1
|
Capraz M, Tekcan A, Cihangiroglu M, Nursal AF, Capraz A, Menekse E, Dortok Demir H, Kuruca N, Yigit S. The effect of the MBL2 gene rs1800450 variant on COVID-19 development in Turkish patients. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-11. [PMID: 39210720 DOI: 10.1080/15257770.2024.2395872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The coronavirus disease 2019 (COVID-19) is a recent pandemic occurring worldwide due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, spreading mainly through large respiratory droplets or maybe through other transmission routes. The human genome has the most varied immune response genes correlated with infectious diseases. Genetic variants of mannose-binding lectin 2 (MBL2), an immunomodulatory gene, were associated with the risk, severity, and frequency of viral infections. In the present study, we hypothesized that the MBL2 gene rs1800450 variant could be associated with the development of COVID-19 disease in a Turkish population. Ninety-eight COVID-19 patients and 98 healthy, ethnically matched controls were studied. We isolated genomic DNA from whole blood and analyzed the MBL2 rs1800450 using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Associations were analyzed with the SPSS 20 statistical software. We found that MBL2 rs1800450 genotype distribution was significantly different between patients and controls. The patients had a higher MBL2 rs1800450 AA genotype than the controls had (4.94% in patients vs. 3.12% in controls, p = 0.006). The subjects carrying AA genotype had a 10.83-fold increased risk for COVID-19 disease (OR = 10.83, %95 CI = 1.359-86.349). We could not detect any significant difference between the COVID-19 patients and healthy controls in allele frequencies. Our findings demonstrated that the MBL2 rs1800450 BB genotype might increase the susceptibility to COVID-19 disease in the Turkish population. We suggest further studies with a larger sample size and other ethnic populations.
Collapse
Affiliation(s)
- Mustafa Capraz
- Department of Internal Medicine, Faculty of Medicine, Amasya University, Amasya, Turkey
| | - Akin Tekcan
- Department of Medical Biology, Faculty of Medicine, Amasya University, Amasya, Turkey
| | - Mustafa Cihangiroglu
- Department of Infectious Diseases, Faculty of Medicine, Amasya University, Amasya, Turkey
| | - Ayse Feyda Nursal
- Department of Medical Genetics, Faculty of Medicine, Hitit University, Corum, Turkey
| | - Aylin Capraz
- Department of Chest Diseases, Faculty of Medicine, Amasya University, Amasya, Turkey
| | - Elif Menekse
- Laboratory of Medical Biochemistry, Amasya University Sabuncuoglu Serefeddin Education and Research Hospital, Amasya, Turkey
| | - Hatice Dortok Demir
- Department of Medical Biochemistry, Faculty of Medicine, Amasya University, Amasya, Turkey
| | - Nilufer Kuruca
- Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Serbulent Yigit
- Department of Genetics, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
2
|
Toribio-Fernández R, Tristão-Pereira C, Carlos Silla-Castro J, Callejas S, Oliva B, Fernandez-Nueda I, Garcia-Lunar I, Perez-Herreras C, María Ordovás J, Martin P, Blanco-Kelly F, Ayuso C, Lara-Pezzi E, Fernandez-Ortiz A, Garcia-Alvarez A, Dopazo A, Sanchez-Cabo F, Ibanez B, Cortes-Canteli M, Fuster V. Apolipoprotein E-ε2 and Resistance to Atherosclerosis in Midlife: The PESA Observational Study. Circ Res 2024; 134:411-424. [PMID: 38258600 DOI: 10.1161/circresaha.123.323921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND APOE is a known genetic contributor to cardiovascular disease, but the differential role APOE alleles play in subclinical atherosclerosis remains unclear. METHODS The PESA (Progression of Early Subclinical Atherosclerosis) is an observational cohort study that recruited 4184 middle-aged asymptomatic individuals to be screened for cardiovascular risk and multiterritorial subclinical atherosclerosis. Participants were APOE-genotyped, and omics data were additionally evaluated. RESULTS In the PESA study, the frequencies for APOE -ε2, -ε3, and -ε4 alleles were 0.060, 0.844, and 0.096, respectively. This study included a subcohort of 3887 participants (45.8±4.3 years of age; 62% males). As expected, APOE-ε4 carriers were at the highest risk for cardiovascular disease and had significantly greater odds of having subclinical atherosclerosis compared with ε3/ε3 carriers, which was mainly explained by their higher levels of low-density lipoprotein (LDL)-cholesterol. In turn, APOE-ε2 carriers were at the lowest risk for cardiovascular disease and had significantly lower odds of having subclinical atherosclerosis in several vascular territories (carotids: 0.62 [95% CI, 0.47-0.81]; P=0.00043; femorals: 0.60 [0.47-0.78]; P=9.96×10-5; coronaries: 0.53 [0.39-0.74]; P=0.00013; and increased PESA score: 0.58 [0.48-0.71]; P=3.16×10-8). This APOE-ε2 atheroprotective effect was mostly independent of the associated lower LDL-cholesterol levels and other cardiovascular risk factors. The protection conferred by the ε2 allele was greater with age (50-54 years: 0.49 [95% CI, 0.32-0.73]; P=0.00045), and normal (<150 mg/dL) levels of triglycerides (0.54 [0.44-0.66]; P=4.70×10-9 versus 0.90 [0.57-1.43]; P=0.67 if ≥150 mg/dL). Omics analysis revealed an enrichment of several canonical pathways associated with anti-inflammatory mechanisms together with the modulation of erythrocyte homeostasis, coagulation, and complement activation in ε2 carriers that might play a relevant role in the ε2's atheroprotective effect. CONCLUSIONS This work sheds light on the role of APOE in cardiovascular disease development with important therapeutic and prevention implications on cardiovascular health, especially in early midlife. REGISTRATION URL: https://www.clinicaltrials.gov: NCT01410318.
Collapse
Affiliation(s)
- Raquel Toribio-Fernández
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain (R.T.-F., F.B.-K., C.A., B.I., M.C.-C.)
| | - Catarina Tristão-Pereira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
| | - Juan Carlos Silla-Castro
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
| | - Sergio Callejas
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
| | - Belen Oliva
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
| | - Irene Fernandez-Nueda
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
| | - Ines Garcia-Lunar
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
- Cardiology Department, University Hospital La Moraleja, Madrid, Spain (I.G.-L.)
- CIBER de enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (I.G.-L., P.M., A.F.-O., A.G.-A., B.I.)
| | | | - José María Ordovás
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
- Precision Nutrition and Obesity Research Program, IMDEA Food Institute, CEI UAM+CSI, Madrid, Spain (J.M.O.)
- U.S. Department of Agriculture Human Nutrition Research Center of Aging, Tufts University, MA (J.M.O.)
| | - Pilar Martin
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
- CIBER de enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (I.G.-L., P.M., A.F.-O., A.G.-A., B.I.)
| | - Fiona Blanco-Kelly
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain (R.T.-F., F.B.-K., C.A., B.I., M.C.-C.)
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain (F.B.-K., C.A.)
| | - Carmen Ayuso
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain (R.T.-F., F.B.-K., C.A., B.I., M.C.-C.)
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain (F.B.-K., C.A.)
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
| | - Antonio Fernandez-Ortiz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
- CIBER de enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (I.G.-L., P.M., A.F.-O., A.G.-A., B.I.)
- Hospital Clínico San Carlos, IdISSC, Universidad Complutense, Madrid, Spain (A.F.-O.)
| | - Ana Garcia-Alvarez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
- CIBER de enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (I.G.-L., P.M., A.F.-O., A.G.-A., B.I.)
- Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Spain (A.G.-A.)
| | - Ana Dopazo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
| | - Fatima Sanchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain (R.T.-F., F.B.-K., C.A., B.I., M.C.-C.)
- CIBER de enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (I.G.-L., P.M., A.F.-O., A.G.-A., B.I.)
| | - Marta Cortes-Canteli
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain (R.T.-F., F.B.-K., C.A., B.I., M.C.-C.)
| | - Valentin Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
- Icahn School of Medicine at Mount Sinai, New York (V.F.)
| |
Collapse
|
3
|
Amalia M, Puteri MU, Saputri FC, Sauriasari R, Widyantoro B. Platelet Glycoprotein-Ib (GPIb) May Serve as a Bridge between Type 2 Diabetes Mellitus (T2DM) and Atherosclerosis, Making It a Potential Target for Antiplatelet Agents in T2DM Patients. Life (Basel) 2023; 13:1473. [PMID: 37511848 PMCID: PMC10381765 DOI: 10.3390/life13071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a persistent metabolic condition that contributes to the development of cardiovascular diseases. Numerous studies have provided evidence that individuals with T2DM are at a greater risk of developing cardiovascular diseases, typically two to four times more likely than those without T2DM, mainly due to an increased risk of atherosclerosis. The rupture of an atherosclerotic plaque leading to pathological thrombosis is commonly recognized as a significant factor in advancing cardiovascular diseases caused by TD2M, with platelets inducing the impact of plaque rupture in established atherosclerosis and predisposing to the primary expansion of atherosclerosis. Studies suggest that individuals with T2DM have platelets that display higher baseline activation and reactivity than those without the condition. The expression enhancement of several platelet receptors is known to regulate platelet activation signaling, including platelet glycoprotein-Ib (GPIb). Furthermore, the high expression of platelet GP1b has been reported to increase the risk of platelet adhesion, platelet-leucocyte interaction, and thrombo-inflammatory pathology. However, the study exploring the role of GP1b in promoting platelet activation-induced cardiovascular diseases in T2DM patients is still limited. Therefore, we summarize the important findings regarding pathophysiological continuity between T2DM, platelet GPIb, and atherosclerosis and highlight the potential therapy targeting GPIb as a novel antiplatelet agent for preventing further cardiovascular incidents in TD2M patients.
Collapse
Affiliation(s)
- Muttia Amalia
- Doctoral Program, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Meidi Utami Puteri
- Laboratory of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Fadlina Chany Saputri
- Laboratory of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Rani Sauriasari
- Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Bambang Widyantoro
- National Cardiovascular Center Harapan Kita, Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta 11420, Indonesia
| |
Collapse
|
4
|
Gusev E, Sarapultsev A. Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes. Int J Mol Sci 2023; 24:ijms24097910. [PMID: 37175617 PMCID: PMC10178362 DOI: 10.3390/ijms24097910] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Recent advances have greatly improved our understanding of the molecular mechanisms behind atherosclerosis pathogenesis. However, there is still a need to systematize this data from a general pathology perspective, particularly with regard to atherogenesis patterns in the context of both canonical and non-classical inflammation types. In this review, we analyze various typical phenomena and outcomes of cellular pro-inflammatory stress in atherosclerosis, as well as the role of endothelial dysfunction in local and systemic manifestations of low-grade inflammation. We also present the features of immune mechanisms in the development of productive inflammation in stable and unstable plaques, along with their similarities and differences compared to canonical inflammation. There are numerous factors that act as inducers of the inflammatory process in atherosclerosis, including vascular endothelium aging, metabolic dysfunctions, autoimmune, and in some cases, infectious damage factors. Life-critical complications of atherosclerosis, such as cardiogenic shock and severe strokes, are associated with the development of acute systemic hyperinflammation. Additionally, critical atherosclerotic ischemia of the lower extremities induces paracoagulation and the development of chronic systemic inflammation. Conversely, sepsis, other critical conditions, and severe systemic chronic diseases contribute to atherogenesis. In summary, atherosclerosis can be characterized as an independent form of inflammation, sharing similarities but also having fundamental differences from low-grade inflammation and various variants of canonical inflammation (classic vasculitis).
Collapse
Affiliation(s)
- Evgenii Gusev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080 Chelyabinsk, Russia
| |
Collapse
|
5
|
Regulatory Effects of Curcumin on Platelets: An Update and Future Directions. Biomedicines 2022; 10:biomedicines10123180. [PMID: 36551934 PMCID: PMC9775400 DOI: 10.3390/biomedicines10123180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
The rhizomatous plant turmeric, which is frequently used as a spice and coloring ingredient, yields curcumin, a bioactive compound. Curcumin inhibits platelet activation and aggregation and improves platelet count. Platelets dysfunction results in several disorders, including inflammation, atherothrombosis, and thromboembolism. Several studies have proved the beneficial role of curcumin on platelets and hence proved it is an important candidate for the treatment of the aforementioned diseases. Moreover, curcumin is also frequently employed as an anti-inflammatory agent in conventional medicine. In arthritic patients, it has been shown to reduce the generation of pro-inflammatory eicosanoids and to reduce edema, morning stiffness, and other symptoms. Curcumin taken orally also reduced rats' acute inflammation brought on by carrageenan. Curcumin has also been proven to prevent atherosclerosis and platelet aggregation, as well as to reduce angiogenesis in adipose tissue. In the cerebral microcirculation, curcumin significantly lowered platelet and leukocyte adhesion. It largely modulated the endothelium to reduce platelet adhesion. Additionally, P-selectin expression and mice survival after cecal ligation and puncture were improved by curcumin, which also altered platelet and leukocyte adhesion and blood-brain barrier dysfunction. Through regulating many processes involved in platelet aggregation, curcuminoids collectively demonstrated detectable antiplatelet activity. Curcuminoids may therefore be able to prevent disorders linked to platelet activation as possible therapeutic agents. This review article proposes to highlight and discuss the regulatory effects of curcumin on platelets.
Collapse
|
6
|
Stakhneva EM, Kashtanova EV, Polonskaya YV, Striukova EV, Shramko VS, Sadovski EV, Kurguzov AV, Murashov IS, Chernyavskii AM, Ragino YI. The Search for Associations of Serum Proteins with the Presence of Unstable Atherosclerotic Plaque in Coronary Atherosclerosis. Int J Mol Sci 2022; 23:ijms232112795. [PMID: 36361589 PMCID: PMC9654322 DOI: 10.3390/ijms232112795] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
To study the associations of blood proteins with the presence of unstable atherosclerotic plaques in the arteries of patients with coronary atherosclerosis using quantitative proteomics. The studies involved two groups of men with coronary atherosclerosis (group 1 (St) had only stable atherosclerotic plaques; group 2 (Ns) had only unstable atherosclerotic plaques, according to histological analysis of tissue samples); the average age of patients was 57.95 ± 7.22. Protein concentrations in serum samples were determined using the PeptiQuant Plus Proteomics Kit. The identification of protein fractions was carried out by monitoring multiple reactions on a Q-TRAP 6500 mass spectrometer combined with a liquid chromatograph. Mass spectrometric identification revealed in serum samples from patients with unstable atherosclerotic plaques a reduced concentration of proteins in the blood: α-1-acid glycoprotein, α-1-antichymotrypsin, α-1-antitrypsin, ceruloplasmin, hemopexin, haptoglobin, apolipoprotein B-100, apolipoprotein L1, afamin and complement component (C3, C7, C9). Moreover, at the same time a high concentration complements factor H and attractin. The differences were considered significant at p < 0.05. It was found that the instability of atherosclerotic plaques is associated with the concentration of proteins: afamin, attractin, components of the complement system, hemopexin and haptoglobin. The data of our study showed the association of some blood proteins with the instability of atherosclerotic plaques in coronary atherosclerosis. Their potential role in the development of this disease and the possibility of using the studied proteins as biomarkers requires further research.
Collapse
Affiliation(s)
- Ekaterina Mikhailovna Stakhneva
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-923-113-7712
| | - Elena Vladimirovna Kashtanova
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia
| | - Yana Vladimirovna Polonskaya
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia
| | - Eugeniia Vitalievna Striukova
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia
| | - Viktoriya Sergeevna Shramko
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia
| | - Evgeny Viktorovich Sadovski
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia
| | - Alexey Vitalievich Kurguzov
- The Federal State Budgetary Institution “National Medical Research Center named academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Ivan Sergeevich Murashov
- The Federal State Budgetary Institution “National Medical Research Center named academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Alexander Mikhailovich Chernyavskii
- The Federal State Budgetary Institution “National Medical Research Center named academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Yuliya Igorevna Ragino
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia
| |
Collapse
|
7
|
Chantarasorn Y, Smitthimathin W, Vorasayan P. The role of dual antiplatelets in geographic atrophy secondary to non-neovascular aged-related macular degeneration. FRONTIERS IN OPHTHALMOLOGY 2022; 2:984903. [PMID: 38983510 PMCID: PMC11182290 DOI: 10.3389/fopht.2022.984903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/18/2022] [Indexed: 07/11/2024]
Abstract
Background To evaluate the effects of dual antiplatelets on progression of geographic atrophy (GA) secondary to age-related macular degeneration (AMD), and to determine additional factors predicting rapid GA growth. Material and Methods In this retrospective cohort study, patients with unifocal GA were consecutively enrolled (one eye per patient) from 2018 to 2021. The patients were categorized as 1. those receiving dual antiplatelet therapy containing a daily dose of 75 mg clopidogrel plus 81 mg aspirin (DAPT group), and 2. those not receiving DAPT (control group). Areas of GA, based on red-filtered fundus autofluorescence, were measured at baseline, and at 3, 6, and 12 months. The primary outcome was absolute 12-month changes in the square root (SQRT) area. Results One eye in each group developed neovascular AMD and was excluded from the analysis. The DAPT (24 eyes) and control (22 eyes) groups had comparable age and baseline SQRT area (1.2 ± 0.27 and 1.8 ± 0.41 mm, respectively; p adjusted for age = 0.23). At 12 months, after controlling for age and the presence of soft drusen or reticular pseudodrusen, patients receiving DAPT had fewer changes in the SQRT area than that of the control group (0.097 vs. 0.17 mm; p = 0.02). The presence of drusen significantly predicted increased GA growth and choroidal thickness reduction. Conclusions Routine uses of dual antiplatelets were associated with decelerating GA growth. Drusen-associated GA may represent a generalized form of choroidal vascular alterations.
Collapse
Affiliation(s)
- Yodpong Chantarasorn
- Department of Ophthalmology, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Warin Smitthimathin
- Department of Ophthalmology, Metta Pracharak Hospital, Ministry of Public Health, Nakhon Pathom, Thailand
| | - Pongpat Vorasayan
- Neurology Unit, Department of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
8
|
Yao Z, Zhang B, Niu G, Yan Z, Tong X, Zou Y, Yang M. Subunits of C1Q Are Associated With the Progression of Intermittent Claudication to Chronic Limb-Threatening Ischemia. Front Cardiovasc Med 2022; 9:864461. [PMID: 35433866 PMCID: PMC9010542 DOI: 10.3389/fcvm.2022.864461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background The pathophysiological mechanisms of intermittent claudication (IC) progression to chronic limb-threatening ischemia (CLTI) are still vague and which of patients with IC will become CLTI are unknown. This study aimed to investigate the key molecules and pathways mediating IC progression to CLTI by a quantitative bioinformatic analysis of a public RNA-sequencing database of patients with peripheral artery disease (PAD) to screen biomarkers discriminating IC and CLTI. Methods The GSE120642 dataset was downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between IC and CLTI tissues were analyzed using the “edgeR” packages of R. The Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to explore the functions of DEGs. Protein–protein interaction (PPI) networks were established by the Search Tool for the Retrieval of Interacting Genes (STRING) database and visualized by Cytoscape software. Hub genes were selected by plugin cytoHubba. Gene set enrichment analysis was performed and the receiver operating characteristic curves were used to evaluate the predictive values of hub genes. Results A total of 137 upregulated and 21 downregulated DEGs were identified. Functional enrichment clustering analysis revealed a significant association between DEGs and the complement and coagulation cascade pathways. The PPI network was constructed with 155 nodes and 105 interactions. The most significantly enriched pathway was complement activation. C1QB, C1QA, C1QC, C4A, and C1R were identified and validated as hub genes due to the high degree of connectivity. The area under the curve values for the five hub genes were greater than 0.95, indicating high accuracy for discriminating IC and CLTI. Conclusion The complement activation pathway is associated with IC progression to CLTI. C1QB, C1QA, C1QC, C4A, and C1R might serve as potential early biomarkers of CLTI.
Collapse
|
9
|
Failure Analysis of TEVG’s II: Late Failure and Entering the Regeneration Pathway. Cells 2022; 11:cells11060939. [PMID: 35326390 PMCID: PMC8946846 DOI: 10.3390/cells11060939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Tissue-engineered vascular grafts (TEVGs) are a promising alternative to treat vascular disease under complex hemodynamic conditions. However, despite efforts from the tissue engineering and regenerative medicine fields, the interactions between the material and the biological and hemodynamic environment are still to be understood, and optimization of the rational design of vascular grafts is an open challenge. This is of special importance as TEVGs not only have to overcome the surgical requirements upon implantation, they also need to withhold the inflammatory response and sustain remodeling of the tissue. This work aims to analyze and evaluate the bio-molecular interactions and hemodynamic phenomena between blood components, cells and materials that have been reported to be related to the failure of the TEVGs during the regeneration process once the initial stages of preimplantation have been resolved, in order to tailor and refine the needed criteria for the optimal design of TEVGs.
Collapse
|
10
|
Ostermeier B, Soriano-Sarabia N, Maggirwar SB. Platelet-Released Factors: Their Role in Viral Disease and Applications for Extracellular Vesicle (EV) Therapy. Int J Mol Sci 2022; 23:2321. [PMID: 35216433 PMCID: PMC8876984 DOI: 10.3390/ijms23042321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Platelets, which are small anuclear cell fragments, play important roles in thrombosis and hemostasis, but also actively release factors that can both suppress and induce viral infections. Platelet-released factors include sCD40L, microvesicles (MVs), and alpha granules that have the capacity to exert either pro-inflammatory or anti-inflammatory effects depending on the virus. These factors are prime targets for use in extracellular vesicle (EV)-based therapy due to their ability to reduce viral infections and exert anti-inflammatory effects. While there are some studies regarding platelet microvesicle-based (PMV-based) therapy, there is still much to learn about PMVs before such therapy can be used. This review provides the background necessary to understand the roles of platelet-released factors, how these factors might be useful in PMV-based therapy, and a critical discussion of current knowledge of platelets and their role in viral diseases.
Collapse
Affiliation(s)
| | | | - Sanjay B. Maggirwar
- Department of Microbiology Immunology and Tropical Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA; (B.O.); (N.S.-S.)
| |
Collapse
|
11
|
Sastre-Oliva T, Corbacho-Alonso N, Albo-Escalona D, Lopez JA, Lopez-Almodovar LF, Vázquez J, Padial LR, Mourino-Alvarez L, Barderas MG. The Influence of Coronary Artery Disease in the Development of Aortic Stenosis and the Importance of the Albumin Redox State. Antioxidants (Basel) 2022; 11:antiox11020317. [PMID: 35204200 PMCID: PMC8868205 DOI: 10.3390/antiox11020317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
Calcific aortic valve and coronary artery diseases are related cardiovascular pathologies in which common processes lead to the calcification of the corresponding affected tissue. Among the mechanisms involved in calcification, the oxidative stress that drives the oxidation of sulfur-containing amino acids such ascysteines is of particular interest. However, there are important differences between calcific aortic valve disease and coronary artery disease, particularly in terms of the reactive oxygen substances and enzymes involved. To evaluate what effect coronary artery disease has on aortic valves, we analyzed valve tissue from patients with severe calcific aortic stenosis with and without coronary artery disease. Proteins and peptides with oxidized cysteines sites were quantified, leading to the identification of 16 proteins with different levels of expression between the two conditions studied, as well as differences in the redox state of the tissue. We also identified two specific sites of cysteine oxidation in albumin that have not been described previously. These results provide evidence that coronary artery disease affects valve calcification, modifying the molecular profile of aortic valve tissue. In addition, the redox proteome is also altered when these conditions coincide, notably affecting human serum albumin.
Collapse
Affiliation(s)
- Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
| | - Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
| | - Diego Albo-Escalona
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
| | - Juan A. Lopez
- Cardiovascular Proteomics Laboratory and Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBER-CV), Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (J.A.L.); (J.V.)
| | - Luis F. Lopez-Almodovar
- Cardiac Surgery, Hospital Virgen de la Salud, Servicio de Salud de Castilla-La Mancha (SESCAM), 45004 Toledo, Spain;
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory and Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBER-CV), Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (J.A.L.); (J.V.)
| | - Luis R. Padial
- Department of cardiology, Hospital Virgen de la Salud, Servicio de Salud de Castilla-La Mancha (SESCAM), 45004 Toledo, Spain;
| | - Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
- Correspondence: or (L.M.-A.); or (M.G.B.); Tel.: +34-9253-96826 (L.M.A. & M.G.B.)
| | - Maria G. Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
- Correspondence: or (L.M.-A.); or (M.G.B.); Tel.: +34-9253-96826 (L.M.A. & M.G.B.)
| |
Collapse
|
12
|
Proteomic Studies of Blood and Vascular Wall in Atherosclerosis. Int J Mol Sci 2021; 22:ijms222413267. [PMID: 34948066 PMCID: PMC8707794 DOI: 10.3390/ijms222413267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
The review is devoted to the analysis of literature data related to the role of proteomic studies in the study of atherosclerotic cardiovascular diseases. Diagnosis of patients with atherosclerotic plaques before clinical manifestations is an arduous task. The review presents the results of research on the new proteomic potential biomarkers of coronary heart disease, coronary atherosclerosis, acute coronary syndrome, myocardial infarction, carotid artery atherosclerosis. Also, the analysis of literature data on proteomic studies of the vascular wall was carried out. To assess the involvement of proteins in the pathological process of atherosclerosis, it is important to investigate the specific relationships between proteins in the arteries, expression and concentration of proteins. The development of proteomic technologies has made it possible to analyse the number of proteins associated with the development of the disease. Analysis of the proteomic profile of the vascular wall in atherosclerosis can help to detect possible diagnostically significant protein structures or potential biomarkers of the disease and develop novel approaches to the diagnosis of atherosclerosis and its complications.
Collapse
|
13
|
Rodriguez-Soto MA, Suarez Vargas N, Riveros A, Camargo CM, Cruz JC, Sandoval N, Briceño JC. Failure Analysis of TEVG's I: Overcoming the Initial Stages of Blood Material Interaction and Stabilization of the Immune Response. Cells 2021; 10:3140. [PMID: 34831361 PMCID: PMC8625197 DOI: 10.3390/cells10113140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/28/2021] [Accepted: 11/06/2021] [Indexed: 12/16/2022] Open
Abstract
Vascular grafts (VG) are medical devices intended to replace the function of a diseased vessel. Current approaches use non-biodegradable materials that struggle to maintain patency under complex hemodynamic conditions. Even with the current advances in tissue engineering and regenerative medicine with the tissue engineered vascular grafts (TEVGs), the cellular response is not yet close to mimicking the biological function of native vessels, and the understanding of the interactions between cells from the blood and the vascular wall with the material in operative conditions is much needed. These interactions change over time after the implantation of the graft. Here we aim to analyze the current knowledge in bio-molecular interactions between blood components, cells and materials that lead either to an early failure or to the stabilization of the vascular graft before the wall regeneration begins.
Collapse
Affiliation(s)
- Maria A. Rodriguez-Soto
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (N.S.V.); (A.R.); (C.M.C.); (J.C.C.)
| | - Natalia Suarez Vargas
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (N.S.V.); (A.R.); (C.M.C.); (J.C.C.)
| | - Alejandra Riveros
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (N.S.V.); (A.R.); (C.M.C.); (J.C.C.)
| | - Carolina Muñoz Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (N.S.V.); (A.R.); (C.M.C.); (J.C.C.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (N.S.V.); (A.R.); (C.M.C.); (J.C.C.)
| | - Nestor Sandoval
- Department of Congenital Heart Disease and Cardiovascular Surgery, Fundación Cardio Infantil Instituto de Cardiología, Bogotá 111711, Colombia;
| | - Juan C. Briceño
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (N.S.V.); (A.R.); (C.M.C.); (J.C.C.)
- Department of Research, Fundación Cardio Infantil Instituto de Cardiología, Bogotá 111711, Colombia
| |
Collapse
|
14
|
Advancing therapeutic complement inhibition in hematologic diseases: PNH and beyond. Blood 2021; 139:3571-3582. [PMID: 34482398 DOI: 10.1182/blood.2021012860] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Complement is an elaborate system of the innate immunity. Genetic variants and autoantibodies leading to excessive complement activation are implicated in a variety of human diseases. Among them, the hematologic disease paroxysmal nocturnal hemoglobinuria (PNH) remains the prototype model of complement activation and inhibition. Eculizumab, the first-in-class complement inhibitor, was approved for PNH in 2007. Addressing some of the unmet needs, a long-acting C5 inhibitor, ravulizumab, and a C3 inhibitor, pegcetacoplan have been also now approved with PNH. Novel agents, such as factor B and factor D inhibitors, are under study with very promising results. In this era of several approved targeted complement therapeutics, selection of the proper drug needs to be based on a personalized approach. Beyond PNH, complement inhibition has also shown efficacy and safety in cold agglutinin disease (CAD), primarily with the C1s inhibitor of the classical complement pathway, sutimlimab, but also with pegcetacoplan. Furthermore, C5 inhibition with eculizumab and ravulizumab, as well as inhibition of the lectin pathway with narsoplimab, are investigated in transplant-associated thrombotic microangiopathy (TA-TMA). With this revolution of next-generation complement therapeutics, additional hematologic entities, such as delayed hemolytic transfusion reaction (DHTR) or immune thrombocytopenia (ITP), might also benefit from complement inhibitors. Therefore, this review aims to describe state-of-the-art knowledge of targeting complement in hematologic diseases focusing on: a) complement biology for the clinician, b) complement activation and therapeutic inhibition in prototypical complement-mediated hematologic diseases, c) hematologic entities under investigation for complement inhibition, and d) other complement-related disorders of potential interest to hematologists.
Collapse
|
15
|
Sadatani K, Niiya K, Miyamoto I, Nakano M, Habara T, Sezaki N. No correlation between mean platelet volume and carotid artery thickness in patients with diabetes at intermediate or high risk for cardiovascular diseases. Blood Coagul Fibrinolysis 2021; 32:312-316. [PMID: 33859114 DOI: 10.1097/mbc.0000000000001037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The number of patients with diabetes with a risk of cardiovascular diseases (CVDs) is increasing worldwide, leading to a higher demand for evaluating atherosclerosis. Recently, the mean platelet volume (MPV) available from complete blood count is gaining attention as a marker of underlying atherosclerotic lesions. In the current study, we examined whether MPV can predict carotid atherosclerosis in patients with diabetes at an intermediate or high risk for CVD. A total of 224 patients with diabetes aged 36-85 years who underwent carotid ultrasound examination were assessed. The risk of CVD was evaluated using the Suita score. The greatest carotid intima-media thickness (IMT) in each common carotid artery (CCA Max-IMT), carotid bulb, internal carotid artery, or external carotid artery (Total Max-IMT) was measured. Subsequently, the relationship between MPV and IMT was analyzed. Patients were divided into three groups according to their MPV values (<9.5 fl, tertile 1; 9.5-10.2 fl, tertile 2; and >10.2 fl, tertile 3). A correlation was observed between MPV and platelet count (P < 0.001), platelet distribution width (P < 0.001), and glycated hemoglobin (P = 0.04); however, multivariate logistic regression analyses demonstrated no relationship between MPV and CCA Max-IMT [odds ratio, 0.89 (0.60-1.29), P = 0.54] or Total Max-IMT [odds ratio, 0.87 (0.61-1.24), P = 0.45]. MPV did not correlate with carotid artery thickness. Therefore, it is difficult to determine the significance of MPV in atherosclerotic conditions from this study.
Collapse
Affiliation(s)
| | - Kenji Niiya
- Department of Hematology, Okayama University Medical School, Okayama, Japan
| | | | | | | | - Nobuo Sezaki
- Department of Clinical Laboratory
- Department of Hematology, Chugoku Central Hospital, Fukuyama
| |
Collapse
|
16
|
Serum biomarker discovery related to pathogenesis in acute coronary syndrome by proteomic approach. Biosci Rep 2021; 41:228672. [PMID: 34002800 PMCID: PMC8182988 DOI: 10.1042/bsr20210344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
Acute coronary syndrome (ACS) results from inadequate supply of blood flow from the coronary arteries to the heart or ischemia. ACS has an extremely high morbidity and mortality. The levels of biomarkers currently used for detection of ACS also increase in response to myocardial necrosis and other diseases and are not elevated immediately after symptoms appear, thus limiting their diagnostic capacity. Therefore, we aimed to discover new ACS diagnostic biomarkers with high sensitivity and specificity that are specifically related to ACS pathogenesis. Sera from 50 patients with ACS and healthy controls (discovery cohort) each were analyzed using mass spectrometry (MS) to identify differentially expressed proteins, and protein candidates were evaluated as ACS biomarkers in 120 people in each group (validation cohort). α-1-acid glycoprotein 1 (AGP1), complement C5 (C5), leucine-rich α-2-glycoprotein (LRG), and vitronectin (VN) were identified as biomarkers whose levels increase and gelsolin (GSN) as a biomarker whose levels decrease in patients with ACS. We concluded that these biomarkers are associated with the pathogenesis of ACS and can predict the onset of ACS prior to the appearance of necrotic biomarkers.
Collapse
|
17
|
The Relationship between the Mean Platelet Volume and Carotid Atherosclerosis and Prognosis in Patients with Acute Cerebral Infarction. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6685740. [PMID: 33490251 PMCID: PMC7790567 DOI: 10.1155/2020/6685740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
Objective To investigate the relationship between mean platelet volume (MPV) level and carotid atherosclerosis and prognosis in patients with acute cerebral infarction. Methods. A retrospectively included 160 patients with acute cerebral infarction classified by TOAST classification as aortic atherosclerosis as the observation group. To analyze the relationship between MPV and carotid atherosclerosis, and use receiver operating characteristic (ROC) curves to analyze the role of MPV in predicting the prognosis of acute cerebral infarction in the observation group, grouping patients with different MPV by cut-off value, and analyze the differences in factors between the two groups of patients. Results MPV has a positive correlation with carotid atherosclerosis in patients with acute cerebral infarction. Multivariate logistic regression analysis revealed that increased MPV was an independent predictor of poor functional outcome in patients with acute cerebral infarction (Odds Ratio (OR): 6.152, 95% CI: 2.385-13.625, P < 0.01). ROC curve analysis showed that the area under the curve for MPV to predict poor prognosis was 0.868 (95% CI: 0.787-949, P < 0.01). The cutoff value, sensitivity, and specificity were 12.65, 76.2%, and 87.6%. Compared with patients with MPV < 12.65 at admission, patients with higher MPV levels (MPV ≥ 12.65) at admission have larger infarct size, more severe carotid artery stenosis, poor short-term prognosis, and higher mortality. Conclusion MPV level is closely related to the degree of carotid atherosclerosis in patients with acute cerebral infarction, and it is also an independent predictor of poor prognosis in patients with acute cerebral infarction at 3 months.
Collapse
|
18
|
Svenungsson E, Gustafsson JT, Grosso G, Rossides M, Gunnarsson I, Jensen-Urstad K, Larsson A, Ekdahl KN, Nilsson B, Bengtsson AA, Lood C. Complement deposition, C4d, on platelets is associated with vascular events in systemic lupus erythematosus. Rheumatology (Oxford) 2020; 59:3264-3274. [PMID: 32259250 PMCID: PMC7590416 DOI: 10.1093/rheumatology/keaa092] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Complement components, including C4d, can be found on activated platelets, a process associated with vascular disease in SLE. We investigated whether platelet C4d (PC4d) adds additional value to traditional and known lupus-associated risk factors when identifying SLE patients with vascular disease. METHODS This cross-sectional study included 308 well-characterized SLE patients and 308 matched general population controls. PC4d deposition was analysed using flow cytometry. Values >95% of controls were considered as PC4d positive (+). aPL were determined by Luminex, and the LA test was performed by DRVVT. History of vascular disease (composite and as separate outcomes) was defined at inclusion. RESULTS SLE patients had increased PC4d deposition as compared with population controls (50 vs 5%, P < 0.0001). PC4d+ positively associated with any vascular events, and separately with venous and cerebrovascular events, and also with all investigated aPL profiles. The association for any vascular event remained statistically significant after adjustment for traditional and SLE-associated risk factors (odds ratio: 2.3, 95% CI: 1.3, 4.3, P = 0.008). Compared with patients negative for both PC4d and LA, patients with double positivity were more likely to have vascular disease (odds ratio: 12.3, 95% CI: 5.4, 29.3; attributable proportion due to interaction 0.8, 95% CI: 0.4, 1.1). CONCLUSION PC4d+ is associated with vascular events in SLE, independently of traditional and SLE-associated risk factors. Concurrent presence of PC4d and LA seem to interact to further increase the odds for vascular events. Prospective studies should examine whether the aPL/PC4d combination can improve prediction of vascular events in SLE and/or APS.
Collapse
Affiliation(s)
- Elisabet Svenungsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm
| | - Johanna T Gustafsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm
| | - Giorgia Grosso
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm
| | - Marios Rossides
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm
| | | | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala
| | - Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala
| | - Anders A Bengtsson
- Department of Clinical Sciences Lund, Section of Rheumatology, Lund University, Lund, Sweden
| | - Christian Lood
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA
| |
Collapse
|
19
|
Rawish E, Nording H, Münte T, Langer HF. Platelets as Mediators of Neuroinflammation and Thrombosis. Front Immunol 2020; 11:548631. [PMID: 33123127 PMCID: PMC7572851 DOI: 10.3389/fimmu.2020.548631] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Beyond platelets function in hemostasis, there is emerging evidence to suggest that platelets contribute crucially to inflammation and immune responses. Therefore, considering the detrimental role of inflammatory conditions in severe neurological disorders such as multiple sclerosis or stroke, this review outlines platelets involvement in neuroinflammation. For this, distinct mechanisms of platelet-mediated thrombosis and inflammation are portrayed, focusing on the interaction of platelet receptors with other immune cells as well as brain endothelial cells. Furthermore, we draw attention to the intimate interplay between platelets and the complement system as well as between platelets and plasmatic coagulation factors in the course of neuroinflammation. Following the thorough exposition of preclinical approaches which aim at ameliorating disease severity after inducing experimental autoimmune encephalomyelitis (a counterpart of multiple sclerosis in mice) or brain ischemia-reperfusion injury, the clinical relevance of platelet-mediated neuroinflammation is addressed. Thus, current as well as future propitious translational and clinical strategies for the treatment of neuro-inflammatory diseases by affecting platelet function are illustrated, emphasizing that targeting platelet-mediated neuroinflammation could become an efficient adjunct therapy to mitigate disease severity of multiple sclerosis or stroke associated brain injury.
Collapse
Affiliation(s)
- Elias Rawish
- University Hospital Schleswig-Holstein, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Henry Nording
- University Hospital Schleswig-Holstein, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Thomas Münte
- University Hospital Schleswig-Holstein, Clinic for Neurology, Lübeck, Germany
| | - Harald F. Langer
- University Hospital Schleswig-Holstein, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| |
Collapse
|
20
|
Nording H, Baron L, Langer HF. Platelets as therapeutic targets to prevent atherosclerosis. Atherosclerosis 2020; 307:97-108. [DOI: 10.1016/j.atherosclerosis.2020.05.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/30/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
|
21
|
Kamesaki T, Nishimura JI, Wada H, Yu E, Tsao E, Morales J, Kanakura Y. Demographic characteristics, thromboembolism risk, and treatment patterns for patients with cold agglutinin disease in Japan. Int J Hematol 2020; 112:307-315. [DOI: 10.1007/s12185-020-02899-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/30/2020] [Accepted: 05/29/2020] [Indexed: 12/30/2022]
|
22
|
Abstract
The renaissance of complement diagnostics and therapeutics has introduced precision medicine into a widened field of complement-mediated diseases. In particular, complement-mediated diseases (or complementopathies) with ongoing or published clinical trials of complement inhibitors include paroxysmal nocturnal hemoglobinuria, cold agglutinin disease, hemolytic uremic syndrome, nephropathies, HELLP syndrome, transplant-associated thrombotic microangiopathy, antiphospholipid antibody syndrome, myasthenia gravis, and neuromyelitis optica. Recognizing that this field is rapidly expanding, we aim to provide a state-of-the-art review of (a) current understanding of complement biology for the clinician, (b) novel insights into complement with potential applicability to clinical practice, (c) complement in disease across various disciplines (hematology, nephrology, obstetrics, transplantation, rheumatology, and neurology), and (d) the potential future of precision medicine. Better understanding of complement diagnostics and therapeutics will not only facilitate physicians treating patients in clinical practice but also provide the basis for future research toward precision medicine in this field.
Collapse
Affiliation(s)
- Eleni Gavriilaki
- Hematology Department, G. Papanicolaou Hospital, Thessaloniki, Greece
| | - Robert A. Brodsky
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Complement Activation in Association with Markers of Neutrophil Extracellular Traps and Acute Myocardial Infarction in Stable Coronary Artery Disease. Mediators Inflamm 2020; 2020:5080743. [PMID: 32308555 PMCID: PMC7136779 DOI: 10.1155/2020/5080743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
Complement activation and neutrophil extracellular traps (NETs) have both been suggested to drive atherosclerotic plaque progression. Although experimental studies suggest interplay between these two innate immunity components, the relevance in patients with coronary artery disease (CAD) is unclear. The aim of this study was to assess associations between complement activation and NETs in patients with stable CAD and examine the role of complement activation on clinical outcome. Blood samples from a cohort of patients with angiographically verified stable CAD (n = 1001) were analyzed by ELISA for the terminal complement complex (TCC) and by relative quantification for gene expression of the C5a receptor 1 (C5aR1) as markers of complement activation. As markers of NETs, dsDNA was analyzed by fluorescent nucleic acid stain and myeloperoxidase-DNA (MPO-DNA) by ELISA. Clinical outcome was defined as unstable angina, nonhemorrhagic stroke, acute myocardial infarction (MI), or death (n = 106, whereof 36 MI). Levels of TCC and C5aR1 were not significantly correlated to dsDNA (TCC: r = −0.045, p = 0.153; C5aR1: r = −0.060, p = 0.434) or MPO-DNA (TCC: r = 0.026, p = 0.414; C5aR1: r = 0.123, p = 0.107). When dividing TCC and C5aR1 levels into quartiles (Q), levels of MPO-DNA differed significantly across quartiles (TCC: p = 0.008, C5aR1: 0.049), while dsDNA did not (TCC: p = 0.181, C5aR1: p = 0.771). Patients with TCC levels in Q4 had significantly higher levels of MPO-DNA than Q1-3 (p = 0.019), and C5aR1 levels in Q3-4 had significantly higher levels of MPO-DNA than Q1-2 (p = 0.046). TCC levels did not differ between patients experiencing a clinical endpoint or not, but high levels were associated with increased risk of acute MI (OR. 1.97, 95% CI: 0.99-3.90, p = 0.053) during two-year follow up, also when adjusted for relevant covariates. In conclusion, TCC and C5aR1 were moderately associated with the NET marker MPO-DNA, and TCC levels were related to the risk of future MI in this cohort of patients with stable CAD.
Collapse
|
24
|
Ragino YI, Stakhneva EM, Polonskaya YV, Kashtanova EV. The Role of Secretory Activity Molecules of Visceral Adipocytes in Abdominal Obesity in the Development of Cardiovascular Disease: A Review. Biomolecules 2020; 10:biom10030374. [PMID: 32121175 PMCID: PMC7175189 DOI: 10.3390/biom10030374] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Adipose tissue is considered one of the endocrine organs in the body because of its ability to synthesize and release a large number of hormones, cytokines, and growth and vasoactive factors that influence a variety of physiological and pathophysiological processes, such as vascular tone, inflammation, vascular smooth muscle cell migration, endothelial function, and vascular redox state. Moreover, genetic factors substantially contribute to the risk of obesity. Research into the biochemical effects of molecules secreted by visceral adipocytes as well as their molecular genetic characteristics is actively conducted around the world mostly in relation to pathologies of the cardiovascular system, metabolic syndrome, and diabetes mellitus. Adipokines could be developed into biomarkers for diagnosis, prognosis, and therapeutic targets in different diseases. This review describes the relevance of secretory activity molecules of visceral adipocytes in cardiovascular disease associated abdominal obesity.
Collapse
|
25
|
Changes in the proteomic profile of blood serum in coronary atherosclerosis. J Med Biochem 2020; 39:208-214. [PMID: 33033454 DOI: 10.2478/jomb-2019-0022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/17/2019] [Indexed: 11/21/2022] Open
Abstract
Background Our aim was to study changes in the serum proteomic profile in coronary atherosclerosis. Methods The study involved two groups of patients: 1) men with coronary heart disease and coronary atherosclerosis (n = 15); 2) control (n = 15): men without coronary heart disease. The object of this study was blood serum. Separation of proteins for the investigation of differences in serum protein components was performed by two-dimensional electrophoresis. Identification of protein fractions was carried out using peptide mass maps by the matrix-assisted laser desorption ionization method. Results In blood serum samples from patients with coronary atherosclerosis, protein separation in two-dimensional gels with mass-spectrometric identification revealed an increase of some proteins: hemopexin, transthyretin (monomeric form), retinol-binding protein 4, and components of the complement system: C3 (chain B) and C9. There was a decrease of some proteins: kininogen, zinc finger protein 133, and B-cell CLL/lymphoma 6 member B protein. Comparisons between the experimental and control group were carried out in protein fractions where the protein amount differed more than 1.5-fold (p < 0.05). Conclusions Proteome profiling of serum revealed a change in the content of kininogen, hemopexin, transthyretin, retinol-binding protein, and proteins of the complement system (C9, and C3) in coronary atherosclerosis. The contribution to the differential expression of a protein was often made by isoforms of the protein, particularly transthyretin. The change in the concentrations of functionally interacting proteins, such as transthyretin and retinol-binding protein, were noted.
Collapse
|
26
|
McArdle S, Buscher K, Ghosheh Y, Pramod AB, Miller J, Winkels H, Wolf D, Ley K. Migratory and Dancing Macrophage Subsets in Atherosclerotic Lesions. Circ Res 2019; 125:1038-1051. [PMID: 31594470 DOI: 10.1161/circresaha.119.315175] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RATIONALE Macrophages are essential regulators of atherosclerosis. They secrete cytokines, process lipoproteins and cholesterol, and take up apoptotic cells. Multiple subsets of plaque macrophages exist and their differential roles are emerging. OBJECTIVE Here, we explore macrophage heterogeneity in atherosclerosis plaques using transgenic fluorescent mice in which subsets of macrophages are labeled by GFP (green fluorescent protein), YFP (yellow fluorescent protein), neither, or both. The objective was to define migration patterns of the visible subsets and relate them to their phenotypes and transcriptomes. METHODS AND RESULTS Apoe-/- Cx3cr1GFP Cd11cYFP mice have 4 groups of macrophages in their aortas. The 3 visible subsets show varying movement characteristics. GFP and GFP+YFP+ macrophages extend and retract dendritic processes, dancing on the spot with little net movement while YFP macrophages have a more rounded shape and migrate along the arteries. RNA sequencing of sorted cells revealed significant differences in the gene expression patterns of the 4 subsets defined by GFP and YFP expression, especially concerning chemokine and cytokine expression, matrix remodeling, and cell shape dynamics. Gene set enrichment analysis showed that GFP+ cells have similar transcriptomes to cells found in arteries with tertiary lymphoid organs and regressing plaques while YFP+ cells were associated with progressing and stable plaques. CONCLUSIONS The combination of quantitative intravital imaging with deep transcriptomes identified 4 subsets of vascular macrophages in atherosclerosis that have unique transcriptomic profiles. Our data link vascular macrophage transcriptomes to their in vivo migratory function. Future work on the functional significance of the change in gene expression and motility characteristics will be needed to fully understand how these subsets contribute to disease progression.
Collapse
Affiliation(s)
- Sara McArdle
- From the Microscopy Core Facility (S.M.), La Jolla Institute for Immunology, San Diego, CA.,Division of Inflammation Biology (S.M., K.B., Y.G., A.B.P., J.M., H.W., D.W., K.L.), La Jolla Institute for Immunology, San Diego, CA
| | - Konrad Buscher
- Division of Inflammation Biology (S.M., K.B., Y.G., A.B.P., J.M., H.W., D.W., K.L.), La Jolla Institute for Immunology, San Diego, CA.,Department of Nephrology and Rheumatology, University Hospital Muenster, German (K.B.)
| | - Yanal Ghosheh
- Division of Inflammation Biology (S.M., K.B., Y.G., A.B.P., J.M., H.W., D.W., K.L.), La Jolla Institute for Immunology, San Diego, CA
| | - Akula Bala Pramod
- Division of Inflammation Biology (S.M., K.B., Y.G., A.B.P., J.M., H.W., D.W., K.L.), La Jolla Institute for Immunology, San Diego, CA
| | - Jacqueline Miller
- Division of Inflammation Biology (S.M., K.B., Y.G., A.B.P., J.M., H.W., D.W., K.L.), La Jolla Institute for Immunology, San Diego, CA
| | - Holger Winkels
- Division of Inflammation Biology (S.M., K.B., Y.G., A.B.P., J.M., H.W., D.W., K.L.), La Jolla Institute for Immunology, San Diego, CA
| | - Dennis Wolf
- Division of Inflammation Biology (S.M., K.B., Y.G., A.B.P., J.M., H.W., D.W., K.L.), La Jolla Institute for Immunology, San Diego, CA.,University Heart Center and Medical Center, University of Freiburg, Germany (D.W.)
| | - Klaus Ley
- Division of Inflammation Biology (S.M., K.B., Y.G., A.B.P., J.M., H.W., D.W., K.L.), La Jolla Institute for Immunology, San Diego, CA.,Department of Bioengineering, University of California, San Diego (K.L.)
| |
Collapse
|
27
|
Pinckard K, Baskin KK, Stanford KI. Effects of Exercise to Improve Cardiovascular Health. Front Cardiovasc Med 2019; 6:69. [PMID: 31214598 PMCID: PMC6557987 DOI: 10.3389/fcvm.2019.00069] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Obesity is a complex disease that affects whole body metabolism and is associated with an increased risk of cardiovascular disease (CVD) and Type 2 diabetes (T2D). Physical exercise results in numerous health benefits and is an important tool to combat obesity and its co-morbidities, including cardiovascular disease. Exercise prevents both the onset and development of cardiovascular disease and is an important therapeutic tool to improve outcomes for patients with cardiovascular disease. Some benefits of exercise include enhanced mitochondrial function, restoration and improvement of vasculature, and the release of myokines from skeletal muscle that preserve or augment cardiovascular function. In this review we will discuss the mechanisms through which exercise promotes cardiovascular health.
Collapse
Affiliation(s)
| | | | - Kristin I. Stanford
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
28
|
The role of platelets in mediating a response to human influenza infection. Nat Commun 2019; 10:1780. [PMID: 30992428 PMCID: PMC6467905 DOI: 10.1038/s41467-019-09607-x] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 03/20/2019] [Indexed: 02/07/2023] Open
Abstract
Influenza infection increases the incidence of myocardial infarction but the reason is unknown. Platelets mediate vascular occlusion through thrombotic functions but are also recognized to have immunomodulatory activity. To determine if platelet processes are activated during influenza infection, we collected blood from 18 patients with acute influenza infection. Microscopy reveals activated platelets, many containing viral particles and extracellular-DNA associated with platelets. To understand the mechanism, we isolate human platelets and treat them with influenza A virus. Viral-engulfment leads to C3 release from platelets as a function of TLR7 and C3 leads to neutrophil-DNA release and aggregation. TLR7 specificity is confirmed in murine models lacking the receptor, and platelet depletion models support platelet-mediated C3 and neutrophil-DNA release post-influenza infection. These findings demonstrate that the initial intrinsic defense against influenza is mediated by platelet–neutrophil cross-communication that tightly regulates host immune and complement responses but can also lead to thrombotic vascular occlusion. Influenza viremia is rare in human blood and not well studied. Here, the authors show that influenza can be found in human platelets and that platelet engulfment of influenza A results in TLR7-dependent C3 release, which in turn promotes neutrophil-DNA release and formation of platelet-DNA aggregates.
Collapse
|
29
|
Lopez JJ, El Haouari M, Jardin I, Alonso N, Regodon S, Diez-Bello R, Redondo PC, Rosado JA. Flavonoids and Platelet-Derived Thrombotic Disorders. Curr Med Chem 2019; 26:7035-7047. [DOI: 10.2174/0929867325666180417170218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 01/12/2023]
Abstract
:
Thrombotic disorders are characterized by an increase in the probability of the
formation of unnecessary thrombi that might be due to the activation of the coagulation cascade
or the circulating platelets. Platelets or thrombocytes play an essential role in hemostasis
but abnormal platelet function leads to the development of a number of cardiovascular
complications, including thrombotic disorders. Under pathological conditions, platelets are
associated with the development of different thrombotic disorders, including atherosclerosis,
arterial thrombosis and stroke, deep venous thrombosis and pulmonary embolism; therefore,
platelets are the target of a number of anti-thrombotic strategies. Flavonoids, a large group
of polyphenols ubiquitously expressed in fruits and vegetables that have attracted considerable
attention because of their benefits in human health, including the reduction of the risk
of cardiovascular disease. Flavonoids have been reported to reduce platelet activity by attenuating
agonist-induced GPIIb/IIIa receptor activation, mobilization of intracellular free
Ca2+, granule exocytosis, as well as activation of different signaling molecules such as mitogen-
activated protein kinases or phospholipases. This review summarizes the current studies
concerning the modulation of platelet activation by flavonoids, giving especial attention to
those events associated to thrombotic disorders.
Collapse
Affiliation(s)
- Jose J. Lopez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Cáceres, Spain
| | - Mohammed El Haouari
- Faculté Polydisciplinaire de Taza, Laboratoire des Matériaux, Substances Naturelles, Environnement et Modélisation (LMSNEM), Université Sidi Mohamed Ben Abdellah, B.P. 1223, Taza Gare, Morocco
| | - Isaac Jardin
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Cáceres, Spain
| | - Nieves Alonso
- Department of Hematology, Hospital Infanta Cristina, 06006 Badajoz, Spain
| | - Sergio Regodon
- Department of Animal Medicine, University of Extremadura, 10003-Cáceres, Spain
| | - Raquel Diez-Bello
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Cáceres, Spain
| | - Pedro C. Redondo
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Cáceres, Spain
| | - Juan A. Rosado
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Cáceres, Spain
| |
Collapse
|
30
|
Eisinger F, Patzelt J, Langer HF. The Platelet Response to Tissue Injury. Front Med (Lausanne) 2018; 5:317. [PMID: 30483508 PMCID: PMC6242949 DOI: 10.3389/fmed.2018.00317] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
In recent years, various studies have increasingly explained platelet functions not only in their central role as a regulator in cellular hemostasis and coagulation. In fact, there is growing evidence that under specific conditions, platelets act as a mediator between the vascular system, hemostasis, and the immune system. Therefore, they are essential in many processes involved in tissue remodeling and tissue reorganization after injury or inflammatory responses. These processes include the promotion of inflammatory processes, the contribution to innate and adaptive immune responses during bacterial and viral infections, the modulation of angiogenesis, and the regulation of cell apoptosis in steady-state tissue homeostasis or after tissue breakdown. All in all platelets may contribute to the control of tissue homeostasis much more than generally assumed. This review summarizes the current knowledge of platelets as part of the tissue remodeling network and seeks to provide possible translational implications for clinical therapy.
Collapse
Affiliation(s)
- Felix Eisinger
- Section for Cardioimmunology, Department of Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| | - Johannes Patzelt
- University Clinic for Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| | - Harald F. Langer
- Section for Cardioimmunology, Department of Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
- University Clinic for Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| |
Collapse
|
31
|
Jacinto TA, Meireles GS, Dias AT, Aires R, Porto ML, Gava AL, Vasquez EC, Pereira TMC, Campagnaro BP, Meyrelles SS. Increased ROS production and DNA damage in monocytes are biomarkers of aging and atherosclerosis. Biol Res 2018; 51:33. [PMID: 30185234 PMCID: PMC6123971 DOI: 10.1186/s40659-018-0182-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/31/2018] [Indexed: 01/11/2023] Open
Abstract
Background New evidence demonstrates that aging and dyslipidemia are closely associated with oxidative stress, DNA damage and apoptosis in some cells and extravascular tissues. However, in monocytes, which are naturally involved in progression and/or resolution of plaque in atherosclerosis, this concurrence has not yet been fully investigated. In this study, we evaluated the influence of aging and hypercholesterolemia on serum pro-inflammatory cytokines, oxidative stress, DNA damage and apoptosis in monocytes from apolipoprotein E-deficient (apoE−/−) mice compared with age-matched wild-type C57BL/6 (WT) mice. Experiments were performed in young (2-months) and in old (18-months) male wild-type (WT) and apoE−/− mice. Results Besides the expected differences in serum lipid profile and plaque formation, we observed that atherosclerotic mice exhibited a significant increase in monocytosis and in serum levels of pro-inflammatory cytokines compared to WT mice. Moreover, it was observed that the overproduction of ROS, led to an increased DNA fragmentation and, consequently, apoptosis in monocytes from normocholesterolemic old mice, which was aggravated in age-matched atherosclerotic mice. Conclusions In this study, we demonstrate that a pro-inflammatory systemic status is associated with an impairment of functionality of monocytes during aging and that these parameters are fundamental extra-arterial contributors to the aggravation of atherosclerosis. The present data open new avenues for the development of future strategies with the purpose of treating atherosclerosis.
Collapse
Affiliation(s)
- Thais A Jacinto
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| | - Giselle S Meireles
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Rua Mercúrio, s/n, Boa Vista 1, Vila Velha, ES, 29102-623, Brazil
| | - Ananda T Dias
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| | - Rafaela Aires
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| | - Marcella L Porto
- Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - Agata L Gava
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil.,Division of Nephrology, McMaster University, Hamilton, ON, Canada
| | - Elisardo C Vasquez
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil.,Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Rua Mercúrio, s/n, Boa Vista 1, Vila Velha, ES, 29102-623, Brazil
| | - Thiago Melo C Pereira
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Rua Mercúrio, s/n, Boa Vista 1, Vila Velha, ES, 29102-623, Brazil.,Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - Bianca P Campagnaro
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Rua Mercúrio, s/n, Boa Vista 1, Vila Velha, ES, 29102-623, Brazil.
| | - Silvana S Meyrelles
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| |
Collapse
|
32
|
Jadczyk T, Baranski K, Syzdol M, Nabialek E, Wanha W, Kurzelowski R, Ratajczak MZ, Kucia M, Dolegowska B, Niewczas M, Zejda J, Wojakowski W. Bioactive Sphingolipids, Complement Cascade, and Free Hemoglobin Levels in Stable Coronary Artery Disease and Acute Myocardial Infarction. Mediators Inflamm 2018; 2018:2691934. [PMID: 30116144 PMCID: PMC6079520 DOI: 10.1155/2018/2691934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/29/2018] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) and coronary artery bypass graft (CABG) surgery are associated with a pathogen-free inflammatory response (sterile inflammation). Complement cascade (CC) and bioactive sphingolipids (BS) are postulated to be involved in this process. AIM The aim of this study was to evaluate plasma levels of CC cleavage fragments (C3a, C5a, and C5b9), sphingosine (SP), sphingosine-1-phosphate (S1P), and free hemoglobin (fHb) in AMI patients treated with primary percutaneous coronary intervention (pPCI) and stable coronary artery disease (SCAD) undergoing CABG. PATIENTS AND METHODS The study enrolled 37 subjects (27 male) including 22 AMI patients, 7 CABG patients, and 8 healthy individuals as the control group (CTRL). In the AMI group, blood samples were collected at 5 time points (admission to hospital, 6, 12, 24, and 48 hours post pPCI) and 4 time points in the CABG group (6, 12, 24, and 48 hours post operation). SP and S1P concentrations were measured by high-performance liquid chromatography (HPLC). Analysis of C3a, C5a, and C5b9 levels was carried out using high-sensitivity ELISA and free hemoglobin by spectrophotometry. RESULTS The plasma levels of CC cleavage fragments (C3a and C5b9) were significantly higher, while those of SP and S1P were lower in patients undergoing CABG surgery in comparison to the AMI group. In both groups, levels of CC factors showed no significant changes within 48 hours of follow-up. Conversely, SP and S1P levels gradually decreased throughout 48 hours in the AMI group but remained stable after CABG. Moreover, the fHb concentration was significantly higher after 24 and 48 hours post pPCI compared to the corresponding postoperative time points. Additionally, the fHb concentrations increased between 12 and 48 hours after PCI in patients with AMI. CONCLUSIONS Inflammatory response after AMI and CABG differed regarding the release of sphingolipids, free hemoglobin, and complement cascade cleavage fragments.
Collapse
Affiliation(s)
- T. Jadczyk
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, Ziołowa 45-47, Katowice, Poland
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - K. Baranski
- Department of Epidemiology, Medical University of Silesia, Katowice, Poland
| | - M. Syzdol
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, Ziołowa 45-47, Katowice, Poland
| | - E. Nabialek
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, Ziołowa 45-47, Katowice, Poland
| | - W. Wanha
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, Ziołowa 45-47, Katowice, Poland
| | - R. Kurzelowski
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, Ziołowa 45-47, Katowice, Poland
| | - M. Z. Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - M. Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - B. Dolegowska
- Department of Laboratory Medicine, Pomeranian Medical University, Szczecin, Poland
| | - M. Niewczas
- Department of Sport, Faculty of Physical Education, University of Rzeszow, Rzeszow, Poland
| | - J. Zejda
- Department of Epidemiology, Medical University of Silesia, Katowice, Poland
| | - W. Wojakowski
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, Ziołowa 45-47, Katowice, Poland
| |
Collapse
|
33
|
Complement links platelets to innate immunity. Semin Immunol 2018; 37:43-52. [DOI: 10.1016/j.smim.2018.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
|
34
|
Page MJ, Bester J, Pretorius E. The inflammatory effects of TNF-α and complement component 3 on coagulation. Sci Rep 2018; 8:1812. [PMID: 29379088 PMCID: PMC5789054 DOI: 10.1038/s41598-018-20220-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/16/2018] [Indexed: 12/24/2022] Open
Abstract
Tissue necrosis factor-α (TNF-α) and complement component 3 (C3) are two well-known pro-inflammatory molecules. When TNF-α is upregulated, it contributes to changes in coagulation and causes C3 induction. They both interact with receptors on platelets and erythrocytes (RBCs). Here, we look at the individual effects of C3 and TNF-α, by adding low levels of the molecules to whole blood and platelet poor plasma. We used thromboelastography, wide-field microscopy and scanning electron microscopy to study blood clot formation, as well as structural changes to RBCs and platelets. Clot formation was significantly different from the naïve sample for both the molecules. Furthermore, TNF-α exposure to whole blood resulted in platelet clumping and activation and we noted spontaneous plasma protein dense matted deposits. C3 exposure did not cause platelet aggregation, and only slight pseudopodia formation was noted. Therefore, although C3 presence has an important function to cause TNF-α release, it does not necessarily by itself cause platelet activation or RBC damage at these low concentrations. We conclude by suggesting that our laboratory results can be translated into clinical practice by incorporating C3 and TNF-α measurements into broad spectrum analysis assays, like multiplex technology, as a step closer to a patient-orientated, precision medicine approach.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Private Bag X1, MATIELAND, 7602, South Africa
| | - Janette Bester
- Department of Physiology, University of Pretoria, Pretoria, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Private Bag X1, MATIELAND, 7602, South Africa.
| |
Collapse
|
35
|
Abstract
The increasing number of clinical conditions that involve a pathological contribution from the complement system - many of which affect the kidneys - has spurred a regained interest in therapeutic options to modulate this host defence pathway. Molecular insight, technological advances, and the first decade of clinical experience with the complement-specific drug eculizumab, have contributed to a growing confidence in therapeutic complement inhibition. More than 20 candidate drugs that target various stages of the complement cascade are currently being evaluated in clinical trials, and additional agents are in preclinical development. Such diversity is clearly needed in view of the complex and distinct involvement of complement in a wide range of clinical conditions, including rare kidney disorders, transplant rejection and haemodialysis-induced inflammation. The existing drugs cannot be applied to all complement-driven diseases, and each indication has to be assessed individually. Alongside considerations concerning optimal points of intervention and economic factors, patient stratification will become essential to identify the best complement-specific therapy for each individual patient. This Review provides an overview of the therapeutic concepts, targets and candidate drugs, summarizes insights from clinical trials, and reflects on existing challenges for the development of complement therapeutics for kidney diseases and beyond.
Collapse
Affiliation(s)
- Daniel Ricklin
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Dimitrios C Mastellos
- National Center for Scientific Research 'Demokritos', Patr. Gregoriou E & 27 Neapoleos Str, 15341 Agia Paraskevi, Athens, Greece
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 401 Stellar Chance, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 401 Stellar Chance, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
36
|
Wang X, Liu AH, Jia ZW, Pu K, Chen KY, Guo H. Evaluation of expression levels and mechanism of complement activation. Exp Ther Med 2017; 14:2493-2496. [PMID: 28962185 PMCID: PMC5609295 DOI: 10.3892/etm.2017.4841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/12/2017] [Indexed: 01/06/2023] Open
Abstract
The present study aimed to reveal the expression changes of complement system activation and complement activation product C3a receptor during acute myocardial infarction. Blood samples were collected from healthy individuals and from patients with coronary artery stenosis or acute myocardial infarction. The subjects received physical examination in hospital between January and July 2015 (n=5). Cytometric bead array was performed to measure the levels of complement system activation product anaphylatoxin C3a, C4a and C5a. Immunohistochemical investigations were performed in tissues of patients who underwent coronary artery bypass grafting between January and July 2015 to detect the expression of C3a receptor. The results of cytometric bead array showed that the content of complement activation products C3a, C4a and C5a in the plasma of patients with coronary artery stenosis and acute myocardial infarction were significantly higher than those of the control group (P<0.01). The results of immunoblotting suggested that the protein expression of C3a receptor in infarct tissues of patients with acute myocardial infarction was significantly higher than that of normal tissues adjacent to the infarcted area (P<0.05). There is complement system activation in patients with acute myocardial infarction. Additionally, the increase in the expression of complement C3a receptor in tissues of infarct area suggested that C3a-C3a receptor signaling pathway may be involved in the development of myocardial infarction.
Collapse
Affiliation(s)
- Xing Wang
- Department of Cardiology, The 254th Hospital of PLA, Tianjin 300142, P.R. China
| | - An-Heng Liu
- Department of Cardiology, The Fourth Affiliated Hospital of Tianjin Medical University, Tianjin 300070, P.R. China
| | - Zhong-Wei Jia
- Department of Cardiology, The 254th Hospital of PLA, Tianjin 300142, P.R. China
| | - Kui Pu
- Department of Cardiology, The 254th Hospital of PLA, Tianjin 300142, P.R. China
| | - Kang-Yin Chen
- Department of Cardiology, The Affiliated Hospital of Tianjing Medical University, Tianjin 300070, P.R. China
| | - Hua Guo
- Department of Geriatric Medicine, The 254th Hospital of PLA, Tianjin 300142, P.R. China
| |
Collapse
|
37
|
Anderson R, Feldman C. Review manuscript: Mechanisms of platelet activation by the pneumococcus and the role of platelets in community-acquired pneumonia. J Infect 2017; 75:473-485. [PMID: 28943342 DOI: 10.1016/j.jinf.2017.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 12/11/2022]
Abstract
There is increasing recognition of the involvement of platelets in orchestrating inflammatory responses, driving the activation of neutrophils, monocytes and vascular endothelium, which, if poorly controlled, may lead to microvascular dysfunction. Importantly, hyperreactivity of platelets has been implicated in the pathogenesis of myocardial injury and the associated particularly high prevalence of acute cardiovascular events in patients with severe community-acquired pneumonia (CAP), of which Streptococcus pneumoniae (pneumococcus) is the most commonly encountered aetiologic agent. In this context, it is noteworthy that a number of studies have documented various mechanisms by which the pneumococcus may directly promote platelet aggregation and activation. The major contributors to platelet activation include several different types of pneumococcal adhesin, the pore-forming toxin, pneumolysin, and possibly pathogen-derived hydrogen peroxide, which collectively represent a major focus of the current review. This is followed by an overview of the limited experimental studies together with a larger series of clinical studies mainly focused on all-cause CAP, which have provided evidence in support of associations between alterations in circulating platelet counts, most commonly thrombocytopenia, and a poor clinical outcome. The final section of the review covers, albeit briefly, systemic biomarkers of platelet activation which may have prognostic potential.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Charles Feldman
- Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
38
|
Stakhneva EM, Meshcheryakova IA, Demidov EA, Starostin KV, Ragino YI, Peltek SE, Voevoda MI. Proteomic Study of Blood Serum in Coronary Atherosclerosis. Bull Exp Biol Med 2017; 162:343-345. [PMID: 28091899 DOI: 10.1007/s10517-017-3611-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 11/28/2022]
Abstract
Changes in the blood serum proteins were assessed in men with coronary atherosclerosis and without coronary heart disease. Proteins were separated by 2D-electrophoresis, protein fractions were identified by their peptide fingerprint by MALDI method; fractions with more than twofold increase in protein level were determined. In blood serum of patients with coronary atherosclerosis, the content of C4 complement protein increased and ceruloplasmin level decreased, which is typical of heart failure and coronary heart disease.
Collapse
Affiliation(s)
- E M Stakhneva
- Research Institute of Internal and Preventive Medicine, Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - I A Meshcheryakova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E A Demidov
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - K V Starostin
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yu I Ragino
- Research Institute of Internal and Preventive Medicine, Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S E Peltek
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M I Voevoda
- Research Institute of Internal and Preventive Medicine, Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
39
|
Yan W, Che L, Jiang J, Yang F, Duan Q, Song H, Liu X, Shen Y, Wang L. Depletion of complement system immunity in patients with myocardial infarction. Mol Med Rep 2016; 14:5350-5356. [DOI: 10.3892/mmr.2016.5912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/11/2016] [Indexed: 11/05/2022] Open
|
40
|
The Inflammatory Role of Platelets: Translational Insights from Experimental Studies of Autoimmune Disorders. Int J Mol Sci 2016; 17:ijms17101723. [PMID: 27754414 PMCID: PMC5085754 DOI: 10.3390/ijms17101723] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/04/2016] [Accepted: 10/08/2016] [Indexed: 12/29/2022] Open
Abstract
Beyond their indispensable role in hemostasis, platelets have shown to affect the development of inflammatory disorders, as they have been epidemiologically and mechanistically linked to diseases featuring an inflammatory reaction in inflammatory diseases like multiple sclerosis, rheumatoid arthritis and inflammatory bowel disorders. The identification of novel molecular mechanisms linking inflammation and to platelets has highlighted them as new targets for therapeutic interventions. In particular, genetic and pharmacological studies have identified an important role for platelets in neuroinflammation. This review summarizes the main molecular links between platelets and inflammation, focusing on immune regulatory factors, receptors, cellular targets and signaling pathways by which they can amplify inflammatory reactions and that make them potential therapeutic targets.
Collapse
|
41
|
Guo J, Gu Y, Guo L, Yu H, Qi L, Tong Z, Zhang J, Wang Z. Effects of Sarpogrelate Combined with Aspirin in Patients Undergoing Carotid Endarterectomy in China: A Single-Center Retrospective Study. Ann Vasc Surg 2016; 35:183-8. [PMID: 27238992 DOI: 10.1016/j.avsg.2016.01.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 12/17/2015] [Accepted: 01/06/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Patients undergoing carotid artery stenosis who are prescribed aspirin, clopidogrel, or sarpogrelate as treatment options to inhibit platelet aggregation continues to increase. The purpose of this study was to compare the efficacy and safety of clopidogrel combined with aspirin (CA) versus sarpogrelate combined with aspirin (SA) treatment in carotid endarterectomy (CEA) patients. METHODS This retrospective study included 197 CEA patients (mean age 61.4 years, mean follow-up time 42.5 months), who were divided into a CA group (Group A: 65 male and 44 female patients) and an SA group (Group B: 58 male and 30 female patients). Preoperative demographic and clinical characteristics and postoperative results were compared between the 2 groups and statistically analyzed. RESULTS Preoperative demographic and clinical characteristics, transfusions, hospital stay, occurrence of transient ischemic attack, stroke, myocardial infarction, restenosis, general or life-threatening bleeding, and 30-day mortality showed no significant differences between the 2 CEA patient groups. However, the mean operative blood loss (P = 0.023) and the operative time (P = 0.040) were significantly higher in Group A compared with Group B. A highly significant incidence of neck hematoma (P = 0.024) was observed in patients of Group A. CONCLUSIONS In this study on CEA patients, antiplatelet treatment with CA resulted in a significant risk of developing neck hematoma, increased operative blood loss, and operative time compared with SA treatment. Long-term prospective studies with larger study populations are needed to further confirm the utility of SA treatment for CEA patients.
Collapse
Affiliation(s)
- Jianming Guo
- Department of Vascular Surgery, Xuanwu Hospital, Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Institute of Vascular Surgery, Capital Medical University, Beijing, China.
| | - Lianrui Guo
- Department of Vascular Surgery, Xuanwu Hospital, Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Hengxi Yu
- Department of Vascular Surgery, Xuanwu Hospital, Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Lixing Qi
- Department of Vascular Surgery, Xuanwu Hospital, Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Zhu Tong
- Department of Vascular Surgery, Xuanwu Hospital, Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Jian Zhang
- Department of Vascular Surgery, Xuanwu Hospital, Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Zhonghao Wang
- Department of Vascular Surgery, Xuanwu Hospital, Institute of Vascular Surgery, Capital Medical University, Beijing, China
| |
Collapse
|
42
|
Ricklin D, Reis ES, Lambris JD. Complement in disease: a defence system turning offensive. Nat Rev Nephrol 2016; 12:383-401. [PMID: 27211870 DOI: 10.1038/nrneph.2016.70] [Citation(s) in RCA: 377] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although the complement system is primarily perceived as a host defence system, a more versatile, yet potentially more harmful side of this innate immune pathway as an inflammatory mediator also exists. The activities that define the ability of the complement system to control microbial threats and eliminate cellular debris - such as sensing molecular danger patterns, generating immediate effectors, and extensively coordinating with other defence pathways - can quickly turn complement from a defence system to an aggressor that drives immune and inflammatory diseases. These host-offensive actions become more pronounced with age and are exacerbated by a variety of genetic factors and autoimmune responses. Complement can also be activated inappropriately, for example in response to biomaterials or transplants. A wealth of research over the past two decades has led to an increasingly finely tuned understanding of complement activation, identified tipping points between physiological and pathological behaviour, and revealed avenues for therapeutic intervention. This Review summarizes our current view of the key activating, regulatory, and effector mechanisms of the complement system, highlighting important crosstalk connections, and, with an emphasis on kidney disease and transplantation, discusses the involvement of complement in clinical conditions and promising therapeutic approaches.
Collapse
Affiliation(s)
- Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 401 Stellar Chance, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 401 Stellar Chance, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 401 Stellar Chance, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
43
|
Siewiera K, Kassassir H, Talar M, Wieteska L, Watala C. Higher mitochondrial potential and elevated mitochondrial respiration are associated with excessive activation of blood platelets in diabetic rats. Life Sci 2016; 148:293-304. [PMID: 26872978 DOI: 10.1016/j.lfs.2016.02.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 01/23/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
Abstract
AIMS The high glucose concentration observed in diabetic patients is a recognized factor of mitochondrial damage in various cell types. Its impact on mitochondrial bioenergetics in blood platelets remains largely vague. The aim of the study was to determine how the metabolism of carbohydrates, which has been impaired by streptozotocin-induced diabetes may affect the functioning of platelet mitochondria. MATERIALS AND METHODS Diabetes was induced in Sprague Dawley rats by intraperitoneal injection of streptozotocin. Platelet mitochondrial respiratory capacity was monitored as oxygen consumption (high-resolution respirometry). Mitochondrial membrane potential was assessed using a fluorescent probe, JC-1. Activation of circulating platelets was monitored by flow cytometry measuring of the expressions of CD61 and CD62P on a blood platelet surface. To determine mitochondrial protein density in platelets, Western Blot technique was used. KEY FINDINGS The results indicate significantly elevated mitochondria mass, increased mitochondrial membrane potential (ΔΨm) and enhanced respiration in STZ-diabetic animals, although the respiration control ratios appear to remain unchanged. Higher ΔΨm and elevated mitochondrial respiration were closely related to the excessive activation of circulating platelets in diabetic animals. SIGNIFICANCE Long-term diabetes can result in increased mitochondrial mass and may lead to hyperpolarization of blood platelet mitochondrial membrane. These alterations may be a potential underlying cause of abnormal platelet functioning in diabetes mellitus and hence, a potential target for antiplatelet therapies in diabetes.
Collapse
Affiliation(s)
- Karolina Siewiera
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
| | - Hassan Kassassir
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Marcin Talar
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Lukasz Wieteska
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Cezary Watala
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
44
|
Dysfunctional High-Density Lipoprotein: An Innovative Target for Proteomics and Lipidomics. CHOLESTEROL 2015; 2015:296417. [PMID: 26634153 PMCID: PMC4655037 DOI: 10.1155/2015/296417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/12/2015] [Accepted: 10/12/2015] [Indexed: 02/02/2023]
Abstract
High-Density Lipoprotein-Cholesterol (HDL-C) is regarded as an important protective factor against cardiovascular disease, with abundant evidence of an inverse relationship between its serum levels and risk of cardiovascular disease, as well as various antiatherogenic, antioxidant, and anti-inflammatory properties. Nevertheless, observations of hereditary syndromes featuring scant HDL-C concentration in absence of premature atherosclerotic disease suggest HDL-C levels may not be the best predictor of cardiovascular disease. Indeed, the beneficial effects of HDL may not depend solely on their concentration, but also on their quality. Distinct subfractions of this lipoprotein appear to be constituted by specific protein-lipid conglomerates necessary for different physiologic and pathophysiologic functions. However, in a chronic inflammatory microenvironment, diverse components of the HDL proteome and lipid core suffer alterations, which propel a shift towards a dysfunctional state, where HDL-C becomes proatherogenic, prooxidant, and proinflammatory. This heterogeneity highlights the need for further specialized molecular studies in this aspect, in order to achieve a better understanding of this dysfunctional state; with an emphasis on the potential role for proteomics and lipidomics as valuable methods in the search of novel therapeutic approaches for cardiovascular disease.
Collapse
|
45
|
Thomas MR, Storey RF. The role of platelets in inflammation. Thromb Haemost 2015; 114:449-58. [PMID: 26293514 DOI: 10.1160/th14-12-1067] [Citation(s) in RCA: 336] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 08/07/2015] [Indexed: 12/18/2022]
Abstract
There is growing recognition of the critical role of platelets in inflammation and immune responses. Recent studies have indicated that antiplatelet medications may reduce mortality from infections and sepsis, which suggests possible clinical relevance of modifying platelet responses to inflammation. Platelets release numerous inflammatory mediators that have no known role in haemostasis. Many of these mediators modify leukocyte and endothelial responses to a range of different inflammatory stimuli. Additionally, platelets form aggregates with leukocytes and form bridges between leukocytes and endothelium, largely mediated by platelet P-selectin. Through their interactions with monocytes, neutrophils, lymphocytes and the endothelium, platelets are therefore important coordinators of inflammation and both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Mark R Thomas
- Dr. Mark R. Thomas, BMedSci BMBS MRCP, Department of Cardiovascular Science, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK, Tel.: +44 114 3052019, Fax: +44 114 2266159, E-mail
| | | |
Collapse
|