1
|
Carreon CK, Ronai C, Hoffmann JK, Tworetzky W, Morton SU, Wilkins-Haug LE. Maternal Vascular Malperfusion and Anatomic Cord Abnormalities Are Prevalent in Pregnancies With Fetal Congenital Heart Disease. Prenat Diagn 2024. [PMID: 39215461 DOI: 10.1002/pd.6650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Impairments in the maternal-fetal environment are associated with adverse postnatal outcomes among infants with congenital heart disease. Therefore, we sought to investigate placental anomalies as they related to various forms of fetal congenital heart disease (FCHD). METHODS We reviewed the placental pathology in singleton pregnancies with and without FCHD. FCHD was divided into separate categories (transposition physiology, obstructive left, obstructive right, biventricular without obstruction, and others). Exclusion criteria included other prenatally known structural malformations and/or aneuploidy. The significance threshold was set at p < 0.05 or False Discovery rate q < 0.05 when multiple tests were performed. RESULTS The cohort included 215 FCHD and 122 non-FCHD placentas. FCHD placentas showed increased rates of maternal vascular malperfusion (24% vs. 5%, q < 0.001) and cord anomalies (27% vs. 1%, q < 0.001). Placentas with fetal TGA demonstrated a lower rate of hypoplasia when compared with other FCHD types (1/39 vs. 51/176, Fisher's exact p = 0.015). CONCLUSION Placental maternal vascular malperfusion is increased in FCHD. The prevalence of vascular malperfusion did not differ by FCHD type, indicating that CHD type does not predict the likelihood of placental vascular dysfunction. Further investigation of the placental-fetal heart axis in FCHD is warranted given the importance of placental health.
Collapse
Affiliation(s)
- Chrystalle Katte Carreon
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Christina Ronai
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Julia K Hoffmann
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatric Cardiology and Pediatric Intensive Care, Ludwig Maximilian University, Munich, Germany
| | - Wayne Tworetzky
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sarah U Morton
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Louise E Wilkins-Haug
- Division of Maternal Fetal Medicine and Reproductive Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Katlaps I, Ronai C, Garg B, Mandelbaum A, Ghafari-Saravi A, Caughey AB, Madriago E. The Ongoing Relationship Between Offspring Congenital Heart Disease and Preeclampsia Across Pregnancies. JACC. ADVANCES 2024; 3:101009. [PMID: 39130014 PMCID: PMC11313037 DOI: 10.1016/j.jacadv.2024.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 08/13/2024]
Abstract
Background Prior literature has described an association between preeclampsia and offspring congenital heart disease (CHD), while suggesting there may be a stronger relationship in individuals with early preeclampsia. Objectives The authors sought to explore the relationship between offspring CHD and preeclampsia among pregnancies in a population-based study. Methods Retrospective cohort study all singleton pregnancies delivered in the state of California 2000 to 2012. We included singleton births with gestational ages of 23 to 42 weeks and excluded pregnancies complicated by pre-existing diabetes or identified fetal chromosomal anomalies. We used multivariable logistic regression to estimate ORs for associations between offspring CHD and preeclampsia. Further subanalyses examined the relationships in deliveries <34 weeks and >34 weeks to analyze if there was a difference according to timing of preeclampsia development. Results Preeclampsia was strongly associated with offspring CHD (aOR: 1.38; 99% CI: 1.29-1.49) in the same pregnancy. Among patients with preeclampsia in the index pregnancy, there was an increased risk of fetal CHD in the subsequent pregnancy (aOR: 1.39; 99% CI: 1.20-1.61). Among patients with offspring CHD in the index pregnancy, there was an increased risk of preeclampsia in the subsequent pregnancy (aOR: 1.39; 99% CI: 1.15-1.68). In all 3 analyses, results remained significant when stratified by <34 weeks and ≥34 weeks. Conclusions Our findings suggest a need for further investigation into the etiology of preeclampsia and its relationship to embryologic development of cardiovascular structures.
Collapse
Affiliation(s)
- Isabel Katlaps
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | - Christina Ronai
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bharti Garg
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon, USA
| | - Ava Mandelbaum
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Aaron B. Caughey
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon, USA
| | - Erin Madriago
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
3
|
Berg K, Gorham J, Lundt F, Seidman J, Brueckner M. Endocardial primary cilia and blood flow are required for regulation of EndoMT during endocardial cushion development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594405. [PMID: 38798559 PMCID: PMC11118576 DOI: 10.1101/2024.05.15.594405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Blood flow is critical for heart valve formation, and cellular mechanosensors are essential to translate flow into transcriptional regulation of development. Here, we identify a role for primary cilia in vivo in the spatial regulation of cushion formation, the first stage of valve development, by regionally controlling endothelial to mesenchymal transition (EndoMT) via modulation of Kruppel-like Factor 4 (Klf4) . We find that high shear stress intracardiac regions decrease endocardial ciliation over cushion development, correlating with KLF4 downregulation and EndoMT progression. Mouse embryos constitutively lacking cilia exhibit a blood-flow dependent accumulation of KLF4 in these regions, independent of upstream left-right abnormalities, resulting in impaired cushion cellularization. snRNA-seq revealed that cilia KO endocardium fails to progress to late-EndoMT, retains endothelial markers and has reduced EndoMT/mesenchymal genes that KLF4 antagonizes. Together, these data identify a mechanosensory role for endocardial primary cilia in cushion development through regional regulation of KLF4.
Collapse
|
4
|
Trinidad F, Rubonal F, Rodriguez de Castro I, Pirzadeh I, Gerrah R, Kheradvar A, Rugonyi S. Effect of Blood Flow on Cardiac Morphogenesis and Formation of Congenital Heart Defects. J Cardiovasc Dev Dis 2022; 9:jcdd9090303. [PMID: 36135448 PMCID: PMC9503889 DOI: 10.3390/jcdd9090303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022] Open
Abstract
Congenital heart disease (CHD) affects about 1 in 100 newborns and its causes are multifactorial. In the embryo, blood flow within the heart and vasculature is essential for proper heart development, with abnormal blood flow leading to CHD. Here, we discuss how blood flow (hemodynamics) affects heart development from embryonic to fetal stages, and how abnormal blood flow solely can lead to CHD. We emphasize studies performed using avian models of heart development, because those models allow for hemodynamic interventions, in vivo imaging, and follow up, while they closely recapitulate heart defects observed in humans. We conclude with recommendations on investigations that must be performed to bridge the gaps in understanding how blood flow alone, or together with other factors, contributes to CHD.
Collapse
Affiliation(s)
- Fernando Trinidad
- Biomedical Engineering Department, University of California, Irvine, CA 92697, USA
| | - Floyd Rubonal
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Ida Pirzadeh
- Biomedical Engineering Department, University of California, Irvine, CA 92697, USA
| | - Rabin Gerrah
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Arash Kheradvar
- Biomedical Engineering Department, University of California, Irvine, CA 92697, USA
| | - Sandra Rugonyi
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
5
|
Cardiac forces regulate zebrafish heart valve delamination by modulating Nfat signaling. PLoS Biol 2022; 20:e3001505. [PMID: 35030171 PMCID: PMC8794269 DOI: 10.1371/journal.pbio.3001505] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/27/2022] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
In the clinic, most cases of congenital heart valve defects are thought to arise through errors that occur after the endothelial–mesenchymal transition (EndoMT) stage of valve development. Although mechanical forces caused by heartbeat are essential modulators of cardiovascular development, their role in these later developmental events is poorly understood. To address this question, we used the zebrafish superior atrioventricular valve (AV) as a model. We found that cellularized cushions of the superior atrioventricular canal (AVC) morph into valve leaflets via mesenchymal–endothelial transition (MEndoT) and tissue sheet delamination. Defects in delamination result in thickened, hyperplastic valves, and reduced heart function. Mechanical, chemical, and genetic perturbation of cardiac forces showed that mechanical stimuli are important regulators of valve delamination. Mechanistically, we show that forces modulate Nfatc activity to control delamination. Together, our results establish the cellular and molecular signature of cardiac valve delamination in vivo and demonstrate the continuous regulatory role of mechanical forces and blood flow during valve formation. Why do developing zebrafish atrioventricular heart valves become hyperplastic under certain hemodynamic conditions? This study suggests that part of the answer lies in how the mechanosensitive Nfat pathway regulates the valve mesenchymal-to-endothelial transition.
Collapse
|
6
|
Kim K, Lee D. ERBB3-dependent AKT and ERK pathways are essential for atrioventricular cushion development in mouse embryos. PLoS One 2021; 16:e0259426. [PMID: 34714866 PMCID: PMC8555822 DOI: 10.1371/journal.pone.0259426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022] Open
Abstract
ERBB family members and their ligands play an essential role in embryonic heart development and adult heart physiology. Among them, ERBB3 is a binding partner of ERBB2; the ERBB2/3 complex mediates downstream signaling for cell proliferation. ERBB3 has seven consensus binding sites to the p85 regulatory subunit of PI3K, which activates the downstream AKT pathway, leading to the proliferation of various cells. This study generated a human ERBB3 knock-in mouse expressing a mutant ERBB3 whose seven YXXM p85 binding sites were replaced with YXXA. Erbb3 knock-in embryos exhibited lethality between E12.5 to E13.5, and showed a decrease in mesenchymal cell numbers and density in AV cushions. We determined that the proliferation of mesenchymal cells in the atrioventricular (AV) cushion in Erbb3 knock-in mutant embryos was temporarily reduced due to the decrease of AKT and ERK1/2 phosphorylation. Overall, our results suggest that AKT/ERK activation by the ERBB3-dependent PI3K signaling is crucial for AV cushion morphogenesis during embryonic heart development.
Collapse
Affiliation(s)
- Kyoungmi Kim
- Department of Physiology and Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- * E-mail: (KK); (DL)
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
- * E-mail: (KK); (DL)
| |
Collapse
|
7
|
Poelmann RE, Gittenberger-de Groot AC, Goerdajal C, Grewal N, De Bakker MAG, Richardson MK. Ventricular Septation and Outflow Tract Development in Crocodilians Result in Two Aortas with Bicuspid Semilunar Valves. J Cardiovasc Dev Dis 2021; 8:jcdd8100132. [PMID: 34677201 PMCID: PMC8537894 DOI: 10.3390/jcdd8100132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Background: The outflow tract of crocodilians resembles that of birds and mammals as ventricular septation is complete. The arterial anatomy, however, presents with a pulmonary trunk originating from the right ventricular cavum, and two aortas originating from either the right or left ventricular cavity. Mixing of blood in crocodilians cannot occur at the ventricular level as in other reptiles but instead takes place at the aortic root level by a shunt, the foramen of Panizza, the opening of which is guarded by two facing semilunar leaflets of both bicuspid aortic valves. Methods: Developmental stages of Alligator mississipiensis, Crocodilus niloticus and Caiman latirostris were studied histologically. Results and Conclusions: The outflow tract septation complex can be divided into two components. The aorto-pulmonary septum divides the pulmonary trunk from both aortas, whereas the interaortic septum divides the systemic from the visceral aorta. Neural crest cells are most likely involved in the formation of both components. Remodeling of the endocardial cushions and both septa results in the formation of bicuspid valves in all three arterial trunks. The foramen of Panizza originates intracardially as a channel in the septal endocardial cushion.
Collapse
Affiliation(s)
- Robert E. Poelmann
- Sylvius Laboratory, Department of Animal Sciences and Health, Institute of Biology, University of Leiden, Sylvi-usweg 72, 2333BE Leiden, The Netherlands; (C.G.); (M.A.G.D.B.); (M.K.R.)
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300RC Leiden, The Netherlands;
- Correspondence: ; Tel.: +31-652695875
| | | | - Charissa Goerdajal
- Sylvius Laboratory, Department of Animal Sciences and Health, Institute of Biology, University of Leiden, Sylvi-usweg 72, 2333BE Leiden, The Netherlands; (C.G.); (M.A.G.D.B.); (M.K.R.)
| | - Nimrat Grewal
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300RC Leiden, The Netherlands;
| | - Merijn A. G. De Bakker
- Sylvius Laboratory, Department of Animal Sciences and Health, Institute of Biology, University of Leiden, Sylvi-usweg 72, 2333BE Leiden, The Netherlands; (C.G.); (M.A.G.D.B.); (M.K.R.)
| | - Michael K. Richardson
- Sylvius Laboratory, Department of Animal Sciences and Health, Institute of Biology, University of Leiden, Sylvi-usweg 72, 2333BE Leiden, The Netherlands; (C.G.); (M.A.G.D.B.); (M.K.R.)
| |
Collapse
|
8
|
Dyer LA, Rugonyi S. Fetal Blood Flow and Genetic Mutations in Conotruncal Congenital Heart Disease. J Cardiovasc Dev Dis 2021; 8:90. [PMID: 34436232 PMCID: PMC8397097 DOI: 10.3390/jcdd8080090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022] Open
Abstract
In congenital heart disease, the presence of structural defects affects blood flow in the heart and circulation. However, because the fetal circulation bypasses the lungs, fetuses with cyanotic heart defects can survive in utero but need prompt intervention to survive after birth. Tetralogy of Fallot and persistent truncus arteriosus are two of the most significant conotruncal heart defects. In both defects, blood access to the lungs is restricted or non-existent, and babies with these critical conditions need intervention right after birth. While there are known genetic mutations that lead to these critical heart defects, early perturbations in blood flow can independently lead to critical heart defects. In this paper, we start by comparing the fetal circulation with the neonatal and adult circulation, and reviewing how altered fetal blood flow can be used as a diagnostic tool to plan interventions. We then look at known factors that lead to tetralogy of Fallot and persistent truncus arteriosus: namely early perturbations in blood flow and mutations within VEGF-related pathways. The interplay between physical and genetic factors means that any one alteration can cause significant disruptions during development and underscore our need to better understand the effects of both blood flow and flow-responsive genes.
Collapse
Affiliation(s)
- Laura A. Dyer
- Department of Biology, University of Portland, Portland, OR 97203, USA;
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
9
|
Rufaihah AJ, Chen CK, Yap CH, Mattar CNZ. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Dis Model Mech 2021; 14:dmm047522. [PMID: 33787508 PMCID: PMC8033415 DOI: 10.1242/dmm.047522] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Birth defects contribute to ∼0.3% of global infant mortality in the first month of life, and congenital heart disease (CHD) is the most common birth defect among newborns worldwide. Despite the significant impact on human health, most treatments available for this heterogenous group of disorders are palliative at best. For this reason, the complex process of cardiogenesis, governed by multiple interlinked and dose-dependent pathways, is well investigated. Tissue, animal and, more recently, computerized models of the developing heart have facilitated important discoveries that are helping us to understand the genetic, epigenetic and mechanobiological contributors to CHD aetiology. In this Review, we discuss the strengths and limitations of different models of normal and abnormal cardiogenesis, ranging from single-cell systems and 3D cardiac organoids, to small and large animals and organ-level computational models. These investigative tools have revealed a diversity of pathogenic mechanisms that contribute to CHD, including genetic pathways, epigenetic regulators and shear wall stresses, paving the way for new strategies for screening and non-surgical treatment of CHD. As we discuss in this Review, one of the most-valuable advances in recent years has been the creation of highly personalized platforms with which to study individual diseases in clinically relevant settings.
Collapse
Affiliation(s)
- Abdul Jalil Rufaihah
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Ching Kit Chen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Choon Hwai Yap
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat -National University Children's Medical Institute, National University Health System, Singapore 119228
- Department of Bioengineering, Imperial College London, London, UK
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore 119228
| |
Collapse
|
10
|
Alser M, Shurbaji S, Yalcin HC. Mechanosensitive Pathways in Heart Development: Findings from Chick Embryo Studies. J Cardiovasc Dev Dis 2021; 8:jcdd8040032. [PMID: 33810288 PMCID: PMC8065436 DOI: 10.3390/jcdd8040032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
The heart is the first organ that starts to function in a developing embryo. It continues to undergo dramatic morphological changes while pumping blood to the rest of the body. Genetic regulation of heart development is partly governed by hemodynamics. Chick embryo is a major animal model that has been used extensively in cardiogenesis research. To reveal mechanosensitive pathways, a variety of surgical interferences and chemical treatments can be applied to the chick embryo to manipulate the blood flow. Such manipulations alter expressions of mechanosensitive genes which may anticipate induction of morphological changes in the developing heart. This paper aims to present different approaches for generating clinically relevant disturbed hemodynamics conditions using this embryonic chick model and to summarize identified mechanosensitive genes using the model, providing insights into embryonic origins of congenital heart defects.
Collapse
Affiliation(s)
- Maha Alser
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (M.A.); (S.S.)
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| | - Samar Shurbaji
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (M.A.); (S.S.)
| | - Huseyin C. Yalcin
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (M.A.); (S.S.)
- Correspondence: ; Tel.: +974-4403-7719
| |
Collapse
|
11
|
Burggren W, Rojas Antich M. Angiogenesis in the Avian Embryo Chorioallantoic Membrane: A Perspective on Research Trends and a Case Study on Toxicant Vascular Effects. J Cardiovasc Dev Dis 2020; 7:jcdd7040056. [PMID: 33291457 PMCID: PMC7762154 DOI: 10.3390/jcdd7040056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
The chorioallantoic membrane (CAM) of the avian embryo is an intrinsically interesting gas exchange and osmoregulation organ. Beyond study by comparative biologists, however, the CAM vascular bed has been the focus of translational studies by cardiovascular life scientists interested in the CAM as a model for probing angiogenesis, heart development, and physiological functions. In this perspective article, we consider areas of cardiovascular research that have benefited from studies of the CAM, including the themes of investigation of the CAM's hemodynamic influence on heart and central vessel development, use of the CAM as a model vascular bed for studying angiogenesis, and the CAM as an assay tool. A case study on CAM vascularization effects of very low doses of crude oil as a toxicant is also presented that embraces some of these themes, showing the induction of subtle changes in the pattern of the CAM vasculature growth that are not readily observed by standard vascular assessment methodologies. We conclude by raising several questions in the area of CAM research, including the following: (1) Do changes in patterns of CAM growth, as opposed to absolute CAM growth, have biological significance?; (2) How does the relative amount of CAM vascularization compared to the embryo per se change during development?; and (3) Is the CAM actually representative of the mammalian systemic vascular beds that it is presumed to model?
Collapse
|
12
|
Elahi S, Blackburn BJ, Lapierre-Landry M, Gu S, Rollins AM, Jenkins MW. Semi-automated shear stress measurements in developing embryonic hearts. BIOMEDICAL OPTICS EXPRESS 2020; 11:5297-5305. [PMID: 33014615 PMCID: PMC7510878 DOI: 10.1364/boe.395952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 05/09/2023]
Abstract
Blood-induced shear stress influences gene expression. Abnormal shear stress patterns on the endocardium of the early-stage heart tube can lead to congenital heart defects. To have a better understanding of these mechanisms, it is essential to include shear stress measurements in longitudinal cohort studies of cardiac development. Previously reported approaches are computationally expensive and nonpractical when assessing many animals. Here, we introduce a new approach to estimate shear stress that does not rely on recording 4D image sets and extensive post processing. Our method uses two adjacent optical coherence tomography frames (B-scans) where lumen geometry and flow direction are determined from the structural data and the velocity is measured from the Doppler OCT signal. We validated our shear stress estimate by flow phantom experiments and applied it to live quail embryo hearts where observed shear stress patterns were similar to previous studies.
Collapse
Affiliation(s)
- Sahar Elahi
- Department of Pediatrics, Case Western
Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Biomedical Engineering, Case
Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106,
USA
| | - Brecken J. Blackburn
- Department of Biomedical Engineering, Case
Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106,
USA
| | - Maryse Lapierre-Landry
- Department of Biomedical Engineering, Case
Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106,
USA
| | - Shi Gu
- Department of Biomedical Engineering, Case
Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106,
USA
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case
Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106,
USA
| | - Michael W. Jenkins
- Department of Pediatrics, Case Western
Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Biomedical Engineering, Case
Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106,
USA
| |
Collapse
|
13
|
Abstract
The valves of the heart are crucial for ensuring that blood flows in one direction from the heart, through the lungs and back to the rest of the body. Heart valve development is regulated by complex interactions between different cardiac cell types and is subject to blood flow-driven forces. Recent work has begun to elucidate the important roles of developmental pathways, valve cell heterogeneity and hemodynamics in determining the structure and function of developing valves. Furthermore, this work has revealed that many key genetic pathways involved in cardiac valve development are also implicated in diseased valves. Here, we review recent discoveries that have furthered our understanding of the molecular, cellular and mechanosensitive mechanisms of valve development, and highlight new insights into congenital and acquired valve disease.
Collapse
Affiliation(s)
- Anna O'Donnell
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Katherine E Yutzey
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
14
|
Biomechanical Cues Direct Valvulogenesis. J Cardiovasc Dev Dis 2020; 7:jcdd7020018. [PMID: 32438610 PMCID: PMC7345189 DOI: 10.3390/jcdd7020018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022] Open
Abstract
The vertebrate embryonic heart initially forms with two chambers, a ventricle and an atrium, separated by the atrioventricular junction. Localized genetic and biomechanical information guides the development of valves, which function to ensure unidirectional blood flow. If the valve development process goes awry, pathology associated with congenital valve defects can ensue. Congenital valve defects (CVD) are estimated to affect 1–2% of the population and can often require a lifetime of treatment. Despite significant clinical interest, molecular genetic mechanisms that direct valve development remain incompletely elucidated. Cells in the developing valve must contend with a dynamic hemodynamic environment. A growing body of research supports the idea that cells in the valve are highly sensitive to biomechanical forces, which cue changes in gene expression required for normal development or for maintenance of the adult valve. This review will focus on mechanotransductive pathways involved in valve development across model species. We highlight current knowledge regarding how cells sense physical forces associated with blood flow and pressure in the forming heart, and summarize how these changes are transduced into genetic and developmental responses. Lastly, we provide perspectives on how altered biomechanical cues may lead to CVD pathogenesis.
Collapse
|
15
|
Maleki S, Poujade FA, Bergman O, Gådin JR, Simon N, Lång K, Franco-Cereceda A, Body SC, Björck HM, Eriksson P. Endothelial/Epithelial Mesenchymal Transition in Ascending Aortas of Patients With Bicuspid Aortic Valve. Front Cardiovasc Med 2019; 6:182. [PMID: 31921896 PMCID: PMC6928128 DOI: 10.3389/fcvm.2019.00182] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
Thoracic aortic aneurysm (TAA) is the progressive enlargement of the aorta due to destructive changes in the connective tissue of the aortic wall. Aneurysm development is silent and often first manifested by the drastic events of aortic dissection or rupture. As yet, therapeutic agents that halt or reverse the process of aortic wall deterioration are absent, and the only available therapeutic recommendation is elective prophylactic surgical intervention. Being born with a bicuspid instead of the normal tricuspid aortic valve (TAV) is a major risk factor for developing aneurysm in the ascending aorta later in life. Although the pathophysiology of the increased aneurysm susceptibility is not known, recent studies are suggestive of a transformation of aortic endothelium into a more mesenchymal state i.e., an endothelial-to-mesenchymal transition in these individuals. This process involves the loss of endothelial cell features, resulting in junction instability and enhanced vascular permeability of the ascending aorta that may lay the ground for increased aneurysm susceptibility. This finding differentiates and further emphasizes the specific characteristics of aneurysm development in individuals with a bicuspid aortic valve (BAV). This review discusses the possibility of a developmental fate shared between the aortic endothelium and aortic valves. It further speculates about the impact of aortic endothelium phenotypic shift on aneurysm development in individuals with a BAV and revisits previous studies in the light of the new findings.
Collapse
Affiliation(s)
- Shohreh Maleki
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Flore-Anne Poujade
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Otto Bergman
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Jesper R Gådin
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Nancy Simon
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Karin Lång
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Anders Franco-Cereceda
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Simon C Body
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hanna M Björck
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Per Eriksson
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
16
|
Ho S, Chan WX, Phan-Thien N, Yap CH. Organ Dynamics and Hemodynamic of the Whole HH25 Avian Embryonic Heart, Revealed by Ultrasound Biomicroscopy, Boundary Tracking, and Flow Simulations. Sci Rep 2019; 9:18072. [PMID: 31792224 PMCID: PMC6889516 DOI: 10.1038/s41598-019-54061-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022] Open
Abstract
Congenital heart malformations occur to substantial number of pregnancies. Studies showed that abnormal flow biomechanical environments could lead to malformations, making it important to understand the biomechanical environment of the developing heart. We performed 4D high-frequency ultrasound scans of chick embryonic hearts at HH25 to study the biomechanics of the whole heart (atria and ventricle). A novel and high-fidelity motion estimation technique, based on temporal motion model and non-rigid image registration algorithm, allowed automatic tracking of fluid-structure boundaries from scan images, and supported flow simulations. Results demonstrated that atrial appendages were the most contractile portion of the atria, having disproportionately high contribution to atrial blood pumping for its volume in the atria. However, the atria played a small role in blood pumping compared to the ventricle, as it had much lower ejection energy expenditure, and as the ventricle appeared to be able to draw inflow from the veins directly during late diastole. Spatially and temporally averaged wall shear stresses (WSS) for various cardiac structures were 0.062–0.068 Pa, but spatial-averaged WSS could be as high as 0.54 Pa in the RV. WSS was especially elevated at the atrial inlet, atrioventricular junction, regions near to the outflow tract, and at dividing lines between the left and right atrium and left and right side of the ventricle, where septation had begun and the lumen had narrowed. Elevated WSS could serve as biomechanics stimulation for proper growth and development.
Collapse
Affiliation(s)
- Sheldon Ho
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Wei Xuan Chan
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Nhan Phan-Thien
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Choon Hwai Yap
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
17
|
Courchaine K, Rugonyi S. Optical coherence tomography for in vivo imaging of endocardial to mesenchymal transition during avian heart development. BIOMEDICAL OPTICS EXPRESS 2019; 10:5989-5995. [PMID: 31799059 PMCID: PMC6865111 DOI: 10.1364/boe.10.005989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/20/2019] [Accepted: 10/28/2019] [Indexed: 05/08/2023]
Abstract
The endocardial to mesenchymal transition (EndMT) that occurs in endocardial cushions during heart development is critical for proper heart septation and formation of the heart's valves. In EndMT, cells delaminate from the endocardium and migrate into the previously acellular endocardial cushions. Optical coherence tomography (OCT) imaging uses the optical properties of tissues for contrast, and during early development OCT can differentiate cellular versus acellular tissues. Here we show that OCT can be used to non-invasively track EndMT progression in vivo in the outflow tract cushions of chicken embryos. This enables in vivo studies to elucidate factors leading to cardiac malformations.
Collapse
Affiliation(s)
- Katherine Courchaine
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Ave. Mail/Code:CH13B, Portland, OR 97239, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Ave. Mail/Code:CH13B, Portland, OR 97239, USA
| |
Collapse
|
18
|
Poelmann RE, Gittenberger-de Groot AC. Development and evolution of the metazoan heart. Dev Dyn 2019; 248:634-656. [PMID: 31063648 PMCID: PMC6767493 DOI: 10.1002/dvdy.45] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
The mechanisms of the evolution and development of the heart in metazoans are highlighted, starting with the evolutionary origin of the contractile cell, supposedly the precursor of cardiomyocytes. The last eukaryotic common ancestor is likely a combination of several cellular organisms containing their specific metabolic pathways and genetic signaling networks. During evolution, these tool kits diversified. Shared parts of these conserved tool kits act in the development and functioning of pumping hearts and open or closed circulations in such diverse species as arthropods, mollusks, and chordates. The genetic tool kits became more complex by gene duplications, addition of epigenetic modifications, influence of environmental factors, incorporation of viral genomes, cardiac changes necessitated by air‐breathing, and many others. We evaluate mechanisms involved in mollusks in the formation of three separate hearts and in arthropods in the formation of a tubular heart. A tubular heart is also present in embryonic stages of chordates, providing the septated four‐chambered heart, in birds and mammals passing through stages with first and second heart fields. The four‐chambered heart permits the formation of high‐pressure systemic and low‐pressure pulmonary circulation in birds and mammals, allowing for high metabolic rates and maintenance of body temperature. Crocodiles also have a (nearly) separated circulation, but their resting temperature conforms with the environment. We argue that endothermic ancestors lost the capacity to elevate their body temperature during evolution, resulting in ectothermic modern crocodilians. Finally, a clinically relevant paragraph reviews the occurrence of congenital cardiac malformations in humans as derailments of signaling pathways during embryonic development. The cardiac regulatory toolkit contains many factors including epigenetic, genetic, viral, hemodynamic, and environmental factors, but also transcriptional activators, repressors, duplicated genes, redundancies and dose‐dependancies. Numerous toolkits regulate mechanisms including cell‐cell interactions, EMT, mitosis patterns, cell migration and differentiation and left/right sidedness involved in the development of endocardial cushions, looping, septum complexes, pharyngeal arch arteries, chamber and valve formation and conduction system. Evolutionary development of the yolk sac circulation likely preceded the advent of endothermy in amniotes. Parallel evolutionary traits regulate the development of contractile pumps in various taxa often in conjunction with the gut, lungs and excretory organs.
Collapse
Affiliation(s)
- Robert E Poelmann
- Institute of Biology, Department of Animal Sciences and Health, Leiden University, Leiden, The Netherlands.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
19
|
Hsu JJ, Vedula V, Baek KI, Chen C, Chen J, Chou MI, Lam J, Subhedar S, Wang J, Ding Y, Chang CC, Lee J, Demer LL, Tintut Y, Marsden AL, Hsiai TK. Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation. JCI Insight 2019; 5:124460. [PMID: 30973827 DOI: 10.1172/jci.insight.124460] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Biomechanical forces and endothelial-to-mesenchymal transition (EndoMT) are known to mediate valvulogenesis. However, the relative contributions of myocardial contractile and hemodynamic shear forces remain poorly understood. We integrated 4-D light-sheet imaging of transgenic zebrafish models with moving-domain computational fluid dynamics to determine effects of changes in contractile forces and fluid wall shear stress (WSS) on ventriculobulbar (VB) valve development. Augmentation of myocardial contractility with isoproterenol increased both WSS and Notch1b activity in the developing outflow tract (OFT) and resulted in VB valve hyperplasia. Increasing WSS in the OFT, achieved by increasing blood viscosity through EPO mRNA injection, also resulted in VB valve hyperplasia. Conversely, decreasing myocardial contractility by Tnnt2a morpholino oligonucleotide (MO) administration, 2,3-butanedione monoxime treatment, or Plcγ1 inhibition completely blocked VB valve formation, which could not be rescued by increasing WSS or activating Notch. Decreasing WSS in the OFT, achieved by slowing heart rate with metoprolol or reducing viscosity with Gata1a MO, did not affect VB valve formation. Immunofluorescent staining with the mesenchymal marker, DM-GRASP, revealed that biomechanical force-mediated Notch1b activity is implicated in EndoMT to modulate valve morphology. Altogether, increases in WSS result in Notch1b- EndoMT-mediated VB valve hyperplasia, whereas decreases in contractility result in reduced Notch1b activity, absence of EndoMT, and VB valve underdevelopment. Thus, we provide developmental mechanotransduction mechanisms underlying Notch1b-mediated EndoMT in the OFT.
Collapse
Affiliation(s)
- Jeffrey J Hsu
- Division of Cardiology, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Vijay Vedula
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, California, USA
| | - Kyung In Baek
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| | - Cynthia Chen
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| | - Junjie Chen
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| | - Man In Chou
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| | - Jeffrey Lam
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| | - Shivani Subhedar
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| | - Jennifer Wang
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| | - Yichen Ding
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| | | | - Juhyun Lee
- Department of Bioengineering, University of Texas - Arlington, Arlington, Texas, USA
| | - Linda L Demer
- Division of Cardiology, Department of Medicine, UCLA, Los Angeles, California, USA.,Department of Bioengineering, UCLA, Los Angeles, California, USA.,Department of Physiology, UCLA, Los Angeles, California, USA
| | - Yin Tintut
- Division of Cardiology, Department of Medicine, UCLA, Los Angeles, California, USA.,Department of Physiology, UCLA, Los Angeles, California, USA
| | - Alison L Marsden
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, California, USA
| | - Tzung K Hsiai
- Division of Cardiology, Department of Medicine, UCLA, Los Angeles, California, USA.,Department of Bioengineering, UCLA, Los Angeles, California, USA
| |
Collapse
|
20
|
Ho S, Chan WX, Rajesh S, Phan-Thien N, Yap CH. Fluid dynamics and forces in the HH25 avian embryonic outflow tract. Biomech Model Mechanobiol 2019; 18:1123-1137. [PMID: 30810888 DOI: 10.1007/s10237-019-01132-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 02/11/2019] [Indexed: 11/26/2022]
Abstract
The embryonic outflow tract (OFT) eventually undergoes aorticopulmonary septation to form the aorta and pulmonary artery, and it is hypothesized that blood flow mechanical forces guide this process. We performed detailed studies of the geometry, wall motions, and fluid dynamics of the HH25 chick embryonic OFT just before septation, using noninvasive 4D high-frequency ultrasound and computational flow simulations. The OFT exhibited expansion and contraction waves propagating from proximal to distal end, with periods of luminal collapse at locations of the two endocardial cushions. This, combined with periods of reversed flow, resulted in the OFT cushions experiencing wall shear stresses (WSS or flow drag forces) with elevated oscillatory characteristics, which could be important to signal for further development of cushions into valves and septum. Furthermore, the OFT exhibits interesting double-helical flow during systole, where a pair of helical flow structures twisted about each other from the proximal to distal end. This coincided with the location of the future aorticopulmonary septum, which also twisted from the proximal to distal end, suggesting that this flow pattern may be guiding OFT septation.
Collapse
Affiliation(s)
- Sheldon Ho
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Wei Xuan Chan
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Shreyas Rajesh
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Nhan Phan-Thien
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Choon Hwai Yap
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
21
|
Courchaine K, Gray MJ, Beel K, Thornburg K, Rugonyi S. 4-D Computational Modeling of Cardiac Outflow Tract Hemodynamics over Looping Developmental Stages in Chicken Embryos. J Cardiovasc Dev Dis 2019; 6:E11. [PMID: 30818869 PMCID: PMC6463052 DOI: 10.3390/jcdd6010011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/08/2019] [Accepted: 02/21/2019] [Indexed: 12/28/2022] Open
Abstract
Cardiogenesis is interdependent with blood flow within the embryonic system. Recently, a number of studies have begun to elucidate the effects of hemodynamic forces acting upon and within cells as the cardiovascular system begins to develop. Changes in flow are picked up by mechanosensors in endocardial cells exposed to wall shear stress (the tangential force exerted by blood flow) and by myocardial and mesenchymal cells exposed to cyclic strain (deformation). Mechanosensors stimulate a variety of mechanotransduction pathways which elicit functional cellular responses in order to coordinate the structural development of the heart and cardiovascular system. The looping stages of heart development are critical to normal cardiac morphogenesis and have previously been shown to be extremely sensitive to experimental perturbations in flow, with transient exposure to altered flow dynamics causing severe late stage cardiac defects in animal models. This paper seeks to expand on past research and to begin establishing a detailed baseline for normal hemodynamic conditions in the chick outflow tract during these critical looping stages. Specifically, we will use 4-D (3-D over time) optical coherence tomography to create in vivo geometries for computational fluid dynamics simulations of the cardiac cycle, enabling us to study in great detail 4-D velocity patterns and heterogeneous wall shear stress distributions on the outflow tract endocardium. This information will be useful in determining the normal variation of hemodynamic patterns as well as in mapping hemodynamics to developmental processes such as morphological changes and signaling events during and after the looping stages examined here.
Collapse
Affiliation(s)
- Katherine Courchaine
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA.
| | - MacKenzie J Gray
- School of Public Health, Portland State University, Portland, OR 97035, USA.
| | | | - Kent Thornburg
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
22
|
Poelmann RE, Gittenberger-de Groot AC. Hemodynamics in Cardiac Development. J Cardiovasc Dev Dis 2018; 5:jcdd5040054. [PMID: 30404214 PMCID: PMC6306789 DOI: 10.3390/jcdd5040054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/03/2018] [Accepted: 11/04/2018] [Indexed: 12/14/2022] Open
Abstract
The beating heart is subject to intrinsic mechanical factors, exerted by contraction of the myocardium (stretch and strain) and fluid forces of the enclosed blood (wall shear stress). The earliest contractions of the heart occur already in the 10-somite stage in the tubular as yet unsegmented heart. With development, the looping heart becomes asymmetric providing varying diameters and curvatures resulting in unequal flow profiles. These flow profiles exert various wall shear stresses and as a consequence different expression patterns of shear responsive genes. In this paper we investigate the morphological alterations of the heart after changing the blood flow by ligation of the right vitelline vein in a model chicken embryo and analyze the extended expression in the endocardial cushions of the shear responsive gene Tgfbeta receptor III. A major phenomenon is the diminished endocardial-mesenchymal transition resulting in hypoplastic (even absence of) atrioventricular and outflow tract endocardial cushions, which might be lethal in early phases. The surviving embryos exhibit several cardiac malformations including ventricular septal defects and malformed semilunar valves related to abnormal development of the aortopulmonary septal complex and the enclosed neural crest cells. We discuss the results in the light of the interactions between several shear stress responsive signaling pathways including an extended review of the involved Vegf, Notch, Pdgf, Klf2, eNos, Endothelin and Tgfβ/Bmp/Smad networks.
Collapse
Affiliation(s)
- Robert E Poelmann
- Department of Animal Sciences and Health, Institute of Biology, Sylvius Laboratory, University of Leiden, Sylviusweg 72, 2333BE Leiden, The Netherlands.
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 20, 2300RC Leiden, The Netherlands.
| | | |
Collapse
|
23
|
Menon V, Lincoln J. The Genetic Regulation of Aortic Valve Development and Calcific Disease. Front Cardiovasc Med 2018; 5:162. [PMID: 30460247 PMCID: PMC6232166 DOI: 10.3389/fcvm.2018.00162] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022] Open
Abstract
Heart valves are dynamic, highly organized structures required for unidirectional blood flow through the heart. Over an average lifetime, the valve leaflets or cusps open and close over a billion times, however in over 5 million Americans, leaflet function fails due to biomechanical insufficiency in response to wear-and-tear or pathological stimulus. Calcific aortic valve disease (CAVD) is the most common valve pathology and leads to stiffening of the cusp and narrowing of the aortic orifice leading to stenosis and insufficiency. At the cellular level, CAVD is characterized by valve endothelial cell dysfunction and osteoblast-like differentiation of valve interstitial cells. These processes are associated with dysregulation of several molecular pathways important for valve development including Notch, Sox9, Tgfβ, Bmp, Wnt, as well as additional epigenetic regulators. In this review, we discuss the multifactorial mechanisms that contribute to CAVD pathogenesis and the potential of targeting these for the development of novel, alternative therapeutics beyond surgical intervention.
Collapse
Affiliation(s)
- Vinal Menon
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
| | - Joy Lincoln
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, Ohio State University, Columbus, OH, United States
| |
Collapse
|
24
|
Courchaine K, Rugonyi S. Quantifying blood flow dynamics during cardiac development: demystifying computational methods. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170330. [PMID: 30249779 PMCID: PMC6158206 DOI: 10.1098/rstb.2017.0330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2018] [Indexed: 12/27/2022] Open
Abstract
Blood flow conditions (haemodynamics) are crucial for proper cardiovascular development. Indeed, blood flow induces biomechanical adaptations and mechanotransduction signalling that influence cardiovascular growth and development during embryonic stages and beyond. Altered blood flow conditions are a hallmark of congenital heart disease, and disrupted blood flow at early embryonic stages is known to lead to congenital heart malformations. In spite of this, many of the mechanisms by which blood flow mechanics affect cardiovascular development remain unknown. This is due in part to the challenges involved in quantifying blood flow dynamics and the forces exerted by blood flow on developing cardiovascular tissues. Recent technologies, however, have allowed precise measurement of blood flow parameters and cardiovascular geometry even at early embryonic stages. Combined with computational fluid dynamics techniques, it is possible to quantify haemodynamic parameters and their changes over development, which is a crucial step in the quest for understanding the role of mechanical cues on heart and vascular formation. This study summarizes some fundamental aspects of modelling blood flow dynamics, with a focus on three-dimensional modelling techniques, and discusses relevant studies that are revealing the details of blood flow and their influence on cardiovascular development.This article is part of the Theo Murphy meeting issue 'Mechanics of development'.
Collapse
Affiliation(s)
- Katherine Courchaine
- Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sandra Rugonyi
- Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
25
|
Courchaine K, Rykiel G, Rugonyi S. Influence of blood flow on cardiac development. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 137:95-110. [PMID: 29772208 PMCID: PMC6109420 DOI: 10.1016/j.pbiomolbio.2018.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/06/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
The role of hemodynamics in cardiovascular development is not well understood. Indeed, it would be remarkable if it were, given the dauntingly complex array of intricately synchronized genetic, molecular, mechanical, and environmental factors at play. However, with congenital heart defects affecting around 1 in 100 human births, and numerous studies pointing to hemodynamics as a factor in cardiovascular morphogenesis, this is not an area in which we can afford to remain in the dark. This review seeks to present the case for the importance of research into the biomechanics of the developing cardiovascular system. This is accomplished by i) illustrating the basics of some of the highly complex processes involved in heart development, and discussing the known influence of hemodynamics on those processes; ii) demonstrating how altered hemodynamic environments have the potential to bring about morphological anomalies, citing studies in multiple animal models with a variety of perturbation methods; iii) providing examples of widely used technological innovations which allow for accurate measurement of hemodynamic parameters in embryos; iv) detailing the results of studies in avian embryos which point to exciting correlations between various hemodynamic manipulations in early development and phenotypic defect incidence in mature hearts; and finally, v) stressing the relevance of uncovering specific biomechanical pathways involved in cardiovascular formation and remodeling under adverse conditions, to the potential treatment of human patients. The time is ripe to unravel the contributions of hemodynamics to cardiac development, and to recognize their frequently neglected role in the occurrence of heart malformation phenotypes.
Collapse
Affiliation(s)
- Katherine Courchaine
- Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland OR, USA
| | - Graham Rykiel
- Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland OR, USA
| | - Sandra Rugonyi
- Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland OR, USA.
| |
Collapse
|
26
|
Kheradvar A, Zareian R, Kawauchi S, Goodwin RL, Rugonyi S. Animal Models for Heart Valve Research and Development. ACTA ACUST UNITED AC 2018; 24:55-62. [PMID: 30631375 DOI: 10.1016/j.ddmod.2018.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Valvular heart disease is the third-most common cause of heart problems in the United States. Malfunction of the valves can be acquired or congenital and each may lead either to stenosis or regurgitation, or even both in some cases. Heart valve disease is a progressive disease, which is irreversible and may be fatal if left untreated. Pharmacological agents cannot currently prevent valvular calcification or help repair damaged valves, as valve tissue is unable to regenerate spontaneously. Thus, heart valve replacement/repair is the only current available treatment. Heart valve research and development is currently focused on two parallel paths; first, research that aims to understand the underlying mechanisms for heart valve disease to emerge with an ultimate goal to devise medical treatment; and second, efforts to develop repair and replacement options for a diseased valve. Studies that focus on developmental malformation, genetic and disease epigenetics usually employ small animal models that are easy to access for in vivo imaging that minimally disturbs their environment during early stages of development. Alternatively, studies that aim to develop novel device for replacement and repair of diseased valves often employ large animals whose heart size and anatomy closely replicate human's. This paper aims to briefly review the current state-of-the-art animal models, and justification to use an animal model for a particular heart valve related project.
Collapse
|
27
|
Elahi S, Gu S, Thrane L, Rollins AM, Jenkins MW. Complex regression Doppler optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-8. [PMID: 29704328 PMCID: PMC5920204 DOI: 10.1117/1.jbo.23.4.046009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/09/2018] [Indexed: 05/06/2023]
Abstract
We introduce a new method to measure Doppler shifts more accurately and extend the dynamic range of Doppler optical coherence tomography (OCT). The two-point estimate of the conventional Doppler method is replaced with a regression that is applied to high-density B-scans in polar coordinates. We built a high-speed OCT system using a 1.68-MHz Fourier domain mode locked laser to acquire high-density B-scans (16,000 A-lines) at high enough frame rates (∼100 fps) to accurately capture the dynamics of the beating embryonic heart. Flow phantom experiments confirm that the complex regression lowers the minimum detectable velocity from 12.25 mm / s to 374 μm / s, whereas the maximum velocity of 400 mm / s is measured without phase wrapping. Complex regression Doppler OCT also demonstrates higher accuracy and precision compared with the conventional method, particularly when signal-to-noise ratio is low. The extended dynamic range allows monitoring of blood flow over several stages of development in embryos without adjusting the imaging parameters. In addition, applying complex averaging recovers hidden features in structural images.
Collapse
Affiliation(s)
- Sahar Elahi
- Case Western Reserve University, Department of Pediatrics, Cleveland, Ohio, United States
| | - Shi Gu
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Lars Thrane
- Case Western Reserve University, Department of Pediatrics, Cleveland, Ohio, United States
| | - Andrew M. Rollins
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Michael W. Jenkins
- Case Western Reserve University, Department of Pediatrics, Cleveland, Ohio, United States
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
- Address all correspondence to: Michael W. Jenkins, E-mail:
| |
Collapse
|
28
|
Rennie MY, Stovall S, Carson JP, Danilchik M, Thornburg KL, Rugonyi S. Hemodynamics Modify Collagen Deposition in the Early Embryonic Chicken Heart Outflow Tract. J Cardiovasc Dev Dis 2017; 4:jcdd4040024. [PMID: 29367553 PMCID: PMC5753125 DOI: 10.3390/jcdd4040024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 01/08/2023] Open
Abstract
Blood flow is critical for normal cardiac development. Hemodynamic stimuli outside of normal ranges can lead to overt cardiac defects, but how early heart tissue remodels in response to altered hemodynamics is poorly understood. This study investigated changes in tissue collagen in response to hemodynamic overload in the chicken embryonic heart outflow tract (OFT) during tubular heart stages (HH18 to HH24, ~24 h). A suture tied around the OFT at HH18 was tightened to constrict the lumen for ~24 h (constriction range at HH24: 15–60%). Expression of fibril collagens I and III and fibril organizing collagens VI and XIV were quantified at the gene and protein levels via qPCR and quantitative immunofluorescence. Collagen I was slightly elevated upstream of the band and in the cushions in banded versus control OFTs. Changes in collagen III were not observed. Collagen VI deposition was elevated downstream of the band, but not overall. Collagen XIV deposition increased throughout the OFT, and strongly correlated to lumen constriction. Interestingly, organization of collagen I fibrils was observed for the tighter banded embryos in regions that also showed increase in collagen XIV deposition, suggesting a potentially key role for collagens I and XIV in the structural adaptation of embryonic heart tissue to hemodynamic overload.
Collapse
Affiliation(s)
- Monique Y Rennie
- Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Stephanie Stovall
- Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.
| | - James P Carson
- Texas Advanced Computing Center, University of Texas, Austin, TX 78758, USA.
| | - Michael Danilchik
- Integrative Biosciences, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Kent L Thornburg
- Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Sandra Rugonyi
- Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health & Science University, Portland, OR 97239, USA.
- Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
29
|
Whitson JA, Wilmarth PA, Klimek J, Monnier VM, David L, Fan X. Proteomic analysis of the glutathione-deficient LEGSKO mouse lens reveals activation of EMT signaling, loss of lens specific markers, and changes in stress response proteins. Free Radic Biol Med 2017; 113:84-96. [PMID: 28951044 PMCID: PMC5699945 DOI: 10.1016/j.freeradbiomed.2017.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/21/2017] [Accepted: 09/21/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE To determine global protein expression changes in the lens of the GSH-deficient LEGSKO mouse model of age-related cataract for comparison with recently published gene expression data obtained by RNA-Seq transcriptome analysis. METHODS Lenses were separated into epithelial and cortical fiber sections, digested with trypsin, and labeled with isobaric tags (10-plex TMTTM). Peptides were analyzed by LC-MS/MS (Orbitrap Fusion) and mapped to the mouse proteome for relative protein quantification. RESULTS 1871 proteins in lens epithelia and 870 proteins in lens fiber cells were quantified. 40 proteins in LEGSKO epithelia, 14 proteins in LEGSKO fiber cells, 22 proteins in buthionine sulfoximine (BSO)-treated LEGSKO epithelia, and 55 proteins in BSO-treated LEGSKO fiber cells had significantly (p<0.05, FDR<0.1) altered protein expression compared to WT controls. HSF4 and MAF transcription factors were the most common upstream regulators of the response to GSH-deficiency. Many detoxification proteins, including aldehyde dehydrogenases, peroxiredoxins, and quinone oxidoreductase, were upregulated but several glutathione S-transferases were downregulated. Several cellular stress response proteins showed regulation changes, including an upregulation of HERPUD1, downregulation of heme oxygenase, and mixed changes in heat shock proteins. NRF2-regulated proteins showed broad upregulation in BSO-treated LEGSKO fiber cells, but not in other groups. Strong trends were seen in downregulation of lens specific proteins, including β- and γ-crystallins, lengsin, and phakinin, and in epithelial-mesenchymal transition (EMT)-related changes. Western blot analysis of LEGSKO lens epithelia confirmed expression changes in several proteins. CONCLUSIONS This dataset confirms at the proteomic level many findings from the recently determined GSH-deficient lens transcriptome and provides new insight into the roles of GSH in the lens, how the lens adapts to oxidative stress, and how GSH affects EMT in the lens.
Collapse
Affiliation(s)
- Jeremy A Whitson
- Case Western Reserve University, Department of Pathology, 2301 Cornell Rd, Cleveland, OH 44106, USA
| | - Phillip A Wilmarth
- Oregon Health Sciences University, Department of Biochemistry & Molecular Biology, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - John Klimek
- Proteomics Shared Resource, Oregon Health & Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Vincent M Monnier
- Case Western Reserve University, Department of Pathology, 2301 Cornell Rd, Cleveland, OH 44106, USA; Case Western Reserve University, Department of Biochemistry, 2109 Adelbert Road, Cleveland, OH 44106, USA
| | - Larry David
- Oregon Health Sciences University, Department of Biochemistry & Molecular Biology, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Xingjun Fan
- Case Western Reserve University, Department of Pathology, 2301 Cornell Rd, Cleveland, OH 44106, USA.
| |
Collapse
|
30
|
Menon V, Eberth JF, Junor L, Potts AJ, Belhaj M, Dipette DJ, Jenkins MW, Potts JD. Removing vessel constriction on the embryonic heart results in changes in valve gene expression, morphology, and hemodynamics. Dev Dyn 2017; 247:531-541. [PMID: 28884516 DOI: 10.1002/dvdy.24588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The formation of healthy heart valves throughout embryonic development is dependent on both genetic and epigenetic factors. Hemodynamic stimuli are important epigenetic regulators of valvulogenesis, but the resultant molecular pathways that control valve development are poorly understood. Here we describe how the heart and valves recover from the removal of a partial constriction (banding) of the OFT/ventricle junction (OVJ) that temporarily alters blood flow velocity through the embryonic chicken heart (HH stage 16/17). Recovery is described in terms of 24- and 48-hr gene expression, morphology, and OVJ hemodynamics. RESULTS Collectively, these studies show that after 24 hr of recovery, important epithelial-mesenchymal transformation (EMT) genes TGFßRIII and Cadherin 11 (CDH11) transcript levels normalize return to control levels, in contrast to Periostin and TGFß,3 which remain altered. In addition, after 48 hr of recovery, TGFß3 and CDH11 transcript levels remain normalized, whereas TGFßRIII and Periostin are down-regulated. Analyses of OFT cushion volumes in the hearts show significant changes, as does the ratio of cushion to cell volume at 24 hr post band removal (PBR). Morphologically, the hearts show visible alteration following band removal when compared to their control age-matched counterparts. CONCLUSIONS Although some aspects of the genetic/cellular profiles affected by altered hemodynamics seem to be reversed, not all gene expression and cardiac growth normalize following 48 hr of band removal. Developmental Dynamics 247:531-541, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vinal Menon
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - John F Eberth
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina.,Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina
| | - Lorain Junor
- Instrumentation Resource Facility, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Alexander J Potts
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Marwa Belhaj
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Donald J Dipette
- Department of Internal Medicine, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio.,Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Jay D Potts
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina.,Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
31
|
Midgett M, López CS, David L, Maloyan A, Rugonyi S. Increased Hemodynamic Load in Early Embryonic Stages Alters Myofibril and Mitochondrial Organization in the Myocardium. Front Physiol 2017; 8:631. [PMID: 28912723 PMCID: PMC5582297 DOI: 10.3389/fphys.2017.00631] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/14/2017] [Indexed: 01/08/2023] Open
Abstract
Normal blood flow is essential for proper heart formation during embryonic development, as abnormal hemodynamic load (blood pressure and shear stress) results in cardiac defects seen in congenital heart disease (CHD). However, the detrimental remodeling processes that relate altered blood flow to cardiac malformation and defects remain unclear. Heart development is a finely orchestrated process with rapid transformations that occur at the tissue, cell, and subcellular levels. Myocardial cells play an essential role in cardiac tissue maturation by aligning in the direction of stretch and increasing the number of contractile units as hemodynamic load increases throughout development. This study elucidates the early effects of altered blood flow on myofibril and mitochondrial configuration in the outflow tract myocardium in vivo. Outflow tract banding was used to increase hemodynamic load in the chicken embryo heart between Hamburger and Hamilton stages 18 and 24 (~24 h during tubular heart stages). 3D focused ion beam scanning electron microscopy analysis determined that increased hemodynamic load induced changes in the developing myocardium, characterized by thicker myofibril bundles that were more disbursed in circumferential orientation, and mitochondria that organized in large clusters around the nucleus. Proteomic mass-spectrometry analysis quantified altered protein composition after banding that is consistent with altered myofibril thin filament assembly and function, and mitochondrial maintenance and organization. Additionally, pathway analysis of the proteomics data identified possible activation of signaling pathways in response to banding, including the renin-angiotensin system (RAS). Imaging and proteomic data combined indicate that myofibril and mitochondrial arrangement in early embryonic stages is a critical developmental process that when disturbed by altered blood flow may contribute to cardiac malformation and defects.
Collapse
Affiliation(s)
- Madeline Midgett
- Biomedical Engineering, Oregon Health & Science UniversityPortland, OR, United States
| | - Claudia S López
- Biomedical Engineering, Oregon Health & Science UniversityPortland, OR, United States.,Multiscale Microscopy Core, OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science UniversityPortland, OR, United States
| | - Larry David
- Proteomics Core, Oregon Health & Science UniversityPortland, OR, United States
| | - Alina Maloyan
- Knight Cardiovascular Institute, Oregon Health & Science UniversityPortland, OR, United States
| | - Sandra Rugonyi
- Biomedical Engineering, Oregon Health & Science UniversityPortland, OR, United States
| |
Collapse
|
32
|
Plubell DL, Wilmarth PA, Zhao Y, Fenton AM, Minnier J, Reddy AP, Klimek J, Yang X, David LL, Pamir N. Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. Mol Cell Proteomics 2017; 16:873-890. [PMID: 28325852 DOI: 10.1074/mcp.m116.065524] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/28/2017] [Indexed: 01/17/2023] Open
Abstract
The lack of high-throughput methods to analyze the adipose tissue protein composition limits our understanding of the protein networks responsible for age and diet related metabolic response. We have developed an approach using multiple-dimension liquid chromatography tandem mass spectrometry and extended multiplexing (24 biological samples) with tandem mass tags (TMT) labeling to analyze proteomes of epididymal adipose tissues isolated from mice fed either low or high fat diet for a short or a long-term, and from mice that aged on low versus high fat diets. The peripheral metabolic health (as measured by body weight, adiposity, plasma fasting glucose, insulin, triglycerides, total cholesterol levels, and glucose and insulin tolerance tests) deteriorated with diet and advancing age, with long-term high fat diet exposure being the worst. In response to short-term high fat diet, 43 proteins representing lipid metabolism (e.g. AACS, ACOX1, ACLY) and red-ox pathways (e.g. CPD2, CYP2E, SOD3) were significantly altered (FDR < 10%). Long-term high fat diet significantly altered 55 proteins associated with immune response (e.g. IGTB2, IFIT3, LGALS1) and rennin angiotensin system (e.g. ENPEP, CMA1, CPA3, ANPEP). Age-related changes on low fat diet significantly altered only 18 proteins representing mainly urea cycle (e.g. OTC, ARG1, CPS1), and amino acid biosynthesis (e.g. GMT, AKR1C6). Surprisingly, high fat diet driven age-related changes culminated with alterations in 155 proteins involving primarily the urea cycle (e.g. ARG1, CPS1), immune response/complement activation (e.g. C3, C4b, C8, C9, CFB, CFH, FGA), extracellular remodeling (e.g. EFEMP1, FBN1, FBN2, LTBP4, FERMT2, ECM1, EMILIN2, ITIH3) and apoptosis (e.g. YAP1, HIP1, NDRG1, PRKCD, MUL1) pathways. Using our adipose tissue tailored approach we have identified both age-related and high fat diet specific proteomic signatures highlighting a pronounced involvement of arginine metabolism in response to advancing age, and branched chain amino acid metabolism in early response to high fat feeding. Data are available via ProteomeXchange with identifier PXD005953.
Collapse
Affiliation(s)
- Deanna L Plubell
- From the ‡Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, Oregon
| | - Phillip A Wilmarth
- §Proteomics Shared Resources, Oregon Health & Sciences University, Portland, Oregon
| | - Yuqi Zhao
- ¶Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Alexandra M Fenton
- From the ‡Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, Oregon
| | - Jessica Minnier
- From the ‡Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, Oregon
| | - Ashok P Reddy
- §Proteomics Shared Resources, Oregon Health & Sciences University, Portland, Oregon
| | - John Klimek
- §Proteomics Shared Resources, Oregon Health & Sciences University, Portland, Oregon
| | - Xia Yang
- ¶Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Larry L David
- §Proteomics Shared Resources, Oregon Health & Sciences University, Portland, Oregon
| | - Nathalie Pamir
- From the ‡Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, Oregon;
| |
Collapse
|
33
|
Midgett M, Thornburg K, Rugonyi S. Blood flow patterns underlie developmental heart defects. Am J Physiol Heart Circ Physiol 2017; 312:H632-H642. [PMID: 28062416 DOI: 10.1152/ajpheart.00641.2016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/14/2016] [Accepted: 12/28/2016] [Indexed: 01/15/2023]
Abstract
Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10-35% led predominantly to ventricular septal defects, whereas constricting by 35-60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment.NEW & NOTEWORTHY Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel "dose-response" type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects.
Collapse
Affiliation(s)
- Madeline Midgett
- Biomedical Engineering, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; and
| | - Kent Thornburg
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Sandra Rugonyi
- Biomedical Engineering, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; and .,Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|