1
|
Chrzan N, Hartman ML. Copper in melanoma: At the crossroad of protumorigenic and anticancer roles. Redox Biol 2025; 81:103552. [PMID: 39970778 PMCID: PMC11880738 DOI: 10.1016/j.redox.2025.103552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025] Open
Abstract
Copper is an essential micronutrient that is a cofactor for various enzymes involved in multiple cellular processes. Melanoma patients have high serum copper levels, and elevated copper concentrations are found in melanoma tumors. Copper influences the activity of several melanoma-related proteins involved in cell survival, proliferation, pigmentation, angiogenesis, and metastasis. Targeting these processes with copper chelators has shown efficacy in reducing tumor growth and overcoming drug resistance. In contrast, excessive copper can also have detrimental effects when imported into melanoma cells. Multiple distinct cellular effects of copper overload, including the induction of different types of cell death, have been reported. Cuproptosis, a novel type of copper-dependent cell death, has been recently described and is associated with the metabolic phenotype. Melanoma cells can switch between glycolysis and oxidative phosphorylation, which are crucial for tumor growth and drug resistance. In this respect, metabolic plasticity might be exploited for the use of copper-delivery strategies, including repurposing of disulfiram, which is approved for the treatment of noncancer patients. In addition, the development of nanomedicines can improve the targeted delivery of copper to melanoma cells and enable the use of these drugs alone or in combination as copper has been shown to complement targeted therapy and immunotherapy in melanoma cells. However, further research is needed to explore the specific mechanisms of both copper restriction and excess copper-induced processes and determine effective biomarkers for predicting treatment sensitivity in melanoma patients. In this review, we discuss the dual role of copper in melanoma biology.
Collapse
Affiliation(s)
- Natalia Chrzan
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | - Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| |
Collapse
|
2
|
Zeng J, Wu Z, Luo M, Chen Z, Xu X, Xie G, Chen Q, Bai W, Xiao G, Xie J. Identification of a long non-coding RNA signature associated with cuproptosis for prognosis and immunotherapy response prediction in patients with lung adenocarcinoma. Discov Oncol 2025; 16:432. [PMID: 40163162 PMCID: PMC11958909 DOI: 10.1007/s12672-025-02092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 03/07/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD), the most common histotype of lung cancer, exhibits high heterogeneity due to molecular variations. Cuproptosis is a newly discovered type of cell death that is linked to copper metabolism and long non-coding RNAs (lncRNAs) may play a significant role in this process. We conducted a comprehensive analysis of lncRNA related to cuproptosis and identified a CRLscore to predict the prognosis and immune landscape for LUAD patients. METHODS The LUAD patient cohort obtained from TCGA database was divided into training and validation sets. A range of statistical methods were employed to identify lncRNAs associated with cuproptosis. Multivariate Cox regression was then utilized to develop the CRLscore, which was further used to construct and evaluate a nomogram. Additionally, we investigated the biological functions, gene mutations, and immune landscape. RESULTS A CRLscore, comprising six cuproptosis-related lncRNAs, was developed to stratify patients into high- and low-risk groups. The CRLscore demonstrated its ability to independently predict prognosis in both the training set and the validation set. Utilizing the CRLscore, we constructed a nomogram that exhibited favorable predictive efficiency. Furthermore, the cuproptosis-related lncRNAs exhibited associations with important signaling pathways such as p53 signaling, MYC Targets V1, and G2M Checkpoint. Notably, the CRLscore displayed substantial differences in somatic mutations and immune landscape. Finally, qRT-PCR results showed the significant differential expression of five cuproptosis-related lncRNAs between LUAD and normal cells. CONCLUSION The CRLscore could serve as a potential prognostic indicator and may predict the response to immunotherapy in LUAD patients.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Thoracic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhenyu Wu
- Department of Urology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Meijuan Luo
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhibo Chen
- Department of Thoracic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Xie Xu
- Department of Thoracic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Guijing Xie
- Department of Thoracic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Quhai Chen
- Department of Thoracic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Wenjie Bai
- Department of Thoracic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Gang Xiao
- Department of Thoracic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| | - Jianjiang Xie
- Department of Thoracic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Li J, Yang X, Yin C, Li S, Xu Y, Liu B. CDKN2A, a key gene in copper-induced cell death model, influencing melanoma invasion and apoptosis. Discov Oncol 2025; 16:246. [PMID: 40014167 PMCID: PMC11867994 DOI: 10.1007/s12672-025-01992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Abstract
Skin cutaneous melanoma (SKCM) is one of the most lethal cancers translating into 75% of skin cancer-related deaths. Despite the advances in SKCM management and treatment strategies, the overall survival of patients remains unsatisfactory due to the metastatic properties of SKCM as well as the absence of effective prognostic biomarkers. Recent studies have shown that overload copper renders accumulation of mitochondrial proteins and fuels a form of cell death at odds with known death mechanisms and is hinged on mitochondrial respiration, the so-called cuproptosis. However, the exact role of cuproptosis in SKCM development and progression is unknown, and painting a clear picture of its functions in SKCM is fraught with challenges. A more systematic investigation is justified. In this study, we were posed to dissect the clout and latent regulatory mechanisms of cuproptosis-related genes (CRGs) in reining in SKCM progression. Also, we identified three CRGs that stood out were used to construct a prognostic model, which could be employed to predict the prognosis of patients with SKCM. Finally, through pan-cancer analysis, we found that the four cuproptosis key genes play a role in multiple tumors, suggesting that cuproptosis may impact tumor progression at the pan-cancer level. Taken together, these findings may not only contribute to the development of treatment strategies but also provide clues for treatment decision-making.
Collapse
Affiliation(s)
- Jing Li
- Sichuan Cancer Hospital &Institute, School of Medicine, Sichuan Cancer Center, University of Electronic Science and Technology of China, People's South Road, Section 4, Number 55, Chengdu, 610041, China
| | - Xi Yang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cunli Yin
- Department of Oncology Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Siru Li
- Department of Oncology Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Xu
- Genecast Biotechnology Co., Ltd., Wu Xi, 214105, China
| | - Bin Liu
- Sichuan Cancer Hospital &Institute, School of Medicine, Sichuan Cancer Center, University of Electronic Science and Technology of China, People's South Road, Section 4, Number 55, Chengdu, 610041, China.
| |
Collapse
|
4
|
Liu X, Li W, Yang C, Luo J, Tang B. Cuproptosis-related genes signature could predict prognosis and the response of immunotherapy in cervical cancer. Transl Cancer Res 2025; 14:129-140. [PMID: 39974424 PMCID: PMC11833422 DOI: 10.21037/tcr-24-641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 12/04/2024] [Indexed: 02/21/2025]
Abstract
Background A lot of studies have shown a close relationship between cuproptosis and cancer. The main purpose of this study is to analyze the impact of cuproptosis on cervical cancer (CC). Methods Using The Cancer Genome Atlas (TCGA) public database, we analyzed the genetic correlation, expression, and prognostic value of 25 cuproptosis-related genes (CRGs) in CC. A least absolute shrinkage and selection operator (LASSO) risk regression model was constructed to compare the changes in associated pathways, prognosis, immune infiltration, and antibody programmed cell death-ligand 1 (anti-PD-L1) treatment response of the high- and low-risk groups. In addition, we collected CC tissue samples before and after radiotherapy for ribonucleic acid (RNA) sequencing, and analyzed the relationship between CRGs and radiotherapy. Results The results showed CRGs were differentially expressed and were associated with multiple metabolic pathways. High expression of COX7B, PIH1D2, NDUFA1, NDUFA2 and NDUFB1 indicated a better prognosis. CRGs signature could predict prognosis (P<0.001) and affect immune infiltration. The prognosis was better in the low-risk group, while the high-risk group was more correlated with PD-L1. SLC25A5 downregulated expression (P=0.001) and SLC6A3 upregulated (P=0.02) after radiotherapy. SLC25A5 was related to the degree of differentiation of CC; the worse the differentiation, the higher the expression. Conclusions CRGs may further affect patient prognosis and response to immunotherapy by influencing metabolic pathways and immune infiltration. Radiation could alter the expression of CRGs, which may have potential research value in evaluating the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Xue Liu
- Department of Radiotherapy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Li
- Department of Clinical Nutrition, The Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Chun Yang
- Department of Obstetrics and Gynecology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Judong Luo
- Department of Radiotherapy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bin Tang
- Department of Obstetrics and Gynecology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
5
|
Li H, Zhang C, Zhu N, Shi Y, Qin L. Sensitivity of renal cell carcinoma to cuproptosis: a bioinformatics analysis and experimental verification. J Cancer 2025; 16:952-968. [PMID: 39781354 PMCID: PMC11705067 DOI: 10.7150/jca.103708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Purpose: Targeting cuproptosis is considered as a promising therapeutic strategy for the prevention of tumors. However, the potential role of cuproptosis and its related genes in clear cell renal cell carcinoma (ccRCC) remains elusive. The present study aims to explore the sensitivity of ccRCC to cuproptosis and its underlying mechanism. Methods: Cuproptosis differential genes (CDGs) were extracted using the GSE53757 and GSE66272 datasets. A comprehensive analysis of the role of CDGs was conducted through multiple public databases and experiments. Results: It was found that cuproptosis inducer elesclomol significantly induced cell death in 786-O and A498 cells. FDX and DLAT exhibited significantly low expression, which were independent prognostic factors for poor survival, and had a strong positive correlation in ccRCC patients. Functional analysis of differentially expressed genes positively or negatively correlated with both FDX1 and DLAT indicated that acetyl-CoA biosynthetic process and acetyl-CoA metabolic process were remarkably affected. In ccRCC patients, the methylation levels and sites of FDX1 and DLAT genes were dramatically correlated with overall survival (OS). The expressions of FDX1 and DLAT were closely related to immune infiltration and immune checkpoints. Docking results indicated that mitotane, adicicol and dihydrolipoic acid might be potential drug targets for FDX1 and DLAT. Conclusions: Overall, the present study demonstrates the sensitivity of ccRCC to cuproptosis, and targeting the combination of FDX1 and DLAT may be a novel therapeutic strategy to induce cuproptosis in ccRCC.
Collapse
Affiliation(s)
- Hongfang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Yaning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Changsha, China
- Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Wang L, Dai X, Liu Z, Zhao Y, Sun Y, Mao B, Wu S, Zhu T, Huang F, Maimaiti N, Cai X, Li SZ, Sheng J, Guo T, Ye J. AI-driven eyelid tumor classification in ocular oncology using proteomic data. NPJ Precis Oncol 2024; 8:289. [PMID: 39715816 DOI: 10.1038/s41698-024-00767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
Eyelid tumors pose diagnostic challenges due to their diverse pathological types and limited biopsy materials. This study aimed to develop an artificial intelligence (AI) diagnostic system for accurate classification of eyelid tumors. Utilizing mass spectrometry-based proteomics, we analyzed proteomic data from eight tissue types and identified eighteen novel biomarkers based on 233 formalin-fixed, paraffin-embedded (FFPE) samples from 150 patients. The 18-protein model, validated by an independent cohort (99 samples from 60 patients), exhibited high accuracy (84.8%), precision (86.2%), and recall (84.8%) in multi-class classification. The model demonstrated distinct clustering of different lesion types, as visualized through UMAP plots. Receiver operator characteristic (ROC) curve analysis revealed strong predictive ability with area under the curve (AUC) values ranging from 0.80 to 1.00. This AI-based diagnostic system holds promise for improving the efficiency and precision of eyelid tumor diagnosis, addressing the limitations of traditional pathological methods.
Collapse
Affiliation(s)
- Linyan Wang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Xizhe Dai
- Department of Ophthalmology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Zicheng Liu
- AI Lab, Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yaxing Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, China
| | - Yaoting Sun
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Bangxun Mao
- Department of Ophthalmology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Shuohan Wu
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Tiansheng Zhu
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Fengbo Huang
- Department of Pathology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Nuliqiman Maimaiti
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Xue Cai
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Stan Z Li
- AI Lab, Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| | - Jianpeng Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, China.
| | - Tiannan Guo
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Li H, Chen J, Liu Z, Pan L, Lan X, Jiang L, Huang F. Construction of a novel copper-induced-cell-death-related gene signature for prognosis in colon cancer, with focus on KIF7. BMC Cancer 2024; 24:1532. [PMID: 39695482 DOI: 10.1186/s12885-024-13315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Colon cancer (CC) is a leading cause of cancer-related mortality worldwide. Accurate prognostic markers are essential for patient risk stratification and personalized treatment. Copper-induced cell-death-related genes (CRG) have emerged as potential players in cancer prognosis, yet their role in CC remains unclear. METHODS This study aimed to comprehensively evaluate the expression of CRG and their roles in CC using gene expression and clinical data from TCGA and GEO databases. Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) analyses identified prognostic genes, leading to the construction of a CRG prognostic signature. The signature's predictive accuracy was validated using Kaplan-Meier survival curves, Receiver Operating Characteristic (ROC) curves, and a nomogram model. Additionally, we conducted experiments including immunofluorescence staining and cellular assays to validate the key genes' biological functions. RESULTS A 12-gene CRG signature was significantly associated with overall survival in CC patients. The high-risk group, as classified by median risk score, exhibited significantly shorter survival times compared to the low-risk group. The signature's predictive accuracy was further confirmed with Area Under the Curve (AUC) scores exceeding 0.75 in TCGA and GSE17536 cohorts. Notably, the risk score was significantly correlated with immune checkpoints, chemotherapy sensitivity, and tumor microenvironment. Furthermore, the risk score showed a strong association with immunotherapy response in patients from GSE78220 and GSE39688 cohorts. Bioinformatics analysis of KIF7, a key gene within the signature, revealed its upregulation in CC and significant associations with tumor mutation burden, microsatellite instability, and immune cell infiltration across various cancers. Experiments confirmed that KIF7 was upregulated in CC and its knockdown reduced cell proliferation, migration, and invasion. CONCLUSION The CRG prognostic signature can effectively predict overall survival, immune microenvironment and chemotherapy response in CC. KIF7, as a potential prognostic marker, has significant potential for the prediction and treatment of CC.
Collapse
Affiliation(s)
- Hua Li
- Department of General Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan 2nd Road, Baise, Guangxi, 533000, China
- Key Laboratory of Tumor Molecular Pathology of Baise, Baise, Guangxi, China
| | - Jingying Chen
- Department of General Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan 2nd Road, Baise, Guangxi, 533000, China
- Graduate School, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Zhengxian Liu
- Department of General Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan 2nd Road, Baise, Guangxi, 533000, China
- Graduate School, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Lujuan Pan
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Xiaoling Lan
- Key Laboratory of Tumor Molecular Pathology of Baise, Baise, Guangxi, China
| | - Lihe Jiang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, No. 98 Chengxiang Road, Baise, Guangxi, 533000, China.
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, Fuzhou, Fujian, China.
| | - Fuda Huang
- Department of General Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan 2nd Road, Baise, Guangxi, 533000, China.
- Key Laboratory of Tumor Molecular Pathology of Baise, Baise, Guangxi, China.
| |
Collapse
|
8
|
Shi C, Sun Y, Sha L, Gu X. A New Cuproptosis-Related lncRNAs Model for Predicting the Prognosis of Hepatitis B Virus-Associated Hepatocellular Carcinoma and Experimental Validation of LINC01269. Int J Gen Med 2024; 17:6009-6027. [PMID: 39678673 PMCID: PMC11645962 DOI: 10.2147/ijgm.s489059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) triggered by Hepatitis B virus (HBV) remains a significant clinical challenge, necessitating novel therapeutic interventions. Copper ionophores, recognized for introducing an innovative type of programmed cell death termed cuproptosis, present promising potentials for cancer therapy. Nevertheless, The role of cuproptosis-related lncRNAs (CRLRs) in HBV-HCC has not been clearly elucidated. Methods This study utilised univariate Cox, least absolute shrinkage and selection operator (LASSO), and multivariable Cox regression analyses to establish a signature for CRLRs in HBV-HCC. This prognostic model was validated with an independent internal validation cohort, combined with clinical parameters, and used to construct a nomogram for patient survival predictions. Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) were employed to explore associated biological pathways. Additionally, a protein-protein interaction (PPI) network was developed, and implications for tumour mutational burden (TMB) and drug response were examined. A comprehensive bioinformatics analysis of these hub CRLRs was performed, followed by experimental validation through quantitative real-time PCR (qRT-PCR) and functional cellular assays. Results The nomogram showed high predictive accuracy for HBV-HCC patient survival. GO and GSEA analyses indicated that these lncRNAs are involved in pathways related to cancer and oestrogen metabolism. A PPI network consisting of 201 nodes and 568 edges was developed, and the TMB and drug response differed significantly between high- and low-risk groups. Analyses identified three hub CRLRs, SOS1-IT1, AC104695.3, and LINC01269, which were significantly differentially expressed in HCC tissues. In vitro, LINC01269 was found to enhance HCC cell proliferation, invasion, and migration. Conclusion The first systematic exploration of the roles of CRLRs in HBV-HCC demonstrates their critical involvement in the disease's pathogenesis and possible therapeutic implication. The distinct expression patterns and significant biological pathways suggest that these lncRNAs may facilitate novel therapeutic targets.
Collapse
Affiliation(s)
- Chuanbing Shi
- Department of Pathology, Nanjing Pukou People’s Hospital, Nanjing, Jiangsu, People’s Republic of China
| | - Yintao Sun
- Department of Imaging, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Ling Sha
- Department of Neurology, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Xuefeng Gu
- Department of Central Laboratory, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
- Department of Infectious Diseases, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| |
Collapse
|
9
|
Ma H, Ge Y, Li Y, Wang T, Chen W. Construction of a prognostic model based on cuproptosis-related genes and exploration of the value of DLAT and DLST in the metastasis for non-small cell lung cancer. Medicine (Baltimore) 2024; 103:e40727. [PMID: 39654205 PMCID: PMC11631004 DOI: 10.1097/md.0000000000040727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/20/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND To reveal the clinical value of cuproptosis-related genes on prognosis and metastasis in non-small cell lung cancer. METHODS Gene expression profiles and clinical information of non-small cell lung cancer were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. The data were grouped into training set, internal testing set, and external testing set. A risk prognostic model was constructed by Lasso-Cox regression analysis. Hub genes were identified and evaluated using immunohistochemistry and the transwell migration assay in 50 clinical patients. RESULTS A total of 17/19 cuproptosis-related genes were differentially expressed in tumors, 8 were significantly associated with prognosis, and 4 were markedly associated with metastasis. A risk model based on 2 cuproptosis-related genes was constructed and validated for predicting overall survival. The risk score was proven to be an independent risk factor for the prognosis of non-small cell lung cancer. Dihydrolipoamide S-acetyltransferase and dihydrolipoamide S-succinyltransferase, key genes in cuproptosis, were proven to be associated with non-small cell lung cancer prognosis and metastasis. Immunohistochemistry showed that their expression significantly predicted metastasis but failed to predict prognosis in non-small cell lung cancer patients. The transwell migration assay further increased the cellular reliability of our findings. CONCLUSION The cuproptosis-related genes prognostic model effectively predicted the prognosis of non-small cell lung cancer. Dihydrolipoamide S-acetyltransferase and dihydrolipoamide S-succinyltransferase may serve as predictive markers for metastasis in non-small cell lung cancer.
Collapse
Affiliation(s)
- Huiying Ma
- Department of Radiation Oncology, The First People’s Hospital of Jiande, Hangzhou, China
| | - Yizhi Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Yuhong Li
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Tingting Wang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Wei Chen
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Zhang L, Xie A, Ma J, Liu H, Zeng C. Unveiling Cuproptosis: Mechanistic insights, roles, and leading advances in oncology. Biochim Biophys Acta Rev Cancer 2024; 1879:189180. [PMID: 39276875 DOI: 10.1016/j.bbcan.2024.189180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Copper, a vital micronutrient, performs essential functions in numerous biological settings. Its disrupted metabolism is implicated in both the initiation of tumors and therapeutic interventions for cancer, underscoring the critical necessity of preserving copper homeostasis. Cuproptosis, a regulated cell death (RCD) modulated by copper, is activated in response to elevated copper concentrations, prompting an investigation into its implication in oncogenesis. Within this review, an exploration is conducted into copper dynamics and homeostasis maintenance within cells. Furthermore, it delves into the mechanisms underlying cuproptosis and its interplay with signaling pathways implicated in cancer. The potential synergy between cuproptosis and ferroptosis and its impact on tumor immunomodulation is discussed. Additionally, promising avenues for addressing cuproptosis in cancer involve assessing the utility of copper chelators and ionophores. By addressing pressing questions surrounding cuproptosis and outlining its pivotal role in cancer pathogenesis and treatment, this review propounds targeting cuproptosis as a promising frontier in antitumor therapy, potentially revolutionizing cancer treatment strategies.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Aihui Xie
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Jingxian Ma
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Huilin Liu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen 518110, China.
| |
Collapse
|
11
|
Wang N, Liu Y, Peng D, Zhang Q, Zhang Z, Xu L, Yin L, Zhao X, Lu Z, Peng J. Copper-Based Composites Nanoparticles Improve Triple-Negative Breast Cancer Treatment with Induction of Apoptosis-Cuproptosis and Immune Activation. Adv Healthc Mater 2024; 13:e2401646. [PMID: 39001628 DOI: 10.1002/adhm.202401646] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/05/2024] [Indexed: 11/12/2024]
Abstract
The synergistic effect of apoptosis and cuproptosis, along with the activation of the immune system, presents a promising approach to enhance the efficacy against triple-negative breast cancer (TNBC). Here, two prodrugs are synthesized: a reactive oxygen species (ROS)-responsive prodrug PEG-TK-DOX and a glutathione (GSH)-responsive prodrug PEG-DTPA-SS-CPT. These prodrugs are self-assembled and chelated Cu2+ to prepare nanoparticle PCD@Cu that simultaneously loaded doxorubicin (DOX), camptothecin (CPT), and Cu2+. The elevated levels of ROS and GSH in TNBC cells disrupted the PCD@Cu structure, leading to the release of Cu+, DOX, and CPT and the depletion of GSH. DOX and CPT triggered apoptosis with immunogenic cell death (ICD) in TNBC cells. Simultaneously, PCD@Cu downregulated the expression of copper transporting ATPase 2 (ATP7B), causing a significant accumulation of copper ions in TNBC cells. This further induced the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT) and downregulation of iron-sulfur (Fe-S) cluster proteins, ultimately leading to cuproptosis and ICD in TNBC. In vitro and in vivo experiments confirmed that PCD@Cu induced apoptosis and cuproptosis in TNBC and activated the immune system, demonstrating strong anti-tumor capabilities. Moreover, PCD@Cu exhibited an excellent biosafety profile. Overall, this study provides a promising strategy for effective TNBC therapy.
Collapse
Affiliation(s)
- Ning Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yichao Liu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Dezhou Peng
- School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Qiyu Zhang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Zhibo Zhang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Xuerong Zhao
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Zhi Lu
- Department of Nuclear Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, 430065, China
| |
Collapse
|
12
|
Zhang S, Huang Q, Ji T, Li Q, Hu C. Copper homeostasis and copper-induced cell death in tumor immunity: implications for therapeutic strategies in cancer immunotherapy. Biomark Res 2024; 12:130. [PMID: 39482784 PMCID: PMC11529036 DOI: 10.1186/s40364-024-00677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
Copper is an important trace element for maintaining key biological functions such as cellular respiration, nerve conduction, and antioxidant defense. Maintaining copper homeostasis is critical for human health, and its imbalance has been linked to various diseases, especially cancer. Cuproptosis, a novel mechanism of copper-induced cell death, provides new therapeutic opportunities for metal ion regulation to interact with cell fate. This review provides insights into the complex mechanisms of copper metabolism, the molecular basis of cuproptosis, and its association with cancer development. We assess the role of cuproptosis-related genes (CRGs) associated with tumorigenesis, their importance as prognostic indicators and therapeutic targets, and the impact of copper homeostasis on the tumor microenvironment (TME) and immune response. Ultimately, this review highlights the complex interplay between copper, cuproptosis, and cancer immunotherapy.
Collapse
Affiliation(s)
- Suhang Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430030, China
| | - Qibo Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tuo Ji
- School of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Qilin Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430030, China.
| | - Chuanyu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430030, China.
| |
Collapse
|
13
|
Fu H, Dong S, Li K. Identification of SLC31A1 as a prognostic biomarker and a target for therapeutics in breast cancer. Sci Rep 2024; 14:25120. [PMID: 39448672 PMCID: PMC11502855 DOI: 10.1038/s41598-024-76162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Copper-induced cell death is regulated through protein lipoylation, which is critical for gene expression and phenotypic regulation. Neverless, the role of Cuproptosis-related genes in breast cancer (BC) remains unknown. This study aimed to construct a prognostic signature based on the expression of Cuproptosis-related genes in order to guide the diagnosis and treatment for BC. Cuproptosis-related genes prognostic signature has ata of 1250 BC tissues and 583 normal breast tissues were obtained from The Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), and GEO GSE65212. The prognostic signature was established and evaluated with nineteen Cuproptosis-related genes. A series of in silico analyses based on SLC31A1, included expression analysis, independent prognostic analysis, correlation analysis, immune-related analysis and survival analysis. Finally, a series of cell experiments (including quantitative real-time polymerase chain reaction and western blot), and mice experiments were applied to evaluate the impact of SLC31A1 on BC. Cuproptosis-related genes prognostic signature has good predictive promising for survival in BC patients. We discovered that SLC31A1SLC31A1 was overexpressed in BC and was its independent prognostic factor. High expression of the SLC31A1 was correlated with poor prognosis and immune infiltrating of BC. SLC31A1 expression is associated with immune, chemotherapeutic and targeted therapy outcomes in BC. The proliferation, migration, and invasiveness of Her2 + enriched BC cells were decreased by SLC31A1 knockdown, also resulting in a decrease in tumor volume in mouse model. SLC31A1 is a candidate biomarker or therapeutic target in precision oncology, with diagnostic and prognostic significance in BC.
Collapse
Affiliation(s)
- Hongtao Fu
- Department of Breast Surgery, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410006, Hunan, China
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210000, China
| | - Shanshan Dong
- Department of Medicine, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
| | - Kun Li
- Department of Emergency Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan South Road, Changsha, 410000, China.
| |
Collapse
|
14
|
Zhang X, Shi X, Zhang X, Zhang Y, Yu S, Zhang Y, Liu Y. Repositioning fluphenazine as a cuproptosis-dependent anti-breast cancer drug candidate based on TCGA database. Biomed Pharmacother 2024; 178:117293. [PMID: 39142251 DOI: 10.1016/j.biopha.2024.117293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024] Open
Abstract
Breast cancer is one of the most prevalent malignancies among women. Enhancing the prognosis is an effective approach to enhance the survival rate of breast cancer. Cuproptosis, a copper-dependent programmed cell death process, has been associated with patient prognosis. Inducing cuproptosis is a promising approach for therapy. However, there is currently no anti-breast cancer drug that induces cuproptosis. In this study, we repositioned the clinical drug fluphenazine as a potential agent for breast cancer treatment by inducing cuproptosis. Firstly, we utilized the Cancer Genome Atlas (TCGA) database and Connectivity Map (CMap) database to identify 22 potential compounds with anti-breast cancer activity through inducing cuproptosis. Subsequently, our findings demonstrated that fluphenazine effectively suppressed the viability of MCF-7 cells. Fluphenazine also significantly inhibited the viability of triple negative breast cancer cells MDA-MB-453 and MDA-MB-231. Furthermore, our study revealed that fluphenazine significantly down-regulated the expression of potential prognostic biomarkers associated with cuproptosis, increased copper ion levels, and reduced intracellular pyruvate accumulation. Additionally, it up-regulated the expression of FDX1 at both the mRNA and protein levels, which has been reported to play a crucial role in the induction of cuproptosis. These findings suggest that fluphenazine has the potential to be used as an anti-breast cancer drug by inducing cuproptosis. Therefore, this research provides an insight for the development of novel cuproptosis-dependent anti-cancer agents.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, China; Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoyuan Shi
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Xi Zhang
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Ying Zhang
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Siting Yu
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Yi Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, China; Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan 030001, China; School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China.
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
15
|
Wang X, Jin L, Zhang X, Li M, Zhu A, Zhang M, Fan H. Transcriptomic profiling and risk assessment in bladder cancer: Insights from copper death-related genes. Cell Signal 2024; 121:111237. [PMID: 38810861 DOI: 10.1016/j.cellsig.2024.111237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND The study aimed to investigate the role of copper death-related genes (CRGs) in bladder cancer (BC) for improved prognosis assessment. METHODS Multi-omics techniques were utilized to analyze CRG expression in BC tissues from TCGA and GEO databases. Consensus clustering categorized patients into molecular subtypes based on clinical characteristics and immune cell infiltration. RESULTS An innovative risk assessment model identified eight critical genes associated with BC risk. In vitro and in vivo experiments validated LIPT1's significant impact on copper-induced cell death, proliferation, migration, and invasion in BC. CONCLUSION This multi-omics analysis elucidates the pivotal role of CRGs in BC progression, suggesting enhanced risk assessment through molecular subtype categorization and identification of key genes like LIPT1. Insights into these mechanisms offer the potential for improved diagnosis and treatment strategies for BC patients.
Collapse
Affiliation(s)
- Xu Wang
- Department of Urology, The Second Hospital of Jilin University, Changchun 130022, PR China
| | - Long Jin
- Department of Urology, The Second Hospital of Jilin University, Changchun 130022, PR China
| | - Xiaoyu Zhang
- Department of Urology, The Second Hospital of Jilin University, Changchun 130022, PR China
| | - Mingyu Li
- Department of Urology, The Second Hospital of Jilin University, Changchun 130022, PR China
| | - Ankang Zhu
- Department of Urology, The Second Hospital of Jilin University, Changchun 130022, PR China
| | - Ming Zhang
- Department of Urology, The Second Hospital of Jilin University, Changchun 130022, PR China
| | - Haitao Fan
- Department of Urology, The Second Hospital of Jilin University, Changchun 130022, PR China.
| |
Collapse
|
16
|
Yang Y, Li Q, Chen J, Guo Y, Cai Y, Zhao W, Su S, Sang A. A cuproptosis-related prognostic signature for guiding clinical diagnosis and treatment in uveal melanoma patients. Heliyon 2024; 10:e36324. [PMID: 39247274 PMCID: PMC11378888 DOI: 10.1016/j.heliyon.2024.e36324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Background Cuproptosis, one of the most recently discovered forms of cell death, is induced by the disruption of copper binding to the mitochondrial respiratory acylation components. However, the mechanism underlying cuproptosis in uveal melanoma (UM) has not yet been adequately studied. Methods RNA and clinical data were obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed cuproptosis-related genes were identified by R software. A prognostic signature was constructed by applying LASSO regression and Cox regression models. The associations between the signature and the immune microenvironment, overall survival, and drug sensitivity were studied. In addition, qPCR and Western blotting were performed on UM cells and RPE cell lines to verify the expression levels of the genes encoding dihydrolipoamide dehydrogenase (DLD) and dihydrolipoamide S-succinyltransferase (DLST) in UM cases. Results Using a cuproptosis-related prognostic signature, UM samples were classified into high- and low-risk groups. A significant difference in overall survival between the two risk groups was evident. Receiver operating characteristic curves demonstrated that the signature is a reliable predictor of prognosis. Immune cell infiltration, drug sensitivity, and immune checkpoint expression were analysed. Significant immune difference between the two high-risk groups was found, and the high expression of immune checkpoints in high-risk groups suggests significant immunotherapy potential. In addition, drug sensitivity analysis experiments suggest that erlotinib may be a potential treatment for high-risk patients. The results of in vitro experiments confirmed that DLD and DLST had higher expression levels in UM cell lines. Conclusions The prognostic signature developed in this study is a reliable biomarker for predicting the prognosis of UM and may serve as a tool for personalised treatment of patients with UM.
Collapse
Affiliation(s)
- Ying Yang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Qixuan Li
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jia Chen
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yangchen Guo
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yu Cai
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Wenmin Zhao
- Medical School of Nantong University, Nantong, Jiangsu, China
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Shu Su
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Aimin Sang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| |
Collapse
|
17
|
Lan F, Zhao J, Liang D, Mo C, Shi W. Comprehensive analysis of cuproptosis-related ceRNA network and immune infiltration in diabetic kidney disease. Heliyon 2024; 10:e35700. [PMID: 39247321 PMCID: PMC11379612 DOI: 10.1016/j.heliyon.2024.e35700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Background Diabetic kidney disease (DKD) is the primary contributor to renal failure and poses a severe threat to human health. Accumulating studies demonstrated that competing endogenous RNA (ceRNA) network is involved in cuproptosis and DKD progression. However, the role of cuproptosis-associated ceRNA network and immune infiltration in DKD remains largely unclear. This study aimed to investigate the cuproptosis-related ceRNA regulation network and immune infiltration in DKD. Methods The rat model of DKD was induced by combining the nephrectomy of the left kidney, high-fat diet, and streptozotocin. Differentially expressed genes (DEGs), miRNAs (DEMs), and lncRNAs (DELs) between normal and DKD rats were obtained. DEGs were intersected with cuproptosis-related genes (CRGs) to obtain DE-CRGs. LncRNAs and miRNAs were predicted based on the DE-CRGs, and they were intersected with DEMs and DELs, respectively. Subsequently, a cuproptosis-associated lncRNA-miRNA-mRNA network was established in DKD. In addition, the relative proportion of 22 infiltrating immune cell types in each sample was calculated, and the relationship between hub DE-CRGs and immune cells was explored. Results In total, there were 429 DEGs, 22 DEMs, and 48 DELs between CON and MOD groups. Then, 73 DE-CRGs were obtained, which were significantly enriched in 22 pathways, such as MAPK signaling pathway, IL-17 signaling pathway, and TNF signaling pathway. In addition, a core cuproptosis-related ceRNA network that included one lncRNA (USR0000B2476D), one miRNA (miR-34a-3p), and eight mRNAs (Mmp9, Pik3c3, Prom1, Snta1, Slc51b, Ntrk3, Snca, Egf) was established. In addition, 18 hub DE-CRGs were obtained. CIBERSORT algorithms showed that resting dendritic cells and resting NK cells were more infiltrated whereas regulatory T cells were less infiltrated in DKD rats than in normal rats. Spearman's correlation analysis revealed that hub DE-CRGs showed significant positive or negative correlations with naive B cells, regulatory T cells, resting NK cells, M0 macrophages, resting dendritic cells, and resting mast cells. Conclusion A ceRNA network was comprehensively constructed, and 18 hub DE-CRGs were obtained, which will provide novel insights into the pathologic mechanism elucidation and targeted therapy development of DKD.
Collapse
Affiliation(s)
- Fang Lan
- Department of Nephrology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, 530023, PR China
| | - Jie Zhao
- Department of Nephrology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, 530023, PR China
| | - Dan Liang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, PR China
| | - Chao Mo
- Department of Nephrology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, 530023, PR China
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, PR China
| | - Wei Shi
- Department of Nephrology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, 530023, PR China
| |
Collapse
|
18
|
Chen B, Liu J. Mechanisms associated with cuproptosis and implications for ovarian cancer. J Inorg Biochem 2024; 257:112578. [PMID: 38797108 DOI: 10.1016/j.jinorgbio.2024.112578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Ovarian cancer, a profoundly fatal gynecologic neoplasm, exerts a substantial economic strain on nations globally. The formidable challenge of its frequent relapse necessitates the exploration of novel cytotoxic agents, efficacious antineoplastic medications with minimal adverse effects, and strategies to surmount resistance to primary chemotherapeutic agents. These endeavors aim to supplement extant pharmacological interventions and elucidate molecular mechanisms underlying induced cytotoxicity, distinct from conventional therapeutic modalities. Recent scientific research has unveiled a novel form of cellular demise, known as copper-death, which is contingent upon the intracellular concentration of copper. Diverging from conventional mechanisms of cellular demise, copper-death exhibits a pronounced reliance on mitochondrial respiration, particularly the tricarboxylic acid (TCA) cycle. Tumor cells manifest distinctive metabolic profiles and elevated copper levels in comparison to their normal counterparts. The advent of copper-death presents alluring possibilities for targeted therapeutic interventions within the realm of cancer treatment. Hence, the primary objective of this review is to present an overview of the proteins and intricate mechanisms associated with copper-induced cell death, while providing a comprehensive summary of the knowledge acquired regarding potential therapeutic approaches for ovarian cancer. These findings will serve as valuable references to facilitate the advancement of customized therapeutic interventions for ovarian cancer.
Collapse
Affiliation(s)
- Biqing Chen
- The Second Hospital of Jilin University, Changchun, China
| | - Jiaqi Liu
- The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
19
|
Lou QM, Lai FF, Li JW, Mao KJ, Wan HT, He Y. Mechanisms of cuproptosis and its relevance to distinct diseases. Apoptosis 2024; 29:981-1006. [PMID: 38824478 DOI: 10.1007/s10495-024-01983-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Copper is a trace element required by the organism, but once the level of copper exceeds the threshold, it becomes toxic and even causes death. The underlying mechanisms of copper-induced death are inconclusive, with different studies showing different opinions on the mechanism of copper-induced death. Multiple investigations have shown that copper induces oxidative stress, endoplasmic reticulum stress, nucleolar stress, and proteasome inhibition, all of which can result in cell death. The latest research elucidates a copper-dependent death and denominates it as cuproptosis. Cuproptosis takes place through the combination of copper and lipoylated proteins of the tricarboxylic acid cycle, triggering agglomeration of lipoylated proteins and loss of iron-sulfur cluster proteins, leading to proteotoxic stress and ultimately death. Given the toxicity and necessity of copper, abnormal levels of copper lead to diseases such as neurological diseases and cancer. The development of cancer has a high demand for copper, neurological diseases involve the change of copper contents and the binding of copper to proteins. There is a close relationship between these two kinds of diseases and copper. Here, we summarize the mechanisms of copper-related death, and the association between copper and diseases, to better figure out the influence of copper in cell death and diseases, thus advancing the clinical remedy of these diseases.
Collapse
Affiliation(s)
- Qiao-Mei Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fei-Fan Lai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jing-Wei Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Kun-Jun Mao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hai-Tong Wan
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
20
|
Li C, Zhu L, Liu Q, Peng M, Deng J, Fan Z, Duan X, Xue R, Guo Z, Lv X, Li L, Zhao J. The role of cuproptosis-related genes in pan-cancer and the development of cuproptosis-related risk model in colon adenocarcinoma. Heliyon 2024; 10:e34011. [PMID: 39100456 PMCID: PMC11295573 DOI: 10.1016/j.heliyon.2024.e34011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/30/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
Cancer is widely regarded as a leading cause of death in humans, with colon adenocarcinoma (COAD) ranking among the most prevalent types. Cuproptosis is a novel form of cell death mediated by protein lipoylation. Cuproptosis-related genes (CRGs) participate in tumourigenesis and development. Their role in pan-cancer and COAD require further investigation. This study comprehensively evaluated the relationship among CRGs, pan-cancer, and COAD. Our research revealed the differential expression of CRGs and the cuproptosis potential index (CPI) between normal and tumour tissues, and further explored the correlation of CRGs or CPI with prognosis, immune infiltration, tumor mutant burden(TMB), microsatellite instability (MSI), and drug sensitivity in pan-cancer. Gene set enrichment analysis (GSEA) revealed that oxidative phosphorylation and fatty acid metabolism pathways were significantly enriched in the high CPI group of most tumours. FDX1 and CDKN2A were chosen for further exploration, and we found an independent association between FDX1 and CDKN2A and prognosis, immune infiltration, TMB, and MSI in pan-cancer. Furthermore, a prognostic risk model based on the association between CRGs and COAD was built, and the correlations between the risk score and prognosis, immune-related characteristics, and drug sensitivity were analysed. COAD was then divided into three subtypes using cluster analysis, and the differences among the subtypes in prognosis, CPI, immune-related characteristics, and drug sensitivity were determined. Due to the level of LIPT1 was notably positive related with the risk score, the cytological identification was carried out to identify the association of LIPT1 with proliferation and migration of colon cancer cells. In summary, CRGs can be used as potential prognostic biomarkers to predict immune infiltration levels in patients with pan-cancer. In addition, the risk model could more accurately predict the prognosis and immune infiltration levels of COAD and better guide the direction of clinical medication. Thus, FDX1, CDKN2A, and LIPT1 may serve as prospective new targets for cancer therapy.
Collapse
Affiliation(s)
- Chunwei Li
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lili Zhu
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qinghua Liu
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Mengle Peng
- Department of Clinical Laboratory, Henan No.3 Provincial People's Hospital, Zhengzhou, 450006, Henan, China
| | - Jinhai Deng
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC), Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Zhirui Fan
- Department of Integrated Traditional and Western Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaoran Duan
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ruyue Xue
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhiping Guo
- Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450052, Henan, China
| | - Xuefeng Lv
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lifeng Li
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
- Medical School, Huanghe Science and Technology University, 666 Zi Jing Shan Road, Zhengzhou, 450000, Henan, China
| | - Jie Zhao
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
21
|
Abu-Serie MM, Barakat A, Ramadan S, Habashy NH. Superior cuproptotic efficacy of diethyldithiocarbamate-Cu 4O 3 nanoparticles over diethyldithiocarbamate-Cu 2O nanoparticles in metastatic hepatocellular carcinoma. Front Pharmacol 2024; 15:1388038. [PMID: 39076585 PMCID: PMC11284037 DOI: 10.3389/fphar.2024.1388038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/18/2024] [Indexed: 07/31/2024] Open
Abstract
Metastatic hepatocellular carcinoma (HC) is a serious health concern. The stemness of cancer stem cells (CSCs) is a key driver for HC tumorigenesis, apoptotic resistance, and metastasis, and functional mitochondria are critical for its maintenance. Cuproptosis is Cu-dependent non-apoptotic pathway (mitochondrial dysfunction) via inactivating mitochondrial enzymes (pyruvate dehydrogenase "PDH" and succinate dehydrogenase "SDH"). To effectively treat metastatic HC, it is necessary to induce selective cuproptosis (for halting cancer stemness genes) with selective oxidative imbalance (for increasing cell susceptibility to cuproptosis and inducing non-CSCs death). Herein, two types of Cu oxide nanoparticles (Cu4O3 "C(I + II)" NPs and Cu2O "C(I)" NPs) were used in combination with diethyldithiocarbamate (DD, an aldehyde dehydrogenase "ALDH" inhibitor) for comparative anti-HC investigation. DC(I + II) NPs exhibited higher cytotoxicity, mitochondrial membrane potential, and anti-migration impact than DC(I) NPs in the treated human HC cells (HepG2 and/or Huh7). Moreover, DC(I + II) NPs were more effective than DC(I) NPs in the treatment of HC mouse groups. This was mediated via higher selective accumulation of DC(I + II) NPs in only tumor tissues and oxidant activity, causing stronger selective inhibition of mitochondrial enzymes (PDH, SDH, and ALDH2) than DC(I)NPs. This effect resulted in more suppression of tumor and metastasis markers as well as stemness gene expressions in DC(I + II) NPs-treated HC mice. In addition, both nanocomplexes normalized liver function and hematological parameters. The computational analysis found that DC(I + II) showed higher binding affinity to most of the tested enzymes. Accordingly, DC(I + II) NPs represent a highly effective therapeutic formulation compared to DC(I) NPs for metastatic HC.
Collapse
Affiliation(s)
- Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sherif Ramadan
- Chemistry Department, Michigan State University, East Lansing, MI, United States
- Department of Chemistry, Benha University, Benha, Egypt
| | - Noha Hassan Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
22
|
Vo TTT, Peng TY, Nguyen TH, Bui TNH, Wang CS, Lee WJ, Chen YL, Wu YC, Lee IT. The crosstalk between copper-induced oxidative stress and cuproptosis: a novel potential anticancer paradigm. Cell Commun Signal 2024; 22:353. [PMID: 38970072 PMCID: PMC11225285 DOI: 10.1186/s12964-024-01726-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
Copper is a crucial trace element that plays a role in various pathophysiological processes in the human body. Copper also acts as a transition metal involved in redox reactions, contributing to the generation of reactive oxygen species (ROS). Under prolonged and increased ROS levels, oxidative stress occurs, which has been implicated in different types of regulated cell death. The recent discovery of cuproptosis, a copper-dependent regulated cell death pathway that is distinct from other known regulated cell death forms, has raised interest to researchers in the field of cancer therapy. Herein, the present work aims to outline the current understanding of cuproptosis, with an emphasis on its anticancer activities through the interplay with copper-induced oxidative stress, thereby providing new ideas for therapeutic approaches targeting modes of cell death in the future.
Collapse
Affiliation(s)
- Thi Thuy Tien Vo
- Faculty of Dentistry, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Tzu-Yu Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Thi Hong Nguyen
- Faculty of Dentistry, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Trang Ngoc Huyen Bui
- Faculty of Dentistry, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Ching-Shuen Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Wei-Ju Lee
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, 110301, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Yang-Che Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
| |
Collapse
|
23
|
Huang XY, Shen JY, Huang K, Wang L, Sethi G, Ma Z. Cuproptosis in cancers: Function and implications from bench to bedside. Biomed Pharmacother 2024; 176:116874. [PMID: 38850661 DOI: 10.1016/j.biopha.2024.116874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Copper, an indispensable micronutrient, is implicated in numerous vital biological processes and is essential for all physiological activities. Recently, the discovery of a novel type of copper-dependent cell death, known as cuproptosis, has shed light on its role in cancer development. Extensive research is currently underway to unravel the mechanisms underlying cuproptosis and its correlation with various cancer types. In this review, we summarize the findings regarding the roles and mechanisms of cuproptosis in various cancer types, including colorectal cancer, lung cancer, gastric cancer, breast cancer, liver cancer and cutaneous melanoma. Furthermore, the effects of copper-related agents such as copper chelators and copper ionophores on cell proliferation, apoptosis, angiogenesis, tumor immunity, and chemotherapy resistance have been explored in cancer preclinical and clinical trials. These insights provide promising avenues for the development of prospective anticancer drugs aimed at inducing cuproptosis.
Collapse
Affiliation(s)
- Xin-Yi Huang
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Jia-Yang Shen
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Ke Huang
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, 117599 Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, 117599 Singapore.
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.
| |
Collapse
|
24
|
Wang K, Yang C, Xie J, Zhang X, Wei T, Yan Z. Long non-coding RNAs in ferroptosis and cuproptosis impact on prognosis and treatment in hepatocellular carcinoma. Clin Exp Med 2024; 24:135. [PMID: 38907744 PMCID: PMC11193701 DOI: 10.1007/s10238-024-01397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/08/2024] [Indexed: 06/24/2024]
Abstract
Ferroptosis and cuproptosis are recently discovered forms of cell death that have gained interest as potential cancer treatments, particularly for hepatocellular carcinoma. Long non-coding RNAs (lncRNAs) influence cancer cell activity by interacting with various nucleic acids and proteins. However, the role of ferroptosis and cuproptosis-related lncRNAs (FCRLs) in cancer remains underexplored. Ferroptosis and cuproptosis scores for each sample were assessed using Gene Set Variation Analysis (GSVA). Weighted correlation network analysis identified the FCRLs most relevant to our study. A risk model based on FCRLs was developed to categorize patients into high-risk and low-risk groups. We then compared overall survival (OS), tumor immune microenvironment, and clinical characteristics between these groups. The IPS score and ImmuCellAI webpage were used to predict the association between FCRL-related signatures and immunotherapy response. Finally, we validated the accuracy of FCRLs in hepatocellular carcinoma cell lines using induction agents (elesclomol and erastin). Patients in different risk subgroups showed significant differences in OS, immune cell infiltration, pathway activity, and clinical characteristics. Cellular assays revealed significant changes in the expression of AC019080.5, AC145207.5, MIR210HG, and LINC01063 in HCC cell lines following the addition of ferroptosis and cuproptosis inducers. We created a signature of four FCRLs that accurately predicted survival in HCC patients, laid the foundation for basic research related to ferroptosis and cuproptosis in hepatocellular carcinoma, and provided therapeutic recommendations for HCC patients.
Collapse
Affiliation(s)
- Kun Wang
- Department of Gastroenterology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Chunqian Yang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingen Xie
- Department of General Medicine, Huai'an Cancer Hospital, Huai'an, China
| | - Xiao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Ting Wei
- Department of Gastroenterology, The First People's Hospital of Lianyungang, Lianyungang, China.
| | - Zhu Yan
- Emergency Medicine Department, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huaian, China.
| |
Collapse
|
25
|
Huang R, Xu R, Zhang R, Zuo W, Ji Z, Tao Z, Li Y, Ma G. Identification of potential crucial cuproptosis-related genes in myocardial ischemia-reperfusion injury through the bioinformatic analysis. Clinics (Sao Paulo) 2024; 79:100410. [PMID: 38901133 PMCID: PMC11237686 DOI: 10.1016/j.clinsp.2024.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Cuproptosis is known to regulate diverse physiological functions in many diseases, but its role in regulating Myocardial Ischemia-Reperfusion Injury (MI/RI) remains unclear. METHODS For this purpose, the MI/RI microarray datasets GSE61592 were downloaded from the Gene Expression Omnibus (GEO) database, and the Differently Expressed Genes (DEGs) in MI/RI were identified using R software. Moreover, the MI/RI mice model was established to confirm further the diagnostic value of Pyruvate Dehydrogenase B (Pdhb), Dihydrolipoamide S-acetyltransferase (Dlat), and Pyruvate dehydrogenase E1 subunit alpha 1 (Pdhα1). RESULTS The analysis of microarray datasets GSE61592 revealed that 798 genes were upregulated and 768 were downregulated in the myocardial tissue of the ischemia-reperfusion injury mice. Furthermore, Dlat, Pdhb, Pdhα1, and cuproptosis-related genes belonged to the downregulated genes. The receiver operating characteristics curve analysis results indicated that the Dlat, Pdhb, and Pdhα1 levels were downregulated in MI/RI and were found to be potential biomarkers for MI/RI diagnosis and prognosis. Similarly, analysis of Dlat, Pdhb, and Pdhα1 levels in the MI/RI mice revealed Pdhb being the key diagnostic marker. CONCLUSIONS This study demonstrated the prognostic value of cuproptosis-related genes (Dlat, Pdhb, and Pdhα1), especially Pdhb, MI/RI, providing new insight into the MI/RI treatment.
Collapse
Affiliation(s)
- Rong Huang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Rongfeng Xu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Rui Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wenjie Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zaixiao Tao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yongjun Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
26
|
Chen X, Sun H, Yang C, Wang W, Lyu W, Zou K, Zhang F, Dai Z, He X, Dong H. Bioinformatic analysis and experimental validation of six cuproptosis-associated genes as a prognostic signature of breast cancer. PeerJ 2024; 12:e17419. [PMID: 38912044 PMCID: PMC11192027 DOI: 10.7717/peerj.17419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/28/2024] [Indexed: 06/25/2024] Open
Abstract
Background Breast carcinoma (BRCA) is a life-threatening malignancy in women and shows a poor prognosis. Cuproptosis is a novel mode of cell death but its relationship with BRCA is unclear. This study attempted to develop a cuproptosis-relevant prognostic gene signature for BRCA. Methods Cuproptosis-relevant subtypes of BRCA were obtained by consensus clustering. Differential expression analysis was implemented using the 'limma' package. Univariate Cox and multivariate Cox analyses were performed to determine a cuproptosis-relevant prognostic gene signature. The signature was constructed and validated in distinct datasets. Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were also conducted using the prognostic signature to uncover the underlying molecular mechanisms. ESTIMATE and CIBERSORT algorithms were applied to probe the linkage between the gene signature and tumor microenvironment (TME). Immunotherapy responsiveness was assessed using the Tumor Immune Dysfunction and Exclusion (TIDE) web tool. Real-time quantitative PCR (RT-qPCR) was performed to detect the expressions of cuproptosis-relevant prognostic genes in breast cancer cell lines. Results Thirty-eight cuproptosis-associated differentially expressed genes (DEGs) in BRCA were mined by consensus clustering and differential expression analysis. Based on univariate Cox and multivariate Cox analyses, six cuproptosis-relevant prognostic genes, namely SAA1, KRT17, VAV3, IGHG1, TFF1, and CLEC3A, were mined to establish a corresponding signature. The signature was validated using external validation sets. GSVA and GSEA showed that multiple cell cycle-linked and immune-related pathways along with biological processes were associated with the signature. The results ESTIMATE and CIBERSORT analyses revealed significantly different TMEs between the two Cusig score subgroups. Finally, RT-qPCR analysis of cell lines further confirmed the expressional trends of SAA1, KRT17, IGHG1, and CLEC3A. Conclusion Taken together, we constructed a signature for projecting the overall survival of BRCA patients and our findings authenticated the cuproptosis-relevant prognostic genes, which are expected to provide a basis for developing prognostic molecular biomarkers and an in-depth understanding of the relationship between cuproptosis and BRCA.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Hening Sun
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Changcheng Yang
- Department of The First Affiliated Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Wei Wang
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Wenzhi Lyu
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Kejian Zou
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Fan Zhang
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Zhijun Dai
- Department of The First Affiliated Hospital, Zhejiang University, Hangzhou City, Zhejiang Province, China
| | - Xionghui He
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Huaying Dong
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| |
Collapse
|
27
|
Zhao T, Guo Y, Li J. Identification and experimental validation of cuproptosis regulatory program in a sepsis immune microenvironment through a combination of single-cell and bulk RNA sequencing. Front Immunol 2024; 15:1336839. [PMID: 38947313 PMCID: PMC11211538 DOI: 10.3389/fimmu.2024.1336839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Background In spite of its high mortality rate and poor prognosis, the pathogenesis of sepsis is still incompletely understood. This study established a cuproptosis-based risk model to diagnose and predict the risk of sepsis. In addition, the cuproptosis-related genes were identified for targeted therapy. Methods Single-cell sequencing analyses were used to characterize the cuproptosis activity score (CuAS) and intercellular communications in sepsis. Differential cuproptosis-related genes (CRGs) were identified in conjunction with single-cell and bulk RNA sequencing. LASSO and Cox regression analyses were employed to develop a risk model. Three external cohorts were conducted to assess the model's accuracy. Differences in immune infiltration, immune cell subtypes, pathway enrichment, and the expression of immunomodulators were further evaluated in distinct groups. Finally, various in-vitro experiments, such as flow cytometry, Western blot, and ELISA, were used to explore the role of LST1 in sepsis. Results ScRNA-seq analysis demonstrated that CuAS was highly enriched in monocytes and was closely related to the poor prognosis of sepsis patients. Patients with higher CuAS exhibited prominent strength and numbers of cell-cell interactions. A total of five CRGs were identified based on the LASSO and Cox regression analyses, and a CRG-based risk model was established. The lower riskScore cohort exhibited enhanced immune cell infiltration, elevated immune scores, and increased expression of immune modulators, indicating the activation of an antibacterial response. Ultimately, in-vitro experiments demonstrated that LST1, a key gene in the risk model, was enhanced in the macrophage in response to LPS, which was closely related to the decrease of macrophage survival rate, the enhancement of apoptosis and oxidative stress injury, and the imbalance of the M1/M2 phenotype. Conclusions This study constructed a cuproptosis-related risk model to accurately predict the prognosis of sepsis. We further characterized the cuproptosis-related gene LST1 to provide a theoretical framework for sepsis therapy.
Collapse
Affiliation(s)
- Tingru Zhao
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | | | | |
Collapse
|
28
|
Chong W, Ren H, Chen H, Xu K, Zhu X, Liu Y, Sang Y, Li H, Liu J, Ye C, Shang L, Jing C, Li L. Clinical features and molecular landscape of cuproptosis signature-related molecular subtype in gastric cancer. IMETA 2024; 3:e190. [PMID: 38898987 PMCID: PMC11183172 DOI: 10.1002/imt2.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 06/21/2024]
Abstract
Recent studies have highlighted the biological significance of cuproptosis in disease occurrence and development. However, it remains unclear whether cuproptosis signaling also has potential impacts on tumor initiation and prognosis of gastric cancer (GC). In this study, 16 cuproptosis-related genes (CRGs) transcriptional profiles were harnessed to perform the regularized latent variable model-based clustering in GC. A cuproptosis signature risk scoring (CSRS) scheme, based on a weighted sum of principle components of the CRGs, was used to evaluate the prognosis and risk of individual tumors of GC. Four distinct cuproptosis signature-based clusters, characterized by differential expression patterns of CRGs, were identified among 1136 GC samples across three independent databases. The four clusters were also associated with different clinical outcomes and tumor immune contexture. Based on the CSRS, GC patients can be divided into CSRS-High and CSRS-Low subtypes. We found that DBT, MTF1, and ATP7A were significantly elevated in the CSRS-High subtype, while SLC31A1, GCSH, LIAS, DLAT, FDX1, DLD, and PDHA1 were increased in the CSRS-Low subtype. Patients with CSRS-Low score were characterized by prolonged survival time. Further analysis indicated that CSRS-Low score also correlated with greater tumor mutation burden (TMB) and higher mutation rates of significantly mutated genes (SMG) in GC. In addition, the CSRS-High subtype harbored more significantly amplified focal regions related to tumorigenesis (3q27.1, 12p12.1, 11q13.3, etc.) than the CSRS-Low tumors. Drug sensitivity analyses revealed the potential compounds for the treatment of gastric cancer with CSRS-High score, which were experimentally validated using GC cells. This study highlights that cuproptosis signature-based subtyping is significantly associated with different clinical features and molecular landscape of GC. Quantitative evaluation of the CSRS of individual tumors will strengthen our understanding of the occurrence and development of cuproptosis and the treatment progress of GC.
Collapse
Affiliation(s)
- Wei Chong
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Huicheng Ren
- Department of Gastrointestinal SurgeryZibo Central HospitalZiboChina
| | - Hao Chen
- Clinical Research Center of Shandong University, Clinical Epidemiology UnitQilu Hospital of Shandong UniversityJinanChina
| | - Kang Xu
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Xingyu Zhu
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Yuan Liu
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Yaodong Sang
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Han Li
- Department of Gastroenterological SurgeryThe First Affiliated Hospital of Shandong First Medical UniversityJinanChina
| | - Jin Liu
- Department of GastroenterologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Chunshui Ye
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Liang Shang
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Changqing Jing
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Leping Li
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
29
|
Yu M, Huo D, Yu K, Zhou K, Xu F, Meng Q, Cai Y, Chen X. Crosstalk of different cell-death patterns predicts prognosis and drug sensitivity in glioma. Comput Biol Med 2024; 175:108532. [PMID: 38703547 DOI: 10.1016/j.compbiomed.2024.108532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Glioma is a malignant brain tumor originating from glial cells, and there still a challenge to accurately predict the prognosis. Programmed cell death (PCD) plays a key role in tumorigenesis and immune response. However, the crosstalk and potential role of various PCDs in prognosis and tumor microenvironment remains unknown. Therefore, we comprehensively discussed the relationship between different models of PCD and the prognosis of glioma and provided new ideas for the optimal targeted therapy of glioma. MATERIALS AND METHODS We compared and analyzed the role of 14 PCD patterns on the prognosis from different levels. We constructed the cell death risk score (CDRS) index and conducted a comprehensive analysis of CDRS and TME characteristics, clinical characteristics, and drug response. RESULTS Effects of different PCDs at the genomic, functional, and immune microenvironment levels were discussed. CDRS index containing 6 gene signatures and a nomogram were established. High CDRS is associated with a worse prognosis. Through transcriptome and single-cell data, we found that patients with high CDRS showed stronger immunosuppressive characteristics. Moreover, the high-CDRS group was resistant to the traditional glioma chemotherapy drug Vincristine, but more sensitive to the Temozolomide and the clinical experimental drug Bortezomib. In addition, we identified 19 key potential therapeutic targets during malignant differentiation of tumor cells. CONCLUSION Overall, we provide the first systematic description of the role of 14 PCDs in glioma. A new CDRS model was built to predict the prognosis and to provide a new idea for the targeted therapy of glioma.
Collapse
Affiliation(s)
- Meini Yu
- Department of pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, Heilongjiang, China
| | - Diwei Huo
- Fourth Affiliated Hospital of Harbin Medical University, China
| | - Kexin Yu
- Department of pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, Heilongjiang, China
| | - Kun Zhou
- Department of pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, Heilongjiang, China
| | - Fei Xu
- Department of pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, Heilongjiang, China
| | - Qingkang Meng
- Department of pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, Heilongjiang, China
| | - Yiyang Cai
- Department of pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, Heilongjiang, China
| | - Xiujie Chen
- Department of pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, Heilongjiang, China.
| |
Collapse
|
30
|
Wang H, Liu Y, Tang A, Zhang X. Molecular subtypes of clear cell renal carcinoma based on PCD-related long non-coding RNAs expression: insights into the underlying mechanisms and therapeutic strategies. Eur J Med Res 2024; 29:292. [PMID: 38773560 PMCID: PMC11106887 DOI: 10.1186/s40001-024-01883-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/12/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND PCD-related long non-coding RNAs (PRLs) are rarely investigated in relation to clear cell renal carcinoma (ccRCC). As part of this study, we evaluated the immunological potential of PRL signatures as a biomarker for ccRCC prognosis and immunological function. MATERIALS AND METHODS Data were downloaded from the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) databases. A Pearson correlation analysis was conducted on the 27 PCD-associated genes to determine whether lncRNAs were significantly associated with PCD. Kaplan-Meier analysis, biological function identification, immune infiltration analysis, estimation of efficacy of immunotherapy and targeted drug screening, and exploration of the landscape of mutation status were conducted by analyzing the risk scores. RESULTS Seven PRLs, LINC02747, AP001636.3, AC022126.1, LINC02657, LINC02609, LINC02154, and ZNNT1, were used to divide patients with ccRCC into groups with high and low risk. High-risk patients had a worse prognosis than low-risk patients, according to the results, and the PRL signature showed promising predictive ability. More immune cells were clustered in the high-risk group, whereas the immune cell function of the low-risk group was significantly suppressed. The high-risk group was less sensitive to immunotherapy, whereas the low-risk group had positive responses to most drugs. CONCLUSIONS Collectively, we established and verified a PRL signature that could competently guide the prognostic survival and immunotherapy of ccRCC. In addition, molecular subtypes were determined for ccRCC based on PRL expression, which may help elucidate the underlying molecular mechanism of ccRCC and develop targeted treatments.
Collapse
Affiliation(s)
- Han Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Second People's Hospital, ShenzhenShenzhen, China
| | - Yang Liu
- Department of Oncology, Yantian District People's Hospital, Shenzhen, China
| | - Aifa Tang
- Science and Educational Center of Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.
| | - Xiansheng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
31
|
Sun X, Li L, Yang X, Ke D, Zhong Q, Zhu Y, Yang L, Zhang Z, Lin J. Identification of a novel prognostic cuproptosis-associated LncRNA signature for predicting prognosis and immunotherapy response in patients with esophageal cancer. Heliyon 2024; 10:e30277. [PMID: 38707466 PMCID: PMC11068819 DOI: 10.1016/j.heliyon.2024.e30277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Nowadays, effective prognostic models for esophageal cancer (ESCA) are still lacking. Long noncoding RNAs (lncRNAs) are commonly utilized as indicators for diagnosing cancer and forecasting patient outcomes. Cuproptosis is regulated by multiple genes and is crucial to the progression of ESCA. However, it is not yet clear what role the cuproptosis-associated lncRNAs (CuALs) play in ESCA. To tackle this problem, a prognostic signature incorporating three CuALs was created. This signature was constructed by the use of the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression. Subsequently, the signature effectively stratified ESCA samples into a high-risk group and a low-risk group. Those in the low-risk group demonstrated extended overall survival (OS), as well as increased infiltration of T cells, macrophages, and NK cells, suggesting a potentially enhanced response to immunotherapy. The ROC curve analysis demonstrated that this prognostic signature outperformed conventional clinical factors in predicting patient prognosis (AUC = 0.708). K-M survival analysis and correlation analysis identified UGDH-AS1 (a CuAL) as a protective factor positively associated with patient prognosis. The results of RT-qPCR and wound healing assays indicated that UGDH-AS1 is overexpressed in ESCA and could inhibit cancer cell migration. In general, the prognostic signature of CuALs demonstrated a robust capability in forecasting the immune environment and patient prognosis, highlighting its potential as a tool for enhancing personalized treatment strategies in ESCA.
Collapse
Affiliation(s)
- Xinhai Sun
- Department of Thoracic Surgery, Fujian Institute of Thoracic and Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Liming Li
- Department of Thoracic Surgery, Fujian Institute of Thoracic and Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaojie Yang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Ke
- Heilongjiang Key Laboratory of tissue damage and repair, College of life sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Qihong Zhong
- Department of Thoracic Surgery, Fujian Institute of Thoracic and Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuanchang Zhu
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Litao Yang
- Department of Thoracic Surgery, Baoji Traditional Chinese Medicine Hospital, Shaanxi, China
| | - Zhenyang Zhang
- Department of Thoracic Surgery, Fujian Institute of Thoracic and Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiangbo Lin
- Department of Thoracic Surgery, Fujian Institute of Thoracic and Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
32
|
Sun X, Li L, Yang X, Ke D, Zhong Q, Zhu Y, Yang L, Zhang Z, Lin J. Identification of a novel prognostic cuproptosis-associated LncRNA signature for predicting prognosis and immunotherapy response in patients with esophageal cancer. Heliyon 2024; 10:e30277. [PMID: 38707466 DOI: 10.1016/j.heliyon.2024.e30277if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 09/15/2024] Open
Abstract
Nowadays, effective prognostic models for esophageal cancer (ESCA) are still lacking. Long noncoding RNAs (lncRNAs) are commonly utilized as indicators for diagnosing cancer and forecasting patient outcomes. Cuproptosis is regulated by multiple genes and is crucial to the progression of ESCA. However, it is not yet clear what role the cuproptosis-associated lncRNAs (CuALs) play in ESCA. To tackle this problem, a prognostic signature incorporating three CuALs was created. This signature was constructed by the use of the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression. Subsequently, the signature effectively stratified ESCA samples into a high-risk group and a low-risk group. Those in the low-risk group demonstrated extended overall survival (OS), as well as increased infiltration of T cells, macrophages, and NK cells, suggesting a potentially enhanced response to immunotherapy. The ROC curve analysis demonstrated that this prognostic signature outperformed conventional clinical factors in predicting patient prognosis (AUC = 0.708). K-M survival analysis and correlation analysis identified UGDH-AS1 (a CuAL) as a protective factor positively associated with patient prognosis. The results of RT-qPCR and wound healing assays indicated that UGDH-AS1 is overexpressed in ESCA and could inhibit cancer cell migration. In general, the prognostic signature of CuALs demonstrated a robust capability in forecasting the immune environment and patient prognosis, highlighting its potential as a tool for enhancing personalized treatment strategies in ESCA.
Collapse
Affiliation(s)
- Xinhai Sun
- Department of Thoracic Surgery, Fujian Institute of Thoracic and Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Liming Li
- Department of Thoracic Surgery, Fujian Institute of Thoracic and Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaojie Yang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Ke
- Heilongjiang Key Laboratory of tissue damage and repair, College of life sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Qihong Zhong
- Department of Thoracic Surgery, Fujian Institute of Thoracic and Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuanchang Zhu
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Litao Yang
- Department of Thoracic Surgery, Baoji Traditional Chinese Medicine Hospital, Shaanxi, China
| | - Zhenyang Zhang
- Department of Thoracic Surgery, Fujian Institute of Thoracic and Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiangbo Lin
- Department of Thoracic Surgery, Fujian Institute of Thoracic and Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
33
|
Zhou S, Wang L, Huang X, Wang T, Tang Y, Liu Y, Xu M. Comprehensive bioinformatics analytics and in vivo validation reveal SLC31A1 as an emerging diagnostic biomarker for acute myocardial infarction. Aging (Albany NY) 2024; 16:8361-8377. [PMID: 38713173 PMCID: PMC11132003 DOI: 10.18632/aging.205199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/15/2023] [Indexed: 05/08/2024]
Abstract
BACKGROUND Globally, Acute Myocardial Infarction (AMI) is a common cause of heart failure (HF), which has been a leading cause of mortality resulting from non-communicable diseases. On the other hand, increasing evidence suggests that the role of energy production within the mitochondria strongly links to the development and progression of heart diseases, while Cuproptosis, a newly identified cell death mechanism, has not yet been comprehensively analyzed from the aspect of cardiovascular medicine. MATERIALS AND METHODS 8 transcriptome profiles curated from the GEO database were integrated, from which a diagnostic model based on the Stacking algorithm was established. The efficacy of the model was evaluated in a multifaced manner (i.e., by Precision-Recall curve, Receiver Operative Characteristic curve, etc.). We also sequenced our animal models at the bulk RNA level and conducted qPCR and immunohistochemical staining, with which we further validated the expression of the key contributor gene to the model. Finally, we explored the immune implications of the key contributor gene. RESULTS A merged machine learning model containing 4 Cuproptosis-related genes (i.e., PDHB, CDKN2A, GLS, and SLC31A1) for robust AMI diagnosis was developed, in which SLC31A1 served as the key contributor. Through in vivo modeling, we validated the aberrant overexpression of SLC31A1 in AMI. Besides, further transcriptome analysis revealed that its high expression was correlated with significant potential immunological implications in the infiltration of many immune cell types, especially monocyte. CONCLUSIONS We constructed an AMI diagnostic model based on Cuproptosis-related genes and validated the key contributor gene in animal modeling. We also analyzed the effects on the immune system for its overexpression in AMI.
Collapse
Affiliation(s)
- Shujing Zhou
- Department of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Longbin Wang
- Department of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xufeng Huang
- Department of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ting Wang
- Department of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yidan Tang
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ying Liu
- Department of Cardiology, Sixth Medical Center, PLA General Hospital, Beijing, China
| | - Ming Xu
- Department of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
34
|
Ye Z, Liu C, Wu S, Jin X, Lin H, Wang T, Zheng Q, Guo Z. Identification of cuproptosis-related long non-coding RNA and construction of a novel prognostic signature for bladder cancer: An observational study. Medicine (Baltimore) 2024; 103:e38005. [PMID: 38701267 PMCID: PMC11062696 DOI: 10.1097/md.0000000000038005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Bladder Urothelial Carcinoma (BLCA), a prevalent and lethal cancer, lacks understanding regarding the roles and prognostic value of cuproptosis-related lncRNAs (CRLs), a novel form of cell death induced by copper. We collected RNA-seq data, clinical information, and prognostic data for 414 BLCA samples and 19 matched controls from The Cancer Genome Atlas. Using multivariate and univariate Cox regression analyses, we identified CRLs to create a prognostic signature. Patients were then divided into low- and high-risk groups based on their risk scores. We analyzed overall survival using the Kaplan-Meier method, evaluated stromal and immune scores, and explored functional differences between these risk groups with gene set enrichment analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were also conducted to understand the links between CRLs and BLCA development. We developed a prognostic signature using 4 independent CRLs: RC3H1-IT1, SPAG5-AS1, FAM13A-AS1, and GNG12-AS1. This signature independently predicted the prognosis of BLCA patients. High-risk patients had worse outcomes, with gene set enrichment analysis revealing enrichment in tumor- and immune-related pathways in the high-risk group. Notably, high-risk patients exhibited enhanced responses to immunotherapy and conventional chemotherapy drugs like sunitinib, paclitaxel, and gemcitabine. The independent prognostic signature variables RC3H1-IT1, SPAG5-AS1, FAM13A-AS1, and GNG12-AS1 predicted the prognoses of BLCA patients and provided a basis for the study of the mechanism of CRLs in BLCA development and progression, and the guidance of clinical treatments for patients with BLCA.
Collapse
Affiliation(s)
- Zegen Ye
- Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, Zhejiang 323000, China
| | - Chunhua Liu
- Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, Zhejiang 323000, China
| | - Simin Wu
- Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, Zhejiang 323000, China
| | - Xinxin Jin
- Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, Zhejiang 323000, China
| | - Huajian Lin
- Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, Zhejiang 323000, China
| | - Tingting Wang
- Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, Zhejiang 323000, China
| | - Qiuxia Zheng
- Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, Zhejiang 323000, China
| | - Zhaofu Guo
- Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, Zhejiang 323000, China
| |
Collapse
|
35
|
Feng Y, Yang Z, Wang J, Zhao H. Cuproptosis: unveiling a new frontier in cancer biology and therapeutics. Cell Commun Signal 2024; 22:249. [PMID: 38693584 PMCID: PMC11064406 DOI: 10.1186/s12964-024-01625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024] Open
Abstract
Copper plays vital roles in numerous cellular processes and its imbalance can lead to oxidative stress and dysfunction. Recent research has unveiled a unique form of copper-induced cell death, termed cuproptosis, which differs from known cell death mechanisms. This process involves the interaction of copper with lipoylated tricarboxylic acid cycle enzymes, causing protein aggregation and cell death. Recently, a growing number of studies have explored the link between cuproptosis and cancer development. This review comprehensively examines the systemic and cellular metabolism of copper, including tumor-related signaling pathways influenced by copper. It delves into the discovery and mechanisms of cuproptosis and its connection to various cancers. Additionally, the review suggests potential cancer treatments using copper ionophores that induce cuproptosis, in combination with small molecule drugs, for precision therapy in specific cancer types.
Collapse
Affiliation(s)
- Ying Feng
- Department of Emergency, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China
| | - Zhibo Yang
- Department of Neurosurgery, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, 723000, Shaanxi, China
| | - Jianpeng Wang
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China.
| |
Collapse
|
36
|
Zhao J, Xu Z, Wang X, Wan S, Chen W, Huang W, Wang M, Wang R, Zhang H. Environmental copper exposure, placental cuproptosis, and miscarriage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123847. [PMID: 38552771 DOI: 10.1016/j.envpol.2024.123847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Copper pollution has become global environmental concern. Widespread Cu pollution results in excessive Cu exposure in human. Epidemiological studies and animal experiments revealed that Cu exposure might have reproductive toxicity. Cuproptosis is a newly reported Cu-dependent and programmed cell death formTsvetkov et al., 2022. However, whether copper exposure at real environmental exposure dose might cause placental cuproptosis and induce miscarriage was completely unexplored. In this study, we found that Cu exposure during pregnancy induced miscarriage or complete pregnancy loss by inducing placenta cuproptosis in CuCl2-exposed pregnant mice. Notably, Cu exposure at 1.3 mg/kg/d (a real environmental exposure dose) was enough to cause placenta cuproptosis. CuCl2 exposure disrupts the TCA cycle, causes proteotoxic stress, increases Cu2+ ion import/decreases Cu2+ export, and results in the loss of Fe-S cluster proteins in mouse placenta, which induces placenta cuproptosis. Moreover, we also identified that Cu exposure down-regulates the expression levels of mmu-miR-3473b, which interacts with Dlst or Rtel1 mRNA and simultaneously positively regulates Dlst or Rtel1 expression, thereby disrupting the TCA cycle and resulting in the loss of Fe-S cluster proteins, and thus epigenetically regulates placental cuproptosis. Treatment with TTM (a cuproptosis inhibitor) suppressed placental cuproptosis and alleviated miscarriage in CuCl2-exposed mice. This work provides novel reproductive toxicity of Cu exposure in miscarriage or complete pregnancy loss by causing placental cuproptosis. This study also provides new ways for further studies on other toxicological effects of Cu and proposes a new approach for protection against Cu-induced reproductive diseases.
Collapse
Affiliation(s)
- Jingsong Zhao
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China; Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Zhongyan Xu
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China; Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Xiaoqing Wang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Shukun Wan
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Weina Chen
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Wenxin Huang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Manli Wang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Rong Wang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China.
| |
Collapse
|
37
|
Liu H, Bao X, Zeng Z, Liu W, Li M. Analysis of cuproptosis-related genes in prognosis and immune infiltration in grade 4 diffuse gliomas. Heliyon 2024; 10:e29212. [PMID: 38633656 PMCID: PMC11021980 DOI: 10.1016/j.heliyon.2024.e29212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Background Grade 4 diffuse gliomas are highly malignant tumours with poor prognosis. Cuproptosis is a novel form of cell death. Cuproptosis genes are associated with various tumours and affect the prognosis of patients with these tumours. However, the relationship between cuproptosis and grade 4 diffuse gliomas remains unclear. Methods Differentially expressed genes associated with cuproptosis in grade 4 diffuse gliomas were identified. Second, the prognostic model was established by univariate and multivariate COX regression analyses, and the genes (p < 0.05) were selected for subsequent analysis. The endpoint of the study was death. Single-gene analysis was performed in accordance with the expression levels of SLC31A1. Third, based on the expression levels of SLC31A1, gene function enrichment, drug sensitivity, and immune cell infiltration analyses were performed. Finally, the expression and biological functions of SLC31A1 in grade 4 diffuse gliomas were identified using immunohistochemical staining, qRT-PCR, and related biological experiments. Results We identified six coproptosis genes in the grade 4 diffuse gliomas dataset (SLC31A1, PDHA1, GLS, FDX1, LIPT1, and ATP7B). The six key cuproptosis genes of grade 4 diffuse gliomas were analysed using univariate COX analysis. Basic patient data, including age, race, year of diagnosis, sex, and treatment, were included in the univariate COX analysis. Then, multivariate COX analysis was performed for the factors with p < 0.2 in the univariate COX analysis. Age, year of diagnosis, and SLC31A1, PDHA1, and FDX1 levels were found to be independent prognostic factors. A nomogram was constructed using these 5 factors. Through experiments, we found that SLC31A1 had a higher expression level in cancer tissue than that near cancer among the three genes, SLC31A1, PDHA1, and FDX1; therefore, we focused on SLC31A1. According on the expression level of SLC31A1, we performed gene function enrichment, drug sensitivity, and immune cell infiltration analyses. Navitoclax was the most sensitive drug. Differential gene function enrichment was observed for metalloendopeptidase activity. SLC31A1 is expressed in dendritic cells, macrophages, neutrophils, and CD8+T cells. SLC31A1 is highly expressed in grade 4 diffuse gliomas, whereas SLC31A1 knockdown significantly reduces cell proliferation and mobility. Conclusions Age, year of diagnosis, and SLC31A1, PDHA1, and FDX1 expression were independent prognostic factors. A nomogram was constructed based on age, year of diagnosis, and SLC31A1, PDHA1, and FDX1 levels. Through analysis and experimental verification, SLC31A1 was found to affect the prognosis and progression of patients with grade 4 diffuse gliomas and was associated with immune cell infiltration.
Collapse
Affiliation(s)
- Hui Liu
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Bao
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Zhirui Zeng
- School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Wei Liu
- Department of Oncology, Changle County People's Hospital, Weifang, China
| | - Meifang Li
- Department of Oncology, Changle County People's Hospital, Weifang, China
| |
Collapse
|
38
|
Yang S, Hu C, Chen X, Tang Y, Li J, Yang H, Yang Y, Ying B, Xiao X, Li SZ, Gu L, Zhu Y. Crosstalk between metabolism and cell death in tumorigenesis. Mol Cancer 2024; 23:71. [PMID: 38575922 PMCID: PMC10993426 DOI: 10.1186/s12943-024-01977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
It is generally recognized that tumor cells proliferate more rapidly than normal cells. Due to such an abnormally rapid proliferation rate, cancer cells constantly encounter the limits of insufficient oxygen and nutrient supplies. To satisfy their growth needs and resist adverse environmental events, tumor cells modify the metabolic pathways to produce both extra energies and substances required for rapid growth. Realizing the metabolic characters special for tumor cells will be helpful for eliminating them during therapy. Cell death is a hot topic of long-term study and targeting cell death is one of the most effective ways to repress tumor growth. Many studies have successfully demonstrated that metabolism is inextricably linked to cell death of cancer cells. Here we summarize the recently identified metabolic characters that specifically impact on different types of cell deaths and discuss their roles in tumorigenesis.
Collapse
Affiliation(s)
- Shichao Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Caden Hu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Xiaomei Chen
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Tang
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, P. R. China
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Juanjuan Li
- Department of breast and thyroid surgery, Renmin hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Hanqing Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Yang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Key Laboratory of Tumor Immunopathology, Third Military Medical University (Army Medical University, Ministry of Education of China, Chongqing, 400038, P. R. China
| | - Binwu Ying
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, P. R. China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.
| | - Shang-Ze Li
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| | - Li Gu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Yahui Zhu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| |
Collapse
|
39
|
Abdullah K, Kaushal JB, Takkar S, Sharma G, Alsafwani ZW, Pothuraju R, Batra SK, Siddiqui JA. Copper metabolism and cuproptosis in human malignancies: Unraveling the complex interplay for therapeutic insights. Heliyon 2024; 10:e27496. [PMID: 38486750 PMCID: PMC10938126 DOI: 10.1016/j.heliyon.2024.e27496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
Copper, a vital trace element, orchestrates diverse cellular processes ranging from energy production to antioxidant defense and angiogenesis. Copper metabolism and cuproptosis are closely linked in the context of human diseases, with a particular focus on cancer. Cuproptosis refers to a specific type of copper-mediated cell death or copper toxicity triggered by disruptions in copper metabolism within the cells. This phenomenon encompasses a spectrum of mechanisms, such as oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, and perturbations in metal ion equilibrium. Mechanistically, cuproptosis is driven by copper binding to the lipoylated enzymes within the tricarboxylic acid (TCA) cycle. This interaction participates in protein aggregation and proteotoxic stress, ultimately culminating in cell death. Targeting copper metabolism and its associated pathways in cancer cells hold therapeutic potential by selectively targeting and eliminating cancerous cells. Strategies to modulate copper levels, enhance copper excretion, or interfere with cuproptotic pathways are being explored to identify novel therapeutic targets for cancer therapy and improve patient outcomes. Understanding the relationship between cuproptosis and copper metabolism in human malignancies remains an active area of research. This review provides a comprehensive overview of the association among copper metabolism, copper homeostasis, and carcinogenesis, explicitly emphasizing the cuproptosis mechanism and its implications for cancer pathogenesis. Additionally, we emphasize the therapeutic aspects of targeting copper and cuproptosis for cancer treatment.
Collapse
Affiliation(s)
- K.M. Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jyoti B. Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Simran Takkar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Zahraa W. Alsafwani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
40
|
Lin Y, Chen K, Guo J, Chen P, Qian ZR, Zhang T. Identification of cuproptosis-related genes and immune infiltration in dilated cardiomyopathy. Int J Cardiol 2024; 399:131702. [PMID: 38168558 DOI: 10.1016/j.ijcard.2023.131702] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a leading cause of heart failure. Cuproptosis is involved in various diseases, although its role in DCM is still unclear. Here, this study aims to investigate the feasibility of using genes related to cuproptosis as diagnostic biomarkers for DCM and the association of their expression with immune infiltration and drug target in cardiac tissue. METHODS Gene expression data from nonfailure (NF) and DCM samples were retrieved from the GEO database. Cuproptosis scores were calculated using single-sample gene set enrichment analysis (ssGSEA). Weighted gene co-expression network analysis (WGCNA) was used to screen key modules associated with DCM and cuproptosis. Random forest and least absolute shrinkage and selection operator (LASSO) were applied to identify signature genes. Finally, immune cell infiltration was assessed using ssGSEA. mRNA-miRNA-lncRNA regulatory networks and chemical-drug regulatory networks based on signature genes were analyzed by Cytoscape. RESULTS 8 modules were aggregated by WGCNA, among which MEblue was significantly associated with cuproptosis scores and DCM. A diagnostic model made up of six signature genes including SEPTIN1, CLEC11A, ISG15, P3H3, SDSL, and INKA1 was selected. Furthermore, immune infiltration studies showed significant differences between DCM and NF. Drugs networks and ceRNA regulatory network based on six signature genes were successfully constructed. CONCLUSION Six signature genes (SEPTIN1, CLEC11A, ISG15, P3H3, SDSL, and INKA1) were identified as novel diagnostic biomarkers in DCM. In addition, the expression of these genes was associated with immune cell infiltration, suggesting that cuproptosis may be involved in the immune regulation of DCM.
Collapse
Affiliation(s)
- Yixuan Lin
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Kaicong Chen
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Jinhua Guo
- Beidou Precision Medicine Institute, Guangzhou, China
| | - Pengxiao Chen
- Beidou Precision Medicine Institute, Guangzhou, China
| | - Zhi Rong Qian
- Beidou Precision Medicine Institute, Guangzhou, China
| | - Tong Zhang
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China.
| |
Collapse
|
41
|
Liu X, Zhang HY, Deng HA. Transcriptome and single-cell transcriptomics reveal prognostic value and potential mechanism of anoikis in skin cutaneous melanoma. Discov Oncol 2024; 15:70. [PMID: 38460046 PMCID: PMC10924820 DOI: 10.1007/s12672-024-00926-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/05/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is a highly lethal cancer, ranking among the top four deadliest cancers. This underscores the urgent need for novel biomarkers for SKCM diagnosis and prognosis. Anoikis plays a vital role in cancer growth and metastasis, and this study aims to investigate its prognostic value and mechanism of action in SKCM. METHODS Utilizing consensus clustering, the SKCM samples were categorized into two distinct clusters A and B based on anoikis-related genes (ANRGs), with the B group exhibiting lower disease-specific survival (DSS). Gene set enrichment between distinct clusters was examined using Gene Set Variation Analysis (GSVA) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. RESULTS We created a predictive model based on three anoikis-related differently expressed genes (DEGs), specifically, FASLG, IGF1, and PIK3R2. Moreover, the mechanism of these prognostic genes within the model was investigated at the cellular level using the single-cell sequencing dataset GSE115978. This analysis revealed that the FASLG gene was highly expressed on cluster 1 of Exhausted CD8( +) T (Tex) cells. CONCLUSIONS In conclusion, we have established a novel classification system for SKCM based on anoikis, which carries substantial clinical implications for SKCM patients. Notably, the elevated expression of the FASLG gene on cluster 1 of Tex cells could significantly impact SKCM prognosis through anoikis, thus offering a promising target for the development of immunotherapy for SKCM.
Collapse
Affiliation(s)
- Xing Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hong-Yan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Hong-Ao Deng
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
42
|
Yang X, Wu Y, Chen X, Qiu J, Huang C. The Transcriptional Landscape of Immune-Response 3'-UTR Alternative Polyadenylation in Melanoma. Int J Mol Sci 2024; 25:3041. [PMID: 38474285 PMCID: PMC10931711 DOI: 10.3390/ijms25053041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
The prognosis of patients with malignant melanoma has been improved in recent decades due to advancements in immunotherapy. However, a considerable proportion of patients are refractory to treatment, particularly at advanced stages. This underscores the necessity of developing a new strategy to improve it. Alternative polyadenylation (APA), as a marker of crucial posttranscriptional regulation, has emerged as a major new type of epigenetic marker involved in tumorigenesis. However, the potential roles of APA in shaping the tumor microenvironment (TME) are largely unexplored. Herein, we collected two cohorts comprising melanoma patients who received immune checkpoint inhibitor (ICI) immunotherapy to quantify transcriptome-wide discrepancies in APA. We observed a global change in 3'-UTRs between responders and non-responders, which might involve DNA damage response, angiogenesis, PI3K-AKT signaling pathways, etc. Ten putative master APA regulatory factors for those APA events were detected via a network analysis. Notably, we established an immune response-related APA scoring system (IRAPAss), which exhibited a great performance of predicting immunotherapy response in multiple cohorts. Furthermore, we examined the correlation of APA with TME at the single-cell level using four single-cell immune profiles of tumor-infiltrating lymphocytes (TILs), which revealed an overall discrepancy in 3'-UTR length across diverse T cell populations, probably contributing to immunoregulation in melanoma. In conclusion, our study provides a transcriptional landscape of APA implicated in immunoregulation, which might lay the foundation for developing a new strategy for improving immunotherapy response for melanoma patients by targeting APA.
Collapse
Affiliation(s)
| | | | | | | | - Chen Huang
- Dr. Nesher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China; (X.Y.); (Y.W.); (X.C.); (J.Q.)
| |
Collapse
|
43
|
Liu H, Chan S, Li M, Chen S. Cuproptosis-Related Gene Signature Contributes to Prognostic Prediction and Immunosuppression in Multiple Myeloma. Mol Biotechnol 2024; 66:475-488. [PMID: 37213025 DOI: 10.1007/s12033-023-00770-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023]
Abstract
Cuproptosis is a type of programmed cell death triggered by accumulation of intracellular copper which was considered closely related to tumor progression. The study of cuproptosis in multiple myeloma (MM) is however limited. To determine the prognostic significance of cuproptosis-related gene signature in MM, we interrogated gene expression and overall survival with other available clinical variables from public datasets. Four cuproptosis-related genes were included to establish a prognostic survival model by least absolute shrinkage and selection operator (LASSO) Cox regression analysis, which showed a good performance on prognosis prediction in both training and validation cohorts. Patients with higher cuproptosis-related risk score (CRRS) exhibited worse prognosis compared with lower risk score. Survival prediction capacity and clinical benefit were elevated after integrating CRRS to existing prognostic stratification system (International Staging System, ISS or Revised International Staging System, RISS) both on 3-year and 5-year survival. Based on CRRS groups, functional enrichment analysis and immune infiltration in bone marrow microenvironment revealed correlation between CRRS and immunosuppression. In conclusion, our study found that cuproptosis-related gene signature is an independent poor prognostic factor and functions negatively on immune microenvironment, which provides another perspective on prognosis assessment and immunotherapy strategy in MM.
Collapse
Affiliation(s)
- Huixin Liu
- Department of Hematopathology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2Nd Road, Guangzhou, 510080, China.
| | - Szehoi Chan
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Miao Li
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Shuna Chen
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| |
Collapse
|
44
|
Zhong Y, Zeng W, Chen Y, Zhu X. The effect of lipid metabolism on cuproptosis-inducing cancer therapy. Biomed Pharmacother 2024; 172:116247. [PMID: 38330710 DOI: 10.1016/j.biopha.2024.116247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Cuproptosis provides a new therapeutic strategy for cancer treatment and is thought to have broad clinical application prospects. Nevertheless, some oncological clinical trials have yet to demonstrate favorable outcomes, highlighting the need for further research into the molecular mechanisms underlying cuproptosis in tumors. Cuproptosis primarily hinges on the intracellular accumulation of copper, with lipid metabolism exerting a profound influence on its course. The interaction between copper metabolism and lipid metabolism is closely related to cuproptosis. Copper imbalance can affect mitochondrial respiration and lipid metabolism changes, while lipid accumulation can promote copper uptake and absorption, and inhibit cuproptosis induced by copper. Anomalies in lipid metabolism can disrupt copper homeostasis within cells, potentially triggering cuproptosis. The interaction between cuproptosis and lipid metabolism regulates the occurrence, development, metastasis, chemotherapy drug resistance, and tumor immunity of cancer. Cuproptosis is a promising new target for cancer treatment. However, the influence of lipid metabolism and other factors should be taken into consideration. This review provides a brief overview of the characteristics of the interaction between cuproptosis and lipid metabolism in cancer and analyses potential strategies of applying cuproptosis for cancer treatment.
Collapse
Affiliation(s)
- Yue Zhong
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Wei Zeng
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yongbo Chen
- Rehabilitation College of Gannan Medical University, Ganzhou 341000, China
| | - Xiuzhi Zhu
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
45
|
Zhang G, Wang N, Ma S, Tao P, Cai H. Comprehensive analysis of the effects of the cuprotosis-associated gene SLC31A1 on patient prognosis and tumor microenvironment in human cancer. Transl Cancer Res 2024; 13:714-737. [PMID: 38482443 PMCID: PMC10928633 DOI: 10.21037/tcr-23-1308] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2025]
Abstract
BACKGROUND Solute carrier family 31 (copper transporter), member 1 (SLC31A1) is a key factor in maintaining intracellular copper concentration and an important factor affecting cancer energy metabolism. Therefore, exploring the potential biological function and value of SLC31A1 could provide a new direction for the targeted therapy of tumors. METHODS This study assessed gene expression levels, survival, clinicopathology, gene mutations, methylation levels, the tumor mutational burden (TMB), microsatellite instability (MSI), and the immune cell infiltration of SLC31A1 in pan-cancer using the Tumor Immune Estimation Resource 2.0 (TIMER2.0), Gene Expression Profiling Interactive Analysis (GEPIA), University of Alabama at Birmingham CANcer (UALCAN) data analysis portal, and cBioPortal databases. To further understand the potential biological mechanisms of SLC31A1 in different cancers, single-cell level sequencing and a Gene Ontology/Kyoto Encyclopedia of Genes and Genomes (GO/KEGG) enrichment analysis of SLC31A1 were also performed. Finally, real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting (WB) were used to validate the expression of SLC31A1 in cancers, such as gastric cancer. RESULTS SLC31A1 was expressed in most cancer tissues. In kidney renal clear cell carcinoma (KIRC), the high expression of SLC31A1 was associated with good overall survival (OS), while in adrenocortical carcinoma (ACC), breast invasive carcinoma (BRCA), lower grade glioma (LGG), mesothelioma (MESO), and skin cutaneous melanoma (SKCM), the low expression of SLC31A1 was associated with good OS. The highest frequency of SLC31A1 amplification was observed in ACC. In addition, missense mutations accounted for a major portion of the mutation types. The truncation mutation S105Y may be a putative cancer driver. SLC31A1 affected methylation levels in cancer and was associated with the TMB, MSI, and the level of infiltration of various immune cells. Additionally, the single-cell sequencing results showed that SLC31A1 was associated with multiple biological functions in cancer. Finally, the SLC31A1 enrichment analysis revealed that the SLC31A1-related genes were mainly enriched in the mitochondrial matrix and envelope vesicles. The RT-qPCR and WB results were consistent with the predicted results. CONCLUSIONS SLC31A1 may be a potential target related to cancer energy metabolism and may have prognostic value.
Collapse
Affiliation(s)
- Guiqian Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- General Surgery, Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumors, Gansu Provincial Hospital, Lanzhou, China
| | - Ning Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Shixun Ma
- General Surgery, Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumors, Gansu Provincial Hospital, Lanzhou, China
| | - Pengxian Tao
- General Surgery, Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumors, Gansu Provincial Hospital, Lanzhou, China
| | - Hui Cai
- General Surgery, Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumors, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
46
|
Hsieh MY, Hsu SK, Liu TY, Wu CY, Chiu CC. Melanoma biology and treatment: a review of novel regulated cell death-based approaches. Cancer Cell Int 2024; 24:63. [PMID: 38336727 PMCID: PMC10858604 DOI: 10.1186/s12935-024-03220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
The incidence of melanoma, the most lethal form of skin cancer, has increased due to ultraviolet exposure. The treatment of advanced melanoma, particularly metastatic cases, remains challenging with poor outcomes. Targeted therapies involving BRAF/MEK inhibitors and immunotherapy based on anti-PD1/anti-CTLA4 antibodies have achieved long-term survival rates of approximately 50% for patients with advanced melanoma. However, therapy resistance and inadequate treatment response continue to hinder further breakthroughs in treatments that increase survival rates. This review provides an introduction to the molecular-level pathogenesis of melanoma and offers an overview of current treatment options and their limitations. Cells can die by either accidental or regulated cell death (RCD). RCD is an orderly cell death controlled by a variety of macromolecules to maintain the stability of the internal environment. Since the uncontrolled proliferation of tumor cells requires evasion of RCD programs, inducing the RCD of melanoma cells may be a treatment strategy. This review summarizes studies on various types of nonapoptotic RCDs, such as autophagy-dependent cell death, necroptosis, ferroptosis, pyroptosis, and the recently discovered cuproptosis, in the context of melanoma. The relationships between these RCDs and melanoma are examined, and the interplay between these RCDs and immunotherapy or targeted therapy in patients with melanoma is discussed. Given the findings demonstrating melanoma cell death in response to different stimuli associated with these RCDs, the induction of RCD shows promise as an integral component of treatment strategies for melanoma.
Collapse
Affiliation(s)
- Ming-Yun Hsieh
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Sheng-Kai Hsu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Tzu-Yu Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Chien-Chih Chiu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| |
Collapse
|
47
|
Li Y, Wei X, Wang Y, Wang W, Zhang C, Kong D, Liu Y. Identification and validation of a copper homeostasis-related gene signature for the predicting prognosis of breast cancer patients via integrated bioinformatics analysis. Sci Rep 2024; 14:3141. [PMID: 38326441 PMCID: PMC10850146 DOI: 10.1038/s41598-024-53560-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
The prognostic value of copper homeostasis-related genes in breast cancer (BC) remains largely unexplored. We analyzed copper homeostasis-related gene profiles within The Cancer Genome Atlas Program breast cancer cohorts and performed correlation analysis to explore the relationship between copper homeostasis-related mRNAs (chrmRNA) and lncRNAs. Based on these results, we developed a gene signature-based risk assessment model to predict BC patient outcomes using Cox regression analysis and a nomogram, which was further validated in a cohort of 72 BC patients. Using the gene set enrichment analysis, we identified 139 chrmRNAs and 16 core mRNAs via the Protein-Protein Interaction network. Additionally, our copper homeostasis-related lncRNAs (chrlncRNAs) (PINK1.AS, OIP5.AS1, HID.AS1, and MAPT.AS1) were evaluated as gene signatures of the predictive model. Kaplan-Meier survival analysis revealed that patients with a high-risk gene signature had significantly poorer clinical outcomes. Receiver operating characteristic curves showed that the prognostic value of the chrlncRNAs model reached 0.795 after ten years. Principal component analysis demonstrated the capability of the model to distinguish between low- and high-risk BC patients based on the gene signature. Using the pRRophetic package, we screened out 24 anticancer drugs that exhibited a significant relationship with the predictive model. Notably, we observed higher expression levels of the four chrlncRNAs in tumor tissues than in the adjacent normal tissues. The correlation between our model and the clinical characteristics of patients with BC highlights the potential of chrlncRNAs for predicting tumor progression. This novel gene signature not only predicts the prognosis of patients with BC but also suggests that targeting copper homeostasis may be a viable treatment strategy.
Collapse
Affiliation(s)
- Yi Li
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 6, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xiuxian Wei
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 6, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yuning Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 6, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Wenzhuo Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 6, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 6, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Deguang Kong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060, People's Republic of China.
| | - Yu Liu
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 6, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
48
|
Ban XX, Wan H, Wan XX, Tan YT, Hu XM, Ban HX, Chen XY, Huang K, Zhang Q, Xiong K. Copper Metabolism and Cuproptosis: Molecular Mechanisms and Therapeutic Perspectives in Neurodegenerative Diseases. Curr Med Sci 2024; 44:28-50. [PMID: 38336987 DOI: 10.1007/s11596-024-2832-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/17/2023] [Indexed: 02/12/2024]
Abstract
Copper is an essential trace element, and plays a vital role in numerous physiological processes within the human body. During normal metabolism, the human body maintains copper homeostasis. Copper deficiency or excess can adversely affect cellular function. Therefore, copper homeostasis is stringently regulated. Recent studies suggest that copper can trigger a specific form of cell death, namely, cuproptosis, which is triggered by excessive levels of intracellular copper. Cuproptosis induces the aggregation of mitochondrial lipoylated proteins, and the loss of iron-sulfur cluster proteins. In neurodegenerative diseases, the pathogenesis and progression of neurological disorders are linked to copper homeostasis. This review summarizes the advances in copper homeostasis and cuproptosis in the nervous system and neurodegenerative diseases. This offers research perspectives that provide new insights into the targeted treatment of neurodegenerative diseases based on cuproptosis.
Collapse
Affiliation(s)
- Xiao-Xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, 430013, China
| | - Ya-Ting Tan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 430013, China
| | - Hong-Xia Ban
- Affiliated Hospital, Inner Mongolia Medical University, Hohhot, 010050, China
| | - Xin-Yu Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Kun Huang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
- Hunan Key Laboratory of Ophthalmology, Changsha, 430013, China.
| |
Collapse
|
49
|
Zhang H, Nagai J, Hao L, Jiang X. Identification of Key Genes and Immunological Features Associated with Copper Metabolism in Parkinson's Disease by Bioinformatics Analysis. Mol Neurobiol 2024; 61:799-811. [PMID: 37659036 DOI: 10.1007/s12035-023-03565-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
To explore diagnostic genes associated with cuproptosis in Parkinson's disease (PD) and to characterize immune cell infiltration by comprehensive bioinformatics analysis, three PD datasets were downloaded from the GEO database, two of which were merged and preprocessed as the internal training set and the remaining one as the external validation set. Based on the internal training set, differential analysis was performed to obtain differentially expressed genes (DEGs), and weighted gene co-expression network analysis (WGCNA) was conducted to obtain significant module genes. The genes obtained here were intersected to form the intersecting genes. The intersecting genes obtained from DEGs and WGCNA were intersected with cuproptosis-related genes (CRGs) to generate cuproptosis-related disease signature genes, and functional enrichment analysis was performed on Disease Ontology (DO), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, LASSO analysis of the cuproptosis-related disease signature genes was performed to identify key genes and construct a diagnostic and predictive model. Then, single sample gene set enrichment analysis (ssGSEA) was performed on the internal training set to further analyze the correlation between key genes and immune cells. Lastly, the results were validated using an external validation set. A total of 405 DEGs were obtained by differential analysis, and 6 gene modules were identified by WGCNA analysis. The genes in the most significant modules were intersected with the DEGs to obtain 21 intersecting genes. The functions of the intersecting genes were mainly enriched in neurotransmitter transport, GABA-ergic synapse, synaptic vesicle cycle, serotonergic synapse, phenylalanine metabolism, tyrosine metabolism, tryptophan metabolism, etc. Subsequently, the intersecting genes were intersected with CRGs, and LASSO regression analysis was performed to screen 3 key cuproptosis-related disease signature genes, namely, SLC18A2, SLC6A3, and SV2C. The calibration curve of the nomogram model constructed based on these 3 key genes to predict PD showed good agreement, with a C-index of 0.944 and an area under the ROC (AUC) of 0.944 (0.833-1.000). It was also validated by the external dataset that the model constructed with these 3 key genes had good diagnostic and predictive power for PD. The ssGSEA analysis revealed that neutrophils might be the potential core immune cells and that SLC18A2, SLC6A3, and SV2C were significantly negatively correlated with neutrophils, which was also verified in the validation set. PD diagnosis and prediction model based on CRGs (SLC18A2, SLC6A3, and SV2C) has good diagnostic and predictive performance and could be a useful tool in the diagnosis of PD.
Collapse
Affiliation(s)
- Haofuzi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, 351-0198, Japan
| | - Jun Nagai
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, 351-0198, Japan
| | - Lu Hao
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
- Department of Nursing, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
50
|
Li P, Wang S, Wan H, Huang Y, Yin K, Sun K, Jin H, Wang Z. Construction of disulfidptosis-based immune response prediction model with artificial intelligence and validation of the pivotal grouping oncogene c-MET in regulating T cell exhaustion. Front Immunol 2024; 15:1258475. [PMID: 38352883 PMCID: PMC10862485 DOI: 10.3389/fimmu.2024.1258475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
Background Given the lack of research on disulfidptosis, our study aimed to dissect its role in pan-cancer and explore the crosstalk between disulfidptosis and cancer immunity. Methods Based on TCGA, ICGC, CGGA, GSE30219, GSE31210, GSE37745, GSE50081, GSE22138, GSE41613, univariate Cox regression, LASSO regression, and multivariate Cox regression were used to construct the rough gene signature based on disulfidptosis for each type of cancer. SsGSEA and Cibersort, followed by correlation analysis, were harnessed to explore the linkage between disulfidptosis and cancer immunity. Weighted correlation network analysis (WGCNA) and Machine learning were utilized to make a refined prognosis model for pan-cancer. In particular, a customized, enhanced prognosis model was made for glioma. The siRNA transfection, FACS, ELISA, etc., were employed to validate the function of c-MET. Results The expression comparison of the disulfidptosis-related genes (DRGs) between tumor and nontumor tissues implied a significant difference in most cancers. The correlation between disulfidptosis and immune cell infiltration, including T cell exhaustion (Tex), was evident, especially in glioma. The 7-gene signature was constructed as the rough model for the glioma prognosis. A pan-cancer suitable DSP clustering was made and validated to predict the prognosis. Furthermore, two DSP groups were defined by machine learning to predict the survival and immune therapy response in glioma, which was validated in CGGA. PD-L1 and other immune pathways were highly enriched in the core blue gene module from WGCNA. Among them, c-MET was validated as a tumor driver gene and JAK3-STAT3-PD-L1/PD1 regulator in glioma and T cells. Specifically, the down-regulation of c-MET decreased the proportion of PD1+ CD8+ T cells. Conclusion To summarize, we dissected the roles of DRGs in the prognosis and their relationship with immunity in pan-cancer. A general prognosis model based on machine learning was constructed for pan-cancer and validated by external datasets with a consistent result. In particular, a survival-predicting model was made specifically for patients with glioma to predict its survival and immune response to ICIs. C-MET was screened and validated for its tumor driver gene and immune regulation function (inducing t-cell exhaustion) in glioma.
Collapse
Affiliation(s)
- Pengping Li
- Department of Thyroid and Breast Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Shaowen Wang
- Neuromedicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hong Wan
- Department of General Surgery, Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuqing Huang
- Department of Thyroid and Breast Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Kexin Yin
- Department of Thyroid and Breast Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Ke Sun
- Department of Thyroid and Breast Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Haigang Jin
- Department of Thyroid and Breast Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Zhenyu Wang
- Department of Thyroid and Breast Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|