita Kalluri
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
| | - Navya Kunadi
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
| | - Betty M. Tyler
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
| |
Collapse
|
33
|
Yu J, Han L, Yang F, Zhao M, Zhou H, Hu L. SOCS5 contributes to temozolomide resistance in glioblastoma by regulating Bcl-2-mediated autophagy. Bioengineered 2022; 13:14125-14137. [PMID: 35730472 PMCID: PMC9342142 DOI: 10.1080/21655979.2022.2081463] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Temozolomide (TMZ) is the primary chemotherapeutic drug for treating glioblastoma (GBM); however, the final clinical outcome is considerably limited by the poor response and resistance to TMZ. Although autophagy is thought to be associated with chemotherapy resistance and cancer cell survival, the precise molecular mechanisms underlying this process remain elusive. The suppressor of cytokine signaling (SOCS) family is widely distributed in vivo and exerts a range of effects on tumors; however, the expression pattern and role of SOCS in GBM remains unknown. In this study, we determined that high SOCS5 expression level was associated with poor prognosis and TMZ resistance in GBM. TMZ induced an increase in SOCS5 expression level and upregulated autophagy during the acquisition of drug resistance. The observed increase in the extent of autophagy was mediated by SOCS5. Mechanistically, SOCS5 enhances the transcription of Bcl-2. Knockdown of SOCS5 inhibited TMZ chemoresistance in GBM cells through the inhibition of Bcl-2 recruited autophagy; upregulation of Bcl-2 blocked this effect. In summary, our findings revealed the involvement and underlying mechanism of SOCS5 in TMZ resistance. SOCS5 plays a critical role in GBM chemoresistance and may serve as a novel prognostic marker and therapeutic target for chemotherapeutically treating drug-resistant GBM.
Collapse
Affiliation(s)
- Jie Yu
- Department of Neurosurgery, Hunan Provincial People’s Hospital, Changsha, Hunan, China
| | - Lin Han
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Yang
- Department of Pharmacy, Hunan Provincial People’s Hospital, Changsha, Hunan, China
| | - Mingliang Zhao
- Chinese People’s Armed Police Force Characteristic Medical Center, Tianjin, Tianjin, China
| | - Hong Zhou
- Department of Neurosurgery, Hunan Provincial People’s Hospital, Changsha, Hunan, China
| | - Linwang Hu
- Department of Neurosurgery, Hunan Provincial People’s Hospital, Changsha, Hunan, China,CONTACT Linwang Hu Department of Neurosurgery, Hunan Provincial People’s Hospital, Changsha, Hunan Province410016, China
| |
Collapse
|
34
|
Tang L, Zhang M, Liu C. Advances in Nanotechnology-Based Immunotherapy for Glioblastoma. Front Immunol 2022; 13:882257. [PMID: 35651605 PMCID: PMC9149074 DOI: 10.3389/fimmu.2022.882257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive type of brain tumor. Despite the multimodal therapies, the effectiveness of traditional treatments is not much satisfying. In recent years, immunotherapy has become the focus of tumor treatment. Unlike traditional treatments that directly target tumor cells, immunotherapy uses the body’s immune system to kill tumors. However, due to the severe immunosuppressive microenvironment of GBM, it generally has a poor response to immunotherapy. In addition, the existence of the blood-brain barrier (BBB) also compromises the immunotherapeutic efficacy. Therefore, effective immunotherapy of GBM requires the therapeutic agents to not only efficiently cross the BBB but also relieve the strong immunosuppression of the tumor microenvironment of GBM. In this review, we will first introduce the CNS immune system, immunosuppressive mechanism of GBM, and current GBM immunotherapy strategies. Then, we will discuss the development of nanomaterials for GBM immunotherapy based on different strategies, roughly divided into four parts: immune checkpoint therapy, targeting tumor-associated immune cells, activating immune cells through immunogenic cell death, and combination therapy, to provide new insights for future GBM immunotherapy.
Collapse
Affiliation(s)
- Lin Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing, China
- *Correspondence: Chaoyong Liu, ; Ming Zhang,
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Chaoyong Liu, ; Ming Zhang,
| |
Collapse
|
35
|
Ghosh S, Huda P, Fletcher NL, Howard CB, Walsh B, Campbell D, Pinkham MB, Thurecht KJ. Antibody-Based Formats to Target Glioblastoma: Overcoming Barriers to Protein Drug Delivery. Mol Pharm 2022; 19:1233-1247. [PMID: 35438509 DOI: 10.1021/acs.molpharmaceut.1c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glioblastoma (GB) is recognized as the most aggressive form of primary brain cancer. Despite advances in treatment strategies that include surgery, radiation, and chemotherapy, the median survival time (∼15 months) of patients with GB has not significantly improved. The poor prognosis of GB is also associated with a very high chance of tumor recurrence (∼90%), and current treatment measures have failed to address the complications associated with this disease. However, targeted therapies enabled through antibody engineering have shown promise in countering GB when used in combination with conventional approaches. Here, we discuss the challenges in conventional as well as future GB therapeutics and highlight some of the known advantages of using targeted biologics to overcome these impediments. We also review a broad range of potential alternative routes that could be used clinically to administer anti-GB biologics to the brain through evasion of its natural barriers.
Collapse
Affiliation(s)
- Saikat Ghosh
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pie Huda
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christopher B Howard
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bradley Walsh
- GlyTherix, Ltd., Sydney, New South Wales 2113, Australia
| | | | - Mark B Pinkham
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|