1
|
Mari S, Lecomte CG, Merlet AN, Audet J, Yassine S, Eddaoui O, Genois G, Nadeau C, Harnie J, Rybak IA, Prilutsky BI, Frigon A. Changes in intra- and interlimb reflexes from hindlimb cutaneous afferents after staggered thoracic lateral hemisections during locomotion in cats. J Physiol 2024; 602:1987-2017. [PMID: 38593215 PMCID: PMC11068482 DOI: 10.1113/jp286151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
When the foot dorsum contacts an obstacle during locomotion, cutaneous afferents signal central circuits to coordinate muscle activity in the four limbs. Spinal cord injury disrupts these interactions, impairing balance and interlimb coordination. We evoked cutaneous reflexes by electrically stimulating left and right superficial peroneal nerves before and after two thoracic lateral hemisections placed on opposite sides of the cord at 9- to 13-week interval in seven adult cats (4 males and 3 females). We recorded reflex responses in ten hindlimb and five forelimb muscles bilaterally. After the first (right T5-T6) and second (left T10-T11) hemisections, coordination of the fore- and hindlimbs was altered and/or became less consistent. After the second hemisection, cats required balance assistance to perform quadrupedal locomotion. Short-latency reflex responses in homonymous and crossed hindlimb muscles largely remained unaffected after staggered hemisections. However, mid- and long-latency homonymous and crossed responses in both hindlimbs occurred less frequently after staggered hemisections. In forelimb muscles, homolateral and diagonal mid- and long-latency response occurrence significantly decreased after the first and second hemisections. In all four limbs, however, when present, short-, mid- and long-latency responses maintained their phase-dependent modulation. We also observed reduced durations of short-latency inhibitory homonymous responses in left hindlimb extensors early after the first hemisection and delayed short-latency responses in the right ipsilesional hindlimb after the first hemisection. Therefore, changes in cutaneous reflex responses correlated with impaired balance/stability and interlimb coordination during locomotion after spinal cord injury. Restoring reflex transmission could be used as a biomarker to facilitate locomotor recovery. KEY POINTS: Cutaneous afferent inputs coordinate muscle activity in the four limbs during locomotion when the foot dorsum contacts an obstacle. Thoracic spinal cord injury disrupts communication between spinal locomotor centres located at cervical and lumbar levels, impairing balance and limb coordination. We investigated cutaneous reflexes during quadrupedal locomotion by electrically stimulating the superficial peroneal nerve bilaterally, before and after staggered lateral thoracic hemisections of the spinal cord in cats. We showed a loss/reduction of mid- and long-latency responses in all four limbs after staggered hemisections, which correlated with altered coordination of the fore- and hindlimbs and impaired balance. Targeting cutaneous reflex pathways projecting to the four limbs could help develop therapeutic approaches aimed at restoring transmission in ascending and descending spinal pathways.
Collapse
Affiliation(s)
- Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Charly G. Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Angèle N. Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Oussama Eddaoui
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Gabriel Genois
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Charlène Nadeau
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
2
|
Zhang X, Shao J, Wang C, Liu C, Hao H, Li X, An Y, He J, Zhao W, Zhao Y, Kong Y, Jia Z, Wan S, Yuan Y, Zhang H, Zhang H, Du X. TMC7 functions as a suppressor of Piezo2 in primary sensory neurons blunting peripheral mechanotransduction. Cell Rep 2024; 43:114014. [PMID: 38568807 DOI: 10.1016/j.celrep.2024.114014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024] Open
Abstract
The transmembrane channel-like (TMC) protein family comprises eight members, with TMC1 and TMC2 being extensively studied. This study demonstrates substantial co-expression of TMC7 with the mechanosensitive channel Piezo2 in somatosensory neurons. Genetic deletion of TMC7 in primary sensory ganglia neurons in vivo enhances sensitivity in both physiological and pathological mechanosensory transduction. This deletion leads to an increase in proportion of rapidly adapting (RA) currents conducted by Piezo2 in dorsal root ganglion (DRG) neurons and accelerates RA deactivation kinetics. In HEK293 cells expressing both proteins, TMC7 significantly suppresses the current amplitudes of co-expressed Piezo2. Our findings reveal that TMC7 and Piezo2 exhibit physical interactions, and both proteins also physically interact with cytoskeletal β-actin. We hypothesize that TMC7 functions as an inhibitory modulator of Piezo2 in DRG neurons, either through direct inhibition or by disrupting the transmission of mechanical forces from the cytoskeleton to the channel.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jichen Shao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Caixue Wang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China; The Forth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chao Liu
- Department of Animal Care, The Key Laboratory of Experimental Animal, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Han Hao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xinmeng Li
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yating An
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinsha He
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Weixin Zhao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiwen Zhao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Youzhen Kong
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhanfeng Jia
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shaopo Wan
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Yi Yuan
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Huiran Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hailin Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaona Du
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
3
|
Mihailovic JM, Sanganahalli BG, Hyder F, Chitturi J, Elkabes S, Heary RF, Kannurpatti SS. Cross-hemicord spinal fiber reorganization associates with cortical sensory and motor network expansion in the rat model of hemicontusion cervical spinal cord injury. Neurosci Lett 2024; 820:137607. [PMID: 38141752 PMCID: PMC10797561 DOI: 10.1016/j.neulet.2023.137607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Magnetic resonance imaging plays an important role in characterizing microstructural changes and reorganization after traumatic injuries to the nervous system. In this study, we tested the feasibility of ex-vivo spinal cord diffusion tensor imaging (DTI) in combination with in vivo brain functional MRI to characterize spinal reorganization and its supraspinal association after a hemicontusion cervical spinal cord injury (SCI). DTI parameters (fractional anisotropy [FA], mean diffusion [MD]) and fiber orientation changes related to reorganization in the contused cervical spinal cord were compared to sham specimens. Altered fiber density and fiber directions occurred across the ipsilateral and contralateral hemicords but with only ipsilateral FA and MD changes. The hemicontusion SCI resulted in ipsilateral fiber breaks, voids and vivid fiber reorientations along the injury epicenter. Fiber directional changes below the injury level were primarily inter-hemispheric, indicating prominent below-level cross-hemispheric reorganization. In vivo resting state functional connectivity of the brain from the respective rats before obtaining the spinal cord samples indicated spatial expansion and increased connectivity strength across both the sensory and motor networks after SCI. The consistency of the neuroplastic changes along the neuraxis (both brain and spinal cord) at the single-subject level, indicates that distinctive reorganizational relationships exist between the spinal cord and the brain post-SCI.
Collapse
Affiliation(s)
- Jelena M Mihailovic
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520, United States.
| | - Basavaraju G Sanganahalli
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520, United States.
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520, United States.
| | - Jyothsna Chitturi
- Department of Radiology, Rutgers Biomedical and Health Sciences-New Jersey Medical School, 30 Bergen Street, Newark, NJ 07103, United States
| | - Stella Elkabes
- Department of Neurosurgery, Rutgers Biomedical and Health Sciences-New Jersey Medical School. 205 South Orange Avenue, Newark, NJ 07103, United States.
| | - Robert F Heary
- Division of Neurosurgery, Hackensack Meridian School of Medicine, Mountainside Medical Center, Montclair, NJ, United States.
| | - Sridhar S Kannurpatti
- Department of Radiology, Rutgers Biomedical and Health Sciences-New Jersey Medical School, 30 Bergen Street, Newark, NJ 07103, United States.
| |
Collapse
|
4
|
Mondello SE, Young L, Dang V, Fischedick AE, Tolley NM, Wang T, Bravo MA, Lee D, Tucker B, Knoernschild M, Pedigo BD, Horner PJ, Moritz CT. Optogenetic spinal stimulation promotes new axonal growth and skilled forelimb recovery in rats with sub-chronic cervical spinal cord injury. J Neural Eng 2023; 20:056005. [PMID: 37524080 PMCID: PMC10496592 DOI: 10.1088/1741-2552/acec13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Objective.Spinal cord injury (SCI) leads to debilitating sensorimotor deficits that greatly limit quality of life. This work aims to develop a mechanistic understanding of how to best promote functional recovery following SCI. Electrical spinal stimulation is one promising approach that is effective in both animal models and humans with SCI. Optogenetic stimulation is an alternative method of stimulating the spinal cord that allows for cell-type-specific stimulation. The present work investigates the effects of preferentially stimulating neurons within the spinal cord and not glial cells, termed 'neuron-specific' optogenetic spinal stimulation. We examined forelimb recovery, axonal growth, and vasculature after optogenetic or sham stimulation in rats with cervical SCI.Approach.Adult female rats received a moderate cervical hemicontusion followed by the injection of a neuron-specific optogenetic viral vector ipsilateral and caudal to the lesion site. Animals then began rehabilitation on the skilled forelimb reaching task. At four weeks post-injury, rats received a micro-light emitting diode (µLED) implant to optogenetically stimulate the caudal spinal cord. Stimulation began at six weeks post-injury and occurred in conjunction with activities to promote use of the forelimbs. Following six weeks of stimulation, rats were perfused, and tissue stained for GAP-43, laminin, Nissl bodies and myelin. Location of viral transduction and transduced cell types were also assessed.Main Results.Our results demonstrate that neuron-specific optogenetic spinal stimulation significantly enhances recovery of skilled forelimb reaching. We also found significantly more GAP-43 and laminin labeling in the optogenetically stimulated groups indicating stimulation promotes axonal growth and angiogenesis.Significance.These findings indicate that optogenetic stimulation is a robust neuromodulator that could enable future therapies and investigations into the role of specific cell types, pathways, and neuronal populations in supporting recovery after SCI.
Collapse
Affiliation(s)
- Sarah E Mondello
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Lisa Young
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Viet Dang
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Amanda E Fischedick
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Nicholas M Tolley
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Tian Wang
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Madison A Bravo
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Dalton Lee
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Belinda Tucker
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Megan Knoernschild
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Benjamin D Pedigo
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Philip J Horner
- Center for Neuroregeneration, Department of Neurological Surgery, Houston Methodist Research Institute, Houston, TX 77030, United States of America
| | - Chet T Moritz
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, United States of America
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, United States of America
| |
Collapse
|
5
|
Goltash S, Stevens SJ, Topcu E, Bui TV. Changes in synaptic inputs to dI3 INs and MNs after complete transection in adult mice. Front Neural Circuits 2023; 17:1176310. [PMID: 37476398 PMCID: PMC10354275 DOI: 10.3389/fncir.2023.1176310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction Spinal cord injury (SCI) is a debilitating condition that disrupts the communication between the brain and the spinal cord. Several studies have sought to determine how to revive dormant spinal circuits caudal to the lesion to restore movements in paralyzed patients. So far, recovery levels in human patients have been modest at best. In contrast, animal models of SCI exhibit more recovery of lost function. Previous work from our lab has identified dI3 interneurons as a spinal neuron population central to the recovery of locomotor function in spinalized mice. We seek to determine the changes in the circuitry of dI3 interneurons and motoneurons following SCI in adult mice. Methods After a complete transection of the spinal cord at T9-T11 level in transgenic Isl1:YFP mice and subsequent treadmill training at various time points of recovery following surgery, we examined changes in three key circuits involving dI3 interneurons and motoneurons: (1) Sensory inputs from proprioceptive and cutaneous afferents, (2) Presynaptic inhibition of sensory inputs, and (3) Central excitatory glutamatergic synapses from spinal neurons onto dI3 INs and motoneurons. Furthermore, we examined the possible role of treadmill training on changes in synaptic connectivity to dI3 interneurons and motoneurons. Results Our data suggests that VGLUT1+ inputs to dI3 interneurons decrease transiently or only at later stages after injury, whereas levels of VGLUT1+ remain the same for motoneurons after injury. Levels of VGLUT2+ inputs to dI3 INs and MNs may show transient increases but fall below levels seen in sham-operated mice after a period of time. Levels of presynaptic inhibition to VGLUT1+ inputs to dI3 INs and MNs can rise shortly after SCI, but those increases do not persist. However, levels of presynaptic inhibition to VGLUT1+ inputs never fell below levels observed in sham-operated mice. For some synaptic inputs studied, levels were higher in spinal cord-injured animals that received treadmill training, but these increases were observed only at some time points. Discussion These results suggest remodeling of spinal circuits involving spinal interneurons that have previously been implicated in the recovery of locomotor function after spinal cord injury in mice.
Collapse
|
6
|
Sun SY, Giszter SF, Harkema SJ, Angeli CA. Modular organization of locomotor networks in people with severe spinal cord injury. Front Neurosci 2022; 16:1041015. [PMID: 36570830 PMCID: PMC9768556 DOI: 10.3389/fnins.2022.1041015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Previous studies support modular organization of locomotor circuitry contributing to the activation of muscles in a spatially and temporally organized manner during locomotion. Human spinal circuitry may reorganize after spinal cord injury; however, it is unclear if reorganization of spinal circuitry post-injury affects the modular organization. Here we characterize the modular synergy organization of locomotor muscle activity expressed during assisted stepping in subjects with complete and incomplete spinal cord injury (SCI) of varying chronicity, before any explicit training regimen. We also investigated whether the synergy characteristics changed in two subjects who achieved independent walking after training with spinal cord epidural stimulation. Methods To capture synergy structures during stepping, individuals with SCI were stepped on a body-weight supported treadmill with manual facilitation, while electromyography (EMGs) were recorded from bilateral leg muscles. EMGs were analyzed using non-negative matrix factorization (NMF) and independent component analysis (ICA) to identify synergy patterns. Synergy patterns from the SCI subjects were compared across different clinical characteristics and to non-disabled subjects (NDs). Results Results for both NMF and ICA indicated that the subjects with SCI were similar among themselves, but expressed a greater variability in the number of synergies for criterion variance capture compared to NDs, and weaker correlation to NDs. ICA yielded a greater number of muscle synergies than NMF. Further, the clinical characteristics of SCI subjects and chronicity did not predict any significant differences in the spatial synergy structures despite any neuroplastic changes. Further, post-training synergies did not become closer to ND synergies in two individuals. Discussion These findings suggest fundamental differences between motor modules expressed in SCIs and NDs, as well as a striking level of spatial and temporal synergy stability in motor modules in the SCI population, absent the application of specific interventions.
Collapse
Affiliation(s)
- Soo Yeon Sun
- Department of Physical Therapy, Alvernia University, Reading, PA, United States
| | - Simon F. Giszter
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States,School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Susan J. Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States,Frazier Rehab Institute, University of Louisville Health, Louisville, KY, United States
| | - Claudia A. Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States,Frazier Rehab Institute, University of Louisville Health, Louisville, KY, United States,Department of Bioengineering, University of Louisville, Louisville, KY, United States,*Correspondence: Claudia A. Angeli,
| |
Collapse
|
7
|
Le Ray D, Guayasamin M. How Does the Central Nervous System for Posture and Locomotion Cope With Damage-Induced Neural Asymmetry? Front Syst Neurosci 2022; 16:828532. [PMID: 35308565 PMCID: PMC8927091 DOI: 10.3389/fnsys.2022.828532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/28/2022] Open
Abstract
In most vertebrates, posture and locomotion are achieved by a biomechanical apparatus whose effectors are symmetrically positioned around the main body axis. Logically, motor commands to these effectors are intrinsically adapted to such anatomical symmetry, and the underlying sensory-motor neural networks are correspondingly arranged during central nervous system (CNS) development. However, many developmental and/or life accidents may alter such neural organization and acutely generate asymmetries in motor operation that are often at least partially compensated for over time. First, we briefly present the basic sensory-motor organization of posturo-locomotor networks in vertebrates. Next, we review some aspects of neural plasticity that is implemented in response to unilateral central injury or asymmetrical sensory deprivation in order to substantially restore symmetry in the control of posturo-locomotor functions. Data are finally discussed in the context of CNS structure-function relationship.
Collapse
|
8
|
Lee KZ, Liou LM, Vinit S, Ren MY. Rostral-caudal effect of cervical magnetic stimulation on the diaphragm motor evoked potential following cervical spinal cord contusion in the rat. J Neurotrauma 2021; 39:683-700. [PMID: 34937419 DOI: 10.1089/neu.2021.0403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The present study was designed to investigate the rostro-caudal effect of spinal magnetic stimulation on diaphragmatic motor-evoked potentials following cervical spinal cord injury. The diaphragm electromyogram was recorded in rats that received a laminectomy or a left mid-cervical contusion at the acute (1 day), subchronic (2 weeks), or chronic (8 weeks) injured stages. The center of a figure-eight coil was placed at 30 mm lateral to bregma on the left side, and the effect of magnetic stimulation was evaluated by stimulating the rostral, middle, and caudal cervical regions in spontaneously breathing rats. The results demonstrated that cervical magnetic stimulation induced intensity-dependent motor-evoked potentials in the bilateral diaphragm in both uninjured and contused rats; however, the left diaphragm exhibited a higher amplitude and earlier onset than the right diaphragm. Moreover, the intensity-response curve was shifted upward in the rostral-to-caudal direction of magnetic stimulation, suggesting that caudal cervical magnetic stimulation produced more robust diaphragmatic motor-evoked potentials compared to rostral cervical magnetic stimulation. Interestingly, the diaphragmatic motor-evoked potentials were similar between uninjured and contused rats during cervical magnetic stimulation despite weaker inspiratory diaphragmatic activity in contused rats. Additionally, in contused animals but not uninjured animals, diaphragmatic motor-evoked potential amplitude were greater at the chronic stage than during earlier injured stages. These results demonstrated that cervical magnetic stimulation can excite the residual phrenic motor circuit to activate the diaphragm in the presence of a significant lesion in the cervical spinal cord. These findings indicate that this non-invasive approach is effective for modulating diaphragmatic excitability following cervical spinal cord injury.
Collapse
Affiliation(s)
- Kun-Ze Lee
- National Sun Yat-sen University, 34874, Biological Sciences, Kaohsiung, Taiwan;
| | - Li-Min Liou
- Kaohsiung Medical University Hospital, 89234, Neurology, Kaohsiung, Taiwan;
| | - Stéphane Vinit
- Université Paris-Saclay, 27048, UFR des Sciences de la Santé Simone Veil, Saint-Aubin, Île-de-France, France;
| | - Ming-Yue Ren
- National Sun Yat-sen University, 34874, Biological Sciences, Kaohsiung, Taiwan;
| |
Collapse
|
9
|
Deng L, Ravenscraft B, Xu XM. Exploring propriospinal neuron-mediated neural circuit plasticity using recombinant viruses after spinal cord injury. Exp Neurol 2021; 349:113962. [PMID: 34953895 DOI: 10.1016/j.expneurol.2021.113962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 11/04/2022]
Abstract
Propriospinal neurons (PSNs) play a crucial role in motor control and sensory processing and contribute to plastic reorganization of spinal circuits responsible for recovery from spinal cord injury (SCI). Due to their scattered distribution and various intersegmental projection patterns, it is challenging to dissect the function of PSNs within the neuronal network. New genetically encoded tools, particularly cell-type-specific transgene expression methods using recombinant viral vectors combined with other genetic, pharmacologic, and optogenetic approaches, have enormous potential for visualizing PSNs in the neuronal circuits and monitoring and manipulating their activity. Furthermore, recombinant viral tools have been utilized to promote the intrinsic regenerative capacities of PSNs, towards manipulating the 'hostile' microenvironment for improving functional regeneration of PSNs. Here we summarize the latest development in this fast-moving field and provide a perspective for using this technology to dissect PSN physiological role in contributing to recovery of function after SCI.
Collapse
Affiliation(s)
- Lingxiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Baylen Ravenscraft
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| |
Collapse
|
10
|
Unusual Quadrupedal Locomotion in Rat during Recovery from Lumbar Spinal Blockade of 5-HT 7 Receptors. Int J Mol Sci 2021; 22:ijms22116007. [PMID: 34199392 PMCID: PMC8199611 DOI: 10.3390/ijms22116007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/18/2023] Open
Abstract
Coordination of four-limb movements during quadrupedal locomotion is controlled by supraspinal monoaminergic descending pathways, among which serotoninergic ones play a crucial role. Here we investigated the locomotor pattern during recovery from blockade of 5-HT7 or 5-HT2A receptors after intrathecal application of SB269970 or cyproheptadine in adult rats with chronic intrathecal cannula implanted in the lumbar spinal cord. The interlimb coordination was investigated based on electromyographic activity recorded from selected fore- and hindlimb muscles during rat locomotion on a treadmill. In the time of recovery after hindlimb transient paralysis, we noticed a presence of an unusual pattern of quadrupedal locomotion characterized by a doubling of forelimb stepping in relation to unaffected hindlimb stepping (2FL-1HL) after blockade of 5-HT7 receptors but not after blockade of 5-HT2A receptors. The 2FL-1HL pattern, although transient, was observed as a stable form of fore-hindlimb coupling during quadrupedal locomotion. We suggest that modulation of the 5-HT7 receptors on interneurons located in lamina VII with ascending projections to the forelimb spinal network can be responsible for the 2FL-1HL locomotor pattern. In support, our immunohistochemical analysis of the lumbar spinal cord demonstrated the presence of the 5-HT7 immunoreactive cells in the lamina VII, which were rarely 5-HT2A immunoreactive.
Collapse
|
11
|
Moukarzel G, Lemay MA, Spence AJ. A MATLAB application for automated H-Reflex measurements and analyses. Biomed Signal Process Control 2021; 66. [PMID: 33815563 PMCID: PMC8011562 DOI: 10.1016/j.bspc.2021.102448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: H-Reflex is a test that is carried out to measure the relative excitability of reflex pathways. Although reliable, conventional methods consist of performing many small steps, which requires a high level of attentiveness, and thus can carry an elevated risk of human error, despite proper training. Equipment that is available to perform those tests with different levels of automation are typically proprietary, inextensible by the user, and expensive. Here we present a novel MATLAB application that can accurately and reliably perform automated H-Reflex measurements, test the stimulating electrodes, and carry out typical subsequent analyses. Methods: This application is a Graphical User Interface that works with inexpensive equipment and offers many important features such as measuring electrode impedance in-situ, automating lengthy measurements like recruitment curves and frequency response trials, standardizing electric stimulation properties, automatic exporting of digital data and metadata, and immediately analyzing acquired data with single-click events. Results: Our new method was validated against conventional H-Reflex measurement methods with 2 anesthetized rats. The difference between acquired data using both methods was negligible (mean difference=0.0038; std=0.0121). Our app also detected electrode impedance with high accuracy (94%). Conclusion: The method presented here allows reliable and efficient automated H-reflex measurements and can accurately analyze the collected data. Significance: The features provided by our app can speed up data collection and reduce human error, and unlike conventional methods, allow the user to analyze data immediately after the record. This can result in higher research quality and give broader access to the technique.
Collapse
Affiliation(s)
- George Moukarzel
- Temple University, College of Engineering, Philadelphia, PA, USA
| | - Michel A Lemay
- Temple University, College of Engineering, Philadelphia, PA, USA
| | - Andrew J Spence
- Temple University, College of Engineering, Philadelphia, PA, USA
| |
Collapse
|
12
|
Bras H, Liabeuf S. Differential effects of spinal cord transection on glycinergic and GABAergic synaptic signaling in sub-lesional lumbar motoneurons. J Chem Neuroanat 2020; 113:101847. [PMID: 32653413 DOI: 10.1016/j.jchemneu.2020.101847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 01/11/2023]
Abstract
This review takes stock on the impact of complete spinal cord transection (SCT) on the plasticity of inhibitory synaptic transmission on sub-lesional lumbar motoneurons (MNs), differentiating between studies in neonate and adult rats. After neonatal SCT, normal maturational up-regulation of glycine receptors was observed. On the other hand, the developmental downregulation of the GABAA receptors, as well as the up-regulation of the co-transporter KCC2 were prevented, but not the normal decrease of NKCC1. In adult SCT rats, glycinergic synaptic transmission, which is the major contributor to spinal MNs inhibition in adulthood, had normal control levels 2 months post-injury. On the other hand, the GABAergic transmission was altered through an up-regulation of the pre-signaling levels and a down-regulation in the density of post synaptic receptors. KCC2 membrane expression was down-regulated at all post-injury times tested (24h to 4 months), thereby depolarizing the Cl- equilibrium potential and reducing the strength of postsynaptic inhibition. The preservation of glycinergic pre- and post signaling is probably a key factor in the success of locomotor rehabilitation programs in adult SCT rats. However, these data highlight the need to develop strategies to restore KCC2 levels in lumbar MNs, to stabilize the excitation/inhibition balance, which is essential to the effective control of skeletal muscle activity.
Collapse
Affiliation(s)
- Hélène Bras
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix Marseille Université, Campus Santé Timone, 13385, Marseille, France.
| | - Sylvie Liabeuf
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix Marseille Université, Campus Santé Timone, 13385, Marseille, France
| |
Collapse
|
13
|
Doperalski AE, Montgomery LR, Mondello SE, Howland DR. Anatomical Plasticity of Rostrally Terminating Axons as a Possible Bridging Substrate across a Spinal Injury. J Neurotrauma 2020; 37:877-888. [PMID: 31774025 DOI: 10.1089/neu.2018.6193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transfer of information across a spinal lesion is required for many aspects of recovery across diverse motor systems. Our understanding of axonal plasticity and which subpopulations of neurons may contribute to bridging substrates following injury, however, remains relatively incomplete. Most recently, attention has been directed to propriospinal neurons (PSNs), with research suggesting that they are capable of bridging a spinal lesion in rodents. In the current study, subpopulations of both long (C5) and short (T6, T8) PSNs-as well as a supraspinal system, the rubrospinal tract (RST)-were assessed following low thoracic (T9) hemisection in the cat using the retrograde tracer Fluoro-Gold. Acutely, within 2 weeks post-hemisection, the numbers of short and long PSNs, as well as contralateral RST neurons, with axons crossing the lesion were significantly decreased relative to uninjured controls. This decrease persisted bilaterally and was permanent in the long PSNs and the contralateral red nucleus (RN). However, by 16 weeks post-hemisection, the numbers of ipsilesional and contralesional short PSNs bridging the lesion were significantly increased. Further, the number of contralesional contributing short PSNs was significantly greater in injured animals than in uninjured animals. A significant increase over uninjured numbers also was seen in the ipsilateral (non-axotomized) RN. These findings suggest that a novel substrate of undamaged axons, which normally terminates rostral to the lesion, grows past a thoracic lesion after injury. This rostral population represents a major component of the bridging substrate seen and may represent an important anatomical target for evolving rehabilitation approaches as a substrate capable of contributing to functional recovery.
Collapse
Affiliation(s)
- Adele E Doperalski
- Department of Biology, American University, Washington DC.,Department of Neuroscience, University of Florida, Gainesville, Florida.,Malcom Randall VA Medical Center, Gainesville, Florida
| | - Lynnette R Montgomery
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Robley Rex VA Medical Center, Louisville, Kentucky
| | - Sarah E Mondello
- Department of Neuroscience, University of Florida, Gainesville, Florida.,Malcom Randall VA Medical Center, Gainesville, Florida.,Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
| | - Dena R Howland
- Department of Neuroscience, University of Florida, Gainesville, Florida.,Malcom Randall VA Medical Center, Gainesville, Florida.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Robley Rex VA Medical Center, Louisville, Kentucky
| |
Collapse
|
14
|
Laliberte AM, Goltash S, Lalonde NR, Bui TV. Propriospinal Neurons: Essential Elements of Locomotor Control in the Intact and Possibly the Injured Spinal Cord. Front Cell Neurosci 2019; 13:512. [PMID: 31798419 PMCID: PMC6874159 DOI: 10.3389/fncel.2019.00512] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022] Open
Abstract
Propriospinal interneurons (INs) communicate information over short and long distances within the spinal cord. They act to coordinate different parts of the body by linking motor circuits that control muscles across the forelimbs, trunk, and hindlimbs. Their role in coordinating locomotor circuits near and far may be invaluable to the recovery of locomotor function lost due to injury to the spinal cord where the flow of motor commands from the brain and brainstem to spinal motor circuits is disrupted. The formation and activation of circuits established by spared propriospinal INs may promote the re-emergence of locomotion. In light of progress made in animal models of spinal cord injury (SCI) and in human patients, we discuss the role of propriospinal INs in the intact spinal cord and describe recent studies investigating the assembly and/or activation of propriospinal circuits to promote recovery of locomotion following SCI.
Collapse
Affiliation(s)
- Alex M Laliberte
- Department of Biology, Faculty of Science, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Sara Goltash
- Department of Biology, Faculty of Science, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Nicolas R Lalonde
- Department of Biology, Faculty of Science, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Tuan Vu Bui
- Department of Biology, Faculty of Science, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
15
|
Swieck K, Conta-Steencken A, Middleton FA, Siebert JR, Osterhout DJ, Stelzner DJ. Effect of lesion proximity on the regenerative response of long descending propriospinal neurons after spinal transection injury. BMC Neurosci 2019; 20:10. [PMID: 30885135 PMCID: PMC6421714 DOI: 10.1186/s12868-019-0491-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 03/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background The spinal cord is limited in its capacity to repair after damage caused by injury or disease. However, propriospinal (PS) neurons in the spinal cord have demonstrated a propensity for axonal regeneration after spinal cord injury. They can regrow and extend axonal projections to re-establish connections across a spinal lesion. We have previously reported differential reactions of two distinct PS neuronal populations—short thoracic propriospinal (TPS) and long descending propriospinal tract (LDPT) neurons—following a low thoracic (T10) spinal cord injury in a rat model. Immediately after injury, TPS neurons undergo a strong initial regenerative response, defined by the upregulation of transcripts to several growth factor receptors, and growth associated proteins. Many also initiate a strong apoptotic response, leading to cell death. LDPT neurons, on the other hand, show neither a regenerative nor an apoptotic response. They show either a lowered expression or no change in genes for a variety of growth associated proteins, and these neurons survive for at least 2 months post-axotomy. There are several potential explanations for this lack of cellular response for LDPT neurons, one of which is the distance of the LDPT cell body from the T10 lesion. In this study, we examined the molecular response of LDPT neurons to axotomy caused by a proximal spinal cord lesion. Results Utilizing laser capture microdissection and RNA quantification with branched DNA technology, we analyzed the change in gene expression in LDPT neurons following axotomy near their cell body. Expression patterns of 34 genes selected for their robust responses in TPS neurons were analyzed 3 days following a T2 spinal lesion. Our results show that after axonal injury nearer their cell bodies, there was a differential response of the same set of genes evaluated previously in TPS neurons after proximal axotomy, and LDPT neurons after distal axotomy (T10 spinal transection). The genetic response was much less robust than for TPS neurons after proximal axotomy, included both increased and decreased expression of certain genes, and did not suggest either a major regenerative or apoptotic response within the population of genes examined. Conclusions The data collectively demonstrate that the location of axotomy in relation to the soma of a neuron has a major effect on its ability to mount a regenerative response. However, the data also suggest that there are endogenous differences in the LDPT and TPS neuronal populations that affect their response to axotomy. These phenotypic differences may indicate that different or multiple therapies may be needed following spinal cord injury to stimulate maximal regeneration of all PS axons.
Collapse
Affiliation(s)
- Kristen Swieck
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
| | - Amanda Conta-Steencken
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
| | - Frank A Middleton
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
| | - Justin R Siebert
- Department of Biology, Slippery Rock University, 1 Morrow Way, Slippery Rock, PA, 16057, USA
| | - Donna J Osterhout
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA.
| | - Dennis J Stelzner
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
| |
Collapse
|
16
|
Zhou R, Parhizi B, Assh J, Alvarado L, Ogilvie R, Chong SL, Mushahwar VK. Effect of cervicolumbar coupling on spinal reflexes during cycling after incomplete spinal cord injury. J Neurophysiol 2018; 120:3172-3186. [DOI: 10.1152/jn.00509.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spinal networks in the cervical and lumbar cord are actively coupled during locomotion to coordinate arm and leg activity. The goals of this project were to investigate the intersegmental cervicolumbar connectivity during cycling after incomplete spinal cord injury (iSCI) and to assess the effect of rehabilitation training on improving reflex modulation mediated by cervicolumbar pathways. Two studies were conducted. In the first, 22 neurologically intact (NI) people and 10 people with chronic iSCI were recruited. The change in H-reflex amplitude in flexor carpi radialis (FCR) during leg cycling and H-reflex amplitude in soleus (SOL) during arm cycling were investigated. In the second study, two groups of participants with chronic iSCI underwent 12 wk of cycling training: one performed combined arm and leg cycling (A&L) and the other legs only cycling (Leg). The effect of training paradigm on the amplitude of the SOL H-reflex was assessed. Significant reduction in the amplitude of both FCR and SOL H-reflexes during dynamic cycling of the opposite limbs was found in NI participants but not in participants with iSCI. Nonetheless, there was a significant reduction in the SOL H-reflex during dynamic arm cycling in iSCI participants after training. Substantial improvements in SOL H-reflex properties were found in the A&L group after training. The results demonstrate that cervicolumbar modulation during rhythmic movements is disrupted in people with chronic iSCI; however, this modulation is restored after cycling training. Furthermore, involvement of the arms simultaneously with the legs during training may better regulate the leg spinal reflexes.NEW & NOTEWORTHY This work systematically demonstrates the disruptive effect of incomplete spinal cord injury on cervicolumbar coupling during rhythmic locomotor movements. It also shows that the impaired cervicolumbar coupling could be significantly restored after cycling training. Actively engaging the arms in rehabilitation paradigms for the improvement of walking substantially regulates the excitability of the lumbar spinal networks. The resulting regulation may be better than that obtained by interventions that focus on training of the legs only.
Collapse
Affiliation(s)
- R. Zhou
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - B. Parhizi
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - J. Assh
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - L. Alvarado
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - R. Ogilvie
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - S. L. Chong
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - V. K. Mushahwar
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
17
|
Krisa L, Runyen M, Detloff MR. Translational Challenges of Rat Models of Upper Extremity Dysfunction After Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2018; 24:195-205. [PMID: 29997423 DOI: 10.1310/sci2403-195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There are approximately 17,500 new spinal cord injury (SCI) cases each year in the United States, with the majority of cases resulting from a traumatic injury. Damage to the spinal cord causes either temporary or permanent changes in sensorimotor function. Given that the majority of human SCIs occur in the cervical spinal level, the experimental animal models of forelimb dysfunction play a large role in the ability to translate basic science research to clinical application. However, the variation in the design of clinical and basic science studies of forelimb/upper extremity (UE) function prevents the ease of translation. This review provides an overview of experimental models of forelimb dysfunction used in SCI research with special emphasis on the rat model of SCI. The anatomical location and types of experimental cervical lesions, functional assessments, and rehabilitation strategies used in the basic science laboratory are reviewed. Finally, we discuss the challenges of translating animal models of forelimb dysfunction to the clinical SCI human population.
Collapse
Affiliation(s)
- Laura Krisa
- Department of Occupational Therapy, Jefferson College of Health Professions, Jefferson (Philadelphia University + Thomas Jefferson University), Philadelphia, Pennsylvania.,Department of Physical Therapy, Jefferson College of Health Professions, Jefferson (Philadelphia University + Thomas Jefferson University), Philadelphia, Pennsylvania
| | - Madeline Runyen
- Department of Occupational Therapy, Jefferson College of Health Professions, Jefferson (Philadelphia University + Thomas Jefferson University), Philadelphia, Pennsylvania
| | - Megan Ryan Detloff
- Department of Neurobiology & Anatomy, Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
18
|
Chhaya SJ, Quiros-Molina D, Tamashiro-Orrego AD, Houlé JD, Detloff MR. Exercise-Induced Changes to the Macrophage Response in the Dorsal Root Ganglia Prevent Neuropathic Pain after Spinal Cord Injury. J Neurotrauma 2018; 36:877-890. [PMID: 30152715 DOI: 10.1089/neu.2018.5819] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spinal cord injury (SCI) induces neuropathic pain that is refractory to treatment. Central and peripheral immune responses to SCI play critical roles in pain development. Although immune responses in the dorsal horn have been implicated in SCI-pain, immune mechanisms in the periphery, especially in the dorsal root ganglia (DRG), where nociceptor cell bodies reside, have not been well studied. Exercise is an immunomodulator, and we showed previously that early exercise after SCI reduces pain development. However, the mechanisms of exercise-mediated pain reduction are not understood. Therefore, we examined the 1) underlying immune differences in the spinal cord and DRG between rats with and without pain and 2) immunomodulatory effects of exercise in pain reduction. Rats were subjected to a unilateral contusion at C5 and tested for pain development using von Frey and mechanical conflict-avoidance paradigms. A subgroup of rats was exercised on forced running wheels starting at 5 days post-injury for 4 weeks. We observed greater microglial activation in the C7-C8 dorsal horn of rats with SCI-induced pain compared to rats with normal sensation, and early exercise reduced this activation independently of pain behavior. Further, abnormal pain sensation strongly correlated with an increased number of DRG macrophages. Importantly, exercise-treated rats that maintain normal sensation also have a lower number of macrophages in the DRG. Our data suggest that macrophage presence in the DRG may be an important effector of pain development, and early wheel walking exercise may mediate pain prevention by modulating the injury-induced macrophage response in the DRG. Further supportive evidence demonstrated that rats that developed pain despite exercise intervention still displayed a significantly elevated number of macrophages in the DRG. Collectively, these data suggest that macrophage presence in the DRG may be an amenable cellular target for future therapies.
Collapse
Affiliation(s)
- Soha J Chhaya
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, College of Medicine Drexel University Philadelphia, Pennsylvania
| | - Daniel Quiros-Molina
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, College of Medicine Drexel University Philadelphia, Pennsylvania
| | - Alessandra D Tamashiro-Orrego
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, College of Medicine Drexel University Philadelphia, Pennsylvania
| | - John D Houlé
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, College of Medicine Drexel University Philadelphia, Pennsylvania
| | - Megan Ryan Detloff
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, College of Medicine Drexel University Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Khalki L, Sadlaoud K, Lerond J, Coq JO, Brezun JM, Vinay L, Coulon P, Bras H. Changes in innervation of lumbar motoneurons and organization of premotor network following training of transected adult rats. Exp Neurol 2018; 299:1-14. [DOI: 10.1016/j.expneurol.2017.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 12/29/2022]
|
20
|
Vitores AA, Sloley SS, Martinez C, Carballosa-Gautam MM, Hentall ID. Some Autonomic Deficits of Acute or Chronic Cervical Spinal Contusion Reversed by Interim Brainstem Stimulation. J Neurotrauma 2017; 35:560-572. [PMID: 29160143 DOI: 10.1089/neu.2017.5123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Prolonged electrical stimulation of the hindbrain's nucleus raphe magnus (NRM) or of its major midbrain input region, the periaqueductal gray (PAG), was previously found in rats to promote recovery from sensory-motor and histological deficits of acute thoracic spinal cord injury (SCI). Here, some visceral deficits of acute and chronic midline cervical (C5) contusion are similarly examined. Cranially implanted wireless stimulators delivered intermittent 8 Hz, 30-70 μA cathodal pulse trains to a brainstem microelectrode. Injured controls were given inactive stimulators; rats without injuries or implants were also compared. Rectal distension or squeezing of the forepaws caused an exaggerated rise in mean arterial pressure in injured, untreated rats under anesthesia on post-injury week 6, probably reflecting autonomic dysreflexia (AD). These pressor responses became normal when 7 days of unilateral PAG stimulation was started on the injury day. Older untreated injuries (weeks 18-19) showed normal pressor responses, but unexpectedly had significant resting and nociceptive bradycardia, which was reversed by 3 weeks of PAG stimulation started on weeks 7 or 12. Subsequent chronic studies examined gastric emptying (GE), as indicated by intestinal transit of gavaged dye, and serum chemistry. GE and fasting serum insulin were reduced on injury weeks 14-15, and were both normalized by ∼5 weeks of PAG stimulation begun in weeks 7-8. Increases in calcitonin gene-related peptide, a prominent visceral afferent neurotransmitter, measured near untreated injuries (first thoracic segment) in superficial dorsal laminae were reversed by acutely or chronically initiated PAG stimulation. The NRM, given 2-3 weeks of stimulation beginning 2 days after SCI, prevented abnormalities in both pressor responses and GE on post-injury week 9, consistent with its relaying of repair commands from the PAG. The descending PAG-NRM axis thus exhibits broadly restorative influences on visceral as well as sensory-motor deficits, improving chronic as well as acute signs of injury.
Collapse
Affiliation(s)
- Alberto A Vitores
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Stephanie S Sloley
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Catalina Martinez
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Melissa M Carballosa-Gautam
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Ian D Hentall
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| |
Collapse
|
21
|
Smith AC, Weber KA, O'Dell DR, Parrish TB, Wasielewski M, Elliott JM. Lateral Corticospinal Tract Damage Correlates With Motor Output in Incomplete Spinal Cord Injury. Arch Phys Med Rehabil 2017; 99:660-666. [PMID: 29107041 DOI: 10.1016/j.apmr.2017.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/21/2017] [Accepted: 10/01/2017] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate the relationship between spinal cord damage and specific motor function in participants with incomplete spinal cord injury (iSCI). DESIGN Single-blinded, cross-sectional study design. SETTING University setting research laboratory. PARTICIPANTS Individuals with chronic cervical iSCI (N=14; 1 woman, 13 men; average age ± SD, 43±12y). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Axial T2-weighted magnetic resonance imaging (MRI) of spinal cord damage was performed in 14 participants with iSCI. Each participant's damage was processed for total damage quantification, lateral corticospinal tract (LCST) and gracile fasciculus (GF) analysis. Plantarflexion and knee extension were quantified using an isokinetic dynamometer. Walking ability was assessed using a 6-minute walk test. RESULTS Total damage was correlated with plantarflexion, knee extension, and distance walked in 6 minutes. Right LCST damage was correlated with right plantarflexion and right knee extension, while left LCST damage was correlated with left-sided measures. Right and left GF damage was not correlated with the motor output measures. CONCLUSIONS MRI measures of spinal cord damage were correlated to motor function, and this measure appears to have spatial specificity to descending tracts, which may offer prognostic value after SCI.
Collapse
Affiliation(s)
- Andrew C Smith
- Regis University School of Physical Therapy, Denver, CO; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL.
| | - Kenneth A Weber
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA
| | | | - Todd B Parrish
- Department of Radiology, Northwestern University, Chicago, IL
| | - Marie Wasielewski
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL
| | - James M Elliott
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL
| |
Collapse
|
22
|
AAV-KLF7 Promotes Descending Propriospinal Neuron Axonal Plasticity after Spinal Cord Injury. Neural Plast 2017; 2017:1621629. [PMID: 28884027 PMCID: PMC5572611 DOI: 10.1155/2017/1621629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/27/2017] [Accepted: 06/12/2017] [Indexed: 01/16/2023] Open
Abstract
DPSN axons mediate and maintain a variety of normal spinal functions. Unsurprisingly, DPSN tracts have been shown to mediate functional recovery following SCI. KLF7 could contribute to CST axon plasticity after spinal cord injury. In the present study, we assessed whether KLF7 could effectively promote DPSN axon regeneration and synapse formation following SCI. An AAV-KLF7 construct was used to overexpress KLF7. In vitro, KLF7 and target proteins were successfully elevated and axonal outgrowth was enhanced. In vivo, young adult C57BL/6 mice received a T10 contusion followed by an AAV-KLF7 injection at the T7–9 levels above the lesion. Five weeks later, overexpression of KLF7 was expressed in DPSN. KLF7 and KLF7 target genes (NGF, TrkA, GAP43, and P0) were detectably increased in the injured spinal cord. Myelin sparring at the lesion site, DPSN axonal regeneration and synapse formation, muscle weight, motor endplate morphology, and functional parameters were all additionally improved by KLF7 treatment. Our findings suggest that KLF7 promotes DPSN axonal plasticity and the formation of synapses with motor neurons at the caudal spinal cord, leading to improved functional recovery and further supporting the potential of AAV-KLF7 as a therapeutic agent for spinal cord injury.
Collapse
|
23
|
Kappos EA, Sieber PK, Engels PE, Mariolo AV, D'Arpa S, Schaefer DJ, Kalbermatten DF. Validity and reliability of the CatWalk system as a static and dynamic gait analysis tool for the assessment of functional nerve recovery in small animal models. Brain Behav 2017; 7:e00723. [PMID: 28729931 PMCID: PMC5516599 DOI: 10.1002/brb3.723] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 11/15/2016] [Accepted: 03/22/2017] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION A range of behavioral testing paradigms have been developed for the research of central and peripheral nerve injuries with the help of small animal models. Following any nerve repair strategy, improved functional outcome may be the most important evidence of axon regeneration. A novel automated gait analysis system, the CatWalk™, can measure dynamic as well as static gait patterns of small animals. Of most interest in detecting functional recovery are in particular dynamic gait parameters, coordination measures, and the intensity of the animals paw prints. This article is designed to lead to a more efficient choice of CatWalk parameters in future studies concerning the functional evaluation of nerve regeneration and simultaneously add to better interstudy comparability. METHODS The aims of the present paper are threefold: (1) to describe the functional method of CatWalk gait analysis, (2) to characterize different parameters acquired by CatWalk gait analysis, and to find the most frequently used parameters as well as (3) to compare their reliability and validity throughout the different studies. RESULTS In the reviewed articles, the most frequently used parameters were Swing Duration (30), Print Size (27), Stride Length (26), and Max Contact Area (24). Swing Duration was not only frequently used but was also the most reliable and valid parameter. Therefore, we hypothesize that Swing Duration constitutes an important parameter to be chosen for future studies, as it has the highest level of reliability and validity. CONCLUSION In conclusion, CatWalk can be used as a complementary approach to other behavioral testing paradigms to assess clinically relevant behavioral benefits, with the main advantage that this system demonstrates both static and dynamic gait parameters at the same time. Due to limited reliability and validity of certain parameters, we recommend that only the most frequently assessed parameters should be used in the future.
Collapse
Affiliation(s)
- Elisabeth A Kappos
- Division of Plastic, Reconstructive, Aesthetic and Hand Surgery Department of Surgery University Hospital of Basel Basel Switzerland.,Division of Neuropathology Institute of Pathology University Hospital of Basel Basel Switzerland
| | - Patricia K Sieber
- Division of Plastic, Reconstructive, Aesthetic and Hand Surgery Department of Surgery University Hospital of Basel Basel Switzerland.,Division of Neuropathology Institute of Pathology University Hospital of Basel Basel Switzerland
| | - Patricia E Engels
- Division of Plastic, Reconstructive, Aesthetic and Hand Surgery Department of Surgery University Hospital of Basel Basel Switzerland.,Division of Neuropathology Institute of Pathology University Hospital of Basel Basel Switzerland
| | - Alessio V Mariolo
- Plastic and Reconstructive Surgery Department of Surgery, Oncology and Stomatology University of Palermo Palermo Italy
| | - Salvatore D'Arpa
- Division of Plastic and Reconstructive Surgery Department of Surgery Ghent University Hospital Gent Belgium
| | - Dirk J Schaefer
- Division of Plastic, Reconstructive, Aesthetic and Hand Surgery Department of Surgery University Hospital of Basel Basel Switzerland
| | - Daniel F Kalbermatten
- Division of Plastic, Reconstructive, Aesthetic and Hand Surgery Department of Surgery University Hospital of Basel Basel Switzerland.,Division of Neuropathology Institute of Pathology University Hospital of Basel Basel Switzerland
| |
Collapse
|
24
|
Generating level-dependent models of cervical and thoracic spinal cord injury: Exploring the interplay of neuroanatomy, physiology, and function. Neurobiol Dis 2017; 105:194-212. [PMID: 28578003 DOI: 10.1016/j.nbd.2017.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/10/2017] [Accepted: 05/29/2017] [Indexed: 01/01/2023] Open
Abstract
The majority of spinal cord injuries (SCI) occur at the cervical level, which results in significant impairment. Neurologic level and severity of injury are primary endpoints in clinical trials; however, how level-specific damages relate to behavioural performance in cervical injury is incompletely understood. We hypothesized that ascending level of injury leads to worsening forelimb performance, and correlates with loss of neural tissue and muscle-specific neuron pools. A direct comparison of multiple models was made with injury realized at the C5, C6, C7 and T7 vertebral levels using clip compression with sham-operated controls. Animals were assessed for 10weeks post-injury with numerous (40) outcome measures, including: classic behavioural tests, CatWalk, non-invasive MRI, electrophysiology, histologic lesion morphometry, neuron counts, and motor compartment quantification, and multivariate statistics on the total dataset. Histologic staining and T1-weighted MR imaging revealed similar structural changes and distinct tissue loss with cystic cavitation across all injuries. Forelimb tests, including grip strength, F-WARP motor scale, Inclined Plane, and forelimb ladder walk, exhibited stratification between all groups and marked impairment with C5 and C6 injuries. Classic hindlimb tests including BBB, hindlimb ladder walk, bladder recovery, and mortality were not different between cervical and thoracic injuries. CatWalk multivariate gait analysis showed reciprocal and progressive changes forelimb and hindlimb function with ascending level of injury. Electrophysiology revealed poor forelimb axonal conduction in cervical C5 and C6 groups alone. The cervical enlargement (C5-T2) showed progressive ventral horn atrophy and loss of specific motor neuron populations with ascending injury. Multivariate statistics revealed a robust dataset, rank-order contribution of outcomes, and allowed prediction of injury level with single-level discrimination using forelimb performance and neuron counts. Level-dependent models were generated using clip-compression SCI, with marked and reliable differences in forelimb performance and specific neuron pool loss.
Collapse
|
25
|
Tentonin 3/TMEM150c Confers Distinct Mechanosensitive Currents in Dorsal-Root Ganglion Neurons with Proprioceptive Function. Neuron 2016; 91:107-18. [DOI: 10.1016/j.neuron.2016.05.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 04/02/2016] [Accepted: 05/16/2016] [Indexed: 11/18/2022]
|
26
|
Thibaudier Y, Hurteau MF, Dambreville C, Chraibi A, Goetz L, Frigon A. Interlimb Coordination during Tied-Belt and Transverse Split-Belt Locomotion before and after an Incomplete Spinal Cord Injury. J Neurotrauma 2016; 34:1751-1765. [PMID: 27219842 DOI: 10.1089/neu.2016.4421] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coordination between the arms/forelimbs and legs/hindlimbs is often impaired in humans and quadrupedal mammals after incomplete spinal cord injury. In quadrupeds, the forelimbs often take more steps than the hindlimbs, producing a two-to-one forelimb-hindlimb (2-1 FL-HL) coordination. In locomotor performance scales, this is generally considered a loss of FL-HL coordination. Here, FL-HL coordination was quantified before and 8 weeks after a lateral spinal hemisection at the sixth thoracic segment in six adult cats. Cats were tested during tied-belt locomotion (equal front and rear speeds) and transverse split-belt locomotion with the forelimbs or hindlimbs stepping faster. The results show that consistent phasing between forelimb and hindlimb movements was maintained after hemisection, even with the appearance of 2-1 FL-HL coordination, indicating that new stable forms of coordination emerge. Moreover, transverse split-belt locomotion potently modulated interlimb coordination and was capable of restoring a one-to-one FL-HL coordination with a faster treadmill speed for the hindlimbs. In conclusion, the results suggest that neural communication persists after an incomplete spinal cord injury, despite an unequal number of steps between the forelimbs and hindlimbs, and that interlimb coordination can be modulated by having the forelimbs or hindlimbs move at a faster frequency. We propose that locomotor recovery scales incorporate more sensitive methods to quantify FL-HL coordination, to better reflect residual functional capacity and possible cervicolumbar neural communication. Lastly, devising training protocols that make use of the bidirectional influences of the cervical and lumbar locomotor pattern generators could strengthen interlimb coordination and promote locomotor recovery.
Collapse
Affiliation(s)
- Yann Thibaudier
- 1 Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke , Sherbrooke, Quebec, Canada
| | - Marie-France Hurteau
- 1 Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke , Sherbrooke, Quebec, Canada
| | - Charline Dambreville
- 1 Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke , Sherbrooke, Quebec, Canada
| | - Anass Chraibi
- 1 Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke , Sherbrooke, Quebec, Canada
| | - Laurent Goetz
- 2 Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec , Quebec, Canada
| | - Alain Frigon
- 1 Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke , Sherbrooke, Quebec, Canada
| |
Collapse
|
27
|
Ganzer PD, Meyers EC, Sloan AM, Maliakkal R, Ruiz A, Kilgard MP, Robert LR. Awake behaving electrophysiological correlates of forelimb hyperreflexia, weakness and disrupted muscular synchronization following cervical spinal cord injury in the rat. Behav Brain Res 2016; 307:100-11. [PMID: 27033345 DOI: 10.1016/j.bbr.2016.03.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/22/2016] [Accepted: 03/26/2016] [Indexed: 01/22/2023]
Abstract
Spinal cord injury usually occurs at the level of the cervical spine and results in profound impairment of forelimb function. In this study, we recorded awake behaving intramuscular electromyography (EMG) from the biceps and triceps muscles of the impaired forelimb during volitional and reflexive forelimb movements before and after unilateral cervical spinal cord injury (cSCI) in rats. C5/C6 hemicontusion reduced volitional forelimb strength by more than 50% despite weekly rehabilitation for one month post-injury. Triceps EMG during volitional strength assessment was reduced by more than 60% following injury, indicating reduced descending drive. Biceps EMG during reflexive withdrawal from a thermal stimulus was increased by 500% following injury, indicating flexor withdrawal hyperreflexia. The reduction in volitional forelimb strength was significantly correlated with volitional and reflexive biceps EMG activity. Our results support the hypothesis that biceps hyperreflexia and descending volitional drive both significantly contribute to forelimb strength deficits after cSCI and provide new insight into dynamic muscular dysfunction after cSCI. The use of multiple automated quantitative measures of forelimb dysfunction in the rodent cSCI model will likely aid the search for effective regenerative, pharmacological, and neuroprosthetic treatments for spinal cord injury.
Collapse
Affiliation(s)
- Patrick Daniel Ganzer
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road, Richardson, TX 75080, United States.
| | - Eric Christopher Meyers
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road, Richardson, TX 75080, United States.
| | - Andrew Michael Sloan
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road, Richardson, TX 75080, United States.
| | - Reshma Maliakkal
- The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR41, Richardson, TX 75080, United States.
| | - Andrea Ruiz
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR41, Richardson, TX 75080, United States.
| | - Michael Paul Kilgard
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR41, Richardson, TX 75080, United States.
| | - LeMoine Rennaker Robert
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR41, Richardson, TX 75080, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road, Richardson, TX 75080, United States.
| |
Collapse
|
28
|
Deng L, Ruan Y, Chen C, Frye CC, Xiong W, Jin X, Jones K, Sengelaub D, Xu XM. Characterization of dendritic morphology and neurotransmitter phenotype of thoracic descending propriospinal neurons after complete spinal cord transection and GDNF treatment. Exp Neurol 2015; 277:103-114. [PMID: 26730519 DOI: 10.1016/j.expneurol.2015.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/11/2015] [Accepted: 12/22/2015] [Indexed: 01/20/2023]
Abstract
After spinal cord injury (SCI), poor regeneration of damaged axons of the central nervous system (CNS) causes limited functional recovery. This limited spontaneous functional recovery has been attributed, to a large extent, to the plasticity of propriospinal neurons, especially the descending propriospinal neurons (dPSNs). Compared with the supraspinal counterparts, dPSNs have displayed significantly greater regenerative capacity, which can be further enhanced by glial cell line-derived neurotrophic factor (GDNF). In the present study, we applied a G-mutated rabies virus (G-Rabies) co-expressing green fluorescence protein (GFP) to reveal Golgi-like dendritic morphology of dPSNs. We also investigated the neurotransmitters expressed by dPSNs after labeling with a retrograde tracer Fluoro-Gold (FG). dPSNs were examined in animals with sham injuries or complete spinal transections with or without GDNF treatment. Bilateral injections of G-Rabies and FG were made into the 2nd lumbar (L2) spinal cord at 3 days prior to a spinal cord transection performed at the 11th thoracic level (T11). The lesion gap was filled with Gelfoam containing either saline or GDNF in the injury groups. Four days post-injury, the rats were sacrificed for analysis. For those animals receiving G-rabies injection, the GFP signal in the T7-9 spinal cord was visualized via 2-photon microscopy. Dendritic morphology from stack images was traced and analyzed using a Neurolucida software. We found that dPSNs in sham injured animals had a predominantly dorsal-ventral distribution of dendrites. Transection injury resulted in alterations in the dendritic distribution with dorsal-ventral retraction and lateral-medial extension. Treatment with GDNF significantly increased the terminal dendritic length of dPSNs. The density of spine-like structures was increased after injury, and treatment with GDNF enhanced this effect. For the group receiving FG injections, immunohistochemistry for glutamate, choline acetyltransferase (ChAT), glycine, and GABA was performed in the T7-9 spinal cord. We show that the majority of FG retrogradely-labeled dPSNs were located in the Rexed Lamina VII. Over 90% of FG-labeled neurons were glutamatergic, with the other three neurotransmitters contributing less than 10% of the total. To our knowledge this is the first report describing the morphologic characteristics of dPSNs and their neurotransmitter expressions, as well as the dendritic response of dPSNs after transection injury and GDNF treatment.
Collapse
Affiliation(s)
- Lingxiao Deng
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yiwen Ruan
- Guangdong-Hong Kong-Macau Institute for CNS Regeneration (GHMICR), Jinan University, Guangzhou,China, 510632
| | - Chen Chen
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Christian Corbin Frye
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Wenhui Xiong
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Kathryn Jones
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Dale Sengelaub
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405
| | - Xiao-Ming Xu
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| |
Collapse
|
29
|
Detloff MR, Quiros-Molina D, Javia AS, Daggubati L, Nehlsen AD, Naqvi A, Ninan V, Vannix KN, McMullen MK, Amin S, Ganzer PD, Houlé JD. Delayed Exercise Is Ineffective at Reversing Aberrant Nociceptive Afferent Plasticity or Neuropathic Pain After Spinal Cord Injury in Rats. Neurorehabil Neural Repair 2015; 30:685-700. [PMID: 26671215 DOI: 10.1177/1545968315619698] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuropathic pain is a debilitating consequence of spinal cord injury (SCI) that correlates with sensory fiber sprouting. Recent data indicate that exercise initiated early after SCI prevents the development of allodynia and modulated nociceptive afferent plasticity. This study determined if delaying exercise intervention until pain is detected would similarly ameliorate established SCI-induced pain. Adult, female Sprague-Dawley rats with a C5 unilateral contusion were separated into SCI allodynic and SCI non-allodynic cohorts at 14 or 28 days postinjury when half of each group began exercising on automated running wheels. Allodynia, assessed by von Frey testing, was not ameliorated by exercise. Furthermore, rats that began exercise with no allodynia developed paw hypersensitivity within 2 weeks. At the initiation of exercise, the SCI Allodynia group displayed marked overlap of peptidergic and non-peptidergic nociceptive afferents in the C7 and L5 dorsal horn, while the SCI No Allodynia group had scant overlap. At the end of 5 weeks of exercise both the SCI Allodynia and SCI No Allodynia groups had extensive overlap of the 2 c-fiber types. Our findings show that exercise therapy initiated at early stages of allodynia is ineffective at attenuating neuropathic pain, but rather that it induces allodynia-aberrant afferent plasticity in previously pain-free rats. These data, combined with our previous results, suggest that there is a critical therapeutic window when exercise therapy may be effective at treating SCI-induced allodynia and that there are postinjury periods when exercise can be deleterious.
Collapse
Affiliation(s)
| | | | - Amy S Javia
- Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | | - Ali Naqvi
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Vinu Ninan
- Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | | - Sheena Amin
- Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - John D Houlé
- Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
30
|
Mondello SE, Sunshine MD, Fischedick AE, Moritz CT, Horner PJ. A Cervical Hemi-Contusion Spinal Cord Injury Model for the Investigation of Novel Therapeutics Targeting Proximal and Distal Forelimb Functional Recovery. J Neurotrauma 2015; 32:1994-2007. [PMID: 25929319 DOI: 10.1089/neu.2014.3792] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cervical spinal cord contusion is the most common human spinal cord injury, yet few rodent models replicate the pathophysiological and functional sequela of this injury. Here, we modified an electromechanical injury device and characterized the behavioral and histological changes occurring in response to a lateralized C4 contusion injury in rats. A key feature of the model includes a non-injurious touch phase where the spinal cord surface is dimpled with a consistent starting force. Animals were either left intact as a control, received a non-injury-producing touch on the surface of the cord ("sham"), or received a 0.6 mm or a 0.8 mm displacement injury. Rats were then tested on the forelimb asymmetry use test, CatWalk, and the Irvine, Beatties, and Bresnahan (IBB) cereal manipulation task to assess proximal and distal upper limb function for 12 weeks. Injuries of moderate (0.6 mm) and large (0.8 mm) displacement showed consistent differences in forelimb asymmetry, metrics of the CatWalk, and sub-scores of the IBB. Overall findings indicated long lasting proximal and distal upper limb deficits following 0.8 mm injury but transient proximal with prolonged distal limb deficits following 0.6 mm injury. Significant differences in loss of ipsilateral unmyelinated and myelinated white matter was detected between injury severities. Demyelination was primarily localized to the dorsolateral region of the hemicord and extended further rostral following 0.8 mm injury. These findings establish the C4 hemi-contusion injury as a consistent, graded model for testing novel treatments targeting forelimb functional recovery.
Collapse
Affiliation(s)
- Sarah E Mondello
- 1 Department of Rehabilitation Medicine, University of Washington , Seattle, Washington.,2 The Center for Sensorimotor Neural Engineering , Seattle, Washington.,4 The Institute for Stem Cell and Regenerative Medicine , Seattle, Washington
| | - Michael D Sunshine
- 1 Department of Rehabilitation Medicine, University of Washington , Seattle, Washington
| | - Amanda E Fischedick
- 3 Department of Neurological Surgery, University of Washington , Seattle, Washington.,4 The Institute for Stem Cell and Regenerative Medicine , Seattle, Washington
| | - Chet T Moritz
- 1 Department of Rehabilitation Medicine, University of Washington , Seattle, Washington.,2 The Center for Sensorimotor Neural Engineering , Seattle, Washington.,5 Department of Physiology and Biophysics, University of Washington , Seattle, Washington
| | - Philip J Horner
- 3 Department of Neurological Surgery, University of Washington , Seattle, Washington.,4 The Institute for Stem Cell and Regenerative Medicine , Seattle, Washington
| |
Collapse
|
31
|
Deng LX, Walker C, Xu XM. Schwann cell transplantation and descending propriospinal regeneration after spinal cord injury. Brain Res 2014; 1619:104-14. [PMID: 25257034 DOI: 10.1016/j.brainres.2014.09.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/08/2014] [Accepted: 09/15/2014] [Indexed: 01/15/2023]
Abstract
After spinal cord injury (SCI), poor ability of damaged axons of the central nervous system (CNS) to regenerate causes very limited functional recovery. Schwann cells (SCs) have been widely explored as promising donors for transplantation to promote axonal regeneration in the CNS including the spinal cord. Compared with other CNS axonal pathways, injured propriospinal tracts display the strongest regenerative response to SC transplantation. Even without providing additional neurotrophic factors, propriospinal axons can grow into the SC environment which is rarely seen in supraspinal tracts. Propriospinal tract has been found to respond to several important neurotrophic factors secreted by SCs. Therefore, the SC is considered to be one of the most promising candidates for cell-based therapies for SCI. Since many reviews have already appeared on topics of SC transplantation in SCI repair, this review will focus particularly on the rationale of SC transplantation in mediating descending propriospinal axonal regeneration as well as optimizing such regeneration by using different combinatorial strategies. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- Ling-Xiao Deng
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Chandler Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiao-Ming Xu
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
32
|
Decreased GFAP expression and improved functional recovery in contused spinal cord of rats following valproic acid therapy. Neurochem Res 2014; 39:2319-33. [PMID: 25205382 DOI: 10.1007/s11064-014-1429-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 08/20/2014] [Accepted: 09/02/2014] [Indexed: 12/13/2022]
Abstract
Many studies have illustrated that much of the post-traumatic degeneration of the spinal cord cells is caused by the secondary mechanism. The aim of this study is to evaluate the effect of the anti-inflammatory property of valproic acid (VPA) on injured spinal cords (SC). The rats with the contused SC received intraperitoneal single injection of VPA (150, 200, 300, 400 or 500 mg/kg) at 2, 6, 12 and 24 h post-injury. Basso-Beattie-Bresnahan (BBB) test and H-reflex evaluated the functional outcome for 12 weeks. The SC were investigated 3 months post-injury using morphometry and glial fibrillary acid protein (GFAP) expression. Reduction in cavitation, H/M ratio, BBB scores and GFAP expression in the treatment groups were significantly more than that of the untreated one (P < 0.05). The optimal improvement in the condition of the contused rats was in the ones treated at the acute phase of injury with 300 mg/kg of VPA at 12 h post-injury, they had the highest increase in BBB score and decrease in astrogliosis and axonal loss. We conclude that treating the contused rats with 300 mg/kg of VPA at 12 h post-injury improves the functional outcome and reduces the traumatized SC gliosis.
Collapse
|
33
|
Thibaudier Y, Frigon A. Spatiotemporal control of interlimb coordination during transverse split-belt locomotion with 1:1 or 2:1 coupling patterns in intact adult cats. J Neurophysiol 2014; 112:2006-18. [PMID: 25057143 DOI: 10.1152/jn.00236.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interlimb coordination must be flexible to adjust to an ever-changing environment. Here adjustments in interlimb coordination were quantified during tied-belt (equal speed of the fore- and hindlimbs) and transverse split-belt (unequal speed of the fore- and hindlimbs) locomotion in five intact adult cats. Cats performed tied-belt locomotion at 0.4 m/s and 0.8 m/s. For transverse split-belt locomotion, the forelimbs stepped at 0.4 m/s and 0.8 m/s while the hindlimbs stepped at 0.8 m/s (4F8H condition) and 0.4 m/s (8F4H condition), respectively. In the 8F4H condition, the forelimbs could take two steps within one hindlimb cycle, or a 2:1 forelimb-hindlimb relationship. The sequence of limbs contacting the ground and the duration of support periods were differentially modified if the forelimbs stepped faster or slower than the hindlimbs. During transverse split-belt locomotion, the hindlimbs performed longer strides when the forelimbs took shorter strides. In the 8F4H condition with a 2:1 forelimb-hindlimb relationship, phase and gap intervals for the first and second steps were found around certain values and were not randomly distributed, indicating that a new coupling pattern was established. However, temporal and spatial coordination indexes revealed that bilateral coordination between hindlimbs was less accurate and more variable with a 2:1 coupling pattern. Importantly, the animals did not stumble, indicating that spatial and temporal adjustments in interlimb coordination allowed the animals to maintain dynamic stability. The results provide a better understanding of the spatiotemporal adjustments that take place among the four limbs during locomotion when interlimb coordination is challenged.
Collapse
Affiliation(s)
- Yann Thibaudier
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Alain Frigon
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
34
|
Sabbahi MA, Uzun S, Ovak Bittar F, Sengul Y. Similarities and differences in cervical and thoracolumbar multisegmental motor responses and the combined use for testing spinal circuitries. J Spinal Cord Med 2014; 37:401-13. [PMID: 24621020 PMCID: PMC4116724 DOI: 10.1179/2045772313y.0000000157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
STUDY DESIGN Experimental study. OBJECTIVE To determine similarities and differences of C7 and T11-12 multisegmental motor responses (MMR) studies for the upper limbs (UL) and lower limbs (LL). SETTINGS Neuroscience Lab, TWU (School of Physical Therapy, TX, USA). METHODS C7 and T11-12 percutaneous electrical stimulations were applied while recording muscle action potentials from ULs and LLs. RESULTS The procedure of cervical MMR (CMMR) was easier in application than thoracolumbar MMR (TMMR), requiring less current intensities but cause more "jolts" in the trapezius/shoulder complex, due to close proximity of the stimulation electrodes. CMMR evoked large amplitude motor responses in the millivolts range in (UL) muscles, but smaller amplitude signal in (LL) muscles (in microvolts). TMMR evoked large amplitude motor responses in both UL and LL (in millivolts). The MMR amplitude was generally larger in the UL as compared to the LL, in the distal limb muscles more than in the proximal limb muscles. CMMR and TMMR for the UL were comparable in amplitude, latencies and action potential shapes. Signal latencies were longer for distal limb muscles as compared to proximal limb muscles and were slightly longer for LL as compared to UL muscles. MMR signals were either biphasic or triphasic in shape. CONCLUSION CMMR and TMMR have similarities and differences in the methods and recording signal that must be considered during its clinical applications. Comparing the signal of the UL muscles with CMMR and TMMR could be a useful test for the integrity of the ascending and descending spinal pathways in patients with spinal cord injuries and diseases.
Collapse
Affiliation(s)
- Mohamed A. Sabbahi
- Correspondence to: Mohamed A. Sabbahi, 6700 Fannin ST., Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
35
|
Detloff MR, Smith EJ, Quiros Molina D, Ganzer PD, Houlé JD. Acute exercise prevents the development of neuropathic pain and the sprouting of non-peptidergic (GDNF- and artemin-responsive) c-fibers after spinal cord injury. Exp Neurol 2014; 255:38-48. [PMID: 24560714 PMCID: PMC4036591 DOI: 10.1016/j.expneurol.2014.02.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/29/2014] [Accepted: 02/14/2014] [Indexed: 11/18/2022]
Abstract
Spinal cord injury (SCI) impaired sensory fiber transmission leads to chronic, debilitating neuropathic pain. Sensory afferents are responsive to neurotrophic factors, molecules that are known to promote survival and maintenance of neurons, and regulate sensory neuron transduction of peripheral stimuli. A subset of primary afferent fibers responds only to the glial cell-line derived neurotrophic factor (GDNF) family of ligands (GFLs) and is non-peptidergic. In peripheral nerve injury models, restoration of GDNF or artemin (another GFL) to pre-injury levels within the spinal cord attenuates neuropathic pain. One non-invasive approach to increase the levels of GFLs in the spinal cord is through exercise (Ex), and to date exercise training is the only ameliorative, non-pharmacological treatment for SCI-induced neuropathic pain. The purpose of this study was 3-fold: 1) to determine whether exercise affects the onset of SCI-induced neuropathic pain; 2) to examine the temporal profile of GDNF and artemin in the dorsal root ganglia and spinal cord dorsal horn regions associated with forepaw dermatomes after SCI and Ex; and 3) to characterize GFL-responsive sensory fiber plasticity after SCI and Ex. Adult, female, Sprague-Dawley rats received a moderate, unilateral spinal cord contusion at C5. A subset of rats was exercised (SCI+Ex) on automated running wheels for 20min, 5days/week starting at 5days post-injury (dpi), continuing until 9 or 37dpi. Hargreaves' and von Frey testing was performed preoperatively and weekly post-SCI. Forty-two percent of rats in the unexercised group exhibited tactile allodynia of the forepaws while the other 58% retained normal sensation. The development of SCI-induced neuropathic pain correlated with a marked decrease in the levels of GDNF and artemin in the spinal cord and DRGs. Additionally, a dramatic increase in the density and the distribution throughout the dorsal horn of GFL-responsive afferents was observed in rats with SCI-induced allodynia. Importantly, in SCI rats that received Ex, the incidence of tactile allodynia decreased to 7% (1/17) and there was maintenance of GDNF and artemin at normal levels, with a normal distribution of GFL-responsive fibers. These data suggest that GFLs and/or their downstream effectors may be important modulators of pain fiber plasticity, representing effective targets for anti-allodynic therapeutics. Furthermore, we highlight the potent beneficial effects of acute exercise after SCI.
Collapse
Affiliation(s)
- Megan Ryan Detloff
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | - Evan J Smith
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Daniel Quiros Molina
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Patrick D Ganzer
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - John D Houlé
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
36
|
Walker CL, Xu XM. PTEN inhibitor bisperoxovanadium protects oligodendrocytes and myelin and prevents neuronal atrophy in adult rats following cervical hemicontusive spinal cord injury. Neurosci Lett 2014; 573:64-8. [PMID: 24582904 DOI: 10.1016/j.neulet.2014.02.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 12/21/2022]
Abstract
Cervical spinal cord injury (SCI) damages axons and motor neurons responsible for ipsilateral forelimb function and causes demyelination and oligodendrocyte death. Inhibition of the phosphatase and tensin homologue, PTEN, promotes neural cell survival, neuroprotection and regeneration in vivo and in vitro. PTEN inhibition can also promote oligodendrocyte-mediated myelination of axons in vitro likely through Akt activation. We recently demonstrated that acute treatment with phosphatase PTEN inhibitor, bisperoxovanadium (bpV)-pic reduced tissue damage, neuron death, and promoted functional recovery after cervical hemi-contusion SCI. Evidence suggests bpV can promote myelin stability; however, bpV effects on myelination and oligodendrocytes in contusive SCI models are unclear. We hypothesized that bpV could increase myelin around the injury site through sparing or remyelination, and that bpV treatment may promote increased numbers of oligodendrocytes. Using histological and immunofluorescence labeling, we found that bpV treatment promoted significant spared white matter (30%; p<0.01) and relative Luxol Fast Blue (LFB)(+) myelin area rostral (Veh: 0.56 ± 0.01 vs. bpV: 0.64 ± 0.02; p<0.05) and at the epicenter (Veh: 0.42 ± 0.03 vs. bpV: 0.54 ± 0.03; p<0.05). VLF oligodendrocytes were also significantly greater with bpV therapy (109 ± 5.3 vs. Veh: 77 ± 2.7 mm(-2); p<0.01). In addition, bpV increased mean motor neuron soma area versus vehicle-treatment (1.0 ± 0.02 vs. Veh: 0.77 ± 0.02) relative to Sham neuron size. This study provides key insight into additional cell and tissue effects that could contribute to bpV-mediated functional recovery observed after contusive cervical SCI.
Collapse
Affiliation(s)
- Chandler L Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, 950 W. Walnut Street, R2 Building, Room 402, Indianapolis, IN 46202, USA; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Anatomy and Cell Biology, Indiana University School of Medicine, 950 W. Walnut Street, R2 Building, Room 402, Indianapolis, IN 46202, USA.
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, 950 W. Walnut Street, R2 Building, Room 402, Indianapolis, IN 46202, USA; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Anatomy and Cell Biology, Indiana University School of Medicine, 950 W. Walnut Street, R2 Building, Room 402, Indianapolis, IN 46202, USA.
| |
Collapse
|
37
|
Detloff MR, Wade RE, Houlé JD. Chronic at- and below-level pain after moderate unilateral cervical spinal cord contusion in rats. J Neurotrauma 2013; 30:884-90. [PMID: 23216008 DOI: 10.1089/neu.2012.2632] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chronic neuropathic pain is a significant consequence of spinal cord injury (SCI) that is associated with evoked pain, including allodynia and/or hyperalgesia. Allodynia is defined as a painful response to normally innocuous stimuli, and hyperalgesia occurs when there is an amplified pain response to normally noxious stimuli. We describe a model of a unilateral cervical level (C5) contusion injury where sensory recovery was assessed weekly for 6 weeks in 32 adult, female, Sprague-Dawley rats. Bilateral thermal hyperalgesia and tactile allodynia are detectable in the fore- and hindpaws as early as 7 days post-injury (dpi) and persist for at least 42 days. Paw withdrawal latency in response to a noxious thermal stimulus significantly intra-animal pre-operative values. Change in paw withdrawal latency plateaued at 21 dpi. Interestingly, bilateral forepaw allodynia develops in fewer than 40% of rats as measured by von Frey monofilament testing. Similar results occur in the hindpaws, where bilateral allodynia occurs in 46% of rats with SCI. The contralesional forepaw and both hindpaws of rats showed a slight increase in paw withdrawal threshold to tactile stimuli acutely after SCI, corresponding to ipsilesional forelimb motor deficits that resolve over time. That there is no difference among allodynic and non-allodynic groups in overall spared tissue or specifically of the dorsal column or ventrolateral white matter where ascending sensory tracts reside suggests that SCI-induced pain does not depend solely on the size or extent of the lesion, but that other mechanisms are in play. These observations provide a valid model system for future testing of therapeutic interventions to prevent the onset or to reduce the debilitating effects of chronic neuropathic pain after SCI.
Collapse
Affiliation(s)
- Megan Ryan Detloff
- Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | |
Collapse
|
38
|
Petruska JC, Hubscher CH, Rabchevsky AG. Challenges and opportunities of sensory plasticity after SCI. Front Physiol 2013; 4:231. [PMID: 23986722 PMCID: PMC3753431 DOI: 10.3389/fphys.2013.00231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/07/2013] [Indexed: 12/30/2022] Open
Affiliation(s)
- Jeffrey C Petruska
- Department of Anatomical Sciences and Neurobiology, Kentucky Spinal Cord Injury Research Center, University of Louisville Louisville, KY, USA
| | | | | |
Collapse
|
39
|
Botulinum toxin modulates cortical maladaptation in post-stroke spasticity. Muscle Nerve 2013; 48:93-9. [DOI: 10.1002/mus.23719] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2012] [Indexed: 12/25/2022]
|