1
|
Fleischman JY, Van den Bergh F, Collins NL, Bowers M, Beard DA, Burant CF. Higher mitochondrial oxidative capacity is the primary molecular differentiator in muscle of rats with high and low intrinsic cardiorespiratory fitness. Mol Metab 2023; 76:101793. [PMID: 37625738 PMCID: PMC10480665 DOI: 10.1016/j.molmet.2023.101793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE Cardiorespiratory fitness (CRF) is tightly linked with health and longevity and is implicated in metabolic flexibility and substrate metabolism. The high capacity runner (HCR) and low capacity runner (LCR) rat lines are a genetically heterogeneous rat model selected and bred for CRF that reflect CRF in humans by exhibiting differences in nutrient handling. This study aims to differentiate the intrinsic substrate preference of the HCR compared to LCR rats to better understand the intersection of mitochondrial respiration and intrinsic CRF. METHODS We performed bulk skeletal muscle RNA-Sequencing on male and female HCR and LCR rats and assessed the effect of rat line on mitochondrial gene expression pathways using the MitoCarta3.0 database. In a separate cohort of rats, mitochondria were isolated from skeletal and cardiac muscle and maximal oxidation rates were measured using an Oroboros O2k when provided either pyruvate or fatty acid substrates. RESULTS The expression of mitochondrial genes are significantly upregulated in HCR skeletal muscle in both male and female rats. In respirometry experiments, fatty acid oxidative capacities were greater in HCR compared to LCR, and male compared to female rats, as a function of both mitochondrial quality and mitochondrial density. This effect was greater in the skeletal muscle than in the heart. Pyruvate oxidation did not differ significantly between lines. CONCLUSIONS The capacity for increased fatty acid oxidation in the HCR rat is a result of selection for running capacity and is likely a key contributor to the healthy metabolic phenotype of individuals with high CRF.
Collapse
Affiliation(s)
- Johanna Y Fleischman
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | | | - Nicole L Collins
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Madelyn Bowers
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Daniel A Beard
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, USA.
| | - Charles F Burant
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
2
|
Fleischman JY, Qi NR, Treutelaar MK, Britton SL, Koch LG, Li JZ, Burant CF. Intrinsic cardiorespiratory fitness modulates clinical and molecular response to caloric restriction. Mol Metab 2023; 68:101668. [PMID: 36642218 PMCID: PMC9938335 DOI: 10.1016/j.molmet.2023.101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Caloric restriction (CR) is one extrinsic intervention that can improve metabolic health, and it shares many phenotypical parallels with intrinsic high cardiorespiratory fitness (CRF), including reduced adiposity, increased cardiometabolic health, and increased longevity. CRF is a highly heritable trait in humans and has been established in a genetic rat model selectively bred for high (HCR) and low (LCR) CRF, in which the HCR live longer and have reduced body weight compared to LCR. This study addresses whether the inherited high CRF phenotype occurs through similar mechanisms by which CR promotes health and longevity. METHODS We compared HCR and LCR male rats fed ad libitum (AL) or calorically restricted (CR) for multiple physiological, metabolic, and molecular traits, including running capacity at 2, 8, and 12 months; per-hour metabolic cage activity over daily cycles at 6 and 12 months; and plasma lipidomics, liver and muscle transcriptomics, and body composition after 12 months of treatment. RESULTS LCR-CR developed a physiological profile that mirrors the high-CRF phenotype in HCR-AL, including reduced adiposity and increased insulin sensitivity. HCR show higher spontaneous activity than LCR. Temporal modeling of hourly energy expenditure (EE) dynamics during the day, adjusted for body weight and hourly activity levels, suggest that CR has an EE-suppressing effect, and high-CRF has an EE-enhancing effect. Pathway analysis of gene transcripts indicates that HCR and LCR both show a response to CR that is similar in the muscle and different in the liver. CONCLUSIONS CR provides LCR a health-associated positive effect on physiological parameters that strongly resemble HCR. Analysis of whole-body EE and transcriptomics suggests that HCR and LCR show line-dependent responses to CR that may be accreditable to difference in genetic makeup. The results do not preclude the possibility that CRF and CR pathways may converge.
Collapse
Affiliation(s)
- Johanna Y Fleischman
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Nathan R Qi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Michigan Mouse Metabolic Phenotyping Center, University of Michigan, Ann Arbor, MI, USA
| | - Mary K Treutelaar
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Steven L Britton
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA; Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Charles F Burant
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Heemstra LA, Koch LG, Britton SL, Novak CM. Altered skeletal muscle sarco-endoplasmic reticulum Ca 2+-ATPase calcium transport efficiency after a thermogenic stimulus. Am J Physiol Regul Integr Comp Physiol 2022; 323:R628-R637. [PMID: 36094445 PMCID: PMC9602703 DOI: 10.1152/ajpregu.00173.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 01/22/2023]
Abstract
Exposure to predator threat induces a rapid and robust increase in skeletal muscle thermogenesis in rats. The central nervous system relays threat information to skeletal muscle through activation of the sympathetic nervous system, but muscle mechanisms mediating this thermogenesis remain unidentified. Given the relevance of sarcolipin-mediated futile calcium cycling through the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) pump to mammalian muscle nonshivering thermogenesis, we hypothesized that this plays a role in contextually induced muscle thermogenesis as well. This was assessed by measuring enzymatic activity of SERCA and sarcoplasmic reticulum Ca2+ transport, where the apparent coupling ratio (Ca2+ uptake rate divided by ATPase activity rate at a standard Ca2+ concentration) was predicted to decrease in association with muscle thermogenesis. Sprague-Dawley rats exposed to predator (ferret) odor (PO) showed a rapid decrease in the apparent coupling ratio in the soleus muscle, indicating SERCA uncoupling compared with control-odor-exposed rats. A rat model of high aerobic fitness and elevated muscle thermogenesis also demonstrated soleus muscle SERCA uncoupling relative to their obesity-prone, low-fitness counterparts. Both the high- and low-aerobic fitness rats showed soleus SERCA uncoupling with exposure to PO. Finally, no increase in sarcolipin expression in soleus muscle was detected with PO exposure. This dataset implicates muscle uncoupling of SERCA Ca2+ transport and ATP hydrolysis, likely through altered SERCA or sarcolipin function outside of translational regulation, as one contributor to the muscle thermogenesis provoked by exposure to predator threat. These data support the involvement of SERCA uncoupling in both muscle thermogenic induction and enhanced aerobic capacity.
Collapse
Affiliation(s)
- Lydia A Heemstra
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Colleen M Novak
- Department of Biological Sciences, Kent State University, Kent, Ohio
- School of Biomedical Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
4
|
Zhuang H, Karvinen S, Törmäkangas T, Zhang X, Ojanen X, Velagapudi V, Alen M, Britton SL, Koch LG, Kainulainen H, Cheng S, Wiklund P. Interactive effects of aging and aerobic capacity on energy metabolism-related metabolites of serum, skeletal muscle, and white adipose tissue. GeroScience 2021; 43:2679-2691. [PMID: 34089174 PMCID: PMC8602622 DOI: 10.1007/s11357-021-00387-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 05/17/2021] [Indexed: 12/25/2022] Open
Abstract
Aerobic capacity is a strong predictor of longevity. With aging, aerobic capacity decreases concomitantly with changes in whole body metabolism leading to increased disease risk. To address the role of aerobic capacity, aging, and their interaction on metabolism, we utilized rat models selectively bred for low and high intrinsic aerobic capacity (LCRs/HCRs) and compared the metabolomics of serum, muscle, and white adipose tissue (WAT) at two time points: Young rats were sacrificed at 9 months of age, and old rats were sacrificed at 21 months of age. Targeted and semi-quantitative metabolomics analysis was performed on the ultra-pressure liquid chromatography tandem mass spectrometry (UPLC-MS) platform. The effects of aerobic capacity, aging, and their interaction were studied via regression analysis. Our results showed that high aerobic capacity is associated with an accumulation of isovalerylcarnitine in muscle and serum at rest, which is likely due to more efficient leucine catabolism in muscle. With aging, several amino acids were downregulated in muscle, indicating more efficient amino acid metabolism, whereas in WAT less efficient amino acid metabolism and decreased mitochondrial β-oxidation were observed. Our results further revealed that high aerobic capacity and aging interactively affect lipid metabolism in muscle and WAT, possibly combating unfavorable aging-related changes in whole body metabolism. Our results highlight the significant role of WAT metabolism for healthy aging.
Collapse
Affiliation(s)
- Haihui Zhuang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Exercise Translational Medicine Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Sira Karvinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Timo Törmäkangas
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Xiaobo Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Exercise Translational Medicine Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowei Ojanen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Markku Alen
- Department of Medical Rehabilitation, Oulu University Hospital, Oulu, Finland
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Heikki Kainulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Sulin Cheng
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Exercise Translational Medicine Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Petri Wiklund
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Exercise Translational Medicine Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Huawei Helsinki Research Center, Huawei Technologies Oy (Finland) Co. Ltd, Helsinki, Finland
| |
Collapse
|
5
|
Smyers ME, Koch LG, Britton SL, Wagner JG, Novak CM. Enhanced weight and fat loss from long-term intermittent fasting in obesity-prone, low-fitness rats. Physiol Behav 2020; 230:113280. [PMID: 33285179 DOI: 10.1016/j.physbeh.2020.113280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/10/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Intermittent fasting (IF) strategies have emerged as viable alternatives to traditional calorie-restricted diets. A key predictor of metabolic health and response to diet is cardiometabolic fitness, including intrinsic aerobic capacity. In a contrasting rat model of aerobic capacity-high- and low-capacity runners (HCR, LCR)-we found that the lean and physically active HCR were also more responsive to a standard calorie-restricted diet. Here, we assessed the ability of IF to induce weight loss on a background of high and low aerobic fitness accompanied by different levels of daily physical activity. METHODS Female HCR and LCR (8 per line) were subjected to IF (alternate-day fasting) for 14 weeks. Outcomes included changes in body weight, fat and lean mass, daily physical activity, and food and water intake. After initial measurements, IF was continued, and measurements were repeated after one year of IF. RESULTS All rats lost weight with IF, and LCR lost significantly more weight than HCR. This difference was primarily due to differential fat loss; loss of lean mass, on the other hand, was similar between HCR and LCR. Total food intake decreased with IF, and LCR showed lower intake than HCR only during the first 5 weeks of IF. Physical activity was suppressed by long-term IF. Physical activity increased on fed days compared to fasted days, and this pattern was more pronounced in HCR. The differential effects of IF in HCR and LCR persisted after one year of IF, with IF preventing the marked weight gain seen in ad libitum fed LCR during this time. CONCLUSION Weight and fat loss from IF was more pronounced in obesity-prone, low-aerobic capacity LCR, despite the low activity levels seen in these rats. The possibility that aerobic capacity modulates response to IF in human participants remains unexplored.
Collapse
Affiliation(s)
- Mark E Smyers
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, United States.
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614-2598, United States.
| | - Steven L Britton
- Department of Anesthesiology, and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-5622, United States.
| | - Jacob G Wagner
- Department of Biological Sciences, Kent State University, Kent, OH 44242, United States.
| | - Colleen M Novak
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, United States; Department of Biological Sciences, Kent State University, Kent, OH 44242, United States.
| |
Collapse
|
6
|
Heese AJ, Roberts CK, Hofheins JC, Brown JD, Ruegsegger GN, Toedebusch RG, Booth FW. Rats Selectively Bred for High Voluntary Physical Activity Behavior are Not Protected from the Deleterious Metabolic Effects of a Western Diet When Sedentary. Curr Dev Nutr 2019; 3:nzz017. [PMID: 31111117 PMCID: PMC6517781 DOI: 10.1093/cdn/nzz017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Physical activity and diet are well-established modifiable factors that influence chronic disease risk. We developed a selectively bred, polygenic model for high and low voluntary running (HVR and LVR, respectively) distances. After 8 generations, large differences in running distance were noted. Despite these inherent behavioral differences in physical activity levels, it is unknown whether HVR rats would be inherently protected from diet-induced metabolic dysfunction. OBJECTIVES The aim of this study was to determine whether HVR rats without voluntary running wheels would be inherently protected from diet-induced metabolic dysfunction. METHODS Young HVR, LVR, and a wild-type (WT) control group were housed with no running wheel access and fed either a normal diet (ND) or a high-sugar/fat Western diet (WD) for 8 wk. Body weight, percentage body fat (by dual-energy X-ray absorptiometry scan), blood lipids [total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides (TGs), nonesterified fatty acids], and hepatic TG content were measured, and indices of insulin sensitivity were determined via an intravenous glucose tolerance test. Additionally, weekly energy intake and feed efficiency were calculated. RESULTS After 8 wk, significant differences in body weight and body fat percentage were noted in all WD animals compared with ND animals, with the LVR-WD exhibiting the greatest increase due, in part, to their enhanced feed efficiency. Lipid dysregulation was present in all WD rat lines compared with ND counterparts. Furthermore, LVR-WD rats had higher total cholesterol, HDL cholesterol, and TG concentrations, and higher areas under the curve (AUC) for insulin than HVR-WD and WT-WD, although HVR-WD animals had higher AUCglucose than both LVR-WD and WT-WD and higher LDL than WT-WD. CONCLUSIONS In the absence of high voluntary running behavior, the genetic predisposition for high running in HVR did not largely protect them from the deleterious effects of a WD compared with LVR, suggesting genetic factors influencing physical activity levels may, in part, be independent from genes influencing metabolism.
Collapse
Affiliation(s)
- Alexander J Heese
- Departments of Biomedical Sciences, University of Missouri, Columbia, MO
| | - Christian K Roberts
- Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - John C Hofheins
- Departments of Biomedical Sciences, University of Missouri, Columbia, MO
| | - Jacob D Brown
- Departments of Biomedical Sciences, University of Missouri, Columbia, MO
| | | | - Ryan G Toedebusch
- Departments of Biomedical Sciences, University of Missouri, Columbia, MO
| | - Frank W Booth
- Departments of Biomedical Sciences, University of Missouri, Columbia, MO
- Departments of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
- Departments of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO
| |
Collapse
|
7
|
Morris EM, Meers GME, Ruegsegger GN, Wankhade UD, Robinson T, Koch LG, Britton SL, Rector RS, Shankar K, Thyfault JP. Intrinsic High Aerobic Capacity in Male Rats Protects Against Diet-Induced Insulin Resistance. Endocrinology 2019; 160:1179-1192. [PMID: 31144719 PMCID: PMC6482035 DOI: 10.1210/en.2019-00118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/02/2019] [Indexed: 01/30/2023]
Abstract
Low aerobic capacity increases the risk for insulin resistance but the mechanisms are unknown. In this study, we tested susceptibility to acute (3-day) high-fat, high-sucrose diet (HFD)-induced insulin resistance in male rats selectively bred for divergent intrinsic aerobic capacity, that is, high-capacity running (HCR) and low-capacity running (LCR) rats. We employed hyperinsulinemic-euglycemic clamps, tracers, and transcriptome sequencing of skeletal muscle to test whether divergence in aerobic capacity impacted insulin resistance through systemic and tissue-specific metabolic adaptations. An HFD evoked decreased insulin sensitivity and insulin signaling in muscle and liver in LCR rats, whereas HCR rats were protected. An HFD led to increased glucose transport in skeletal muscle (twofold) of HCR rats while increasing glucose transport into adipose depots of the LCR rats (twofold). Skeletal muscle transcriptome revealed robust differences in the gene profile of HCR vs LCR on low-fat diet and HFD conditions, including robust differences in specific genes involved in lipid metabolism, adipogenesis, and differentiation. HCR transcriptional adaptations to an acute HFD were more robust than for LCR and included genes driving mitochondrial energy metabolism. In conclusion, intrinsic aerobic capacity robustly impacts systemic and skeletal muscle adaptations to HFD-induced alterations in insulin resistance, an effect that is likely driven by baseline differences in oxidative capacity, gene expression profile, and transcriptional adaptations to an HFD.
Collapse
Affiliation(s)
- E Matthew Morris
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
- Research Service, Kansas City VA Medical Center, Kansas City, Missouri
| | - Grace M E Meers
- Department of Nutrition and Exercise Physiology, University of Missouri–Columbia, Columbia, Missouri
| | - Gregory N Ruegsegger
- Department of Biomedical Sciences, University of Missouri–Columbia, Columbia, Missouri
| | - Umesh D Wankhade
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Tommy Robinson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Lauren G Koch
- Department of Physiology and Pharmacology, University of Toledo, Toledo, Ohio
| | - Steven L Britton
- Deparment of Anesthesiology, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri–Columbia, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Kartik Shankar
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
- Research Service, Kansas City VA Medical Center, Kansas City, Missouri
| |
Collapse
|
8
|
Bahry MA, Yang H, Tran PV, Do PH, Han G, Eltahan HM, Chowdhury VS, Furuse M. Reduction in voluntary food intake, but not fasting, stimulates hypothalamic gonadotropin-inhibitory hormone precursor mRNA expression in chicks under heat stress. Neuropeptides 2018; 71:90-96. [PMID: 30220422 DOI: 10.1016/j.npep.2018.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/01/2018] [Accepted: 09/02/2018] [Indexed: 01/19/2023]
Abstract
Heat stress is an issue of rising concern across the globe. Recently, we found that mRNA expression of gonadotropin-inhibitory hormone (GnIH), an orexigenic neuropeptide, was increased in the heat-exposed chick brain when food intake was reduced. The aim of the current study was to examine mRNA expression of GnIH and of the glucocorticoid receptors (GRs) in the hypothalamus as well as the plasma corticosterone (CORT) and metabolites in 14-d-old chicks exposed to a high ambient temperature (HT; 40 ± 1 °C for 1 or 5 h) or a control thermoneutral temperature (CT; 30 ± 1 °C), either with free access to food or fasted. Heat stress caused a voluntary reduction of food intake and reduced plasma triacylglycerol concentration, but increased rectal temperature and plasma CORT and glucose concentrations (P < 0.05). Heat stress also increased (P < 0.05) the expression of diencephalic GnIH mRNA in chicks when they reduced food intake voluntarily, but did not do so under fasting conditions. Although the expression of GR mRNA was not altered as a result of heat stress, its expression was decreased (P < 0.05) in fasted chicks at 5 h in comparison with fed chicks. In addition, the rectal temperature of fasted chicks was lower than that of fed chicks under both CT and HT. In conclusion, voluntary reduction of food intake caused an increase in brain GnIH mRNA expression, plasma CORT, and body temperature in chicks under heat stress. Interestingly, brain GnIH mRNA expression was not induced by heat stress in fasted chicks and was not accompanied by a decrease in rectal temperature. These results suggest that the increased expression of brain GnIH mRNA in chicks under heat stress could be a consequence of a mechanism mediated by the voluntary reduction of food intake, but that it is not a consequence of fasting.
Collapse
Affiliation(s)
- Mohammad A Bahry
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Hui Yang
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Phuong V Tran
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Phong H Do
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Guofeng Han
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Hatem M Eltahan
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan; Visiting Researcher from Animal Production Research Institute, Agriculture Research Center, Agriculture Ministry, and Division for Poultry Production, Faculty of Agriculture, Kafr-Elsheikh University, Egypt
| | - Vishwajit S Chowdhury
- Laboratory of Stress Physiology and Metabolism, Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan.
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
9
|
Ji N, Luan J, Hu F, Zhao Y, Lv B, Wang W, Xia M, Zhao X, Lao K. Aerobic exercise-stimulated Klotho upregulation extends life span by attenuating the excess production of reactive oxygen species in the brain and kidney. Exp Ther Med 2018; 16:3511-3517. [PMID: 30233703 PMCID: PMC6143843 DOI: 10.3892/etm.2018.6597] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/13/2018] [Indexed: 01/01/2023] Open
Abstract
Aerobic exercise induces many adaptive changes in the whole body and improves metabolic characteristics. Klotho, an anti-aging gene, is mainly expressed in the brain and kidney. The roles of Klotho in the brain and kidney during aerobic exercise remain largely unknown. The present study aimed to determine whether aerobic exercise could influence the expression of Klotho, decrease reactive oxygen species (ROS) and prolong life span. Sprague Dawley rats were exercised on a motor treadmill. Klotho mRNA and protein expression levels in rat brain and kidney tissues were examined using reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. ROS production was detected following intermittent aerobic exercise (IAE) or continuous aerobic exercise (CAE). Kaplan-Meier curve analysis demonstrated that aerobic exercise significantly improved rat survival (P<0.001). The ROS levels in rat brain and kidney tissues were decreased in the aerobic exercise groups compared with the control group (P<0.05). In addition, Klotho mRNA and protein expression levels were increased significantly following aerobic exercise compared with controls (P<0.05). There was no significant difference between the IAE and CAE groups in any experiments (P>0.05). These results suggest that aerobic exercise-stimulated Klotho upregulation extends the life span by attenuating the excess production of ROS in the brain and kidney. As Klotho exhibits a potential anti-aging effect, promoting Klotho expression through aerobic exercise may be a novel approach for the prevention and treatment of aging and aging-related diseases.
Collapse
Affiliation(s)
- Naichun Ji
- Department of Physical Education and Shaanxi Key Laboratory of Brain Disorders and Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Jing Luan
- Department of Physical Education and Shaanxi Key Laboratory of Brain Disorders and Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China.,Institute of Holistic Integrated Medicine, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, P.R. China
| | - Fengrui Hu
- Department of Physical Education and Shaanxi Key Laboratory of Brain Disorders and Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China.,Institute of Holistic Integrated Medicine, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, P.R. China
| | - Yirong Zhao
- Department of Physical Education and Shaanxi Key Laboratory of Brain Disorders and Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Bosen Lv
- Department of Physical Education and Shaanxi Key Laboratory of Brain Disorders and Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Wen Wang
- Department of Physical Education and Shaanxi Key Laboratory of Brain Disorders and Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Meng Xia
- Department of Physical Education and Shaanxi Key Laboratory of Brain Disorders and Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Xin Zhao
- Department of Physical Education and Shaanxi Key Laboratory of Brain Disorders and Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Kejing Lao
- Department of Physical Education and Shaanxi Key Laboratory of Brain Disorders and Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| |
Collapse
|