1
|
Dupre N, Riou MC, Isaac J, Ferre F, Cormier-Daire V, Kerner S, de La Dure-Molla M, Nowwarote N, Acevedo AC, Fournier BPJ. Root resorptions induced by genetic disorders: A systematic review. Oral Dis 2024; 30:3799-3812. [PMID: 38566363 DOI: 10.1111/odi.14942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES Root resorption in permanent teeth is a common pathological process that often follows dental trauma or orthodontic treatment. More rarely, root resorption is a feature of genetic disorders and can help with diagnosis. Thus, the present review aims to determine which genetic disorders could induce pathological root resorptions and thus which mutated genes could be associated with them. METHODS We conducted a systematic review following the PRISMA guidelines. Articles describing root resorptions in patients with genetic disorders were included from PubMed, Embase, Web of Science, and Google Scholar. We synthesized the genetic disorder, the type, severity, and extent of the resorptions, as well as the other systemic and oral symptoms and histological features. RESULTS The synthetic analysis included 25 studies among 937 identified records. We analyzed 21 case reports, three case series, and one cohort study. Overall, we highlighted 14 different pathologies with described root resorptions. Depending on the pathology, the sites of resorption, their extent, and their severity showed differences. CONCLUSION With 14 genetic pathologies suspected to induce root resorptions, our findings are significant and enrich a previous classification. Among them, three metabolic disorders, three calcium-phosphorus metabolism disorders, and osteolysis disorders were identified.
Collapse
Affiliation(s)
- Nicolas Dupre
- Reference Center for Oral and Dental Rare Diseases, APHP, ORARES, Rothschild Hospital, Paris, France
- Centre de Recherche Des Cordeliers, Laboratory of Molecular Oral Pathophysiology, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
| | - Margot C Riou
- Reference Center for Oral and Dental Rare Diseases, APHP, ORARES, Rothschild Hospital, Paris, France
- Centre de Recherche Des Cordeliers, Laboratory of Molecular Oral Pathophysiology, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
| | - Juliane Isaac
- Centre de Recherche Des Cordeliers, Laboratory of Molecular Oral Pathophysiology, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
| | - François Ferre
- Centre de Recherche Des Cordeliers, Laboratory of Molecular Oral Pathophysiology, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
| | - Valérie Cormier-Daire
- Reference Center for Skeletal Dysplasia, INSERM UMR1163, Institut Imagine, Necker Hospital, Université Paris Cité, Paris, France
| | - Stéphane Kerner
- Reference Center for Oral and Dental Rare Diseases, APHP, ORARES, Rothschild Hospital, Paris, France
- Centre de Recherche Des Cordeliers, Laboratory of Molecular Oral Pathophysiology, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
- Department of Periodontics, School of Dentistry, Loma Linda University, Loma Linda, California, USA
- Post-Graduate Program in Periodontology and Implant Dentistry, EFP, Université Paris Cité, Paris, France
| | - Muriel de La Dure-Molla
- Reference Center for Oral and Dental Rare Diseases, APHP, ORARES, Rothschild Hospital, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
- Reference Center for Skeletal Dysplasia, INSERM UMR1163, Institut Imagine, Necker Hospital, Université Paris Cité, Paris, France
| | - Nunthawan Nowwarote
- Centre de Recherche Des Cordeliers, Laboratory of Molecular Oral Pathophysiology, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
| | - Ana Carolina Acevedo
- Centre de Recherche Des Cordeliers, Laboratory of Molecular Oral Pathophysiology, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasilia, Brasilia, Brazil
- Oral Care Center for Inherited Diseases, University Hospital of Brasilia, Brasilia, Brazil
| | - Benjamin P J Fournier
- Reference Center for Oral and Dental Rare Diseases, APHP, ORARES, Rothschild Hospital, Paris, France
- Centre de Recherche Des Cordeliers, Laboratory of Molecular Oral Pathophysiology, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Abdulhadi ZT, Mahdee AF, Gul SS. Accuracy of Gingival Crevicular Fluid Biomarkers of MMP8, TIMP1, RANK, RANKL, and OPG in Differentiating Symptomatic and Asymptomatic Apical Periodontitis. Diagnostics (Basel) 2024; 14:1872. [PMID: 39272657 PMCID: PMC11394092 DOI: 10.3390/diagnostics14171872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Apical periodontitis (AP) is the most prevalent chronic inflammatory disease of the teeth. Bone resorption dynamics in symptomatic and asymptomatic AP are still unrecognized. This study examined different inflammatory markers within gingival crevicular fluid, including matrix metalloproteinases 8 (MMP8), tissue inhibitors of metalloproteinases 1 (TIMP1), receptor activator of nuclear factor κB (RANK), its ligand (RANKL), and osteoprotegerin (OPG), to be used in comparing symptomatic apical periodontitis (SAP) and asymptomatic apical periodontitis (AAP) versus healthy teeth. Subjects with SAP, AAP, and a control group were recruited and GCF samples were collected by Periopaper strips. Clinical and radiographical measures were used for diagnosing AP. Levels of MMP8, TIMP, RANK, RANKL, and OPG were determined by ELISA and their abilities to discriminate between examined sites were evaluated by receiver operator characteristic (ROC) curves. All examined biomarkers were statistically significant higher (p < 0.05) in SAP than AAP and the control group, apart from RANK. Significant positive correlations (p < 0.05) were identified between all SAP and AAP biomarkers except TIMP1 and RANK in AAP teeth. TIMP1 and OPG exhibited the highest ability to distinguish between SAP and AAP with areas under the curve of 0.824 and 0.763 in comparing SAP and the control group, and 0.732 and 0.73 when comparing AAP and the control group, respectively. Additionally, TIMP1 and OPG showed the highest AUC of 0.778 and 0.747 when SAP and AAP were compared, respectively. This study concluded that GCF levels of TIMP1 and OPG can be used to differentiate between SAP, AAP, and healthy teeth.
Collapse
Affiliation(s)
- Zeena Tariq Abdulhadi
- Department of Restorative and Aesthetic Dentistry, College of Dentistry, University of Baghdad, Baghdad 10071, Iraq
| | - Anas Falah Mahdee
- Department of Restorative and Aesthetic Dentistry, College of Dentistry, University of Baghdad, Baghdad 10071, Iraq
| | - Sarhang Sarwat Gul
- Medical Laboratory Department, College of Health and Medical Technology, Sulaimani Polytechnic University, Sulaymaniyah 46001, Iraq
- Department of Periodontics, College of Dentistry, University of Sulaimani, Sulaymaniyah 46001, Iraq
| |
Collapse
|
3
|
Hsiao PY, Huang RY, Huang LW, Chu CL, Dyke TV, Mau LP, Cheng CD, Sung CE, Weng PW, Wu YC, Shieh YS, Cheng WC. MyD88 exacerbates inflammation-induced bone loss by modulating dynamic equilibrium between Th17/Treg cells and subgingival microbiota dysbiosis. J Periodontol 2024; 95:764-777. [PMID: 38523602 DOI: 10.1002/jper.23-0561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND This study aimed to investigate the contribution of myeloid differentiation primary-response gene 88 (MyD88) on the differentiation of T helper type 17 (Th17) and regulatory T (Treg) cells and the emerging subgingival microbiota dysbiosis in Porphyromonas gingivalis-induced experimental periodontitis. METHODS Alveolar bone loss, infiltrated inflammatory cells, immunostained cells for tartrate-resistant acid phosphatase (TRAP), the receptor activator of nuclear factor-kB ligand (RANKL), and osteoprotegerin (OPG) were quantified by microcomputerized tomography and histological staining between age- and sex-matched homozygous littermates (wild-type [WT, Myd88+/+] and Myd88-/- on C57BL/6 background). The frequencies of Th17 and Treg cells in cervical lymph nodes (CLNs) and spleen were determined by flow cytometry. Cytokine expression in gingival tissues, CLNs, and spleens were studied by quantitative polymerase chain reaction (qPCR). Analysis of the composition of the subgingival microbiome and functional annotation of prokaryotic taxa (FAPROTAX) analysis were performed. RESULTS P. gingivalis-infected Myd88-/- mice showed alleviated bone loss, TRAP+ osteoclasts, and RANKL/OPG ratio compared to WT mice. A significantly higher percentage of Foxp3+CD4+ T cells in infected Myd88-/- CLNs and a higher frequency of RORγt+CD4+ T cells in infected WT mice was noted. Increased IL-10 and IL-17a expressions in gingival tissue at D14-D28 then declined in WT mice, whereas an opposite pattern was observed in Myd88-/- mice. The Myd88-/- mice exhibited characteristic increases in gram-positive species and species having probiotic properties, while gram-negative, anaerobic species were noted in WT mice. FAPROTAX analysis revealed increased aerobic chemoheterotrophy in Myd88-/- mice, whereas anaerobic chemoheterotrophy was noted in WT mice after P. gingivalis infection. CONCLUSIONS MyD88 plays an important role in inflammation-induced bone loss by modulating the dynamic equilibrium between Th17/Treg cells and dysbiosis in P. gingivalis-induced experimental periodontitis.
Collapse
Affiliation(s)
- Po-Yan Hsiao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ren-Yeong Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Lin-Wei Huang
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Liang Chu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Thomas Van Dyke
- Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Lian-Ping Mau
- Department of Periodontics, Chi Mei Medical Center, Tainan, Taiwan
| | - Chia-Dan Cheng
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-En Sung
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Wei Weng
- Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chiao Wu
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Operative Dentistry and Endodontics, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Yi-Shing Shieh
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Operative Dentistry and Endodontics, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Wan-Chien Cheng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
4
|
Arundina I, Budhy TI, Oki AS, Condro Surboyo MD, Rajendra Santosh AB, Sidarningsih, Diyatri I, Rahmaputry T, Pradana A, Iqbal M, Adira Moelyanto AS. Nanoparticle-Based Rice Husk Liquid Smoke as Periodontitis Therapy through OPG, RANK, and RANKL Expression. Int J Biomater 2024; 2024:5015893. [PMID: 38912518 PMCID: PMC11192596 DOI: 10.1155/2024/5015893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/28/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Periodontitis therapy employing nanomaterials with submicron sizes holds promise for enhancing osteogenesis and facilitating periodontal cell proliferation. This study aims to assess the potential of nanoparticle-based rice husk liquid smoke (n-RHLS) in an animal model of periodontitis by evaluating the expression of osteoprotegerin (OPG), receptor activator of nuclear factor-kβ (RANK), and receptor activator of nuclear factor-kβ ligand (RANKL). Methods Twenty-eight male Wistar rats were inoculated with 109 CFU/ml of Porphyromonas gingivalis in the sulcus mandibular incisor region to create periodontitis and subsequently treated with n-RHLS while the control with saline. Immunohistochemical staining was performed on the mandibular incisor to assess OPG, RANK, and RANKL expression 2 and 7 days after treatment. Results OPG expression exhibited a significant increase at both 2 and 7 days, while RANKL expression decreased notably after 7 days of treatment using n-RHLS (p < 0.05). In contrast, RANK expression did not show significant differences compared to the control groups (p > 0.05). Conclusion Nanostructured liquid smoke derived from rice husk nanoparticles (n-RHLS) demonstrates potential as a therapeutic agent for periodontitis, especially on OPG/RANK/RANKL expression, by modulating OPG and RANKL expression to support periodontal tissue health.
Collapse
Affiliation(s)
- Ira Arundina
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Theresia Indah Budhy
- Department of Oral Pathology and Maxillofacial, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Aqsa Sjuhada Oki
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | | | | | - Sidarningsih
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Indeswati Diyatri
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Tytania Rahmaputry
- School of Dentistry, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - Arya Pradana
- Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Mohammad Iqbal
- Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | | |
Collapse
|
5
|
Liu S, Yu X, Guo Q, Zhao S, Yan K, Hou M, Bai F, Li S. Periodontal ligament-associated protein-1 promotes osteoclastogenesis in mice by modulating TGF-β1/Smad1 pathway. J Periodontol 2024; 95:146-158. [PMID: 37436700 DOI: 10.1002/jper.23-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/25/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Periodontal ligament-associated protein-1 (PLAP-1), an important target molecule of osteoarthritis research, may affect alveolar bone resorption. The aim of our study was to comprehensively and systematically detect the effect of PLAP-1 on alveolar bone resorption and the underlying mechanism in PLAP-1 knockout mouse models. METHODS We used a PLAP-1 knockout (C57BL/6N-Plap-1-/- ) mouse model to investigate the effect of PLAP-1 on osteoclast differentiation and the underlying mechanism by adding Porphyromonas gingivalis lipopolysaccharide to stimulate bone marrow-derived macrophages. The effect of PLAP-1 on alveolar bone resorption and the underlying mechanism were studied using a ligature periodontitis model, with microcomputed tomography imaging, immunochemistry, and immunofluorescence. RESULTS The in vitro analysis results demonstrated that PLAP-1 knockout significantly inhibited osteoclast differentiation under both normal and inflammatory conditions. Bioinformatic analysis, immunofluorescence, and co-immunoprecipitation showed colocalization and interaction between PLAP-1 and transforming growth factor beta 1 (TGF-β1). The phosphorylation of Smad1 was reduced in the PLAP-1 knockout cells compared with that in the cells from wild-type mice. The in vivo analysis results demonstrated that PLAP-1 knockout decreased bone resorption and the levels of osteoclast differentiation markers in experimental periodontitis compared with those in wild-type mice. Immunofluorescence staining confirmed colocalization of PLAP-1 and TGF-β1 in the experimental periodontitis model. The phosphorylation level of Smad1 was significantly reduced in PLAP-1 knockout mice compared with that in wild-type mice. CONCLUSIONS This study revealed that the knockout of PLAP-1 inhibits osteoclast differentiation and decreases alveolar bone resorption through the TGF-β1/Smad1 signaling pathway, which could serve as an innovative target for the prevention and treatment of periodontitis.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xijiao Yu
- Department of Endodontics, Central Laboratory, Jinan Stomatological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Jinan, Shandong, China
| | - Qiushuang Guo
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Shuaiqi Zhao
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Kaixian Yan
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Meng Hou
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Fuxiang Bai
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Shu Li
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| |
Collapse
|
6
|
Blancas-Luciano BE, Zamora-Chimal J, da Silva-de Rosenzweig PG, Ramos-Mares M, Fernández-Presas AM. Macrophages immunomodulation induced by Porphyromonas gingivalis and oral antimicrobial peptides. Odontology 2023; 111:778-792. [PMID: 36897441 PMCID: PMC10492884 DOI: 10.1007/s10266-023-00798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023]
Abstract
Porphyromonas gingivalis is a keystone pathogen associated with periodontitis development, a chronic inflammatory pathology characterized by the destruction of the supporting teeth structure. Macrophages are recruited cells in the inflammatory infiltrate from patients with periodontitis. They are activated by the P. gingivalis virulence factors arsenal, promoting an inflammatory microenvironment characterized by cytokine production (TNF-α, IL-1β, IL-6), prostaglandins, and metalloproteinases (MMPs) that foster the tissular destruction characteristic of periodontitis. Furthermore, P. gingivalis suppresses the generation of nitric oxide, a potent antimicrobial molecule, through its degradation, and incorporating its byproducts as a source of energy. Oral antimicrobial peptides can contribute to controlling the disease due to their antimicrobial and immunoregulatory activity, which allows them to maintain homeostasis in the oral cavity. This study aimed to analyze the immunopathological role of macrophages activated by P. gingivalis in periodontitis and suggested using antimicrobial peptides as therapeutic agents to treat the disease.
Collapse
Affiliation(s)
- Blanca Esther Blancas-Luciano
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Col. Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Ciudad Universitaria, Edificio D, 1° Piso, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis, 148 Col. Doctores, Del. Cuauhtémoc, C.P. 06726, Mexico City, Mexico
| | - Pablo Gomes da Silva-de Rosenzweig
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, State of Mexico, Mexico
| | - Mariana Ramos-Mares
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, State of Mexico, Mexico
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Col. Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico.
| |
Collapse
|
7
|
Silva C, Requicha J, Dias I, Bastos E, Viegas C. Genomic Medicine in Canine Periodontal Disease: A Systematic Review. Animals (Basel) 2023; 13:2463. [PMID: 37570272 PMCID: PMC10417655 DOI: 10.3390/ani13152463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Genomic medicine has become a growing reality; however, it is still taking its first steps in veterinary medicine. Through this approach, it will be possible to trace the genetic profile of a given individual and thus know their susceptibility to certain diseases, namely periodontal disease. This condition is one of the most frequently diagnosed in companion animal clinics, especially in dogs. Due to the limited existing information and the lack of comprehensive studies, the objective of the present study was to systematically review the existing scientific literature regarding genomic medicine in canine periodontal disease and determine which genes have already been studied and their probable potential. This study followed the recommendations of the PRISMA 2020 methodology. Canine periodontal disease allied to genomic medicine were the subjects of this systematic review. Only six articles met all of the inclusion criteria, and these were analyzed in detail. These studies described genetic variations in the following genes: interleukin-6, interleukin-10, interleukin-1, lactotransferrin, toll-like receptor 9, and receptor activator of nuclear factor-kappa B. Only in two of them, namely interleukin-1 and toll-like receptor 9 genes, may the identified genetic variations explain the susceptibility that certain individuals have to the development of periodontal disease. It is necessary to expand the studies on the existing polymorphic variations in genes and their relationship with the development of periodontal disease. Only then will it be possible to fully understand the biological mechanisms that are involved in this disease and that determine the susceptibility to its development.
Collapse
Affiliation(s)
- Carolina Silva
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.S.); (J.R.); (I.D.)
- CECAV—Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - João Requicha
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.S.); (J.R.); (I.D.)
- CECAV—Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| | - Isabel Dias
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.S.); (J.R.); (I.D.)
- CECAV—Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
- CITAB—Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Inov4Agro-Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
| | - Estela Bastos
- CITAB—Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Inov4Agro-Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, School of Life and Environmental Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Carlos Viegas
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.S.); (J.R.); (I.D.)
- CECAV—Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
- CITAB—Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Inov4Agro-Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
| |
Collapse
|
8
|
Wei X, Liu Q, Liu L, Tian W, Wu Y, Guo S. Periostin plays a key role in maintaining the osteogenic abilities of dental follicle stem cells in the inflammatory microenvironment. Arch Oral Biol 2023; 153:105737. [PMID: 37320885 DOI: 10.1016/j.archoralbio.2023.105737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
OBJECTIVE This study aimed to explore the effect of periostin in the osteogenic abilities of dental follicle stem cells (DFSCs) and DFSC sheets in the inflammatory microenvironment. DESIGN DFSCs were isolated from dental follicles and identified. A lentiviral vector was used to knock down periostin in DFSCs. 250 ng/ml lipopolysaccharide from Porphyromonas gingivalis (P.g-LPS) was used to construct the inflammatory microenvironment. Osteogenic differentiation was evaluated by alizarin red staining, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot. The formation of extracellular matrix was assessed by qRT-PCR and immunofluorescence. The expressions of receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) were measured by western blot. RESULTS Knockdown of periostin inhibited osteogenic differentiation and promoted adipogenic differentiation of DFSCs. In an inflammatory microenvironment, knockdown of periostin attenuated the proliferation and osteogenic differentiation of DFSCs. Knockdown of periostin inhibited the formation of extracellular matrix collagen I (COL-I), fibronectin, and laminin in DFSC sheets, but did not affect the expression of osteogenesis-related markers alkaline phosphatase (ALP) and osteocalcin (OCN). In the inflammatory microenvironment, knocking down periostin inhibited the expression of OCN and OPG in DFSC sheets, and promoted the expression of RANKL. CONCLUSION Periostin played a key role in maintaining the osteogenic abilities of DFSCs and DFSC sheets in the inflammatory microenvironment and might be an important molecule in the process of DFSCs coping with inflammatory microenvironment and promoting periodontal tissues regeneration.
Collapse
Affiliation(s)
- Xiuqun Wei
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Qian Liu
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Li Liu
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| | - Shujuan Guo
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
9
|
Sheng X, Li C, Wang Z, Xu Y, Sun Y, Zhang W, Liu H, Wang J. Advanced applications of strontium-containing biomaterials in bone tissue engineering. Mater Today Bio 2023; 20:100636. [PMID: 37441138 PMCID: PMC10333686 DOI: 10.1016/j.mtbio.2023.100636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 07/15/2023] Open
Abstract
Strontium (Sr) and strontium ranelate (SR) are commonly used therapeutic drugs for patients suffering from osteoporosis. Researches have showed that Sr can significantly improve the biological activity and physicochemical properties of materials in vitro and in vivo. Therefore, a large number of strontium containing biomaterials have been developed for repairing bone defects and promoting osseointegration. In this review, we provide a comprehensive overview of Sr-containing biomaterials along with the current state of their clinical use. For this purpose, the different types of biomaterials including calcium phosphate, bioactive glass, and polymers are discussed and provided future outlook on the fabrication of the next-generation multifunctional and smart biomaterials.
Collapse
Affiliation(s)
| | | | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Yu Xu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Yang Sun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Weimin Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| |
Collapse
|
10
|
Liu Z, Tang Y, He L, Geng B, Lu F, He J, Yi Q, Liu X, Zhang K, Wang L, Xia Y, Jiang J. Piezo1-mediated fluid shear stress promotes OPG and inhibits RANKL via NOTCH3 in MLO-Y4 osteocytes. Channels (Austin) 2022; 16:127-136. [PMID: 35754337 DOI: 10.1080/19336950.2022.2085379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Piezo1, a mechanosensitive ion channel, participates in a variety of biological processes in maintaining bone homeostasis. As the most abundant cells in bones of the mammals, osteocytes play an essential role in bone formation, remodeling, and bone mass maintenance. Here, by exposing MLO-Y4 osteocytes to the fluid shear stress (FSS) microenvironment, we explored the effect of Piezo1-mediated FSS on the expression of the molecules critical to the process of bone formation and resorption, Receptor Activator of Nuclear Factor-Kappa-B Ligand (RANKL) and Osteoprotegerin (OPG). It was found that 9 dyne/cm2 loading for 30 minutes showed an upregulation trend on Piezo1 when MLO-Y4 osteocytes were exposed to an FSS microenvironment. FSS promotes the expression of OPG and inhibits the expression of RANKL. The blocker of Piezo1, GsMTx4, downregulates the effect of FSS on the expression of these two molecules. In addition, NOTCH3 was involved in this process. Thus, the results demonstrated that Piezo1-mediated FSS promotes the expression of OPG and inhibits the expression of RANKL via NOTCH3 in MLO-Y4 osteocytes.
Collapse
Affiliation(s)
- Zhongcheng Liu
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yuchen Tang
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Liangzhi He
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Bin Geng
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Fan Lu
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jinwen He
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Qiong Yi
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xuening Liu
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Kun Zhang
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Lifu Wang
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yayi Xia
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jin Jiang
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Ikeuchi T, Moutsopoulos NM. Osteoimmunology in periodontitis; a paradigm for Th17/IL-17 inflammatory bone loss. Bone 2022; 163:116500. [PMID: 35870792 PMCID: PMC10448972 DOI: 10.1016/j.bone.2022.116500] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/02/2022]
Abstract
Periodontitis is a prevalent human disease of inflammation-induced bone destruction. Through studies in patient lesions of rare and common forms of periodontitis and animal model experimentation, Th17/IL-17 related immune pathways have emerged as mediators of disease pathology. In this focused review, we examine mechanisms of induction, amplification and pathogenicity of Th17 cells in periodontitis.
Collapse
Affiliation(s)
- Tomoko Ikeuchi
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, 30 convent Dr, Bldg30, Room 327, Bethesda, MD 20892, United States of America.
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, 30 convent Dr, Bldg30, Room 327, Bethesda, MD 20892, United States of America.
| |
Collapse
|
12
|
Antibacterial Adhesion Strategy for Dental Titanium Implant Surfaces: From Mechanisms to Application. J Funct Biomater 2022; 13:jfb13040169. [PMID: 36278638 PMCID: PMC9589972 DOI: 10.3390/jfb13040169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Dental implants are widely used to restore missing teeth because of their stability and comfort characteristics. Peri-implant infection may lead to implant failure and other profound consequences. It is believed that peri-implantitis is closely related to the formation of biofilms, which are difficult to remove once formed. Therefore, endowing titanium implants with anti-adhesion properties is an effective method to prevent peri-implant infection. Moreover, anti-adhesion strategies for titanium implant surfaces are critical steps for resisting bacterial adherence. This article reviews the process of bacterial adhesion, the material properties that may affect the process, and the anti-adhesion strategies that have been proven effective and promising in practice. This article intends to be a reference for further improvement of the antibacterial adhesion strategy in clinical application and for related research on titanium implant surfaces.
Collapse
|
13
|
Gonçalves-Anjo N, Requicha J, Teixeira A, Dias I, Viegas C, Bastos E. Genomic Medicine in Periodontal Disease: Old Issue, New Insights. J Vet Dent 2022; 39:314-322. [PMID: 35765214 PMCID: PMC9638704 DOI: 10.1177/08987564221109102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Genetic variability is the main cause of phenotypic variation. Some variants may
be associated with several diseases and can be used as risk biomarkers,
identifying animals with higher susceptibility to develop the pathology. Genomic
medicine uses this genetic information for risk calculation, clinical diagnosis
and prognosis, allowing the implementation of more effective preventive
strategies and/or personalized therapies. Periodontal disease (PD) is the
inflammation of the periodontium induced mainly by bacterial plaque and is the
leading cause of tooth loss. Microbial factors are responsible for the PD
initiation; however, several studies support the genetic influence on the PD
progression. The main purpose of the present publication is to highlight the
main steps involved in the genomic medicine applied to veterinary patients,
describing the flowchart from the characterization of the genetic variants to
the identification of potential associations with specific clinical data. After
investigating which genes might potentially be implicated in canine PD, the
RANK gene, involved in the regulation of
osteoclastogenesis, was selected to illustrate this approach. A case-control
study was performed using DNA samples from a population of 90 dogs – 50 being
healthy and 40 with PD. This analysis allowed for the discovery of four new
intronic variations that were banked in GenBank (g.85A>G, g.151G>T,
g.268A>G and g.492T>C). The results of this study are not intended to be
applied exclusively to PD. On the contrary, this genetic information is intended
to be used by other researchers as a foundation for the development of multiple
applications in the veterinary clinical field.
Collapse
Affiliation(s)
- Nuno Gonçalves-Anjo
- Department of Genetics and Biotechnology, School of Life and Environmental Sciences, 56066University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.,Centre of the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), UTAD, Vila Real, Portugal
| | - João Requicha
- 511313Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, UTAD, Vila Real, Portugal.,Animal Research Centre (CECAV), UTAD, Vila Real, Portugal.,Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
| | - Andreia Teixeira
- Centre of the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), UTAD, Vila Real, Portugal
| | - Isabel Dias
- 511313Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, UTAD, Vila Real, Portugal.,Animal Research Centre (CECAV), UTAD, Vila Real, Portugal.,Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
| | - Carlos Viegas
- 511313Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, UTAD, Vila Real, Portugal.,Animal Research Centre (CECAV), UTAD, Vila Real, Portugal.,Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
| | - Estela Bastos
- Department of Genetics and Biotechnology, School of Life and Environmental Sciences, 56066University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.,Centre of the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), UTAD, Vila Real, Portugal
| |
Collapse
|
14
|
Jiao M, Zhang P, Yu X, Sun P, Liu M, Qiao Y, Pan K. Osteoprotegerin/receptor activator of nuclear factor‑κB ligand are involved in periodontitis‑promoted vascular calcification. Exp Ther Med 2022; 24:512. [PMID: 35813311 PMCID: PMC9260016 DOI: 10.3892/etm.2022.11439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
The present study explored the potential role of osteoprotegerin (OPG)/receptor activator of nuclear factor-κB (RANK)/receptor activator of nuclear factor-κB ligand (RANKL) in promoting vascular calcification by periodontitis. Thirty-six male Wistar rats were randomly assigned to four groups to establish animal models as follows: the sham group (group C), vascular calcification group (group VDN), periodontitis group (group CP), and test group (group CP+VDN). After eight weeks, all the rats were sacrificed. The periodontal and vascular calcification indices were detected. Quantitative polymerase chain reaction (qPCR), immunohistochemistry, western blot analysis, and enzyme-linked immunosorbent assay (ELISA) were used to quantify OPG/RANK/RANKL expression in vascular tissue and serum. Protein expression analyses revealed the expression of OPG and RANKL in the vascular tissues of the four groups. The expression of OPG in group C was the highest, which was similar to group CP+VDN, and the expression of OPG in groups CP and VDN were lower. However, the expression of RANKL was inversely correlated with OPG, and the ratio of RANKL/OPG was also higher in groups CP and VDN than that in groups C and CP+VDN. In conclusion, OPG/RANK/RANKL may play an essential role in the promotion of vascular calcification by periodontitis. However, the expression levels of OPG and RANKL were not simply superimposed when periodontitis and vascular calcification co-existed.
Collapse
Affiliation(s)
- Mengyu Jiao
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Pengmei Zhang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xinbo Yu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Pei Sun
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Meiwei Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yanya Qiao
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Keqing Pan
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
15
|
Yang M, Pang Y, Pei M, Li Y, Yuan X, Tang R, Wang J. Therapeutic Potential of Liraglutide for Diabetes-Periodontitis Comorbidity: Killing Two Birds with One Stone. J Diabetes Res 2022; 2022:8260111. [PMID: 35845316 PMCID: PMC9279102 DOI: 10.1155/2022/8260111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The relationship between diabetes and periodontitis is bidirectional, and there is now consensus that periodontitis and diabetes are comorbid. There is a quest for a drug that can be used to treat both conditions simultaneously. This study evaluated the anti-inflammatory and osteoprotective effects of liraglutide (LIRA) on periodontitis in diabetic rats. METHODS Male Wistar rats (n = 46) were randomly divided into four groups: control group (n = 8), LIRA group (n = 8), diabetes-associated periodontitis+0.9% saline group (diabetic periodontitis (DP)+NaCl group, n = 15), and diabetes-associated periodontitis+LIRA group (DP+LIRA group, n = 15). LIRA treatment lasted for 4 weeks (300 μg/kg/d) after establishment of a rat model of DP. The expression of IL-6, TNF-α, and IL-1β was detected by enzyme-linked immunosorbent assay. The morphological changes of periodontal tissues were observed by hematoxylin-eosin staining. The absorption of alveolar bone and its ultrastructural changes were observed by histomorphometry and microcomputed tomography. The expression of receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) in alveolar bone was detected by immunohistochemistry. The levels of Runx2 mRNA and ALP mRNA in the gingival epithelium were examined by quantitative real-time polymerase chain reaction. RESULTS LIRA decreased alveolar bone resorption, improved the microstructure of alveolar bone, and reduced periodontal inflammation and damage (P < 0.05). LIRA also reduced blood glucose level and inhibited the secretion of serum IL-6, TNF-α, and IL-1β (P < 0.05). In addition, after treatment with LIRA, the ratio of RANKL/OPG was reduced, and the expression levels of ALP mRNA and Runx2 mRNA were upregulated (P < 0.05). CONCLUSIONS LIRA not only controls blood glucose level but also reduces inflammation and bone loss and enhances osteogenic differentiation in diabetes-associated periodontitis. Those indicate that LIRA may be used as a potential medicine for the adjunctive therapy of diabetes-periodontitis comorbidity.
Collapse
Affiliation(s)
- Man Yang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
- Key Laboratory of Stomatology of the State Ethnic Affairs Commission, China
- Hospital of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yunqing Pang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Oral Diseases, Gansu Province, China
| | - Minyu Pei
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
- Key Laboratory of Stomatology of the State Ethnic Affairs Commission, China
- Gansu Province Clinical Research Center for Oral Diseases, Gansu Province, China
| | - Yuanyuan Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Oral Diseases, Gansu Province, China
| | - Xuemin Yuan
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
- Hospital of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Rongbing Tang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Oral Diseases, Gansu Province, China
| | - Jing Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
- Key Laboratory of Stomatology of the State Ethnic Affairs Commission, China
- Gansu Province Clinical Research Center for Oral Diseases, Gansu Province, China
| |
Collapse
|
16
|
Update on B Cell Response in Periodontitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:175-193. [DOI: 10.1007/978-3-030-96881-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Yu Y, Jiang L, Li J, Lei L, Li H. Hexokinase 2-mediated glycolysis promotes receptor activator of NF-κB ligand expression in Porphyromonas gingivalis lipopolysaccharide-treated osteoblasts. J Periodontol 2021; 93:1036-1047. [PMID: 34585393 DOI: 10.1002/jper.21-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/25/2021] [Accepted: 09/19/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Glucose metabolism plays a pivotal role in sustaining the inflammatory response to microbial stimulation by providing sufficient energy in immune cells. The main purpose of our study was to explore whether hexokinase 2 (HK2)-mediated glycolysis affected the expression of receptor activator of NF-κB Ligand (RANKL) in Porphyromonas gingivalis lipopolysaccharide (P. gingivalis-LPS)-treated osteoblasts and evaluate the potential involvement of the AKT/PI3K pathway activation during HK2-mediated glycolysis. METHODS Primary mice osteoblasts were treated with P. gingivalis-LPS, whereas the HK2 inhibitor (Lonidamine, LND) and small interference RNA were used to restrain HK2 expression. Conditioned medium from osteoblasts was utilized for culturing osteoclast precursors. The mRNA and protein levels of genes involved in glycolysis and bone metabolism including RANKL and osteoprotegerin (OPG) were detected by real-time PCR and western blotting. HK2 and lactate levels were detected by ELISA. Tartrate-resistant acid phosphatase (TRAP) staining was utilized to assess osteoclast formation. The involvement of the AKT/PI3K pathway in osteoblasts was explored by Western blotting. RESULTS P. gingivalis-LPS enhanced HK2 expression along with rising glycolysis in osteoblasts. LND and HK2-knockdown decreased RANKL expression and the RANKL/OPG ratio in osteoblasts, leading to less osteoclast formation from osteoclast precursors as evidenced by TRAP staining, while the osteogenic potential and proliferation of osteoblasts were not affected by HK2-knockdown. Moreover, P. gingivalis-LPS activated the AKT/PI3K pathway, which could regulate HK2 and RANKL expression in osteoblasts. CONCLUSIONS HK2-mediated glycolysis promoted RANKL in osteoblasts and enhanced osteoclast differentiation. Targeting glycolysis may provide novel therapeutic methods for reducing alveolar bone loss.
Collapse
Affiliation(s)
- Yi Yu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lishan Jiang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jingwen Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lang Lei
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Houxuan Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
18
|
Samal S, Dash P, Dash M. Drug Delivery to the Bone Microenvironment Mediated by Exosomes: An Axiom or Enigma. Int J Nanomedicine 2021; 16:3509-3540. [PMID: 34045855 PMCID: PMC8149288 DOI: 10.2147/ijn.s307843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
The increasing incidence of bone-related disorders is causing a burden on the clinical scenario. Even though bone is one of the tissues that possess tremendous regenerative potential, certain bone anomalies need therapeutic intervention through appropriate delivery of a drug. Among several nanosystems and biologics that offer the potential to contribute towards bone healing, the exosomes from the class of extracellular vesicles are outstanding. Exosomes are extracellular nanovesicles that, apart from the various advantages, are standing out of the crowd for their ability to conduct cellular communication. The internal cargo of the exosomes is leading to its potential use in therapeutics. Exosomes are being unraveled in terms of the mechanism as well as application in targeting various diseases and tissues. Through this review, we have tried to understand and review all that is already established and the gap areas that still exist in utilizing them as drug delivery vehicles targeting the bone. The review highlights the potential of the exosomes towards their contribution to the drug delivery scenario in the bone microenvironment. A comparison of the pros and cons of exosomes with other prevalent drug delivery systems is also done. A section on the patents that have been generated so far from this field is included.
Collapse
Affiliation(s)
- Sasmita Samal
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha, 751024, India
| | - Pratigyan Dash
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha, 751024, India
| | - Mamoni Dash
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| |
Collapse
|
19
|
Galler KM, Grätz EM, Widbiller M, Buchalla W, Knüttel H. Pathophysiological mechanisms of root resorption after dental trauma: a systematic scoping review. BMC Oral Health 2021; 21:163. [PMID: 33771147 PMCID: PMC7995728 DOI: 10.1186/s12903-021-01510-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Background The objective of this scoping review was to systematically explore the current knowledge of cellular and molecular processes that drive and control trauma-associated root resorption, to identify research gaps and to provide a basis for improved prevention and therapy. Methods Four major bibliographic databases were searched according to the research question up to February 2021 and supplemented manually. Reports on physiologic, histologic, anatomic and clinical aspects of root resorption following dental trauma were included. Duplicates were removed, the collected material was screened by title/abstract and assessed for eligibility based on the full text. Relevant aspects were extracted, organized and summarized. Results 846 papers were identified as relevant for a qualitative summary. Consideration of pathophysiological mechanisms concerning trauma-related root resorption in the literature is sparse. Whereas some forms of resorption have been explored thoroughly, the etiology of others, particularly invasive cervical resorption, is still under debate, resulting in inadequate diagnostics and heterogeneous clinical recommendations. Effective therapies for progressive replacement resorptions have not been established. Whereas the discovery of the RANKL/RANK/OPG system is essential to our understanding of resorptive processes, many questions regarding the functional regulation of osteo-/odontoclasts remain unanswered. Conclusions This scoping review provides an overview of existing evidence, but also identifies knowledge gaps that need to be addressed by continued laboratory and clinical research. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01510-6.
Collapse
Affiliation(s)
- Kerstin M Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Germany.
| | - Eva-Maria Grätz
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Germany
| | - Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Germany
| | - Helge Knüttel
- University Library, University of Regensburg, Regensburg, Germany
| |
Collapse
|
20
|
Nessa N, Kobara M, Toba H, Adachi T, Yamamoto T, Kanamura N, Pezzotti G, Nakata T. Febuxostat Attenuates the Progression of Periodontitis in Rats. Pharmacology 2021; 106:294-304. [PMID: 33735887 DOI: 10.1159/000513034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/11/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Periodontitis is a lifestyle-related disease that is characterized by chronic inflammation in gingival tissue. Febuxostat, a xanthine oxidase inhibitor, exerts anti-inflammatory and antioxidant effects. OBJECTIVE The present study investigated the effects of febuxostat on periodontitis in a rat model. METHODS Male Wistar rats were divided into 3 groups: control, periodontitis, and febuxostat-treated periodontitis groups. Periodontitis was induced by placing a ligature wire around the 2nd maxillary molar and the administration of febuxostat (5 mg/kg/day) was then initiated. After 4 weeks, alveolar bone loss was assessed by micro-computed tomography and methylene blue staining. The expression of osteoprotegerin (OPG), a bone resorption inhibitor, was detected by quantitative RT-PCR and immunological staining, and the number of osteoclasts in gingival tissue was assessed by tartrate-resistant acid phosphatase staining. The mRNA and protein expression levels of the proinflammatory cytokines, tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β), in gingival tissue were measured using quantitative RT-PCR and immunological staining. Oxidative stress in gingival tissue was evaluated by the expression of 4-hydroxy-2-nonenal (4-HNE), and 8-hydroxy-2-deoxyguanosine (8-OHdG). To clarify the systemic effects of periodontitis, blood pressure and glucose tolerance were examined. RESULTS In rats with periodontitis, alveolar bone resorption was associated with reductions in OPG and increases in osteoclast numbers. The gingival expression of TNF-α, IL-1β, 4-HNE, and 8-OHdG was up-regulated in rats with periodontitis. Febuxostat significantly reduced alveolar bone loss, proinflammatory cytokine levels, and oxidative stress. It also attenuated periodontitis-induced glucose intolerance and blood pressure elevations. CONCLUSION Febuxostat prevented the progression of periodontitis and associated systemic effects by inhibiting proinflammatory mediators and oxidative stress.
Collapse
Affiliation(s)
- Naseratun Nessa
- Division of Pathological Science, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Miyuki Kobara
- Division of Pathological Science, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan,
| | - Hiroe Toba
- Division of Pathological Science, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Giuseppe Pezzotti
- Department of Material Science and Engineering, Kyoto Institute of Technology, Kyoto, Japan
| | - Tetsuo Nakata
- Division of Pathological Science, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
21
|
Guo Y, Xu C, Wu X, Zhang W, Sun Y, Shrestha A. Leptin regulates OPG and RANKL expression in Gingival Fibroblasts and Tissues of Chronic Periodontitis Patients. Int J Med Sci 2021; 18:2431-2437. [PMID: 33967621 PMCID: PMC8100636 DOI: 10.7150/ijms.56151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/06/2021] [Indexed: 11/05/2022] Open
Abstract
Objective: Chronic periodontitis is a bone-destructive disease affecting periodontal support structures. Although leptin has a protective effect against periodontitis, the underlying mechanism remains unclear. Therefore, this study aimed to investigate the possible role of leptin by examining its relationship with OPG and RANKL in human gingival tissues obtained from patients with chronic periodontitis. Method: Twenty-two patients with chronic periodontitis were enrolled (10 with moderate periodontitis and 12 with severe periodontitis) in the experimental group, and 12 healthy individuals were enrolled in the control group. Gingival tissue samples were collected, and the protein levels and localization of leptin, OPG, and RANKL were studied using immunohistochemistry (IHC). The staining intensities of leptin, OPG, and RANKL were correlated with the periodontal clinical index. Moreover, real-time quantitative PCR (RT-qPCR) was used to determine OPG and RANKL mRNA levels in gingival fibroblasts stimulated with gradient concentrations of leptin protein in vitro. Result: Leptin, OPG, and RANKL were located in the cytoplasm of gingival epithelial cells and the connective tissue. Leptin was widely and significantly expressed in the control group, whereas it was lightly stained in the severe group. RANKL was lightly stained in the control group, whereas it was widely and significantly expressed in the severe group. The control and the moderate groups had similar OPG levels, which were significantly higher than that in the severe group. Leptin was positively correlated with OPG(r = 0.905, p < 0.01) and negatively correlated with RANKL (r = -0.635, p < 0.01). In vitro low concentrations of leptin led to an increased OPG/RANKL mRNA ratio, whereas the opposite effect was observed at high concentrations. Conclusion: Leptin can regulate OPG and RANKL expression in gingival fibroblasts and may thus play a role in the development of chronic periodontitis by modulating the OPG/RANKL ratio.
Collapse
Affiliation(s)
- Yiting Guo
- Central of Stomatology, Xiangya Hospital of Central South University, Changsha, China.,Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Chunjiao Xu
- Central of Stomatology, Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoshan Wu
- Central of Stomatology, Xiangya Hospital of Central South University, Changsha, China
| | - Wenrui Zhang
- Central of Stomatology, Xiangya Hospital of Central South University, Changsha, China
| | - Yumei Sun
- Central of Stomatology, Xiangya Hospital of Central South University, Changsha, China
| | - Alisha Shrestha
- Central of Stomatology, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
22
|
Shi W, Guo S, Liu L, Liu Q, Huo F, Ding Y, Tian W. Small Extracellular Vesicles from Lipopolysaccharide-Preconditioned Dental Follicle Cells Promote Periodontal Regeneration in an Inflammatory Microenvironment. ACS Biomater Sci Eng 2020; 6:5797-5810. [PMID: 33320548 DOI: 10.1021/acsbiomaterials.0c00882] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lipopolysaccharide (LPS)-induced inflammatory microenvironment can enhance the dental follicle cells (DFCs) proliferation, differentiation, and adhesion abilities beneficial to periodontal regeneration, which possibly attributes the success to exosomes according to recent studies. This study aimed to investigate the therapeutic efficacy and underlying mechanisms of LPS-preconditioned DFC-derived small extracellular vesicles (sEVs), which enriched exosomes for periodontal regeneration in an inflammatory microenvironment. LPS preconditioning could significantly increase the secretion of sEVs derived from DFCs. Both LPS-preconditioned dental follicle cell-derived sEV (L-D-sEV) and DFC-derived sEV (D-sEV) promoted the proliferation of periodontal ligament cells from periodontitis (p-PDLCs) with a dose-dependent and saturable manner and also enhanced the migration and differentiation of p-PDLCs. Furthermore, L-D-sEV showed a modest benefit than D-sEV to promote p-PDLCs differentiation. In vivo, an L-D-sEV-loaded hydrogel applied in the treatment of periodontitis was beneficial to repair lost alveolar bone in the early stage of treatment and to maintain the level of alveolar bone in the late stage of treatment in experimental periodontitis rats, which could partly decrease the expression of the RANKL/OPG ratio. In conclusion, L-D-sEV was beneficial to p-PDLCs forming an integrity periodontal tissue. The biological injectable L-D-sEV-loaded hydrogel could be used as a treatment method for experimental periodontitis in rats, promoting periodontal tissue regeneration and providing a new alternative cell therapy method for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Weiwei Shi
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shujuan Guo
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Liu
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qian Liu
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Fangjun Huo
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
23
|
Brodetska L, Natrus L, Lisakovska O, Kaniura O, Iakovenko L, Skrypnyk I, Flis P. The regulatory role of the RANKL/RANK/OPG signaling pathway in the mechanisms of tooth eruption in patients with impacted teeth. BMC Oral Health 2020; 20:261. [PMID: 32948158 PMCID: PMC7501598 DOI: 10.1186/s12903-020-01251-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tooth impaction is a common problem in orthodontic practice and in some cases accompanied by pain and pathological changes of surrounding teeth. Understanding the cellular and molecular mechanisms underlying tooth impaction allows finding the most effective orthodontic treatment for patients with impacted teeth (IT). RANK (receptor activator of NF-κB) / RANKL (RANK ligand) / OPG (osteoprotegerin) signaling pathway controls bone resorption and may be involved in the regulation of tooth eruption. The study aimed to evaluate bone remodeling based on the assessment of the RANKL/RANK/OPG status in patients with IT. METHODS Bone samples from 18 patients (mean age 25.27 ± 3.34) were divided into 3 groups: 1 - bone tissue of healthy persons (control group); 2 - bone tissue, that was taken near the healthy tooth in patients with tooth impaction; 3 - bone tissue, that was collected near the IT. Levels of RANKL, RANK, OPG, osteocalcin (OC), NF-κB p65 subunit, NFATc1, and caspase-3 were determined by western blotting. The difference between groups was assessed using ANOVA followed by Tukey's post-hoc test. P-value ≤0.05 was considered statistically significant. RESULTS We established a 1.73-fold elevation of RANK level in the IT area vs. control, indicating the recruitment of preosteoclasts. An increase in RANKL, OPG, and OC content was demonstrated (1.46-, 1.48-, and 1.42-fold respectively), reflecting the high activity of osteoblasts near the IT. Despite the activation of the RANKL/RANK/OPG system in the impaction area, NF-κB and NFATc1 levels did not change compared vs. control, indicating a blocked/delayed process of osteoclastogenesis. We found a decrease in the content of procaspase-3 (1.28-fold), while the level of its active form p17 increased by 2.26 folds near the healthy tooth in patients with IT compared with control. In the area of IT, we observed an increase in procaspase-3 and p17 levels (1.32 and 1.78 folds). This reflects impairments of caspase-3 activation and accumulation of its inactive form in the IT area that may contribute to the tooth eruption failure. CONCLUSIONS Tooth impaction may be associated with the disturbances in the caspase-3 cascade activation and the imbalance in the RANKL/RANK/OPG system, and as a result, blocked bone resorption.
Collapse
Affiliation(s)
- Ludmila Brodetska
- Department of Orthodontics and propaedeutics of Orthopedic Dentistry, Bogomolets National Medical University, Kyiv, Ukraine
| | - Larysa Natrus
- Research Institute of Experimental and Clinical Medicine, Bogomolets National Medical University, Kyiv, Ukraine
| | - Olha Lisakovska
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, Kyiv, Ukraine.
| | - Olexandr Kaniura
- Department of Orthodontics and propaedeutics of Orthopedic Dentistry, Bogomolets National Medical University, Kyiv, Ukraine
| | - Liudmyla Iakovenko
- Department of maxillofacial surgery of childhood, Bogomolets National Medical University, Kyiv, Ukraine
| | - Irina Skrypnyk
- Department of Orthodontics and propaedeutics of Orthopedic Dentistry, Bogomolets National Medical University, Kyiv, Ukraine
| | - Petro Flis
- Department of Orthodontics and propaedeutics of Orthopedic Dentistry, Bogomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
24
|
An Evidence-Based Update on the Molecular Mechanisms Underlying Periodontal Diseases. Int J Mol Sci 2020; 21:ijms21113829. [PMID: 32481582 PMCID: PMC7312805 DOI: 10.3390/ijms21113829] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
Several investigators have reported about the intricate molecular mechanism underlying periodontal diseases (PD). Nevertheless, the role of specific genes, cells, or cellular mechanisms involved in the pathogenesis of periodontitis are still unclear. Although periodontitis is one of the most prevalent oral diseases globally, there are no pre-diagnostic markers or therapeutic targets available for such inflammatory lesions. A pivotal role is played by pro- and anti-inflammatory markers in modulating pathophysiological and physiological processes in repairing damaged tissues. In addition, effects on osteoimmunology is ever evolving due to the ongoing research in understanding the molecular mechanism lying beneath periodontal diseases. The aim of the current review is to deliver an evidence-based update on the molecular mechanism of periodontitis with a particular focus on recent developments. Reports regarding the molecular mechanism of these diseases have revealed unforeseen results indicative of the fact that significant advances have been made to the periodontal medicine over the past decade. There is integrated hypothesis-driven research going on. Although a wide picture of association of periodontal diseases with immune response has been further clarified with present ongoing research, small parts of the puzzle remain a mystery and require further investigations.
Collapse
|
25
|
Ohtani M, Nishimura T. Sulfur-containing amino acids in aged garlic extract inhibit inflammation in human gingival epithelial cells by suppressing intercellular adhesion molecule-1 expression and IL-6 secretion. Biomed Rep 2019; 12:99-108. [PMID: 32042418 DOI: 10.3892/br.2019.1269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Aged garlic extract (AGE) contains various biologically active sulfur-containing amino acids, such as S-allylcysteine (SAC), S-1-propenylcysteine (S1PC) and S-allylmercaptocysteine (SAMC). These amino acids have been demonstrated to lower hypertension, improve atherosclerosis and enhance immunity through their anti-inflammatory and antioxidant activities. It was recently reported that the administration of AGE alleviated gingivitis in a clinical trial. In this study, to gain insight into this effect of AGE, the authors examined whether AGE and the three above-mentioned sulfur compounds influence the effects of tumor necrosis factor-α (TNF-α) in inducing intercellular adhesion molecule-1 (ICAM-1) expression and interleukin-6 (IL-6) secretion in Ca9-22 human gingival epithelial cells. It was found that S1PC reduced the level of ICAM-1 protein induced by TNF-α possibly through post-translational levels without affecting the TNF-α-induced mRNA expression. However, SAC and SAMC had no effect. It was also confirmed the inhibitory effect of an antimicrobial peptide [human-β defensin-3 (hβD3)] and found that the inhibitory effects of hbD3 and S1PC were synergistic. On the other hand, the TNF-α-induced IL-6 secretion was attenuated by SAC and SAMC in a dose-dependent manner, whereas S1PC was ineffective. In addition, SAC and SAMC, but not S1PC inhibited the phosphorylation of the transcription factor nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), which is involved in the expression of inflammatory molecules, suggesting that the anti-inflammatory effects of SAC and SAMC are mediated, at least partly, by NF-κB. On the whole, the findings of this study suggest that the three sulfur amino acids in AGE function synergistically in alleviating inflammation in human gingival epithelial cells.
Collapse
Affiliation(s)
- Masahiro Ohtani
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata, Hiroshima 739-1195, Japan
| | - Tsubasa Nishimura
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata, Hiroshima 739-1195, Japan
| |
Collapse
|
26
|
Bi CS, Wang J, Qu HL, Li X, Tian BM, Ge S, Chen FM. Calcitriol suppresses lipopolysaccharide-induced alveolar bone damage in rats by regulating T helper cell subset polarization. J Periodontal Res 2019; 54:612-623. [PMID: 31095745 DOI: 10.1111/jre.12661] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/18/2019] [Accepted: 03/30/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although the immunomodulatory properties of calcitriol in bone metabolism have been documented for decades, its therapeutic role in the management of periodontitis remains largely unexplored. In this study, we hypothesized that calcitriol suppresses lipopolysaccharide (LPS)-induced alveolar bone loss by regulating T helper (Th) cell subset polarization. METHODS To test this hypothesis, we determined the effect of calcitriol intervention on the development of LPS-induced periodontitis in rats in terms of bone loss (micro-CT analysis), local inflammatory infiltration levels, the number of osteoclasts (hematoxylin and eosin staining) and the level of osteoclastogenesis (tartrate-resistant acid phosphatase method). Furthermore, immunohistochemistry was used to assess the expression levels of the receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) as well as the cytokine levels of interferon-γ (IFN-γ), interleukin-4 (IL-4), IL-17, and IL-10 throughout the LPS-injected region. Finally, the polarization potential of Th cells in peripheral blood was analyzed using flow cytometry. RESULTS Calcitriol intervention decreased alveolar bone loss in response to LPS injection and inflammatory cell infiltration. Analysis of osteoclast number and RANKL and OPG expression showed that bone resorption activity was largely suppressed in response to calcitriol administration, along with decreased IL-17 levels but increased IL-4 and IL-10 levels in periodontal tissues (the LPS-injected region). Similarly, the percentages of Th2 and Treg cells in peripheral blood increased, but the percentages of Th1 and Th17 cells decreased in rats receiving calcitriol. CONCLUSION Our findings suggest that calcitriol can be used to inhibit bone loss in experimental periodontitis, likely via the regulation of local and systemic Th cell polarization.
Collapse
Affiliation(s)
- Chun-Sheng Bi
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Jia Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Hong-Lei Qu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xuan Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Bei-Min Tian
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Shaohua Ge
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Periodontology, School of Stomatology, Shandong University, Jinan, China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
27
|
IL-10 secreting B cells regulate periodontal immune response during periodontitis. Odontology 2019; 108:350-357. [DOI: 10.1007/s10266-019-00470-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
|
28
|
Vargas-Franco JW, Castaneda B, Gama A, Mueller CG, Heymann D, Rédini F, Lézot F. Genetically-achieved disturbances to the expression levels of TNFSF11 receptors modulate the effects of zoledronic acid on growing mouse skeletons. Biochem Pharmacol 2019; 168:133-148. [PMID: 31260659 DOI: 10.1016/j.bcp.2019.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/26/2019] [Indexed: 01/17/2023]
Abstract
Zoledronic acid (ZOL), a nitrogen bisphosphonate (N-BP), is currently used to treat and control pediatric osteolytic diseases. Variations in the intensity of the effects and side effects of N-BPs have been reported with no clear explanations regarding their origins. We wonder if such variations could be associated with different levels of RANKL signaling activity in growing bone during and after the treatment with N-BPs. To answer this question, ZOL was injected into neonate C57BL/6J mice with different genetically-determined RANKL signaling activity levels (Opg+/+\RankTg-, Opg+/+\RankTg+, Opg+/-\RankTg-, Opg+/-\RankTg+, Opg-/-\RankTg- and Opg-/-\RankTg+ mice) following a protocol (4 injections from post-natal day 1 to 7 at the dose of 50 μg/kg) that mimics those used in onco-pediatric patients. At the end of pediatric growth (1 and half months) and at an adult age (10 months), the bone morphometric and mineral parameters were measured using μCT in the tibia and skull for the different mice. A histologic analysis of the dental and periodontal tissues was also performed. At the end of pediatric growth, a delay in long bone and skull bone growth, a blockage of tooth eruption, some molar root alterations and a neoplasia-like structure associated with incisor development were found. Interestingly, the magnitude of these side effects was reduced by Opg deficiency (Opg-/-) but increased by Rank overexpression (RankTg). Analysis of the skeletal phenotype at ten months confirmed respectively the beneficial and harmful effects of Opg deficiency and Rank overexpression. These results validated the hypothesis that the RANKL signaling activity level in the bone microenvironment is implicated in the modulation of the response to ZOL. Further studies will be necessary to understand the underlying molecular mechanisms, which will help decipher the variability in the effects of N-BPs reported in the human population. SIGNIFICANT STATEMENTS: The present study establishes that in mice the RANKL signaling activity level is a major modulator of the effects and side-effects of bisphosphonates on the individual skeleton during growth. However, the modulatory actions are dependent on the ways in which this level of activity is increased. A decrease in OPG expression is beneficial to the skeletal phenotype observed at the end of growth, while RANK overexpression deteriorates it. Far removed from pediatric treatment, in adults, the skeletal phenotypes initially observed at the end of growth for the different levels of RANKL signaling activity were maintained, although significant improvement was associated only with reductions in OPG expression.
Collapse
Affiliation(s)
- Jorge William Vargas-Franco
- INSERM, UMR-1238, Equipe 1, Faculté de Médecine, Université de Nantes, Nantes F-44035, France; Department of Basic Studies, Faculty of Odontology, University of Antioquia, Medellin, Colombia
| | - Beatriz Castaneda
- Service d'Odontologie-Stomatologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris F-75013, France
| | - Andrea Gama
- INSERM, UMR-1138, Equipe 5, Centre de Recherche des Cordeliers, Paris F-75006, France; Odontology Center of District Federal Military Police, Brasília, Brazil; Oral Histopathology Laboratory, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | - Christopher G Mueller
- CNRS, UPR 9021, Institut de Biologie Moléculaire et Cellulaire (IBMC), Laboratoire Immunologie et Chimie Thérapeutiques, Université de Strasbourg, Strasbourg F-67084, France
| | - Dominique Heymann
- INSERM, LEA Sarcoma Research Unit, University of Sheffield, Department of Oncology and Human Metabolism, Medical School, Sheffield S10 2RX, UK; INSERM, UMR 1232, LabCT, Université de Nantes, Université d'Angers, Institut de Cancérologie de l'Ouest, site René Gauducheau, Saint-Herblain F-44805, France
| | - Françoise Rédini
- INSERM, UMR-1238, Equipe 1, Faculté de Médecine, Université de Nantes, Nantes F-44035, France
| | - Frédéric Lézot
- INSERM, UMR-1238, Equipe 1, Faculté de Médecine, Université de Nantes, Nantes F-44035, France.
| |
Collapse
|
29
|
Sima C, Viniegra A, Glogauer M. Macrophage immunomodulation in chronic osteolytic diseases-the case of periodontitis. J Leukoc Biol 2019; 105:473-487. [PMID: 30452781 PMCID: PMC6386606 DOI: 10.1002/jlb.1ru0818-310r] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
Periodontitis (PD) is a chronic osteolytic disease that shares pathogenic inflammatory features with other conditions associated with nonresolving inflammation. A hallmark of PD is inflammation-mediated alveolar bone loss. Myeloid cells, in particular polymorphonuclear neutrophils (PMN) and macrophages (Mac), are essential players in PD by control of gingival biofilm pathogenicity, activation of adaptive immunity, as well as nonresolving inflammation and collateral tissue damage. Despite mounting evidence of significant innate immune implications to PD progression and healing after therapy, myeloid cell markers and targets for immune modulation have not been validated for clinical use. The remarkable plasticity of monocytes/Mac in response to local activation factors enables these cells to play central roles in inflammation and restoration of tissue homeostasis and provides opportunities for biomarker and therapeutic target discovery for management of chronic inflammatory conditions, including osteolytic diseases such as PD and arthritis. Along a wide spectrum of activation states ranging from proinflammatory to pro-resolving, Macs respond to environmental changes in a site-specific manner in virtually all tissues. This review summarizes the existing evidence on Mac immunomodulation therapies for osteolytic diseases in the broader context of conditions associated with nonresolving inflammation, and discusses osteoimmune implications of Macs in PD.
Collapse
Affiliation(s)
- Corneliu Sima
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Viniegra
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Michael Glogauer
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Araújo AAD, Morais HBD, Medeiros CACXD, Brito GADC, Guedes PMM, Hiyari S, Pirih FQ, Araújo Júnior RFD. Gliclazide reduced oxidative stress, inflammation, and bone loss in an experimental periodontal disease model. J Appl Oral Sci 2019; 27:e20180211. [PMID: 30810635 PMCID: PMC6382321 DOI: 10.1590/1678-7757-2018-0211] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/26/2018] [Indexed: 12/17/2022] Open
Abstract
Objective The aim of this study was to evaluate the effects of gliclazide on oxidative stress, inflammation, and bone loss in an experimental periodontal disease model. Material and Methods Male albino Wistar rats were divided into no ligature, ligature, and ligature with 1, 5, and 10 mg/kg gliclazide groups. Maxillae were fixed and scanned using micro-computed tomography to quantify linear and bone volume/tissue volume (BV/TV) and volumetric bone loss. Histopathological, immunohistochemical and immunofluorescence analyses were conducted to examine matrix metalloproteinase-2 (MMP-2), cyclooxygenase 2 (COX-2), cathepsin K, members of the receptor activator of the nuclear factor kappa-Β ligand (RANKL), receptor activator of nuclear factor kappa-Β (RANK), osteoprotegerin (OPG) pathway, macrophage migration inhibitory factor (MIF), superoxide dismutase-1 (SOD-1), glutathione peroxidase-1 (GPx-1), NFKB p 50 (Cytoplasm), NFKB p50 NLS (nuclear localization signal), PI3 kinase and AKT staining. Myeloperoxidase activity, malondialdehyde and glutathione levels, while interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) levels were evaluated by spectroscopic ultraviolet-visible analysis. A quantitative reverse transcription polymerase chain reaction was used to quantify the gene expression of the nuclear factor kappa B p50 subunit (NF-κB p50), phosphoinositide 3-kinase (PI3k), protein kinase B (AKT), and F4/80. Results Micro-computed tomography showed that the 1 mg/kg gliclazide treatment reduced linear bone loss compared to the ligature, 5 mg/kg gliclazide, and 10 mg/kg gliclazide treatments. All concentrations of gliclazide increased bone volume/tissue volume (BV/TV) compared to the ligature group. Treatment with 1 mg/kg gliclazide reduced myeloperoxidase activity, malondialdehyde, IL-1β, and TNF-α levels (p≤0.05), and resulted in weak staining for COX-2, cathepsin k, MMP-2, RANK, RANKL, SOD-1, GPx-1,MIF and PI3k. In addition, down-regulation of NF-κB p50, PI3k, AKT, and F4/80 were observed, and OPG staining was strong after the 1 mg/kg gliclazide treatment. Conclusions This treatment decreased neutrophil and macrophage migration, decreased the inflammatory response, and decreased bone loss in rats with ligature-induced periodontitis.
Collapse
Affiliation(s)
- Aurigena Antunes de Araújo
- Universidade Federal do Rio Grande do Norte, Programa de Pós-Graduação em Ciências Farmacêuticas, Programa de Pós-Graduação em Saúde Pública, Departamento de Biofísica e Farmacologia, Natal, Rio Grande do Norte, Brasil
| | - Helicarlos Batista de Morais
- Universidade Federal do Rio Grande do Norte, Programa de Pós-Graduação em Saúde Pública, Natal, Rio Grande do Norte, Brasil
| | - Caroline Adisson Carvalho Xavier de Medeiros
- Universidade Federal do Rio Grande do Norte, Programa de Pós-Graduação RENORBIO, Programa de Pós-Graduação em Biologia, Departamento de Biofísica e Farmacologia, Natal, Rio Grande do Norte, Brasil
| | - Gerly Anne de Castro Brito
- Universidade Federal do Ceará, Programa de Pós-Graduação em Farmacologia, Programa de Pós-Graduação em Morfologia, Departamento de Morfologia, Fortaleza, Ceará, Brasil
| | - Paulo Marcos Matta Guedes
- Universidade Federal do Rio Grande do Norte, Programa de Pós-Graduação em Biologia Parasitária, Departamento de Microbiologia e Parasitologia, Natal, Rio Grande do Norte, Brasil
| | - Sarah Hiyari
- University of California, School of Dentistry, Section of Periodontics, Los Angeles, California, United States of America
| | - Flávia Q Pirih
- University of California, School of Dentistry, Section of Periodontics, Los Angeles, California, United States of America
| | - Raimundo Fernandes de Araújo Júnior
- Universidade Federal do Rio Grande do Norte, Departamento de Morfologia, Porgrama de Pós-Graduação em Biologia Funcional e Estrutural, Programa de Pós-Graduação em Ciências da Saúde, Natal, Rio Grande do Norte, Brasil
| |
Collapse
|
31
|
Navet B, Vargas-Franco JW, Gama A, Amiaud J, Choi Y, Yagita H, Mueller CG, Rédini F, Heymann D, Castaneda B, Lézot F. Maternal RANKL Reduces the Osteopetrotic Phenotype of Null Mutant Mouse Pups. J Clin Med 2018; 7:jcm7110426. [PMID: 30413057 PMCID: PMC6262436 DOI: 10.3390/jcm7110426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 02/01/2023] Open
Abstract
RANKL signalization is implicated in the morphogenesis of various organs, including the skeleton. Mice invalidated for Rankl present an osteopetrotic phenotype that was less severe than anticipated, depending on RANKL’s implication in morphogenesis. The hypothesis of an attenuated phenotype, as a result of compensation during gestation by RANKL of maternal origin, was thus brought into question. In order to answer this question, Rankl null mutant pups from null mutant parents were generated, and the phenotype analyzed. The results validated the presence of a more severe osteopetrotic phenotype in the second-generation null mutant with perinatal lethality. The experiments also confirmed that RANKL signalization plays a part in the morphogenesis of skeletal elements through its involvement in cell-to-cell communication, such as in control of osteoclast differentiation. To conclude, we have demonstrated that the phenotype associated with Rankl invalidation is attenuated through compensation by RANKL of maternal origin.
Collapse
Affiliation(s)
- Benjamin Navet
- INSERM, UMR 1238, Faculté de Médecine, Université de Nantes, F-44035 Nantes, France.
| | - Jorge William Vargas-Franco
- INSERM, UMR 1238, Faculté de Médecine, Université de Nantes, F-44035 Nantes, France.
- Department of Basic Studies, Faculty of Odontology, University of Antioquia, Medellin AA 1226, Colombia.
| | - Andrea Gama
- INSERM, UMR-1138, Equipe 5, Centre de Recherche des Cordeliers, F-75006 Paris, France.
| | - Jérome Amiaud
- INSERM, UMR 1238, Faculté de Médecine, Université de Nantes, F-44035 Nantes, France.
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Hideo Yagita
- Department of Immunology, School of Medicine, Juntendo University, Tokyo 113-8421, Japan.
| | - Christopher G Mueller
- CNRS, UPR-9021, Laboratoire Immunologie et Chimie Thérapeutiques, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, F-67084 Strasbourg, France.
| | - Françoise Rédini
- INSERM, UMR 1238, Faculté de Médecine, Université de Nantes, F-44035 Nantes, France.
| | - Dominique Heymann
- INSERM, LEA Sarcoma Research Unit, Department of Oncology and Human Metabolism, Medical School, University of Sheffield, Sheffield S10 2RX, UK.
- INSERM, UMR 1232, LabCT, Université de Nantes, Université d'Angers, Institut de Cancérologie de l'Ouest, site René Gauducheau, F-44805 Saint-Herblain, France.
| | - Beatriz Castaneda
- INSERM, UMR-1138, Equipe 5, Centre de Recherche des Cordeliers, F-75006 Paris, France.
| | - Frédéric Lézot
- INSERM, UMR 1238, Faculté de Médecine, Université de Nantes, F-44035 Nantes, France.
| |
Collapse
|
32
|
Huang X, Lv Y, He P, Wang Z, Xiong F, He L, Zheng X, Zhang D, Cao Q, Tang C. HDL impairs osteoclastogenesis and induces osteoclast apoptosis via upregulation of ABCG1 expression. Acta Biochim Biophys Sin (Shanghai) 2018; 50:853-861. [PMID: 30060101 DOI: 10.1093/abbs/gmy081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Indexed: 12/17/2022] Open
Abstract
Cholesterol is one of the major components of biological membranes and has an important function in osteoclast formation and survival. It has been reported that high-density lipoprotein (HDL) promotes cholesterol efflux from osteoclasts and induces their apoptosis, but the underlying mechanisms are unclear. In this study, we investigated how HDL promotes osteoclast cholesterol efflux and explored its effect on osteoclast formation and survival. Our results showed that the maximum diameter and fusion index of osteoclasts were decreased, while the ratios of osteoclasts with pyknotic nuclei were increased when cells were treated with HDL (600 ng/ml), as revealed by tartrate-resistant acid phosphatase-positive staining and microscopy assay. HDL enhanced cellular cholesterol efflux from osteoclasts in both concentration- and time-dependent manners. The ability of HDL3 to stimulate cholesterol efflux was stronger than preβ-HDL, HDL2, and ApoAI. Knockdown of ABCG1 expression reduced HDL-mediated cholesterol efflux and restored the HDL-induced reduction in osteoclast formation. Finally, HDL3 promoted sphingomyelin efflux from osteoclasts and reduced the expression of caveolin-1. Together, the findings demonstrate that HDL3 upregulates ABCG1 expression and promotes cholesterol efflux from osteoclast, impairs cholesterol homeostasis in osteoclasts, and consequently enhances osteoclast apoptosis.
Collapse
Affiliation(s)
- Xinyun Huang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hengyang, China
- Department of Spine Surgery, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Yuan Lv
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hengyang, China
- Department of Biochemistry and Molecular Biology, School of Pharmacy and Life Science University of South China, Hengyang, China
| | - Panpan He
- Department of Biochemistry and Molecular Biology, School of Pharmacy and Life Science University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South, Hengyang, China
| | - Zongbao Wang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hengyang, China
- Department of Biochemistry and Molecular Biology, School of Pharmacy and Life Science University of South China, Hengyang, China
| | - Fang Xiong
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hengyang, China
- Department of Biochemistry and Molecular Biology, School of Pharmacy and Life Science University of South China, Hengyang, China
| | - Linhao He
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hengyang, China
- Department of Biochemistry and Molecular Biology, School of Pharmacy and Life Science University of South China, Hengyang, China
| | - Xilong Zheng
- Department of Biochemistry & Molecular Biology and Department of Physiology & Pharmacology, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Health Sciences Center, Calgary, Alberta, Canada
- Key Laboratory of Molecular Targets & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Dawei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada
| | - Qi Cao
- Department of Spine Surgery, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Chaoke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hengyang, China
| |
Collapse
|
33
|
Barreiros D, Pucinelli CM, Oliveira KMHD, Paula-Silva FWG, Nelson Filho P, Silva LABD, Küchler EC, Silva RABD. Immunohistochemical and mRNA expression of RANK, RANKL, OPG, TLR2 and MyD88 during apical periodontitis progression in mice. J Appl Oral Sci 2018; 26:e20170512. [PMID: 29995146 PMCID: PMC6025885 DOI: 10.1590/1678-7757-2017-0512] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/26/2018] [Indexed: 01/18/2023] Open
Abstract
Objective To evaluate and correlate, in the same research, the mRNA expression and the staining of RANK, RANKL, OPG, TLR2 and MyD88 by immunohistochemistry in the apical periodontitis (AP) progression in mice. Material and Methods AP was induced in the lower first molars of thirty-five C57BL/6 mice. They were assigned to four groups according to their euthanasia periods (G0, G7, G21 and G42). The jaws were removed and subjected to histotechnical processing, immunohistochemistry and real-time reverse transcription-PCR (qRT-PCR). Data were analyzed with parametric and nonparametric tests (α=0.05). Results An increase of positive immunoreactivity for RANK, RANKL, OPG, TLR2 and MyD88 was observed over time (p<0.05). The RANKL expression was different between the groups G0 and G42, G21 and G42 (p=0.006), with G42 presenting the higher expression in both comparations. The OPG expression was statistically different between the groups G0 and G7, G7 and G21 and G7 and G42 (p<0.001), with G7 presenting higher expression in all the time points. The TLR2 expression was different between the groups G0 and G42 (p=0.03), with G42 showing the higher expression. The MyD88 expression presented a statistical significant difference between groups G7, G21 and G42 compared with G0 (p=0.01), with G0 presenting the smallest expression in all the comparisons. The Tnfrsf11/Tnfrsf11b (RANKL/OPG) ratio increased with the AP progression (p=0.002). A moderate positive correlation between MyD88 and RANKL (r=0.42; p=0.03) and between MyD88 and TLR2 (r=0.48; p<0.0001) was observed. Conclusion The expression of the RANK, RANKL, OPG, MyD88 and TLR2 proteins as well as the ratio Tnfrsf11/Tnfrsf11b (RANKL/OPG) increased with AP progression. There was also a moderate positive correlation between the expression Myd88-Tnfrsf11 and Tlr2-Myd88, suggesting the relevance of Tlr2-Myd88 in bone loss due to bacterial infection.
Collapse
Affiliation(s)
- Driely Barreiros
- Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto, Departamento de Clínica Infantil, Ribeirão Preto, São Paulo, Brasil
| | - Carolina Maschietto Pucinelli
- Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto, Departamento de Clínica Infantil, Ribeirão Preto, São Paulo, Brasil
| | | | | | - Paulo Nelson Filho
- Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto, Departamento de Clínica Infantil, Ribeirão Preto, São Paulo, Brasil
| | - Lea Assed Bezerra da Silva
- Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto, Departamento de Clínica Infantil, Ribeirão Preto, São Paulo, Brasil
| | - Erika Calvano Küchler
- Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto, Departamento de Clínica Infantil, Ribeirão Preto, São Paulo, Brasil
| | - Raquel Assed Bezerra da Silva
- Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto, Departamento de Clínica Infantil, Ribeirão Preto, São Paulo, Brasil
| |
Collapse
|
34
|
Renn TY, Huang YK, Feng SW, Wang HW, Lee WF, Lin CT, Burnouf T, Chen LY, Kao PF, Chang HM. Prophylactic supplement with melatonin successfully suppresses the pathogenesis of periodontitis through normalizing RANKL/OPG ratio and depressing the TLR4/MyD88 signaling pathway. J Pineal Res 2018; 64. [PMID: 29274168 DOI: 10.1111/jpi.12464] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Periodontitis (PD) is an inflammatory disease characterized by gingival inflammation and resorption of alveolar bone. Impaired receptor activator of nuclear factor-kappa B ligand/osteoprotegerin (RANKL/OPG) signaling caused by enhanced production of pro-inflammatory cytokines plays an essential role in the pathogenesis of PD. Considering melatonin possesses significant anti-inflammatory property, this study aimed to determine whether prophylactic treatment with melatonin would effectively normalize RANKL/OPG signaling, depress toll-like receptor 4/myeloid differentiation factor 88 (TLR4/MyD88)-mediated pro-inflammatory cytokine activation, and successfully suppress the pathogenesis of PD. PD was induced in adult rats by placing the ligature at molar subgingival regions. Fourteen days before PD induction, 10, 50, or 100 mg/kg of melatonin was intraperitoneally injected for consecutive 28 days. Biochemical and enzyme-linked immunosorbent assay were used to detect TLR4/MyD88 activity, RANKL, OPG, interleukin 1β, interleukin 6, and tumor necrosis factor-α levels, respectively. The extent of bone loss, bone mineral intensity, and calcium intensity was further evaluated by scanning electron microscopy, micro-computed tomography, and energy-dispersive X-ray spectroscopy. Results indicated that high RANKL/OPG ratio, TLR4/MyD88 activity, and pro-inflammatory cytokine levels were detected following PD. Impaired biochemical findings paralleled well with severe bone loss and reduced calcium intensity. However, in rats pretreated with melatonin, all above parameters were successfully returned to nearly normal levels with maximal change observed in rats receiving 100 mg/kg. As prophylactic treatment with melatonin effectively normalizes RANKL/OPG signaling by depressing TLR4/MyD88-mediated pro-inflammatory cytokine production, dietary supplement with melatonin may serve as an advanced strategy to strengthen oral health to counteract PD-induced destructive damage.
Collapse
Affiliation(s)
- Ting-Yi Renn
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kai Huang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Wei Feng
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Wei Wang
- School of Dentistry - Master and PhD Program, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Fang Lee
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Che-Tong Lin
- Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Li-You Chen
- Department of Anatomy, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pan-Fu Kao
- Department of Nuclear Medicine, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hung-Ming Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
35
|
de Vries TJ, Andreotta S, Loos BG, Nicu EA. Genes Critical for Developing Periodontitis: Lessons from Mouse Models. Front Immunol 2017; 8:1395. [PMID: 29163477 PMCID: PMC5663718 DOI: 10.3389/fimmu.2017.01395] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Since the etiology of periodontitis in humans is not fully understood, genetic mouse models may pinpoint indispensable genes for optimal immunological protection of the periodontium against tissue destruction. This review describes the current knowledge of genes that are involved for a proper maintenance of a healthy periodontium in mice. Null mutations of genes required for leukocyte cell–cell recognition and extravasation (e.g., Icam-1, P-selectin, Beta2-integrin/Cd18), for pathogen recognition and killing (e.g., Tlr2, Tlr4, Lamp-2), immune modulatory molecules (e.g., Cxcr2, Ccr4, IL-10, Opg, IL1RA, Tnf-α receptor, IL-17 receptor, Socs3, Foxo1), and proteolytic enzymes (e.g., Mmp8, Plasmin) cause periodontitis, most likely due to an inefficient clearance of bacteria and bacterial products. Several mechanisms resulting in periodontitis can be recognized: (1) inefficient bacterial control by the polymorphonuclear neutrophils (defective migration, killing), (2) inadequate antigen presentation by dendritic cells, or (3) exaggerated production of pro-inflammatory cytokines. In all these cases, the local immune reaction is skewed toward a Th1/Th17 (and insufficient activation of the Th2/Treg) with subsequent osteoclast activation. Finally, genotypes are described that protect the mice from periodontitis: the SCID mouse, and mice lacking Tlr2/Tlr4, the Ccr1/Ccr5, the Tnf-α receptor p55, and Cathepsin K by attenuating the inflammatory reaction and the osteoclastogenic response.
Collapse
Affiliation(s)
- Teun J de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, VU University Amsterdam, Amsterdam, Netherlands
| | - Stefano Andreotta
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, VU University Amsterdam, Amsterdam, Netherlands
| | - Bruno G Loos
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, VU University Amsterdam, Amsterdam, Netherlands
| | - Elena A Nicu
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, VU University Amsterdam, Amsterdam, Netherlands.,Opris Dent SRL, Sibiu, Sibiu, Romania
| |
Collapse
|