1
|
Li G, Xia LJ, Shu YQ, Wan L, Huang Q, Ma XY, Zhang HY, Zheng ZJ, Wang XR, Zhou SY, Gao A, Ren H, Lian XL, Xu D, Tang SQ, Liao XP, Qiu W, Sun J. Mechanisms of gastrointestinal toxicity in neuromyelitis optica spectrum disorder patients treated with mycophenolate mofetil: insights from a mouse model and human study. Microbiol Spectr 2024; 12:e0430723. [PMID: 38916339 PMCID: PMC11302255 DOI: 10.1128/spectrum.04307-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Mycophenolate mofetil (MMF) is commonly utilized for the treatment of neuromyelitis optica spectrum disorders (NMOSD). However, a subset of patients experience significant gastrointestinal (GI) adverse effects following MMF administration. The present study aims to elucidate the underlying mechanisms of MMF-induced GI toxicity in NMOSD. Utilizing a vancomycin-treated mouse model, we compiled a comprehensive data set to investigate the microbiome and metabolome in the GI tract to elucidate the mechanisms of MMF GI toxicity. Furthermore, we enrolled 17 female NMOSD patients receiving MMF, who were stratified into non-diarrhea NMOSD and diarrhea NMOSD (DNM) groups, in addition to 12 healthy controls. The gut microbiota of stool samples was analyzed using 16S rRNA gene sequencing. Vancomycin administration prevented weight loss and tissue injury caused by MMF, affecting colon metabolomes and microbiomes. Bacterial β-glucuronidase from Bacteroidetes and Firmicutes was linked to intestinal tissue damage. The DNM group showed higher alpha diversity and increased levels of Firmicutes and Proteobacteria. The β-glucuronidase produced by Firmicutes may be important in causing gastrointestinal side effects from MMF in NMOSD treatment, providing useful information for future research on MMF. IMPORTANCE Neuromyelitis optica spectrum disorder (NMOSD) patients frequently endure severe consequences like paralysis and blindness. Mycophenolate mofetil (MMF) effectively addresses these issues, but its usage is hindered by gastrointestinal (GI) complications. Through uncovering the intricate interplay among MMF, gut microbiota, and metabolic pathways, this study identifies specific gut bacteria responsible for metabolizing MMF into a potentially harmful form, thus contributing to GI side effects. These findings not only deepen our comprehension of MMF toxicity but also propose potential strategies, such as inhibiting these bacteria, to mitigate these adverse effects. This insight holds broader implications for minimizing complications in NMOSD patients undergoing MMF therapy.
Collapse
Affiliation(s)
- Gong Li
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Li-Juan Xia
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ya-Qing Shu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Wan
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Qiao Huang
- Department of Neurology, Zhaoqing No. 2 People’s Hospital, Zhaoqing, China
| | - Xiao-Yu Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hai-Yi Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Zi-Jian Zheng
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xi-Ran Wang
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Shi-Ying Zhou
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ang Gao
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Hao Ren
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xin-Lei Lian
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Dan Xu
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Sheng-Qiu Tang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Xiao-Ping Liao
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Sun
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Xia LJ, Wan L, Gao A, Yu YX, Zhou SY, He Q, Li G, Ren H, Lian XL, Zhao DH, Liao XP, Liu YH, Qiu W, Sun J. Targeted inhibition of gut bacterial β-glucuronidases by octyl gallate alleviates mycophenolate mofetil-induced gastrointestinal toxicity. Int J Biol Macromol 2024; 264:130145. [PMID: 38382789 DOI: 10.1016/j.ijbiomac.2024.130145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/18/2024] [Accepted: 02/11/2024] [Indexed: 02/23/2024]
Abstract
Mycophenolate mofetil (MMF) is a viable therapeutic option against various immune disorders as a chemotherapeutic agent. Nevertheless, its application has been undermined by the gastrotoxic metabolites (mycophenolic acid glucuronide, MPAG) produced by microbiome-associated β-glucuronidase (βGUS). Therefore, controlling microbiota-produced βGUS underlines the potential strategy to improve MMF efficacy by overcoming the dosage limitation. In this study, the octyl gallate (OG) was identified with promising inhibitory activity on hydrolysis of PNPG in our high throughput screening based on a chemical collection of approximately 2000 natural products. Furthermore, OG was also found to inhibit a broad spectrum of BGUSs, including mini-Loop1, Loop 2, mini-Loop 2, and mini-Loop1,2. The further in vivo experiments demonstrated that administration of 20 mg/kg OG resulted in predominant reduction in the activity of BGUSs while displayed no impact on the overall fecal microbiome in mice. Furthermore, in the MMF-induced colitis model, the administration of OG at a dosage of 20 mg/kg effectively mitigated the gastrointestinal toxicity, and systematically reverted the colitis phenotypes. These findings indicate that the OG holds promising clinical potential for the prevention of MMF-induced gastrointestinal toxicity by inhibition of BGUSs and could be developed as a combinatorial therapy with MFF for better clinical outcomes.
Collapse
Affiliation(s)
- Li-Juan Xia
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lei Wan
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ang Gao
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yong-Xin Yu
- Nanjing Agricultural University, Nanjing, China
| | - Shi-Ying Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qian He
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Gong Li
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hao Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xin-Lei Lian
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Dong-Hao Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Ping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ya-Hong Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Li L, Lv X, He J, Zhang L, Li B, Zhang X, Liu S, Zhang Y. Chronic exposure to polystyrene nanoplastics induces intestinal mechanical and immune barrier dysfunction in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115749. [PMID: 38039854 DOI: 10.1016/j.ecoenv.2023.115749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
Micro(nano)plastics are prevalent in the environment, and prolonged exposure to them represents a threat to human health. The goal of this study is to assess the health risk of long-term exposure to nanoplastics (NPs) at environmental concentrations on the intestinal mechanical and immune barrier in mice. In this study, mice were provided drinking water containing polystyrene NPs (PS-NPs; 0.1, 1, and 10 mg·L-1) for 32 consecutive weeks. The levels of endocytosis proteins caveolin and clathrin and of tight junctional proteins claudin-1, occludin, and ZO-1, and morphological changes, proportion of lymphocytes B in MLNs and lymphocytes T in IELs and LPLs were determined by immunohistochemistry, hematoxylin-eosin, and flow cytometry assays in the intestinal tissues of mice at 28 weeks. The activities or concentrations of ROS, SOD, MDA, and GSH-Px and inflammatory factors (IL-1β, IL-6, and TNF-α) in the intestinal tissues of mice were measured by ELISA at 12, 16, 20, 24, and 32 weeks. Compared with the control group, oral ingested PS-NPs entered the intestinal tissues of mice and upregulated expression levels of the clathrin and caveolin. The intestinal tissue structure of mice in the PS-NPs (1 and 10 mg·L-1) exposure groups showed significant abnormalities, such as villus erosion, decreased of crypts numbers and large infiltration of inflammatory cells. Exposure to 0.1 mg·L-1 PS-NPs decreased occludin protein levels, but not claudin-1 and ZO-1 levels. The levels of these three tight junction proteins decreased significantly in the 1 and 10 mg·L-1 PS-NPs exposed groups. Exposure to PS-NPs led to a significant time- and dose-dependent increase in ROS and MDA levels, and concurrently decreased GSH-Px and SOD contents. Exposure to PS-NPs increased the proportion of B cells in MLNs, and decreased the proportion of CD8+ T cells in IELs and LPLs. The levels of pro-inflammatory cytokines IL-6, TNF-α and IL-1β were markedly elevated after PS-NPs exposure. Long-term PS-NPs exposure impaired intestinal mechanical and immune barrier, and indicate a potentially significant threat to human health.
Collapse
Affiliation(s)
- Lan Li
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Xin Lv
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Jing He
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Lianshuang Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Boqing Li
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Xiaolin Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Sisi Liu
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Ying Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
4
|
Wang KC, Lerche MH, Ardenkjær-Larsen JH, Jensen PR. Formate Metabolism in Shigella flexneri and Its Effect on HeLa Cells at Different Stages during the Infectious Process. Microbiol Spectr 2023; 11:e0063122. [PMID: 37042762 PMCID: PMC10269805 DOI: 10.1128/spectrum.00631-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/16/2023] [Indexed: 04/13/2023] Open
Abstract
Shigellosis caused by Shigella is one of the most important foodborne illnesses in global health, but little is known about the metabolic cross talk between this bacterial pathogen and its host cells during the different stages of the infection process. A detailed understanding of the metabolism can potentially lead to new drug targets remedying the pressing problem of antibiotic resistance. Here, we use stable isotope-resolved metabolomics as an unbiased and fast method to investigate how Shigella metabolizes 13C-glucose in three different environments: inside the host cells, adhering to the host cells, and alone in suspension. We find that especially formate metabolism by bacteria is sensitive to these different environments. The role of formate in pathogen metabolism is sparsely described in the literature compared to the roles of acetate and butyrate. However, its metabolic pathway is regarded as a potential drug target due to its production in microorganisms and its absence in humans. Our study provides new knowledge about the regulatory effect of formate. Bacterial metabolism of formate is pH dependent when studied alone in culture medium, whereas this effect is less pronounced when the bacteria adhere to the host cells. Once the bacteria are inside the host cells, we find that formate accumulation is reduced. Formate also affects the host cells resulting in a reduced infection rate. This was correlated to an increased immune response. Thus, intriguingly formate plays a double role in pathogenesis by increasing the virulence of Shigella and at the same time stimulating the immune response of the host. IMPORTANCE Bacterial infection is a pressing societal concern due to development of resistance toward known antibiotics. Central carbon metabolism has been suggested as a potential new target for drug development, but metabolic changes upon infection remain incompletely understood. Here, we used a cellular infection model to study how the bacterial pathogen Shigella adapts its metabolism depending on the environment starting from the extracellular medium until Shigella successfully invaded and proliferated inside host cells. The mixed-acid fermentation of Shigella was the major metabolic pathway during the infectious process, and the glucose-derived metabolite formate surprisingly played a divergent role in the pathogen and in the host cell. Our data show reduced infection rate when both host cells and bacteria were treated with formate, which correlated with an upregulated immune response in the host cells. The formate metabolism in Shigella thus potentially provides a route toward alternative treatment strategies for Shigella prevention.
Collapse
Affiliation(s)
- Ke-Chuan Wang
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mathilde Hauge Lerche
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jan Henrik Ardenkjær-Larsen
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Pernille Rose Jensen
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Talcer MC, Duffy O, Pedlow K. A Qualitative Exploration into the Sensory Experiences of Autistic Mothers. J Autism Dev Disord 2023; 53:834-849. [PMID: 34251566 PMCID: PMC9944021 DOI: 10.1007/s10803-021-05188-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 12/22/2022]
Abstract
Research has found 96% of autistic individuals experience sensory processing difficulties, and being a parent presents many sensory demands that may be especially challenging for autistic mothers. Despite the high prevalence, no research exists exploring the sensory experiences of autistic mothers, highlighting the gap in current knowledge. Semi-structured interviews were conducted with 7 autistic mothers, data were analysed using thematic analysis identifying 5 major themes: antenatal experiences, sensory experiences in motherhood, the impact of sensory processing difficulties, strategies and needs, diagnosis. This research provides greater insight and understanding into the sensory experiences of autistic mothers which can influence earlier diagnosis and inform appropriate support and adaptations for autistic mothers in a variety of different sectors and highlights a possible emerging role for Occupational Therapists.
Collapse
Affiliation(s)
| | - Orla Duffy
- Centre for Health and Rehabilitation Technologies, Institute of Nursing and Health Research, Ulster University, Shore Road, Newtownabbey, BT37 0QB, UK.
| | - Katy Pedlow
- grid.12641.300000000105519715Centre for Health and Rehabilitation Technologies, Institute of Nursing and Health Research, Ulster University, Shore Road, Newtownabbey , BT37 0QB UK
| |
Collapse
|
6
|
Small Molecule BRD4 Inhibitors Apabetalone and JQ1 Rescues Endothelial Cells Dysfunction, Protects Monolayer Integrity and Reduces Midkine Expression. Molecules 2022; 27:molecules27217453. [PMID: 36364277 PMCID: PMC9692972 DOI: 10.3390/molecules27217453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
NF-κB signaling is a key regulator of inflammation and atherosclerosis. NF-κB cooperates with bromodomain-containing protein 4 (BRD4), a transcriptional and epigenetic regulator, in endothelial inflammation. This study aimed to investigate whether BRD4 inhibition would prevent the proinflammatory response towards TNF-α in endothelial cells. We used TNF-α treatment of human umbilical cord-derived vascular endothelial cells to create an in vitro inflammatory model system. Two small molecule inhibitors of BRD4—namely, RVX208 (Apabetalone), which is in clinical trials for the treatment of atherosclerosis, and JQ1—were used to analyze the effect of BRD4 inhibition on endothelial inflammation and barrier integrity. BRD4 inhibition reduced the expression of proinflammatory markers such as SELE, VCAM-I, and IL6 in endothelial cells and prevented TNF-α-induced endothelial tight junction hyperpermeability. Endothelial inflammation was associated with increased expression of the heparin-binding growth factor midkine. BRD4 inhibition reduced midkine expression and normalized endothelial permeability upon TNF-α treatment. In conclusion, we identified that TNF-α increased midkine expression and compromised tight junction integrity in endothelial cells, which was preventable by pharmacological BRD4 inhibition.
Collapse
|
7
|
Ochratoxin A and Citrinin Differentially Modulate Bovine Mammary Epithelial Cell Permeability and Innate Immune Function. Toxins (Basel) 2022; 14:toxins14090640. [PMID: 36136578 PMCID: PMC9502480 DOI: 10.3390/toxins14090640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
Frequent detection of mycotoxins ochratoxin A (OTA) and citrinin (CIT) in ruminant feed and feedstuff can be a potential threat to feed safety, animal performance and health. Ineffective biodegradation of these mycotoxins by rumen microflora following ingestion of contaminated feeds can lead to their circulatory transport to tissues such as mammary gland as the result of their biodistribution throughout the body. The bovine mammary epithelium plays a pivotal role in maintaining milk yield and composition and contributes to innate immune defense of the udder. The present study is the first to investigate individual effects of OTA and CIT on barrier and innate immune functions of the bovine mammary epithelium using a bovine mammary epithelial cell line (MAC-T). Results indicated that OTA and CIT exposure for 48 h significantly decreased cell viability in a concentration-dependent manner (p < 0.05). A decrease in transepithelial electrical resistance and increase in paracellular flux of FITC-40 kDa dextran was significantly induced by OTA treatment (p < 0.05), but not by CIT after 48 h exposure. qPCR was performed for assessment of expression of tight-junction proteins, Toll-like receptor 4 (TLR4) and cytokines after 4, 24 and 48 h of exposure. Both OTA and CIT markedly downregulated expression of claudin 3 and occludin (p < 0.05), whereas CIT did not affect zonula occludens-1 expression. Expression of TLR4 was significantly upregulated by OTA (p < 0.001) but downregulated by CIT (p < 0.05) at 48 h. Expression of IL-6, TNF-a and TGF-β was significantly upregulated by OTA (p < 0.05), whereas IL-6 and TGF-β expression was downregulated by CIT (p < 0.01). These results suggest that OTA and CIT could potentially differentially modulate barrier and innate immune functions of mammary epithelium. The present study not only throws light on the individual toxicity of each mycotoxin on bovine mammary epithelium but also lays the foundation for future studies on the combined effects of the two mycotoxins.
Collapse
|
8
|
Iglesias DE, Cremonini E, Hester SN, Wood SM, Bartlett M, Fraga CG, Oteiza PI. Cyanidin and delphinidin restore colon physiology in high fat diet-fed mice: Involvement of TLR-4 and redox-regulated signaling. Free Radic Biol Med 2022; 188:71-82. [PMID: 35691508 DOI: 10.1016/j.freeradbiomed.2022.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
Consumption of high fat diets (HFD) mimics a modern or "Western style" diet pattern and can impair intestinal barrier integrity, leading to endotoxemia and associated unhealthy conditions. This study investigated if supplementation with an anthocyanin (cyanidin and delphinidin glucosides)-rich extract (CDRE) could revert or mitigate HFD-induced alterations of colonic physiology in part through the regulation of Toll-Like Receptor 4 (TLR-4)- and redox-regulated signaling. C57BL/6J male mice were fed for 4 weeks with a control or an HFD. Then, mice were divided in four groups fed either control or HFD, or these diets supplemented with CDRE for the subsequent 4 weeks. After 8 weeks on the HFD we observed in the colon: i) disruption of tight junction structure and function; ii) increased TLR-4 expression; iii) increased NADPH oxidase NOX1 expression, and iv) activation of redox-sensitive and TLR-4-triggered pathways, i.e. NF-κB, ERK1/2, JNK1/2, PI3K/Akt. All these events were prevented or reverted by CDRE supplementation. Supporting the relevance of CDRE-mediated downregulation of TLR-4 on its colon beneficial effect; in vitro (Caco-2 cell monolayers), cyanidin, delphinidin and their metabolites protocatechuic and gallic acid, mitigated lipopolysaccharide (LPS)-induced monolayer permeabilization by restoring tight junction structure and dynamics and preventing lipid/protein oxidation. The CDRE also mitigated HFD-mediated alterations in parameters of goblet cell differentiation and function, including the downregulation of markers of goblet cell differentiation (Klf4), and intestinal mucosa healing (Tff3). Results show that a short-term supplementation with cyanidin and delphinidin, protect from HFD-induced alterations in colon physiology in part through the modulation of TLR-4- and redox-regulated signaling.
Collapse
Affiliation(s)
- Dario E Iglesias
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Eleonora Cremonini
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA
| | | | - Steven M Wood
- Pharmanex Research, NSE Products, Inc., Provo, UT, USA
| | - Mark Bartlett
- Pharmanex Research, NSE Products, Inc., Provo, UT, USA
| | - Cesar G Fraga
- Department of Nutrition, University of California, Davis, CA, USA; Physical Chemistry, School of Pharmacy and Biochemistry, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular-Dr. Alberto Boveris (IBIMOL), UBA-CONICET, Buenos Aires, Argentina
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA.
| |
Collapse
|
9
|
Deng Y, Zhang Z, Hong Y, Feng L, Su Y, Xu D. Schisandrin A alleviates mycophenolic acid-induced intestinal toxicity by regulating cell apoptosis and oxidative damage. Toxicol Mech Methods 2022; 32:580-587. [PMID: 35321622 DOI: 10.1080/15376516.2022.2057263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The gastrointestinal side effects of mycophenolic acid affect its efficacy in kidney transplant patients, which may be due to its toxicity to the intestinal epithelial mechanical barrier, including intestinal epithelial cell apoptosis and destruction of tight junctions. The toxicity mechanism of mycophenolic acid is related to oxidative stress-mediated the activation of mitogen-activated protein kinases (MAPK). Schisandrin A (Sch A), one of the main active components of the Schisandra chinensis, can protects intestinal epithelial cells from deoxynivalenol-induced cytotoxicity and oxidative damage by antioxidant effects. The aim of this study was to investigate the protective effect and potential mechanism of Sch A on mycophenolic acid-induced damage in intestinal epithelial cell. The results showed that Sch A significantly reversed the mycophenolic acid-induced cell viability reduction, restored the expression of tight junction protein ZO-1, occludin and reduced cell apoptosis. In addition, Sch A inhibited mycophenolic acid-mediated MAPK activation and reactive oxygen species (ROS) increase. Collectively, our study showed that Sch A protected intestinal epithelial cells from mycophenolic acid intestinal toxicity, at least in part, by reducing oxidative stress and inhibiting MAPK signaling pathway.
Collapse
Affiliation(s)
- Yiyun Deng
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zhe Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yuanyuan Hong
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Lijuan Feng
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yong Su
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dujuan Xu
- School of Pharmacy, Anhui Medical University, Hefei, China.,The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
10
|
Sishen Pill Maintained Colonic Mucosal Barrier Integrity to Treat Ulcerative Colitis via Rho/ROCK Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5536679. [PMID: 34925530 PMCID: PMC8677397 DOI: 10.1155/2021/5536679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 11/20/2021] [Indexed: 12/11/2022]
Abstract
Sishen Pill (SSP) is a classical prescription of traditional Chinese medicine and often used to treat gastrointestinal diseases, including ulcerative colitis (UC). However, its mechanism is still unclear. We aimed to determine the mechanism of SSP in the treatment of UC by investigating if it maintains the integrity of the intestinal mucosal barrier via the Rho A/Rho kinase (ROCK) signaling pathway. Administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS) successfully induced chronic UC in rats, while the treatment effect of SSP was evaluated by body weight change, colonic length, colonic weight, colonic weight index, histological injury score, and pathological injury score after colitis rats were treated for 7 days. TNF-α and IL-1β levels were analyzed by ELISA, and the proteins of PI3K/Akt and RhoA/ROCK signaling pathway and junction proteins expression were measured by western blotting assay, and the distribution of Claudin 5 was shown by immunofluorescence. SSP significantly improved the clinical symptoms of colitis in rats and reduced the expression of p-RhoA, ROCK1, PI3K, and Akt in the colon mucosa, while it increased the expression of p-Rac and related proteins (Claudin-5, JAM1, VE-cadherin, and Connexin 43). In addition, SSP increased p-AMPKα and PTEN proteins expression, decreased Notch1 level, and hinted that activation of the PI3K/Akt signaling pathway was inhibited. In conclusion, SSP effectively treated chronic colitis induced by TNBS, which may have been achieved by inhibiting PI3K/Akt signal to suppress activation of the Rho/ROCK signaling pathway to finally maintain the integrity of the intestinal mucosal barrier.
Collapse
|
11
|
Current Analytical Strategies in Studying Chromatin-Associated-Proteome (Chromatome). Molecules 2021; 26:molecules26216694. [PMID: 34771102 PMCID: PMC8588255 DOI: 10.3390/molecules26216694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 11/25/2022] Open
Abstract
Chromatin is a dynamic structure comprising of DNA and proteins. Its unique nature not only help to pack the DNA tightly within the cell but also is pivotal in regulating gene expression DNA replication. Furthermore it also protects the DNA from being damaged. Various proteins are involved in making a specific complex within a chromatin and the knowledge about these interacting partners is helpful to enhance our understanding about the pathophysiology of various chromatin associated diseases. Moreover, it could also help us to identify new drug targets and design more effective remedies. Due to the existence of chromatin in different forms under various physiological conditions it is hard to develop a single strategy to study chromatin associated proteins under all conditions. In our current review, we tried to provide an overview and comparative analysis of the strategies currently adopted to capture the DNA bounded protein complexes and their mass spectrometric identification and quantification. Precise information about the protein partners and their function in the DNA-protein complexes is crucial to design new and more effective therapeutic molecules against chromatin associated diseases.
Collapse
|
12
|
Brosnan M, Gavin J. The Impact of Stigma, Autism Label and Wording on the Perceived Desirability of the Online Dating Profiles of Men on the Autism Spectrum. J Autism Dev Disord 2021; 51:4077-4085. [PMID: 33459917 PMCID: PMC8510896 DOI: 10.1007/s10803-020-04830-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2020] [Indexed: 11/24/2022]
Abstract
Those seeking romantic relations are increasingly using online dating sites, including young men on the autism spectrum. This study presented dating profiles with and without an explicit label of autism and positive or negative wording to 306 'females seeking a male partner'. Participants assessed the men's dating profiles in terms of perceived attractiveness, trustworthiness and desire-to-date. They also completed a questionnaire on their level of stigmatisation of, and familiarity with, autism. An explicit autism label and positive wording positively impacted perceived attractiveness. With positively worded profiles, those with highly stigmatising views reported decreased desire-to-date when an explicit label of autism was present; those with low levels of stigmatising reported increased desire-to-date when an explicit autism label was present.
Collapse
Affiliation(s)
- M Brosnan
- Department of Psychology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - J Gavin
- Department of Psychology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
13
|
Patterns of Continuity and Change in the Psychosocial Outcomes of Young Autistic People: a Mixed-Methods Study. JOURNAL OF ABNORMAL CHILD PSYCHOLOGY 2021; 48:301-313. [PMID: 31797119 DOI: 10.1007/s10802-019-00602-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Long-term longitudinal studies have consistently demonstrated that the outcomes of autistic individuals are highly variable. Yet, these studies have typically focused on aspects of functioning deemed to be critical by non-autistic researchers, rather than autistic people themselves. Here, we uniquely examined the long-term psychosocial outcomes of a group of young autistic people (n = 27; M age = 17 years; 10 months; 2 female) followed from childhood using a combination of approaches, including (1) the standard, normative approach, which examined changes in diagnostic outcomes, autistic features and adaptive functioning over a 9-year period and (2) a qualitative approach, which involved semi-structured interviews to understand young people's own subjective experiences of their current functioning. On average, there was no significant change in young people's diagnostic outcomes and autistic features over the 9-year period, although there was much variability at the individual level. There was far less variability, however, in young people's everyday functioning, with marked declines over the same period. While these often-substantial everyday challenges aligned well with young people's subjective reports, there was no straightforward one-to-one mapping between self-reported experiences of being autistic and standard measures of severity. These findings call for concerted efforts to understand autistic outcomes through the mixing of quantitative and qualitative reports and for sustained and targeted interventions during adolescence in those areas that matter most to young people themselves.
Collapse
|
14
|
Shu Q, Fan Q, Hua B, Liu H, Wang S, Liu Y, Yao Y, Xie H, Ge W. Influence of SLCO1B1 521T>C, UGT2B7 802C>T and IMPDH1 -106G>A Genetic Polymorphisms on Mycophenolic Acid Levels and Adverse Reactions in Chinese Autoimmune Disease Patients. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:713-722. [PMID: 34188518 PMCID: PMC8233479 DOI: 10.2147/pgpm.s295964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022]
Abstract
Introduction Mycophenolate mofetil (MMF), a new type of immunosuppressant, has emerged as a frontline agent for treating autoimmune diseases. Mycophenolic acid (MPA) is an active metabolite of MMF. MPA exposure varies greatly among individuals, which may lead to adverse drug reactions such as gastrointestinal side effects, infection, and leukopenia. Genetic factors play an important role in the variation of MPA levels and its side effects. Although many published studies have focused on MMF use in patients after organ transplant, studies that examine the use of MMF in patients with autoimmune diseases are still lacking. Methods This study will not only explore the genetic factors affecting MPA levels and adverse reactions but also investigate the relationships between UGT1A9 −118(dT)9/10, UGT1A9 - 1818T>C, UGT2B7 802C>T, SLCO1B1 521T>C, SLCO1B3 334T>G, IMPDH1 −106G>A and MPA trough concentration (MPA C0), along with adverse reactions among Chinese patients with autoimmune diseases. A total of 120 patients with autoimmune diseases were recruited. The MPA trough concentration was detected using the enzyme multiplied immunoassay technique (EMIT). Genotyping was performed using a real-time polymerase chain reaction (PCR) system and validated allelic discrimination assays. Clinical data were collected for the determination of side effects. Results SLCO1B1 521T>C demonstrated a significant association with MPA C0/d (p=0.003), in which patients with the CC type showed a higher MPA C0/d than patients with the TT type (p=0.001) or the CT type (p=0.000). No significant differences were found in MPA C0/d among the other SNPs. IMPDH1 −106G>A was found to be significantly related to infections (p=0.006). Subgroup analysis revealed that UGT2B7 802C>T was significantly related to Pneumocystis carinii pneumonia infection (p=0.036), while SLCO1B1 521T>C was associated with anemia (p=0.029). Conclusion For Chinese autoimmune disease patients, SLCO1B1 521T>C was correlated with MPA C0/d and anemia. IMPDH1 −106G>A was significantly related to infections. UGT2B7 802C>T was significantly related to Pneumocystis carinii pneumonia infection.
Collapse
Affiliation(s)
- Qing Shu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Qingqing Fan
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Bingzhu Hua
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Hang Liu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Shiying Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Yunxing Liu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Yao Yao
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Han Xie
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| | - Weihong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
| |
Collapse
|
15
|
Mezinska S, Gallagher L, Verbrugge M, Bunnik EM. Ethical issues in genomics research on neurodevelopmental disorders: a critical interpretive review. Hum Genomics 2021; 15:16. [PMID: 33712057 PMCID: PMC7953558 DOI: 10.1186/s40246-021-00317-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
Background Genomic research on neurodevelopmental disorders (NDDs), particularly involving minors, combines and amplifies existing research ethics issues for biomedical research. We performed a review of the literature on the ethical issues associated with genomic research involving children affected by NDDs as an aid to researchers to better anticipate and address ethical concerns. Results Qualitative thematic analysis of the included articles revealed themes in three main areas: research design and ethics review, inclusion of research participants, and communication of research results. Ethical issues known to be associated with genomic research in general, such as privacy risks and informed consent/assent, seem especially pressing for NDD participants because of their potentially decreased cognitive abilities, increased vulnerability, and stigma associated with mental health problems. Additionally, there are informational risks: learning genetic information about NDD may have psychological and social impact, not only for the research participant but also for family members. However, there are potential benefits associated with research participation, too: by enrolling in research, the participants may access genetic testing and thus increase their chances of receiving a (genetic) diagnosis for their neurodevelopmental symptoms, prognostic or predictive information about disease progression or the risk of concurrent future disorders. Based on the results of our review, we developed an ethics checklist for genomic research involving children affected by NDDs. Conclusions In setting up and designing genomic research efforts in NDD, researchers should partner with communities of persons with NDDs. Particular attention should be paid to preventing disproportional burdens of research participation of children with NDDs and their siblings, parents and other family members. Researchers should carefully tailor the information and informed consent procedures to avoid therapeutic and diagnostic misconception in NDD research. To better anticipate and address ethical issues in specific NDD studies, we suggest researchers to use the ethics checklist for genomic research involving children affected by NDDs presented in this paper. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-021-00317-4.
Collapse
Affiliation(s)
- S Mezinska
- Faculty of Medicine and Institute of Clinical and Preventive Medicine, University of Latvia, Jelgavas Str.3, Riga, LV-1004, Latvia.
| | - L Gallagher
- Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute, St. James Hospital, Dublin 8, Ireland
| | - M Verbrugge
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, PO Box 2400, Rotterdam, 3000, CA, The Netherlands
| | - E M Bunnik
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, PO Box 2400, Rotterdam, 3000, CA, The Netherlands
| |
Collapse
|
16
|
Zhang LT, Westblade LF, Iqbal F, Taylor MR, Chung A, Satlin MJ, Magruder M, Edusei E, Albakry S, Botticelli B, Robertson A, Alston T, Dadhania DM, Lubetzky M, Hirota SA, Greenway SC, Lee JR. Gut microbiota profiles and fecal beta-glucuronidase activity in kidney transplant recipients with and without post-transplant diarrhea. Clin Transplant 2021; 35:e14260. [PMID: 33605497 DOI: 10.1111/ctr.14260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/01/2021] [Accepted: 02/13/2021] [Indexed: 12/18/2022]
Abstract
Post-transplant diarrhea is a common complication after solid organ transplantation and is frequently attributed to the widely prescribed immunosuppressant mycophenolate mofetil (MMF). Given recent work identifying the relationship between MMF toxicity and gut bacterial β-glucuronidase activity, we evaluated the relationship between gut microbiota composition, fecal β-glucuronidase activity, and post-transplant diarrhea. We recruited 97 kidney transplant recipients and profiled the gut microbiota in 273 fecal specimens using 16S rRNA gene sequencing. We further characterized fecal β-glucuronidase activity in a subset of this cohort. Kidney transplant recipients with post-transplant diarrhea had decreased gut microbial diversity and decreased relative gut abundances of 12 genera when compared to those without post-transplant diarrhea (adjusted p value < .15, Wilcoxon rank sum test). Among the kidney transplant recipients with post-transplant diarrhea, those with higher fecal β-glucuronidase activity had a more prolonged course of diarrhea (≥7 days) compared to patients with lower fecal β-glucuronidase activity (91% vs 40%, p = .02, Fisher's exact test). Our data reveal post-transplant diarrhea as a complex phenomenon with decreased gut microbial diversity and commensal gut organisms. This study further links commensal bacterial metabolism with an important clinical outcome measure, suggesting fecal β-glucuronidase activity could be a novel biomarker for gastrointestinal-related MMF toxicity.
Collapse
Affiliation(s)
- Lisa T Zhang
- Department of Medicine, Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, NY, USA
| | - Lars F Westblade
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.,Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Fatima Iqbal
- Departments of Pediatrics and Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Michael R Taylor
- Departments of Pediatrics and Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alice Chung
- Department of Medicine, Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, NY, USA
| | - Michael J Satlin
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Matthew Magruder
- Department of Medicine, Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, NY, USA
| | - Emmanuel Edusei
- Department of Medicine, Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, NY, USA
| | - Shady Albakry
- Department of Medicine, Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, NY, USA
| | - Brittany Botticelli
- Department of Medicine, Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, NY, USA
| | - Amy Robertson
- New York Presbyterian Hospital - Weill Cornell Medical Center, New York, NY, USA
| | - Tricia Alston
- New York Presbyterian Hospital - Weill Cornell Medical Center, New York, NY, USA
| | - Darshana M Dadhania
- Department of Medicine, Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, NY, USA.,Department of Transplantation Medicine, NewYork-Presbyterian Hospital - Weill Cornell Medical Center, New York, NY, USA
| | - Michelle Lubetzky
- Department of Medicine, Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, NY, USA.,Department of Transplantation Medicine, NewYork-Presbyterian Hospital - Weill Cornell Medical Center, New York, NY, USA
| | - Simon A Hirota
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Steven C Greenway
- Departments of Pediatrics and Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - John R Lee
- Department of Medicine, Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, NY, USA.,Department of Transplantation Medicine, NewYork-Presbyterian Hospital - Weill Cornell Medical Center, New York, NY, USA
| |
Collapse
|
17
|
Strauss RE, Gourdie RG. Cx43 and the Actin Cytoskeleton: Novel Roles and Implications for Cell-Cell Junction-Based Barrier Function Regulation. Biomolecules 2020; 10:E1656. [PMID: 33321985 PMCID: PMC7764618 DOI: 10.3390/biom10121656] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Barrier function is a vital homeostatic mechanism employed by epithelial and endothelial tissue. Diseases across a wide range of tissue types involve dynamic changes in transcellular junctional complexes and the actin cytoskeleton in the regulation of substance exchange across tissue compartments. In this review, we focus on the contribution of the gap junction protein, Cx43, to the biophysical and biochemical regulation of barrier function. First, we introduce the structure and canonical channel-dependent functions of Cx43. Second, we define barrier function and examine the key molecular structures fundamental to its regulation. Third, we survey the literature on the channel-dependent roles of connexins in barrier function, with an emphasis on the role of Cx43 and the actin cytoskeleton. Lastly, we discuss findings on the channel-independent roles of Cx43 in its associations with the actin cytoskeleton and focal adhesion structures highlighted by PI3K signaling, in the potential modulation of cellular barriers. Mounting evidence of crosstalk between connexins, the cytoskeleton, focal adhesion complexes, and junctional structures has led to a growing appreciation of how barrier-modulating mechanisms may work together to effect solute and cellular flux across tissue boundaries. This new understanding could translate into improved therapeutic outcomes in the treatment of barrier-associated diseases.
Collapse
Affiliation(s)
- Randy E. Strauss
- Virginia Tech, Translational Biology Medicine and Health (TBMH) Program, Roanoke, VA 24016, USA
| | - Robert G. Gourdie
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| |
Collapse
|
18
|
Reduced Mrp2 surface availability as PI3Kγ-mediated hepatocytic dysfunction reflecting a hallmark of cholestasis in sepsis. Sci Rep 2020; 10:13110. [PMID: 32753644 PMCID: PMC7403153 DOI: 10.1038/s41598-020-69901-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Sepsis-associated liver dysfunction manifesting as cholestasis is common during multiple organ failure. Three hepatocytic dysfunctions are considered as major hallmarks of cholestasis in sepsis: impairments of microvilli covering canalicular membranes, disruptions of tight junctions sealing bile-collecting canaliculae and disruptions of Mrp2-mediated hepatobiliary transport. PI3Kγ loss-of-function was suggested as beneficial in early sepsis. Yet, the PI3Kγ-regulated cellular processes in hepatocytes remained largely unclear. We analysed all three sepsis hallmarks for responsiveness to massive PI3K/Akt signalling and PI3Kγ loss-of-function, respectively. Surprisingly, neither microvilli nor tight junctions were strongly modulated, as shown by electron microscopical studies of mouse liver samples. Instead, quantitative electron microscopy proved that solely Mrp2 surface availability, i.e. the third hallmark, responded strongly to PI3K/Akt signalling. Mrp2 plasma membrane levels were massively reduced upon PI3K/Akt signalling. Importantly, Mrp2 levels at the plasma membrane of PI3Kγ KO hepatocytes remained unaffected upon PI3K/Akt signalling stimulation. The effect explicitly relied on PI3Kγ's enzymatic ability, as shown by PI3Kγ kinase-dead mice. Keeping the surface availability of the biliary transporter Mrp2 therefore is a cell biological process that may underlie the observation that PI3Kγ loss-of-function protects from hepatic excretory dysfunction during early sepsis and Mrp2 should thus take center stage in pharmacological interventions.
Collapse
|
19
|
Midkine activation of CD8 + T cells establishes a neuron-immune-cancer axis responsible for low-grade glioma growth. Nat Commun 2020; 11:2177. [PMID: 32358581 PMCID: PMC7195398 DOI: 10.1038/s41467-020-15770-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/26/2020] [Indexed: 12/17/2022] Open
Abstract
Brain tumors (gliomas) are heterogeneous cellular ecosystems, where non-neoplastic monocytic cells have emerged as key regulators of tumor maintenance and progression. However, relative to macrophages/microglia, comparatively less is known about the roles of neurons and T cells in glioma pathobiology. Herein, we leverage genetically engineered mouse models and human biospecimens to define the axis in which neurons, T cells, and microglia interact to govern Neurofibromatosis-1 (NF1) low-grade glioma (LGG) growth. NF1-mutant human and mouse brain neurons elaborate midkine to activate naïve CD8+ T cells to produce Ccl4, which induces microglia to produce a key LGG growth factor (Ccl5) critical for LGG stem cell survival. Importantly, increased CCL5 expression is associated with reduced survival in patients with LGG. The elucidation of the critical intercellular dependencies that constitute the LGG neuroimmune axis provides insights into the role of neurons and immune cells in controlling glioma growth, relevant to future therapeutic targeting. The role of neurons and T cells in glioma progression remains poorly understood. Here the authors show that midkine-dependent activation of a neuron-T cell-microglia axis promotes the growth of optic pathway gliomas.
Collapse
|
20
|
Affiliation(s)
- Dinah S Reddihough
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
21
|
Zhang J, Wei X, Zhang W, Wang F, Li Q. MiR-326 targets MDK to regulate the progression of cardiac hypertrophy through blocking JAK/STAT and MAPK signaling pathways. Eur J Pharmacol 2020; 872:172941. [PMID: 31972179 DOI: 10.1016/j.ejphar.2020.172941] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/25/2019] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
Cardiac hypertrophy is a heart reaction to the increase of cardiac load, with the characteristics of increased expression of cardiac hypertrophy markers, enhanced protein synthesis, and enlarged cell area. However, molecular mechanisms in cardiac hypertrophy are still poorly substantiated. It has been reported that miRNAs can modulate human diseases, among which miR-326 has been reported as a biological regulator in human cancers, but its role in cardiac hypertrophy is rarely explored. This study focused on the exploration of the potential of miR-326 in cardiac hypertrophy. Our data revealed the downregulation of miR-326 in the TAC-induced hypertrophic mice and the Ang II-induced hypertrophic H9c2 cells. Functionally, miR-326 attenuated the effect of Ang II on cardiac hypertrophy in vitro. In addition, miR-326 negatively regulated JAK/STAT and MAPK signaling pathways. Mechanistically, miR-326 targeted and inhibited MDK to induce JAK/STAT and MAPK pathways. Rescue assays certified that miR-326 attenuated cardiac hypertrophy through targeting MDK and inhibiting JAK/STAT and MAPK signaling pathways. In brief, our study unveiled that miR-326 targets MDK to regulate the progression of cardiac hypertrophy through blocking JAK/STAT and MAPK signaling pathways, indicating that targeting miR-326 as a potential approach for cardiac hypertrophy treatment.
Collapse
Affiliation(s)
- Jintao Zhang
- Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Heart Center of Henan Provincial People's Hospital, No. 1, Fu Wai Road, Zhengzhou, Henan, 450000, China
| | - Xinhua Wei
- Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Heart Center of Henan Provincial People's Hospital, No. 1, Fu Wai Road, Zhengzhou, Henan, 450000, China
| | - Weitao Zhang
- Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Heart Center of Henan Provincial People's Hospital, No. 1, Fu Wai Road, Zhengzhou, Henan, 450000, China
| | - Fengfeng Wang
- Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Heart Center of Henan Provincial People's Hospital, No. 1, Fu Wai Road, Zhengzhou, Henan, 450000, China
| | - Qun Li
- Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Heart Center of Henan Provincial People's Hospital, No. 1, Fu Wai Road, Zhengzhou, Henan, 450000, China.
| |
Collapse
|
22
|
Han X, Zhang E, Shi Y, Song B, Du H, Cao Z. Biomaterial-tight junction interaction and potential impacts. J Mater Chem B 2019; 7:6310-6320. [PMID: 31364678 PMCID: PMC6812605 DOI: 10.1039/c9tb01081e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The active pharmaceutical ingredients (APIs) have to cross the natural barriers and get into the blood to impart the pharmacological effects. The tight junctions (TJs) between the epithelial cells serve as the major selectively permeable barriers and control the paracellular transport of the majority of hydrophilic drugs, in particular, peptides and proteins. TJs perfectly balance the targeted transport and the exclusion of other unexpected pathogens under the normal conditions. Many biomaterials have shown the capability to open the TJs and improve the oral bioavailability and targeting efficacy of the APIs. Nevertheless, there is limited understanding of the biomaterial-TJ interactions. The opening of the TJs further poses the risk of autoimmune diseases and infections. This review article summarizes the most updated literature and presents insights into the TJ structure, the biomaterial-TJ interaction mechanism, the benefits and drawbacks of TJ disruption, and methods for evaluating such interactions.
Collapse
Affiliation(s)
- Xiangfei Han
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA.
| | - Ershuai Zhang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA.
| | - Yuanjie Shi
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA.
| | - Boyi Song
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA.
| | - Hong Du
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA.
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA.
| |
Collapse
|
23
|
Temporal Effects of Quercetin on Tight Junction Barrier Properties and Claudin Expression and Localization in MDCK II Cells. Int J Mol Sci 2019; 20:ijms20194889. [PMID: 31581662 PMCID: PMC6801663 DOI: 10.3390/ijms20194889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/28/2019] [Accepted: 09/29/2019] [Indexed: 01/22/2023] Open
Abstract
: Kidney stones affect 10% of the population. Yet, there is relatively little known about how they form or how to prevent and treat them. The claudin family of tight junction proteins has been linked to the formation of kidney stones. The flavonoid quercetin has been shown to prevent kidney stone formation and to modify claudin expression in different models. Here we investigate the effect of quercetin on claudin expression and localization in MDCK II cells, a cation-selective cell line, derived from the proximal tubule. For this study, we focused our analyses on claudin family members that confer different tight junction properties: barrier-sealing (Cldn1, -3, and -7), cation-selective (Cldn2) or anion-selective (Cldn4). Our data revealed that quercetin's effects on the expression and localization of different claudins over time corresponded with changes in transepithelial resistance, which was measured continuously throughout the treatment. In addition, these effects appear to be independent of PI3K/AKT signaling, one of the pathways that is known to act downstream of quercetin. In conclusion, our data suggest that quercetin's effects on claudins result in a tighter epithelial barrier, which may reduce the reabsorption of sodium, calcium and water, thereby preventing the formation of a kidney stone.
Collapse
|
24
|
Nakatsu D, Kano F, Shinozaki-Narikawa N, Murata M. Pyk2-dependent phosphorylation of LSR enhances localization of LSR and tricellulin at tricellular tight junctions. PLoS One 2019; 14:e0223300. [PMID: 31574128 PMCID: PMC6773211 DOI: 10.1371/journal.pone.0223300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/18/2019] [Indexed: 12/22/2022] Open
Abstract
Tight junctions (TJs) are cellular junctions within the mammalian epithelial cell sheet that function as a physical barrier to molecular transport within the intercellular space. Dysregulation of TJs leads to various diseases. Tricellular TJs (tTJs), specialized structural variants of TJs, are formed by multiple transmembrane proteins (e.g., lipolysis-stimulated lipoprotein receptor [LSR] and tricellulin) within tricellular contacts in the mammalian epithelial cell sheet. However, the mechanism for recruiting LSR and tricellulin to tTJs is largely unknown. Previous studies have identified that tyrphostin 9, the dual inhibitor of Pyk2 (a nonreceptor tyrosine kinase) and receptor tyrosine kinase platelet-derived growth factor receptor (PDGFR), suppresses LSR and tricellulin recruitment to tTJs in EpH4 (a mouse mammary epithelial cell line) cells. In this study, we investigated the effect of Pyk2 inhibition on LSR and tricellulin localization to tTJs. Pyk2 inactivation by its specific inhibitor or repression by RNAi inhibited the localization of LSR and downstream tricellulin to tTJs without changing their expression level in EpH4 cells. Pyk2-dependent changes in subcellular LSR and tricellulin localization were independent of c-Jun N-terminal kinase (JNK) activation and expression. Additionally, Pyk2-dependent LSR phosphorylation at Tyr-237 was required for LSR and tricellulin localization to tTJs and decreased epithelial barrier function. Our findings indicated a novel mechanism by which Pyk2 regulates tTJ assembly and epithelial barrier function in the mammalian epithelial cell sheet.
Collapse
Affiliation(s)
- Daiki Nakatsu
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa, Japan
| | - Fumi Kano
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa, Japan
| | - Naeko Shinozaki-Narikawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa, Japan
| | - Masayuki Murata
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
25
|
Taylor MR, Flannigan KL, Rahim H, Mohamud A, Lewis IA, Hirota SA, Greenway SC. Vancomycin relieves mycophenolate mofetil-induced gastrointestinal toxicity by eliminating gut bacterial β-glucuronidase activity. SCIENCE ADVANCES 2019; 5:eaax2358. [PMID: 31457102 PMCID: PMC6685722 DOI: 10.1126/sciadv.aax2358] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/28/2019] [Indexed: 05/08/2023]
Abstract
Mycophenolate mofetil (MMF) is commonly prescribed and has proven advantages over other immunosuppressive drugs. However, frequent gastrointestinal side effects through an unknown mechanism limit its use. We have found that consumption of MMF alters the composition of the gut microbiota, selecting for bacteria expressing the enzyme β-glucuronidase (GUS) and leading to an up-regulation of GUS activity in the gut of mice and symptomatic humans. In the mouse, vancomycin eliminated GUS-expressing bacteria and prevented MMF-induced weight loss and colonic inflammation. Our work provides a mechanism for the toxicity associated with MMF and a future direction for the development of therapeutics.
Collapse
Affiliation(s)
- Michael R. Taylor
- Departments of Pediatrics and Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kyle L. Flannigan
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hannah Rahim
- Departments of Pediatrics and Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amina Mohamud
- Departments of Pediatrics and Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ian A. Lewis
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Simon A. Hirota
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Steven C. Greenway
- Departments of Pediatrics and Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Corresponding author.
| |
Collapse
|
26
|
Diagnostic accuracy of the ADOS and ADOS-2 in clinical practice. Eur Child Adolesc Psychiatry 2018; 27:1193-1207. [PMID: 29560529 DOI: 10.1007/s00787-018-1143-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 03/09/2018] [Indexed: 12/22/2022]
Abstract
The Autism Diagnostic Observation Schedule is a semi-structured, standardized assessment tool for individuals with suspected autism spectrum disorders (ASD) and is deemed to be part of the gold standard for diagnostic evaluation. Good diagnostic accuracy and interpersonal objectivity have been demonstrated for the ADOS in research setting. The question arises whether this is also true for daily clinical practice and whether diagnostic accuracy depends on specialized experience in the diagnostic evaluation. The present study explores the diagnostic accuracy of the original and the revised version of the ADOS for Modules 1 through 4. Thus, seven cases of ADOS executions were recorded and coded by a group of experts of specialized outpatient clinics for ASD. In an extensive consensus process, including video analysis of every minute of the ADOS executions, a "gold standard" coding for every case was defined. The videos of the ADOS administration were presented to a large group of clinicians (from daily clinical routine care) and their codings (n = 189) were obtained and analysed. Variance of coding and congruence with the expert coding were determined. High variance was found in the codings. The accuracy of the coding depends on the experience of the coder with the ADOS as well as on characteristics of the cases and the quality of the administration of the ADOS. Specialization in the diagnostic of ASD has to be claimed. Specialized outpatient clinics for ASD are required which guarantee a qualified diagnostic/differential diagnostic and case management with the aim of demand-oriented supply of individual cases.
Collapse
|
27
|
Weckbach LT, Preissner KT, Deindl E. The Role of Midkine in Arteriogenesis, Involving Mechanosensing, Endothelial Cell Proliferation, and Vasodilation. Int J Mol Sci 2018; 19:E2559. [PMID: 30158425 PMCID: PMC6163309 DOI: 10.3390/ijms19092559] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022] Open
Abstract
Mechanical forces in blood circulation such as shear stress play a predominant role in many physiological and pathophysiological processes related to vascular responses or vessel remodeling. Arteriogenesis, defined as the growth of pre-existing arterioles into functional collateral arteries compensating for stenosed or occluded arteries, is such a process. Midkine, a pleiotropic protein and growth factor, has originally been identified to orchestrate embryonic development. In the adult organism its expression is restricted to distinct tissues (including tumors), whereby midkine is strongly expressed in inflamed tissue and has been shown to promote inflammation. Recent investigations conferred midkine an important function in vascular remodeling and growth. In this review, we introduce the midkine gene and protein along with its cognate receptors, and highlight its role in inflammation and the vascular system with special emphasis on arteriogenesis, particularly focusing on shear stress-mediated vascular cell proliferation and vasodilatation.
Collapse
Affiliation(s)
- Ludwig T Weckbach
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, LMU Munich, 81377 Munich, Germany.
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany.
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Klaus T Preissner
- Institute of Biochemistry, Medical School, Justus-Liebig-University, 35390 Giessen, Germany.
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany.
| |
Collapse
|
28
|
Abstract
Mental health difficulties are highly prevalent in individuals on the autism spectrum. The current study examined how experiences and perceptions of autism acceptance could impact on the mental health of autistic adults. 111 adults on the autism spectrum completed an online survey examining their experiences of autism acceptance, along with symptoms of depression, anxiety and stress. Regression analyses showed that autism acceptance from external sources and personal acceptance significantly predicted depression. Acceptance from others also significantly predicted stress but acceptance did not predict anxiety. Further analyses suggested that experiences of "camouflaging" could relate to higher rates of depression. The current study highlights the importance of considering how autism acceptance could contribute to mental health in autism.
Collapse
Affiliation(s)
- Eilidh Cage
- Department of Psychology, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK.
| | - Jessica Di Monaco
- Department of Psychology, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | - Victoria Newell
- Department of Psychology, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
29
|
Abstract
Mental health difficulties are highly prevalent in individuals on the autism spectrum. The current study examined how experiences and perceptions of autism acceptance could impact on the mental health of autistic adults. 111 adults on the autism spectrum completed an online survey examining their experiences of autism acceptance, along with symptoms of depression, anxiety and stress. Regression analyses showed that autism acceptance from external sources and personal acceptance significantly predicted depression. Acceptance from others also significantly predicted stress but acceptance did not predict anxiety. Further analyses suggested that experiences of "camouflaging" could relate to higher rates of depression. The current study highlights the importance of considering how autism acceptance could contribute to mental health in autism.
Collapse
Affiliation(s)
- Eilidh Cage
- Department of Psychology, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK.
| | - Jessica Di Monaco
- Department of Psychology, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | - Victoria Newell
- Department of Psychology, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
30
|
Lautz T, Lasch M, Borgolte J, Troidl K, Pagel JI, Caballero-Martinez A, Kleinert EC, Walzog B, Deindl E. Midkine Controls Arteriogenesis by Regulating the Bioavailability of Vascular Endothelial Growth Factor A and the Expression of Nitric Oxide Synthase 1 and 3. EBioMedicine 2017; 27:237-246. [PMID: 29233575 PMCID: PMC5828057 DOI: 10.1016/j.ebiom.2017.11.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 01/30/2023] Open
Abstract
Midkine is a pleiotropic factor, which is involved in angiogenesis. However, its mode of action in this process is still ill defined. The function of midkine in arteriogenesis, the growth of natural bypasses from pre-existing collateral arteries, compensating for the loss of an occluded artery has never been investigated. Arteriogenesis is an inflammatory process, which relies on the proliferation of endothelial cells and smooth muscle cells. We show that midkine deficiency strikingly interferes with the proliferation of endothelial cells in arteriogenesis, thereby interfering with the process of collateral artery growth. We identified midkine to be responsible for increased plasma levels of vascular endothelial growth factor A (VEGFA), necessary and sufficient to promote endothelial cell proliferation in growing collaterals. Mechanistically, we demonstrate that leukocyte domiciled midkine mediates increased plasma levels of VEGFA relevant for upregulation of endothelial nitric oxide synthase 1 and 3, necessary for proper endothelial cell proliferation, and that non-leukocyte domiciled midkine additionally improves vasodilation. The data provided on the role of midkine in endothelial proliferation are likely to be relevant for both, the process of arteriogenesis and angiogenesis. Moreover, our data might help to estimate the therapeutic effect of clinically applied VEGFA in patients with vascular occlusive diseases. Leukocyte domiciled midkine is decisive for collateral endothelial cell proliferation in arteriogenesis. Midkine controls the bioavailability of VEGFA mediating endothelial Nos1 and Nos3 expression. Nos1 and Nos3, relevant for endothelial cell proliferation, can substitute for each other.
Arteriogenesis is a life and tissue saving process as it compensates for the loss of an occluded artery. Decoding the underlying molecular mechanisms is a prerequisite for the development of novel therapeutic options to treat patients with vascular occlusive diseases. Lautz et al. identified midkine to be responsible for the increased bioavailability of VEGFA during arteriogenesis, necessary and sufficient to promote endothelial cell proliferation. These data might help to estimate the therapeutic effect of clinically applied VEGFA. As the identified mechanisms might also apply for angiogenesis, they are likely to be of broader relevance, e.g. in terms of tumor treatment.
Collapse
Affiliation(s)
- Thomas Lautz
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; Biomedical Center, LMU Munich, 81377 Munich, Germany
| | - Manuel Lasch
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; Biomedical Center, LMU Munich, 81377 Munich, Germany
| | - Julia Borgolte
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Kerstin Troidl
- Department of Vascular and Endovascular Surgery, Goethe-University-Hospital, 60590 Frankfurt am Main, Germany; Division of Arteriogenesis Research, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Judith-Irina Pagel
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; Hospital of the University of Munich, Department of Anesthesiology, LMU Munich, 81377 Munich, Germany
| | - Amelia Caballero-Martinez
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Eike Christian Kleinert
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Barbara Walzog
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; Biomedical Center, LMU Munich, 81377 Munich, Germany
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; Biomedical Center, LMU Munich, 81377 Munich, Germany.
| |
Collapse
|