1
|
Méndez-Flores OG, Hernández-Kelly LC, Olivares-Bañuelos TN, López-Ramírez G, Ortega A. Brain energetics and glucose transport in metabolic diseases: role in neurodegeneration. Nutr Neurosci 2024; 27:1199-1210. [PMID: 38294500 DOI: 10.1080/1028415x.2024.2306427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
OBJECTIVES Neurons and glial cells are the main functional and structural elements of the brain, and the former depends on the latter for their nutritional, functional and structural organization, as well as for their energy maintenance. METHODS Glucose is the main metabolic source that fulfills energetic demands, either by direct anaplerosis or through its conversion to metabolic intermediates. Development of some neurodegenerative diseases have been related with modifications in the expression and/or function of glial glucose transporters, which might cause physiological and/or pathological disturbances of brain metabolism. In the present contribution, we summarized the experimental findings that describe the exquisite adjustment in expression and function of glial glucose transporters from physiologic to pathologic metabolism, and its relevance to neurodegenerative diseases. RESULTS A exhaustive literature review was done in order to gain insight into the role of brain energetics in neurodegenerative disease. This study made evident a critical involvement of glucose transporters and thus brain energetics in the development of neurodegenerative diseases. DISCUSSION An exquisite adjustment in the expression and function of glial glucose transporters from physiologic to pathologic metabolism is a biochemical signature of neurodegenerative diseases.
Collapse
Affiliation(s)
- Orquídea G Méndez-Flores
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, México
| | - Luisa C Hernández-Kelly
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Gabriel López-Ramírez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, México
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
2
|
Gromadzka G, Wilkaniec A, Tarnacka B, Hadrian K, Bendykowska M, Przybyłkowski A, Litwin T. The Role of Glia in Wilson's Disease: Clinical, Neuroimaging, Neuropathological and Molecular Perspectives. Int J Mol Sci 2024; 25:7545. [PMID: 39062788 PMCID: PMC11276698 DOI: 10.3390/ijms25147545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Wilson's disease (WD) is inherited in an autosomal recessive manner and is caused by pathogenic variants of the ATP7B gene, which are responsible for impaired copper transport in the cell, inhibition of copper binding to apoceruloplasmin, and biliary excretion. This leads to the accumulation of copper in the tissues. Copper accumulation in the CNS leads to the neurological and psychiatric symptoms of WD. Abnormalities of copper metabolism in WD are associated with impaired iron metabolism. Both of these elements are redox active and may contribute to neuropathology. It has long been assumed that among parenchymal cells, astrocytes have the greatest impact on copper and iron homeostasis in the brain. Capillary endothelial cells are separated from the neuropil by astrocyte terminal legs, putting astrocytes in an ideal position to regulate the transport of iron and copper to other brain cells and protect them if metals breach the blood-brain barrier. Astrocytes are responsible for, among other things, maintaining extracellular ion homeostasis, modulating synaptic transmission and plasticity, obtaining metabolites, and protecting the brain against oxidative stress and toxins. However, excess copper and/or iron causes an increase in the number of astrocytes and their morphological changes observed in neuropathological studies, as well as a loss of the copper/iron storage function leading to macromolecule peroxidation and neuronal loss through apoptosis, autophagy, or cuproptosis/ferroptosis. The molecular mechanisms explaining the possible role of glia in copper- and iron-induced neurodegeneration in WD are largely understood from studies of neuropathology in Parkinson's disease and Alzheimer's disease. Understanding the mechanisms of glial involvement in neuroprotection/neurotoxicity is important for explaining the pathomechanisms of neuronal death in WD and, in the future, perhaps for developing more effective diagnostic/treatment methods.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego 1/3, 01-938 Warsaw, Poland
| | - Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland
| | - Beata Tarnacka
- Department of Rehabilitation, Medical University of Warsaw, Spartańska 1, 02-637 Warsaw, Poland
| | - Krzysztof Hadrian
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland (A.P.)
| | - Maria Bendykowska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis 5, 01-815 Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland (A.P.)
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| |
Collapse
|
3
|
Sarić N, Hashimoto-Torii K, Jevtović-Todorović V, Ishibashi N. Nonapoptotic caspases in neural development and in anesthesia-induced neurotoxicity. Trends Neurosci 2022; 45:446-458. [PMID: 35491256 PMCID: PMC9117442 DOI: 10.1016/j.tins.2022.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Apoptosis, classically initiated by caspase pathway activation, plays a prominent role during normal brain development as well as in neurodegeneration. The noncanonical, nonlethal arm of the caspase pathway is evolutionarily conserved and has also been implicated in both processes, yet is relatively understudied. Dysregulated pathway activation during critical periods of neurodevelopment due to environmental neurotoxins or exposure to compounds such as anesthetics can have detrimental consequences for brain maturation and long-term effects on behavior. In this review, we discuss key molecular characteristics and roles of the noncanonical caspase pathway and how its dysregulation may adversely affect brain development. We highlight both genetic and environmental factors that regulate apoptotic and sublethal caspase responses and discuss potential interventions that target the noncanonical caspase pathway for developmental brain injuries.
Collapse
Affiliation(s)
- Nemanja Sarić
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Nobuyuki Ishibashi
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Children's National Heart Institute, Children's National Hospital, Washington, DC, USA.
| |
Collapse
|
4
|
Han TH, Lee HW, Kang EA, Song MS, Lee SY, Ryu PD. Microglial activation induced by LPS mediates excitation of neurons in the hypothalamic paraventricular nucleus projecting to the rostral ventrolateral medulla. BMB Rep 2021. [PMID: 34814975 PMCID: PMC8728541 DOI: 10.5483/bmbrep.2021.54.12.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microglia are known to be activated in the hypothalamic para-ventricular nucleus (PVN) of rats with cardiovascular diseases. However, the exact role of microglial activation in the plasticity of presympathetic PVN neurons associated with the modulation of sympathetic outflow remains poorly investigated. In this study, we analyzed the direct link between microglial activation and spontaneous firing rate along with the underlying synaptic mechanisms in PVN neurons projecting to the rostral ventrolateral medulla (RVLM). Systemic injection of LPS induced microglial activation in the PVN, increased the frequency of spontaneous firing activity of PVN-RVLM neurons, reduced GABAergic inputs into these neurons, and increased plasma NE levels and heart rate. Systemic minocycline injection blocked all the observed LPS-induced effects. Our results indicate that LPS increases the firing rate and decreases GABAergic transmission in PVN-RVLM neurons associated with sympathetic outflow and the alteration is largely attributed to the activation of microglia. Our findings provide some insights into the role of microglial activation in regulating the activity of PVN-RVLM neurons associated with modulation of sympathetic outflow in cardiovascular diseases.
Collapse
Affiliation(s)
- Tae Hee Han
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Heow Won Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Eun A Kang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Min Seok Song
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Pan Dong Ryu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
5
|
Balasubramanian P, Branen L, Sivasubramanian MK, Monteiro R, Subramanian M. Aging is associated with glial senescence in the brainstem - implications for age-related sympathetic overactivity. Aging (Albany NY) 2021; 13:13460-13473. [PMID: 34038388 PMCID: PMC8202881 DOI: 10.18632/aging.203111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 04/28/2021] [Indexed: 12/11/2022]
Abstract
Accumulating evidence suggests that the sympathetic nervous system (SNS) overactivity plays a crucial role in age-related increase in the risk for cardiovascular diseases such as hypertension, myocardial infarction, stroke and heart diseases. Previous studies indicate that neuroinflammation in key brainstem regions that regulate sympathetic outflow plays a pathogenic role in aging-mediated sympathoexcitation. However, the molecular mechanisms underlying this phenomenon are not clear. While senescent cells and their secretory phenotype (SASP) have been implicated in the pathogenesis of several age-related diseases, their role in age-related neuroinflammation in the brainstem and SNS overactivity has not been investigated. To test this, we isolated brainstems from young (2-4 months) and aged (24 months) male C57BL/6J mice and assessed senescence using a combination of RNA-in situ hybridization, PCR analysis, multiplex assay and SA-β gal staining. Our results show significant increases in p16Ink4a expression, increased activity of SA-β gal and increases in SASP levels in the aged brainstem, suggesting age-induced senescence in the brainstem. Further, analysis of senescence markers in glial cells enriched fraction from fresh brainstem samples demonstrated that glial cells are more susceptible to senesce with age in the brainstem. In conclusion, our study suggests that aging induces glial senescence in the brainstem which likely causes inflammation and SNS overactivity.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Oklahoma Center for Geroscience and Healthy Brain Aging, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lyndee Branen
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Mahesh Kumar Sivasubramanian
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Raisa Monteiro
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Madhan Subramanian
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
6
|
Gromadzka G, Tarnacka B, Flaga A, Adamczyk A. Copper Dyshomeostasis in Neurodegenerative Diseases-Therapeutic Implications. Int J Mol Sci 2020; 21:E9259. [PMID: 33291628 PMCID: PMC7730516 DOI: 10.3390/ijms21239259] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
Copper is one of the most abundant basic transition metals in the human body. It takes part in oxygen metabolism, collagen synthesis, and skin pigmentation, maintaining the integrity of blood vessels, as well as in iron homeostasis, antioxidant defense, and neurotransmitter synthesis. It may also be involved in cell signaling and may participate in modulation of membrane receptor-ligand interactions, control of kinase and related phosphatase functions, as well as many cellular pathways. Its role is also important in controlling gene expression in the nucleus. In the nervous system in particular, copper is involved in myelination, and by modulating synaptic activity as well as excitotoxic cell death and signaling cascades induced by neurotrophic factors, copper is important for various neuronal functions. Current data suggest that both excess copper levels and copper deficiency can be harmful, and careful homeostatic control is important. This knowledge opens up an important new area for potential therapeutic interventions based on copper supplementation or removal in neurodegenerative diseases including Wilson's disease (WD), Menkes disease (MD), Alzheimer's disease (AD), Parkinson's disease (PD), and others. However, much remains to be discovered, in particular, how to regulate copper homeostasis to prevent neurodegeneration, when to chelate copper, and when to supplement it.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Collegium Medicum, Faculty of Medicine, Cardinal Stefan Wyszynski University, Wóycickiego 1/3 Street, 01-938 Warsaw, Poland;
| | - Beata Tarnacka
- Department of Rehabilitation, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Rehabilitation Clinic, Medical University of Warsaw, Spartańska 1 Street, 02-637 Warsaw, Poland;
| | - Anna Flaga
- Collegium Medicum, Faculty of Medicine, Cardinal Stefan Wyszynski University, Wóycickiego 1/3 Street, 01-938 Warsaw, Poland;
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland;
| |
Collapse
|
7
|
Fornaro M, Giovannelli A, Foggetti A, Muratori L, Geuna S, Novajra G, Perroteau I. Role of neurotrophic factors in enhancing linear axonal growth of ganglionic sensory neurons in vitro. Neural Regen Res 2020; 15:1732-1739. [PMID: 32209780 PMCID: PMC7437584 DOI: 10.4103/1673-5374.276338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neurotrophins play a major role in the regulation of neuronal growth such as neurite sprouting or regeneration in response to nerve injuries. The role of nerve growth factor, neurotrophin-3, and brain-derived neurotrophic factor in maintaining the survival of peripheral neurons remains poorly understood. In regenerative medicine, different modalities have been investigated for the delivery of growth factors to the injured neurons, in search of a suitable system for clinical applications. This study was to investigate the influence of nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor on the growth of neurites using two in vitro models of dorsal root ganglia explants and dorsal root ganglia-derived primary cell dissociated cultures. Quantitative data showed that the total neurite length and tortuosity were differently influenced by trophic factors. Nerve growth factor and, indirectly, brain-derived neurotrophic factor stimulate the tortuous growth of sensory fibers and the formation of cell clusters. Neurotrophin-3, however, enhances neurite growth in terms of length and linearity allowing for a more organized and directed axonal elongation towards a peripheral target compared to the other growth factors. These findings could be of considerable importance for any clinical application of neurotrophic factors in peripheral nerve regeneration. Ethical approval was obtained from the Regione Piemonte Animal Ethics Committee ASLTO1 (file # 864/2016-PR) on September 14, 2016.
Collapse
Affiliation(s)
- Michele Fornaro
- Department of Anatomy, College of Graduates Studies (CGS), Chicago College of Osteopathic Medicine (CCOM), Midwestern University, Downers Grove, IL, USA
| | - Alessia Giovannelli
- Department of Clinical and Biological Sciences, University of Turin, Torino, Italy
| | - Angelica Foggetti
- Institute of Physiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Luisa Muratori
- Department of Clinical and Biological Sciences, University of Turin; Neuroscience Institute Cavalieri Ottolenghi (NICO), Torino, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin; Neuroscience Institute Cavalieri Ottolenghi (NICO), Torino, Italy
| | - Giorgia Novajra
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Isabelle Perroteau
- Department of Clinical and Biological Sciences, University of Turin; Neuroscience Institute Cavalieri Ottolenghi (NICO), Torino, Italy
| |
Collapse
|
8
|
Ishii T, Warabi E, Mann GE. Circadian control of p75 neurotrophin receptor leads to alternate activation of Nrf2 and c-Rel to reset energy metabolism in astrocytes via brain-derived neurotrophic factor. Free Radic Biol Med 2018; 119:34-44. [PMID: 29374533 DOI: 10.1016/j.freeradbiomed.2018.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
Circadian clock genes regulate energy metabolism partly through neurotrophins in the body. The low affinity neurotrophin receptor p75NTR is a clock component directly regulated by the transcriptional factor Clock:Bmal1 complex. Brain-derived neurotrophic factor (BDNF) is expressed in the brain and plays a key role in coordinating metabolic interactions between neurons and astrocytes. BDNF transduces signals through TrkB and p75NTR receptors. This review highlights a novel molecular mechanism by which BDNF via circadian control of p75NTR leads to daily resetting of glucose and glycogen metabolism in brain astrocytes to accommodate their functional interaction with neurons. Astrocytes store glycogen as an energy reservoir to provide active neurons with the glycolytic metabolite lactate. Astrocytes predominantly express the truncated receptor TrkB.T1 which lacks an intracellular receptor tyrosine kinase domain. TrkB.T1 retains the capacity to regulate cell morphology through regulation of Rho GTPases. In contrast, p75NTR mediates generation of the bioactive lipid ceramide upon stimulation with BDNF and inhibits PKA activation. As ceramide directly activates PKCζ, we discuss the importance of the TrkB.T1-p75NTR-ceramide-PKCζ signaling axis in the stimulation of glycogen and lipid synthesis and activation of RhoA. Ceramide-PKCζ-casein kinase 2 signaling activates Nrf2 to support oxidative phosphorylation via upregulation of antioxidant enzymes. In the absence of p75NTR, TrkB.T1 functionally interacts with adenosine A2AR and dopamine D1R receptors to enhance cAMP-PKA signaling and activate Rac1 and NF-κB c-Rel, favoring glycogen hydrolysis, gluconeogenesis and aerobic glycolysis. Thus, diurnal changes in p75NTR levels in astrocytes resets energy metabolism via BDNF to accommodate their metabolic interaction with neurons.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba Ibaraki 305-0863, Japan.
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba Ibaraki 305-0863, Japan
| | - Giovanni E Mann
- School of Cardiovascular Medicine and Sciences, King's British Heart Foundation Centre of Excellence, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
9
|
Anderson WD, DeCicco D, Schwaber JS, Vadigepalli R. A data-driven modeling approach to identify disease-specific multi-organ networks driving physiological dysregulation. PLoS Comput Biol 2017; 13:e1005627. [PMID: 28732007 PMCID: PMC5521738 DOI: 10.1371/journal.pcbi.1005627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/14/2017] [Indexed: 02/02/2023] Open
Abstract
Multiple physiological systems interact throughout the development of a complex disease. Knowledge of the dynamics and connectivity of interactions across physiological systems could facilitate the prevention or mitigation of organ damage underlying complex diseases, many of which are currently refractory to available therapeutics (e.g., hypertension). We studied the regulatory interactions operating within and across organs throughout disease development by integrating in vivo analysis of gene expression dynamics with a reverse engineering approach to infer data-driven dynamic network models of multi-organ gene regulatory influences. We obtained experimental data on the expression of 22 genes across five organs, over a time span that encompassed the development of autonomic nervous system dysfunction and hypertension. We pursued a unique approach for identification of continuous-time models that jointly described the dynamics and structure of multi-organ networks by estimating a sparse subset of ∼12,000 possible gene regulatory interactions. Our analyses revealed that an autonomic dysfunction-specific multi-organ sequence of gene expression activation patterns was associated with a distinct gene regulatory network. We analyzed the model structures for adaptation motifs, and identified disease-specific network motifs involving genes that exhibited aberrant temporal dynamics. Bioinformatic analyses identified disease-specific single nucleotide variants within or near transcription factor binding sites upstream of key genes implicated in maintaining physiological homeostasis. Our approach illustrates a novel framework for investigating the pathogenesis through model-based analysis of multi-organ system dynamics and network properties. Our results yielded novel candidate molecular targets driving the development of cardiovascular disease, metabolic syndrome, and immune dysfunction. Complex diseases such as hypertension often involve maladaptive autonomic nervous system control over the cardiovascular, renal, hepatic, immune, and endocrine systems. We studied the pathogenesis of physiological homeostasis by examining the temporal dynamics of gene expression levels from multiple organs in an animal model of autonomic dysfunction characterized by cardiovascular disease, metabolic dysregulation, and immune system aberrations. We employed a data-driven modeling approach to jointly predict continuous gene expression dynamics and gene regulatory interactions across organs in the disease and control phenotypes. We combined our analyses of multi-organ gene regulatory network dynamics and connectivity with bioinformatic analyses of genetic mutations that could regulate gene expression. Our multi-organ modeling approach to investigate the mechanisms of complex disease pathogenesis revealed novel candidates for therapeutic interventions against the development and progression of complex diseases involving autonomic nervous system dysfunction.
Collapse
Affiliation(s)
- Warren D. Anderson
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Danielle DeCicco
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - James S. Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- * E-mail:
| |
Collapse
|
10
|
Roy S, Jiang JX, Li AF, Kim D. Connexin channel and its role in diabetic retinopathy. Prog Retin Eye Res 2017; 61:35-59. [PMID: 28602949 DOI: 10.1016/j.preteyeres.2017.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 12/18/2022]
Abstract
Diabetic retinopathy is the leading cause of blindness in the working age population. Unfortunately, there is no cure for this devastating ocular complication. The early stage of diabetic retinopathy is characterized by the loss of various cell types in the retina, namely endothelial cells and pericytes. As the disease progresses, vascular leakage, a clinical hallmark of diabetic retinopathy, becomes evident and may eventually lead to diabetic macular edema, the most common cause of vision loss in diabetic retinopathy. Substantial evidence indicates that the disruption of connexin-mediated cellular communication plays a critical role in the pathogenesis of diabetic retinopathy. Yet, it is unclear how altered communication via connexin channel mediated cell-to-cell and cell-to-extracellular microenvironment is linked to the development of diabetic retinopathy. Recent observations suggest the possibility that connexin hemichannels may play a role in the pathogenesis of diabetic retinopathy by allowing communication between cells and the microenvironment. Interestingly, recent studies suggest that connexin channels may be involved in regulating retinal vascular permeability. These cellular events are coordinated at least in part via connexin-mediated intercellular communication and the maintenance of retinal vascular homeostasis. This review highlights the effect of high glucose and diabetic condition on connexin channels and their impact on the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Sayon Roy
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, Boston, MA, United States.
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - An-Fei Li
- Department of Ophthalmology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - Dongjoon Kim
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
11
|
Jin H, Sun YT, Guo GQ, Chen DL, Li YJ, Xiao GP, Li XN. Spinal TRPC6 channels contributes to morphine-induced antinociceptive tolerance and hyperalgesia in rats. Neurosci Lett 2017; 639:138-145. [DOI: 10.1016/j.neulet.2016.12.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/21/2016] [Accepted: 12/24/2016] [Indexed: 12/22/2022]
|
12
|
Calderón JF, Retamal MA. Regulation of Connexins Expression Levels by MicroRNAs, an Update. Front Physiol 2016; 7:558. [PMID: 27932990 PMCID: PMC5122916 DOI: 10.3389/fphys.2016.00558] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022] Open
Abstract
Control of cell-cell coordination and communication is regulated by several factors, including paracrine and autocrine release of biomolecules, and direct exchange of soluble factors between cells through gap junction channels. Additionally, hemichannels also participate in cell-cell coordination through the release of signaling molecules, such as ATP and glutamate. A family of transmembrane proteins named connexins forms both gap junction channels and hemichannels. Because of their importance in cell and tissue coordination, connexins are controlled both by post-translational and post-transcriptional modifications. In recent years, non-coding RNAs have garnered research interest due to their ability to exert post-transcriptional regulation of gene expression. One of the most recent, well-documented control mechanisms of protein synthesis is found through the action of small, single-stranded RNA, called micro RNAs (miRNAs or miRs). Put simply, miRNAs are negative regulators of the expression of a myriad proteins involved in many physiological and pathological processes. This mini review will briefly summarize what is currently known about the action of miRNAs over Cxs expression/function in different organs under some relevant physiological and pathological conditions.
Collapse
Affiliation(s)
- Juan F Calderón
- Facultad de Medicina, Center for Genetics and Genomics, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Mauricio A Retamal
- Facultad de Medicina, Centro de Fisiología Celular e Integrativa, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| |
Collapse
|
13
|
Retamal MA, García IE, Pinto BI, Pupo A, Báez D, Stehberg J, Del Rio R, González C. Extracellular Cysteine in Connexins: Role as Redox Sensors. Front Physiol 2016; 7:1. [PMID: 26858649 PMCID: PMC4729916 DOI: 10.3389/fphys.2016.00001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/05/2016] [Indexed: 12/11/2022] Open
Abstract
Connexin-based channels comprise hemichannels and gap junction channels. The opening of hemichannels allow for the flux of ions and molecules from the extracellular space into the cell and vice versa. Similarly, the opening of gap junction channels permits the diffusional exchange of ions and molecules between the cytoplasm and contacting cells. The controlled opening of hemichannels has been associated with several physiological cellular processes; thereby unregulated hemichannel activity may induce loss of cellular homeostasis and cell death. Hemichannel activity can be regulated through several mechanisms, such as phosphorylation, divalent cations and changes in membrane potential. Additionally, it was recently postulated that redox molecules could modify hemichannels properties in vitro. However, the molecular mechanism by which redox molecules interact with hemichannels is poorly understood. In this work, we discuss the current knowledge on connexin redox regulation and we propose the hypothesis that extracellular cysteines could be important for sensing changes in redox potential. Future studies on this topic will offer new insight into hemichannel function, thereby expanding the understanding of the contribution of hemichannels to disease progression.
Collapse
Affiliation(s)
- Mauricio A Retamal
- Facultad de Medicina, Centro de Fisiología Celular e Integrativa, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Isaac E García
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso Valparaíso, Chile
| | - Bernardo I Pinto
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso Valparaíso, Chile
| | - Amaury Pupo
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso Valparaíso, Chile
| | - David Báez
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso Valparaíso, Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas, Universidad Andres Bello Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Center for Biomedical Research, Universidad Autónoma de ChileSantiago, Chile; Dirección de Investigación, Universidad Científica del SurLima, Perú
| | - Carlos González
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso Valparaíso, Chile
| |
Collapse
|