1
|
Liu Q, Wu X, Duan W, Pan X, Wabitsch M, Lu M, Li J, Huang LH, Zhou Z, Zhu Y. ACAT1/SOAT1 maintains adipogenic ability in preadipocytes by regulating cholesterol homeostasis. J Lipid Res 2024:100680. [PMID: 39481851 DOI: 10.1016/j.jlr.2024.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024] Open
Abstract
Maintaining cholesterol homeostasis is critical for preserving adipocyte function during the progression of obesity. Despite this, the regulatory role of cholesterol esterification in governing adipocyte expandability has been understudied. Acyl-coenzyme A (CoA):cholesterol acyltransferase / Sterol O-acyltransferase 1 (ACAT1/SOAT1) is the dominant enzyme to synthesize cholesteryl ester in most tissues. Our previous study demonstrated that knockdown of either ACAT1 or ACAT2 impaired adipogenesis. However, the underlying mechanism of how ACAT1 mediates adipogenesis remains unclear. Here, we reported that ACAT1 is the dominant isoform in white adipose tissue of both humans and mice and knocking out ACAT1 reduced fat mass in mice. Furthermore, ACAT1-deficiency inhibited the early stage of adipogenesis via attenuating PPARγ pathway. Mechanistically, ACAT1 deficiency inhibited SREBP2-mediated cholesterol uptake and thus reduced intracellular and plasma membrane cholesterol level during adipogenesis. While replenishing cholesterol could rescue adipogenic master gene - Pparγ's transcription in ACAT1 deficient cells during adipogenesis. Finally, overexpression of catalytically functional ACAT1, not the catalytic-dead ACAT1, rescued cholesterol level and efficiently rescued the transcription of PPARγ, as well as the adipogenesis in ACAT1-deficient preadipocytes. In summary, our study revealed the indispensable role of ACAT1 in adipogenesis via regulating intracellular cholesterol homeostasis.
Collapse
Affiliation(s)
- Qing Liu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions
| | - Xiaolin Wu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions
| | - Wei Duan
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, China
| | - Xiaohan Pan
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm 89075, Germany
| | - Ming Lu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, China
| | - Jing Li
- Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions
| | - Li-Hao Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Liver Cancer Institute Zhongshan Hospital, Fudan University, China
| | - Zhangsen Zhou
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, China
| | - Yuyan Zhu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
2
|
Wen X, Song Y, Zhang M, Kang Y, Chen D, Ma H, Nan F, Duan Y, Li J. Polyphenol Compound 18a Modulates UCP1-Dependent Thermogenesis to Counteract Obesity. Biomolecules 2024; 14:618. [PMID: 38927022 PMCID: PMC11201655 DOI: 10.3390/biom14060618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Recent studies increasingly suggest that targeting brown/beige adipose tissues to enhance energy expenditure offers a novel therapeutic approach for treating metabolic diseases. Brown/beige adipocytes exhibit elevated expression of uncoupling protein 1 (UCP1), which is a thermogenic protein that efficiently converts energy into heat, particularly in response to cold stimulation. Polyphenols possess potential anti-obesity properties, but their pharmacological effects are limited by their bioavailability and distribution within tissue. This study discovered 18a, a polyphenol compound with a favorable distribution within adipose tissues, which transcriptionally activates UCP1, thereby promoting thermogenesis and enhancing mitochondrial respiration in brown adipocytes. Furthermore, in vivo studies demonstrated that 18a prevents high-fat-diet-induced weight gain and improves insulin sensitivity. Our research provides strong mechanistic evidence that UCP1 is a complex mediator of 18a-induced thermogenesis, which is a critical process in obesity mitigation. Brown adipose thermogenesis is triggered by 18a via the AMPK-PGC-1α pathway. As a result, our research highlights a thermogenic controlled polyphenol compound 18a and clarifies its underlying mechanisms, thus offering a potential strategy for the thermogenic targeting of adipose tissue to reduce the incidence of obesity and its related metabolic problems.
Collapse
Affiliation(s)
- Xueping Wen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yufei Song
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mei Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Yiping Kang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Dandan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Hui Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Fajun Nan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Yanan Duan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Jingya Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| |
Collapse
|
3
|
Robino JJ, Plekhanov AP, Zhu Q, Jensen MD, Scherer PE, Roberts CT, Varlamov O. Adipose Tissue Analysis Toolkit (ATAT) for automated analysis of adipocyte size and extracellular matrix in white adipose tissue. Obesity (Silver Spring) 2024; 32:723-732. [PMID: 38321231 PMCID: PMC10965369 DOI: 10.1002/oby.23992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 02/08/2024]
Abstract
OBJECTIVE The pathological expansion of white adipose tissue (WAT) in obesity involves adipocyte hypertrophy accompanied by expansion of the collagen-rich pericellular extracellular matrix (ECM) and development of crown-like structures (CLS). Traditionally, WAT morphology is assessed through immunohistochemical analysis of WAT sections. However, manual analysis of large histological sections is time-consuming, and the available digital tools for analyzing adipocyte size and pericellular ECM are limited. To address this gap, the authors developed the Adipose Tissue Analysis Toolkit (ATAT), an ImageJ plugin facilitating analysis of adipocyte size, WAT ECM, and CLS. METHODS AND RESULTS ATAT utilizes local and image-level differentials in pixel intensity to independently threshold image background, distinguishing adipocyte-free tissue without user input. It accurately captures adipocytes in histological sections stained with common dyes and automates the analysis of adipocyte cross-sectional area, total-field, and localized region-of-interest ECM. ATAT allows fully automated batch analysis of histological images using default or user-defined adipocyte detection parameters. CONCLUSIONS ATAT provides several advantages over existing WAT image analysis tools, enabling high-throughput analyses of adipocyte-specific parameters and facilitating the assessment of ECM changes associated with WAT remodeling due to weight changes and other pathophysiological alterations that affect WAT function.
Collapse
Affiliation(s)
- Jacob J. Robino
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Alexander P. Plekhanov
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Qingzhang Zhu
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Philipp E. Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Charles T. Roberts
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, Oregon, USA
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Oleg Varlamov
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, Oregon, USA
| |
Collapse
|
4
|
Robino JJ, Plekhanov AP, Zhu Q, Jensen MD, Scherer PE, Roberts CT, Varlamov O. Adipose Tissue Analysis Toolkit (ATAT) for Automated Analysis of Adipocyte Size and Extracellular Matrix in White Adipose Tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571339. [PMID: 38318208 PMCID: PMC10843162 DOI: 10.1101/2023.12.12.571339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Objective The pathological expansion of white adipose tissue (WAT) in obesity involves adipocyte hypertrophy accompanied by expansion of collagen-rich pericellular extracellular matrix (ECM) and the development of crown-like structures (CLS). Traditionally, WAT morphology is assessed through immunohistochemical analysis of WAT sections. However, manual analysis of large histological sections is time-consuming, and available digital tools for analyzing adipocyte size and pericellular ECM are limited. To address this gap, we developed the Adipose Tissue Analysis Toolkit (ATAT), an ImageJ plugin facilitating analysis of adipocyte size, WAT ECM and CLS. Methods and Results ATAT utilizes local and image-level differentials in pixel intensity to independently threshold background, distinguishing adipocyte-free tissue without user input. It accurately captures adipocytes in histological sections stained with common dyes and automates the analysis of adipocyte cross-sectional area, total-field, and localized region-of-interest ECM. ATAT allows fully automated batch analysis of histological images using default or user-defined adipocyte detection parameters. Conclusions ATAT provides several advantages over existing WAT image analysis tools, enabling high-throughput analyses of adipocyte-specific parameters and facilitating the assessment of ECM changes associated with WAT remodeling due to weight changes and other pathophysiological alterations that affect WAT function. Study Importance Questions What is already known about this subject?: The manual analysis of large WAT histological sections is very time-consuming, while digital tools for the analysis of WAT are limited.What are the new findings in your manuscript?: - ATAT enables fully automated analysis of batches of histological images using either default or user-defined adipocyte detection parameters- ATAT allows high-throughput analyses of adipocyte-specific parameters and pericellular extracellular matrix- ATAT enables the assessment of fibrotic changes associated with WAT remodeling and crown-like structuresHow might your results change the direction of research or the focus of clinical practice?: - ATAT is designed to work with histological sections and digital images obtained using a slide scanner or a microscope.- This tool will help basic and clinical researchers to conduct automated analyses of adipose tissue histological sections.
Collapse
|
5
|
Widjaja N, Jalava N, Chen Y, Ivaska KK. Perilipin-1 immunostaining improves semi-automated digital quantitation of bone marrow adipocytes in histological bone sections. Adipocyte 2023; 12:2252711. [PMID: 37649225 PMCID: PMC10472850 DOI: 10.1080/21623945.2023.2252711] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Bone marrow adipocytes (BMAds) are not just passive fillers inside the bone marrow compartment but respond to various metabolic changes. Assessment of those responses requires evaluation of the number of BMAds and their morphology for which laborious and error-prone manual histological analysis remains the most widely used method. Here, we report an alternative image analysis strategy to semi-automatically quantitate and analyse the morphology of BMAds in histological bone sections. Decalcified, formalin-fixed paraffin-embedded histological sections of long bones of Sprague-Dawley rats were stained with either haematoxylin and eosin (HE) or by immunofluorescent staining for adipocyte-specific protein perilipin-1 (PLIN1). ImageJ-based commands were constructed to detect BMAds sized 200 µm2 or larger from standardized 1 mm2 analysis regions by either classifying the background colour (HE) or the positive and circular PLIN1 fluorescent signal. Semi-automated quantitation strongly correlated with independent, single-blinded manual counts regardless of the staining method (HE-based: r=0.85, p<0.001; PLIN1 based: r=0.95, p<0.001). The detection error was higher in HE-stained sections than in PLIN1-stained sections (14% versus 5%, respectively; p<0.001), which was due to false-positive detections of unstained adipocyte-like circular structures. In our dataset, the total adiposity area from standardised ROIs in PLIN-1-stained sections correlated with that in whole-bone sections (r=0.60, p=0.02).
Collapse
Affiliation(s)
- Nicko Widjaja
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Niki Jalava
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Yimeng Chen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kaisa K. Ivaska
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Lee HJ, Jin BY, Park MR, Kim NH, Seo KS, Jeong YT, Wada T, Lee JS, Choi SH, Kim DH. Inhibition of adipose tissue angiogenesis prevents rebound weight gain after caloric restriction in mice fed a high-fat diet. Life Sci 2023; 332:122101. [PMID: 37730110 DOI: 10.1016/j.lfs.2023.122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
AIMS We investigated whether modulation of white adipose tissue (WAT) vasculature regulates rebound weight gain (RWG) after caloric restriction (CR) in mice fed a high-fat diet (HFD). MAIN METHODS We compared changes in energy balance, hypothalamic neuropeptide gene expression, and characteristics of WAT by RT-qPCR, ELISA, immunohistochemistry, and adipose-derived stromal vascular fraction spheroid sprouting assay in obese mice fed a HFD ad libitum (HFD-AL), mice under 40 % CR for 3 or 4 weeks, mice fed HFD-AL for 3 days after CR (CRAL), and CRAL mice treated with TNP-470, an angiogenic inhibitor. KEY FINDINGS WAT angiogenic genes were expressed at low levels, but WAT vascular density was maintained in the CR group compared to that in the HFD-AL group. The CRAL group showed RWG, fat regain, and hyperphagia with higher expression of angiogenic genes and reduced pericyte coverage of the endothelium in WAT on day 3 after CR compared to the CR group, indicating rapidly increased angiogenic activity after CR. Administration of TNP-470 suppressed RWG, fat regain, and hyperphagia only after CR compared to the CRAL group. Changes in circulating leptin levels and hypothalamic neuropeptide gene expression were correlated with changes in weight and fat mass, suggesting that TNP-470 suppressed hyperphagia independently of the hypothalamic melanocortin system. Additionally, TNP-470 increased gene expression related to thermogenesis, fuel utilization, and browning in brown adipose tissue (BAT) and WAT, indicating TNP-470-induced increase in thermogenesis. SIGNIFICANCE Modulation of the WAT vasculature attenuates RWG after CR by suppressing hyperphagia and increasing BAT thermogenesis and WAT browning.
Collapse
Affiliation(s)
- Hye-Jin Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Bo-Yeong Jin
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Mi-Rae Park
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kwan Sik Seo
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Yong Taek Jeong
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Tsutomu Wada
- Department of Clinical Pharmacology, University of Toyama, Toyama 930-0194, Japan
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Sang-Hyun Choi
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Ali Z, Godoy-Corchuelo JM, Martins-Bach AB, Garcia-Toledo I, Fernández-Beltrán LC, Nair RR, Spring S, Nieman BJ, Jimenez-Coca I, Bains RS, Forrest H, Lerch JP, Miller KL, Fisher EMC, Cunningham TJ, Corrochano S. Mutation in the FUS nuclear localisation signal domain causes neurodevelopmental and systemic metabolic alterations. Dis Model Mech 2023; 16:dmm050200. [PMID: 37772684 PMCID: PMC10642611 DOI: 10.1242/dmm.050200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Variants in the ubiquitously expressed DNA/RNA-binding protein FUS cause aggressive juvenile forms of amyotrophic lateral sclerosis (ALS). Most FUS mutation studies have focused on motor neuron degeneration; little is known about wider systemic or developmental effects. We studied pleiotropic phenotypes in a physiological knock-in mouse model carrying the pathogenic FUSDelta14 mutation in homozygosity. RNA sequencing of multiple organs aimed to identify pathways altered by the mutant protein in the systemic transcriptome, including metabolic tissues, given the link between ALS-frontotemporal dementia and altered metabolism. Few genes were commonly altered across all tissues, and most genes and pathways affected were generally tissue specific. Phenotypic assessment of mice revealed systemic metabolic alterations related to the pathway changes identified. Magnetic resonance imaging brain scans and histological characterisation revealed that homozygous FUSDelta14 brains were smaller than heterozygous and wild-type brains and displayed significant morphological alterations, including a thinner cortex, reduced neuronal number and increased gliosis, which correlated with early cognitive impairment and fatal seizures. These findings show that the disease aetiology of FUS variants can include both neurodevelopmental and systemic alterations.
Collapse
Affiliation(s)
- Zeinab Ali
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire OX11 ORD, UK
| | - Juan M. Godoy-Corchuelo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Aurea B. Martins-Bach
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9D, UK
| | - Irene Garcia-Toledo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Luis C. Fernández-Beltrán
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
- Department of Medicine, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Remya R. Nair
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire OX11 ORD, UK
| | - Shoshana Spring
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M57 3H7, Canada
| | - Brian J. Nieman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M57 3H7, Canada
| | - Irene Jimenez-Coca
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Rasneer S. Bains
- Mary Lyon Centre at MRC Harwell, Didcot, Oxfordshire OX11 ORD, UK
| | - Hamish Forrest
- Mary Lyon Centre at MRC Harwell, Didcot, Oxfordshire OX11 ORD, UK
| | - Jason P. Lerch
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9D, UK
| | - Karla L. Miller
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9D, UK
| | - Elizabeth M. C. Fisher
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Thomas J. Cunningham
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire OX11 ORD, UK
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London W1W 7FF, UK
| | - Silvia Corrochano
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire OX11 ORD, UK
| |
Collapse
|
8
|
Zhang Z, Chen N, Yin N, Liu R, He Y, Li D, Tong M, Gao A, Lu P, Zhao Y, Li H, Zhang J, Zhang D, Gu W, Hong J, Wang W, Qi L, Ning G, Wang J. The rs1421085 variant within FTO promotes brown fat thermogenesis. Nat Metab 2023; 5:1337-1351. [PMID: 37460841 DOI: 10.1038/s42255-023-00847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 06/14/2023] [Indexed: 08/06/2023]
Abstract
One lead genetic risk signal of obesity-the rs1421085 T>C variant within the FTO gene-is reported to be functional in vitro but lacks evidence at an organism level. Here we recapitulate the homologous human variant in mice with global and brown adipocyte-specific variant knock-in and reveal that mice carrying the C-allele show increased brown fat thermogenic capacity and resistance to high-fat diet-induced adiposity, whereas the obesity-related phenotypic changes are blunted at thermoneutrality. Both in vivo and in vitro data reveal that the C-allele in brown adipocytes enhances the transcription of the Fto gene, which is associated with stronger chromatin looping linking the enhancer region and Fto promoter. Moreover, FTO knockdown or inhibition effectively eliminates the increased thermogenic ability of brown adipocytes carrying the C-allele. Taken together, these findings identify rs1421085 T>C as a functional variant promoting brown fat thermogenesis.
Collapse
Affiliation(s)
- Zhiyin Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Na Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Nan Yin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Yang He
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Danjie Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Muye Tong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Aibo Gao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Peng Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Yuxiao Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Huabing Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junfang Zhang
- Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fishery and Life Science, Shanghai Ocean University, Shanghai, China
| | - Dan Zhang
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Weiqiong Gu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Jie Hong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China.
| |
Collapse
|
9
|
Tognolli K, Silva V, Sousa-Filho CPB, Cardoso CAL, Gorjão R, Otton R. Green tea beneficial effects involve changes in the profile of immune cells in the adipose tissue of obese mice. Eur J Nutr 2023; 62:321-336. [PMID: 35994086 DOI: 10.1007/s00394-022-02963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/08/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE During obesity, the adipose tissue is usually infiltrated by immune cells which are related to hallmarks of obesity such as systemic inflammation and insulin resistance (IR). Green tea (GT) has been widely studied for its anti-inflammatory actions, including the modulation in the proliferation and activity of immune cells, in addition to preventing cardiovascular and metabolic diseases. METHODS The aim of the present study was to analyze the population of immune cells present in the subcutaneous and epididymal white adipose tissue (WAT) of mice kept at thermoneutrality (TN) and fed with a high-fat diet (HFD) for 16 weeks, supplemented or not with GT extract (500 mg/kg/12 weeks). RESULTS The HFD in association with TN has induced chronic inflammation, and IR in parallel with changes in the profile of immune cells in the subcutaneous and epidydimal WAT, increasing pro-inflammatory cytokines release, inflammatory cells infiltration, and fibrotic aspects in WAT. On the other hand, GT prevented body weight gain, in addition to avoiding IR and inflammation, and the consequent tissue fibrosis, maintaining a lower concentration of cytokines and a profile of immune cells similar to the control mice, preventing the harmful modulations induced by both HFD and TN. CONCLUSIONS GT beneficial effects in WAT abrogated the deleterious effects triggered by HFD and TN, maintaining all immune cells and fibrotic markers at the same level as in lean mice. These results place WAT immune cells population as a potential target of GT action, also highlighting the positive effects of GT in obese mice housed at TN.
Collapse
Affiliation(s)
- Kaue Tognolli
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Regente Feijó Avenue, 1295, Sao Paulo, SP, 03342-000, Brazil
| | - Victoria Silva
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Regente Feijó Avenue, 1295, Sao Paulo, SP, 03342-000, Brazil
| | - Celso Pereira Batista Sousa-Filho
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Regente Feijó Avenue, 1295, Sao Paulo, SP, 03342-000, Brazil
| | | | - Renata Gorjão
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Regente Feijó Avenue, 1295, Sao Paulo, SP, 03342-000, Brazil
| | - Rosemari Otton
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Regente Feijó Avenue, 1295, Sao Paulo, SP, 03342-000, Brazil.
| |
Collapse
|
10
|
Naik RR, Rajan A, Kalita N. Automated image analysis method to detect and quantify fat cell infiltration in hematoxylin and eosin stained human pancreas histology images. BBA ADVANCES 2023; 3:100084. [PMID: 37082253 PMCID: PMC10074932 DOI: 10.1016/j.bbadva.2023.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Fatty infiltration in pancreas leading to steatosis is a major risk factor in pancreas transplantation. Hematoxylin and eosin (H and E) is one of the common histological staining techniques that provides information on the tissue cytoarchitecture. Adipose (fat) cells accumulation in pancreas has been shown to impact beta cell survival, its endocrine function and pancreatic steatosis and can cause non-alcoholic fatty pancreas disease (NAFPD). The current automated tools (E.g. Adiposoft) available for fat analysis are suited for white fat tissue which is homogeneous and easier to segment unlike heterogeneous tissues such as pancreas where fat cells continue to play critical physiopathological functions. The currently, available pancreas segmentation tool focuses on endocrine islet segmentation based on cell nuclei detection for diagnosis of pancreatic cancer. In the current study, we present a fat quantifying tool, Fatquant, which identifies fat cells in heterogeneous H and E tissue sections with reference to diameter of fat cell. Using histological images from a public database, we observed an intersection over union of 0.797 to 0.962 and 0.675 to 0.937 for manual versus Fatquant analysis of pancreas and liver, respectively.
Collapse
Affiliation(s)
- Roshan Ratnakar Naik
- Department of Biotechnology, Parvatibai Chowgule College of Arts & Science, Margao-Goa, 403601
- Corresponding author.
| | - Annie Rajan
- Department of Computer Science, Dhempe College of Arts and Science, Miramar, Panaji-Goa, 403 001
| | | |
Collapse
|
11
|
Melnikov N, Kamari Y, Kandel-Kfir M, Barshack I, Ben-Amotz A, Harats D, Shaish A, Harari A. β-Carotene from the Alga Dunaliella bardawil Decreases Gene Expression of Adipose Tissue Macrophage Recruitment Markers and Plasma Lipid Concentrations in Mice Fed a High-Fat Diet. Mar Drugs 2022; 20:md20070433. [PMID: 35877726 PMCID: PMC9316718 DOI: 10.3390/md20070433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
Vitamin A and provitamin A carotenoids are involved in the regulation of adipose tissue metabolism and inflammation. We examined the effect of dietary supplementation using all-trans and 9-cis β-carotene-rich Dunaliella bardawil alga as the sole source of vitamin A on obesity-associated comorbidities and adipose tissue dysfunction in a diet-induced obesity mouse model. Three-week-old male mice (C57BL/6) were randomly allocated into two groups and fed a high-fat, vitamin A-deficient diet supplemented with either vitamin A (HFD) or β-carotene (BC) (HFD-BC). Vitamin A levels in the liver, WATs, and BAT of the HFD-BC group were 1.5–2.4-fold higher than of the HFD group. BC concentrations were 5–6-fold greater in BAT compared to WAT in the HFD-BC group. The eWAT mRNA levels of the Mcp-1 and Cd68 were 1.6- and 2.1-fold lower, respectively, and the plasma cholesterol and triglyceride concentrations were 30% and 28% lower in the HFD-BC group compared with the HFD group. Dietary BC can be the exclusive vitamin A source in mice fed a high-fat diet, as shown by the vitamin A concentration in the plasma and tissues. Feeding BC rather than vitamin A reduces adipose tissue macrophage recruitment markers and plasma lipid concentrations.
Collapse
Affiliation(s)
- Nir Melnikov
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Ramat Gan 5262000, Israel; (N.M.); (Y.K.); (M.K.-K.); (I.B.); (D.H.); (A.S.)
- The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Yehuda Kamari
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Ramat Gan 5262000, Israel; (N.M.); (Y.K.); (M.K.-K.); (I.B.); (D.H.); (A.S.)
- The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Michal Kandel-Kfir
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Ramat Gan 5262000, Israel; (N.M.); (Y.K.); (M.K.-K.); (I.B.); (D.H.); (A.S.)
| | - Iris Barshack
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Ramat Gan 5262000, Israel; (N.M.); (Y.K.); (M.K.-K.); (I.B.); (D.H.); (A.S.)
- The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Ami Ben-Amotz
- N.B.T., Nature Beta Technologies Ltd., Eilat 8851100, Israel;
| | - Dror Harats
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Ramat Gan 5262000, Israel; (N.M.); (Y.K.); (M.K.-K.); (I.B.); (D.H.); (A.S.)
- The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Aviv Shaish
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Ramat Gan 5262000, Israel; (N.M.); (Y.K.); (M.K.-K.); (I.B.); (D.H.); (A.S.)
- The Department of Life Sciences, Achva Academic College, Arugot 7980400, Israel
| | - Ayelet Harari
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Ramat Gan 5262000, Israel; (N.M.); (Y.K.); (M.K.-K.); (I.B.); (D.H.); (A.S.)
- Correspondence: ; Tel.: +972-3-5302006
| |
Collapse
|
12
|
Pagire SH, Pagire HS, Park KY, Bae EJ, Kim KE, Kim M, Yoon J, Parameswaran S, Choi JH, Park S, Jeon JH, Song JS, Bae MA, Lee IK, Kim H, Suh JM, Ahn JH. Identification of New Non-BBB Permeable Tryptophan Hydroxylase Inhibitors for Treating Obesity and Fatty Liver Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113417. [PMID: 35684355 PMCID: PMC9182086 DOI: 10.3390/molecules27113417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Serotonin (5-hydroxytryptophan) is a hormone that regulates emotions in the central nervous system. However, serotonin in the peripheral system is associated with obesity and fatty liver disease. Because serotonin cannot cross the blood-brain barrier (BBB), we focused on identifying new tryptophan hydroxylase type I (TPH1) inhibitors that act only in peripheral tissues for treating obesity and fatty liver disease without affecting the central nervous system. Structural optimization inspired by para-chlorophenylalanine (pCPA) resulted in the identification of a series of oxyphenylalanine and heterocyclic phenylalanine derivatives as TPH1 inhibitors. Among these compounds, compound 18i with an IC50 value of 37 nM was the most active in vitro. Additionally, compound 18i showed good liver microsomal stability and did not significantly inhibit CYP and Herg. Furthermore, this TPH1 inhibitor was able to actively interact with the peripheral system without penetrating the BBB. Compound 18i and its prodrug reduced body weight gain in mammals and decreased in vivo fat accumulation.
Collapse
Affiliation(s)
- Suvarna H. Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.H.P.); (H.S.P.); (E.J.B.); (M.K.); (J.Y.); (S.P.); (J.-H.C.)
- JD Bioscience, 208 beon-gil, Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Haushabhau S. Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.H.P.); (H.S.P.); (E.J.B.); (M.K.); (J.Y.); (S.P.); (J.-H.C.)
- JD Bioscience, 208 beon-gil, Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Kun-Young Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (K.-Y.P.); (K.-e.K.); (H.K.)
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Eun Jung Bae
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.H.P.); (H.S.P.); (E.J.B.); (M.K.); (J.Y.); (S.P.); (J.-H.C.)
| | - Kwang-eun Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (K.-Y.P.); (K.-e.K.); (H.K.)
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Minhee Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.H.P.); (H.S.P.); (E.J.B.); (M.K.); (J.Y.); (S.P.); (J.-H.C.)
| | - Jihyeon Yoon
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.H.P.); (H.S.P.); (E.J.B.); (M.K.); (J.Y.); (S.P.); (J.-H.C.)
| | - Saravanan Parameswaran
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.H.P.); (H.S.P.); (E.J.B.); (M.K.); (J.Y.); (S.P.); (J.-H.C.)
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.H.P.); (H.S.P.); (E.J.B.); (M.K.); (J.Y.); (S.P.); (J.-H.C.)
| | - Sungmi Park
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea; (S.P.); (J.-H.J.); (I.-K.L.)
| | - Jae-Han Jeon
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea; (S.P.); (J.-H.J.); (I.-K.L.)
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
| | - Jin Sook Song
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34141, Korea; (J.S.S.); (M.A.B.)
| | - Myung Ae Bae
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34141, Korea; (J.S.S.); (M.A.B.)
| | - In-Kyu Lee
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea; (S.P.); (J.-H.J.); (I.-K.L.)
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (K.-Y.P.); (K.-e.K.); (H.K.)
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (K.-Y.P.); (K.-e.K.); (H.K.)
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Correspondence: (J.M.S.); (J.H.A.)
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.H.P.); (H.S.P.); (E.J.B.); (M.K.); (J.Y.); (S.P.); (J.-H.C.)
- JD Bioscience, 208 beon-gil, Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
- Correspondence: (J.M.S.); (J.H.A.)
| |
Collapse
|
13
|
Barge S, Deka B, Kashyap B, Bharadwaj S, Kandimalla R, Ghosh A, Dutta PP, Samanta SK, Manna P, Borah JC, Talukdar NC. Astragalin mediates the pharmacological effects of Lysimachia candida Lindl on adipogenesis via downregulating PPARG and FKBP51 signaling cascade. Phytother Res 2021; 35:6990-7003. [PMID: 34734439 DOI: 10.1002/ptr.7320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/29/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
Metabolic disturbances in different tissue cells and obesity are caused by excessive calorie intake, and medicinal plants are potential sources of phytochemicals for combating these health problems. This study investigated the role of methanolic extract of the folklore medicinal plant Lysimachia candida (LCM) and its phytochemical, astragalin, in managing obesity in vivo and in vitro. Administration of LCM (200 mg/kg/body weight) daily for 140 days significantly decreased both the body weight gain (15.66%) and blood triglyceride and free fatty acid levels in high-fat-diet-fed male Wistar rats but caused no substantial change in leptin and adiponectin levels. The protein expression of adipogenic transcription factors in visceral adipose tissue was significantly reduced. Further, the 3T3-L1 cell-based assay revealed that the butanol fraction of LCM and its isolated compound, astragalin, exhibited antiadipogenic activity through downregulating adipogenic transcription factors and regulatory proteins. Molecular docking studies were performed to depict the possible binding patterns of astragalin to adipogenesis proteins. Overall, we show the potential antiobesity effects of L. candida and its bioactive compound, astragalin, and suggest clinical studies with LCM and astragalin.
Collapse
Affiliation(s)
- Sagar Barge
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Guwahati, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, India
| | - Barsha Deka
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Guwahati, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, India
| | - Bhaswati Kashyap
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Guwahati, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, India
| | - Simanta Bharadwaj
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Guwahati, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, India
| | - Raghuram Kandimalla
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Guwahati, India
- Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Aparajita Ghosh
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Partha Pratim Dutta
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Guwahati, India
- Faculty of Pharmaceutical science, Assam Down Town University, Guwahati, India
| | - Suman Kumar Samanta
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Prasenjit Manna
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Guwahati, India
- Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, India
| | - Jagat C Borah
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Narayan Chandra Talukdar
- Biochemistry and Drug Discovery Lab, Institute of Advanced Study in Science and Technology, Guwahati, India
- Faculty of Pharmaceutical science, Assam Down Town University, Guwahati, India
| |
Collapse
|
14
|
Tero BW, Fortier B, Soucy AN, Paquette G, Liaw L. Quantification of Lipid Area within Thermogenic Mouse Perivascular Adipose Tissue Using Standardized Image Analysis in FIJI. J Vasc Res 2021; 59:43-49. [PMID: 34736260 PMCID: PMC8766879 DOI: 10.1159/000517178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023] Open
Abstract
Quantification of adipocyte size and number is routinely performed for white adipose tissues using existing image analysis software. However, thermogenic adipose tissue has multilocular adipocytes, making it difficult to distinguish adipocyte cell borders and to analyze lipid proportion using existing methods. We developed a simple, standardized method to quantify lipid content of mouse thermogenic adipose tissue. This method, using FIJI analysis of hematoxylin/eosin stained sections, was highly objective and highly reproducible, with ∼99% inter-rater reliability. The method was compared to direct lipid staining of adipose tissue, with comparable results. We used our method to analyze perivascular adipose tissue (PVAT) from C57BL/6 mice on a normal chow diet, compared to calorie restriction or a high fat diet, where lipid storage phenotypes are known. Results indicate that lipid content can be estimated within mouse PVAT in a quantitative and reproducible manner, and shows correlation with previously studied molecular and physiological measures.
Collapse
Affiliation(s)
- Benjamin W. Tero
- Maine Medical Center Research Institute, MaineHealth, Scarborough, ME, USA
| | - Bethany Fortier
- Maine Medical Center Research Institute, MaineHealth, Scarborough, ME, USA
- Department of Biological Sciences, University of Southern Maine, Portland, ME, USA
| | - Ashley N. Soucy
- Maine Medical Center Research Institute, MaineHealth, Scarborough, ME, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Ginger Paquette
- Maine Medical Center Research Institute, MaineHealth, Scarborough, ME, USA
- Department of Biological Sciences, University of Southern Maine, Portland, ME, USA
| | - Lucy Liaw
- Maine Medical Center Research Institute, MaineHealth, Scarborough, ME, USA
- Department of Biological Sciences, University of Southern Maine, Portland, ME, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| |
Collapse
|
15
|
Yousefzadeh N, Jeddi S, Shokri M, Afzali H, Norouzirad R, Kashfi K, Ghasemi A. Long Term Sodium Nitrate Administration Positively Impacts Metabolic and Obesity Indices in Ovariectomized Rats. Arch Med Res 2021; 53:147-156. [PMID: 34696904 DOI: 10.1016/j.arcmed.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/07/2021] [Accepted: 09/30/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND In postmenopausal women, nitric oxide (NO) deficiency is associated with obesity and type 2 diabetes (T2D). This study aims at determining the long-term effects of low-dose nitrate administration on metabolic and obesity indices in ovariectomized (OVX) rats. METHODS OVX rat model was induced using the two dorsolateral skin incision method. Two months after ovariectomy, rats were divided into three groups (n = 10/group): Control, OVX, and OVX+nitrate, and the latter received sodium nitrate at a dose of 100 mg/L in their drinking water for nine months. Fasting serum glucose and lipid profile were measured every month. A glucose tolerance test was performed at months 1, 3, and 9 (the end of the study). Obesity indices were calculated, and histological analyses were performed on the gonadal adipose tissues at month 9. RESULTS OVX rats had impaired fasting glucose, glucose intolerance, and dyslipidemia with higher obesity indices at month 9. Nitrate improved glucose and lipid metabolism in OVX rats and decreased body weight (6.9%), body mass index (12.5%), Lee index (5.4%), adiposity index (23.9%), abdominal circumference (10.5%), and thoracic circumference (17.1%). Also, nitrate decreased adipocyte area by 49% and increased adipocyte density by 193% in gonadal adipose tissue. CONCLUSION Long-term low-dose nitrate administration improves glucose and lipid metabolism in OVX rats in association with decreasing OVX-induced adiposity, increasing adipocyte density, and decreasing adipocyte area. These findings provide support for a potential therapeutic role of nitrate in postmenopausal women with some features of metabolic syndrome.
Collapse
Affiliation(s)
- Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Shokri
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Afzali
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Norouzirad
- School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Yao J, Wu D, Zhang C, Yan T, Zhao Y, Shen H, Xue K, Huang X, Wang Z, Qiu Y. Macrophage IRX3 promotes diet-induced obesity and metabolic inflammation. Nat Immunol 2021; 22:1268-1279. [PMID: 34556885 DOI: 10.1038/s41590-021-01023-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
Metabolic inflammation is closely linked to obesity, and is implicated in the pathogenesis of metabolic diseases. FTO harbors the strongest genetic association with polygenic obesity, and IRX3 mediates the effects of FTO on body weight. However, in what cells and how IRX3 carries out this control are poorly understood. Here we report that macrophage IRX3 promotes metabolic inflammation to accelerate the development of obesity and type 2 diabetes. Mice with myeloid-specific deletion of Irx3 were protected against diet-induced obesity and metabolic diseases via increasing adaptive thermogenesis. Mechanistically, macrophage IRX3 promoted proinflammatory cytokine transcription and thus repressed adipocyte adrenergic signaling, thereby inhibiting lipolysis and thermogenesis. JNK1/2 phosphorylated IRX3, leading to its dimerization and nuclear translocation for transcription. Further, lipopolysaccharide stimulation stabilized IRX3 by inhibiting its ubiquitination, which amplified the transcriptional capacity of IRX3. Together, our findings identify a new player, macrophage IRX3, in the control of body weight and metabolic inflammation, implicating IRX3 as a therapeutic target.
Collapse
Affiliation(s)
- Jingfei Yao
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Dongmei Wu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Chunyan Zhang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Ting Yan
- School of life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yiheng Zhao
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Hongyu Shen
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Kaili Xue
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Xun Huang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zihao Wang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yifu Qiu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
17
|
Shuai L, Li BH, Jiang HW, Yang L, Li J, Li JY. DOT1L Regulates Thermogenic Adipocyte Differentiation and Function via Modulating H3K79 Methylation. Diabetes 2021; 70:1317-1333. [PMID: 33795413 DOI: 10.2337/db20-1110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022]
Abstract
Brown and beige adipocytes are characterized as thermogenic adipocytes and have great potential for treating obesity and associated metabolic diseases. In this article, we identify a conserved mammalian lysine 79 of histone H3 (H3K79) methyltransferase, disruptor of telomeric silencing-1 like (DOT1L), as a new epigenetic regulator that controls thermogenic adipocyte differentiation and function. We show that deletion of DOT1L in thermogenic adipocytes potently protects mice from diet-induced obesity, improves glucose homeostasis, alleviates hepatic steatosis, and facilitates adaptive thermogenesis in vivo. Loss of DOT1L in primary preadipocytes significantly promotes brown and beige adipogenesis and thermogenesis in vitro. Mechanistically, DOT1L epigenetically regulates the brown adipose tissue-selective gene program by modulating H3K79 methylation, in particular H3K79me2 modification. Thus, our study demonstrates that DOT1L exerts an important role in energy homeostasis by regulating thermogenic adipocyte differentiation and function.
Collapse
Affiliation(s)
- Lin Shuai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bo-Han Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao-Wen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lin Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Jing-Ya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
18
|
Empagliflozin and Liraglutide Differentially Modulate Cardiac Metabolism in Diabetic Cardiomyopathy in Rats. Int J Mol Sci 2021; 22:ijms22031177. [PMID: 33503985 PMCID: PMC7865477 DOI: 10.3390/ijms22031177] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
Glucagon-like peptide 1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT2is) are antihyperglycemic agents with cardioprotective properties against diabetic cardiomyopathy (DCM). However, the distinctive mechanisms underlying GLP-1RAs and SGLT2is in DCM are not fully elucidated. The purpose of this study was to investigate the impacts of GLP1RAs and/or SGLT2is on myocardial energy metabolism, cardiac function, and apoptosis signaling in DCM. Biochemistry and echocardiograms were studied before and after treatment with empagliflozin (10 mg/kg/day, oral gavage), and/or liraglutide (200 μg/kg every 12 h, subcutaneously) for 4 weeks in male Wistar rats with streptozotocin (65 mg/kg intraperitoneally)-induced diabetes. Cardiac fibrosis, apoptosis, and protein expression of metabolic and inflammatory signaling molecules were evaluated by histopathology and Western blotting in ventricular cardiomyocytes of different groups. Empagliflozin and liraglutide normalized myocardial dysfunction in diabetic rats. Upregulation of phosphorylated-acetyl coenzyme A carboxylase, carnitine palmitoyltransferase 1β, cluster of differentiation 36, and peroxisome proliferator-activated receptor-gamma coactivator, and downregulation of glucose transporter 4, the ratio of phosphorylated adenosine monophosphate-activated protein kinase α2 to adenosine monophosphate-activated protein kinase α2, and the ratio of phosphorylated protein kinase B to protein kinase B in diabetic cardiomyocytes were restored by treatment with empagliflozin or liraglutide. Nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3, interleukin-1β, tumor necrosis factor-α, and cleaved caspase-1 were significantly downregulated in empagliflozin-treated and liraglutide-treated diabetic rats. Both empagliflozin-treated and liraglutide-treated diabetic rats exhibited attenuated myocardial fibrosis and apoptosis. Empagliflozin modulated fatty acid and glucose metabolism, while liraglutide regulated inflammation and apoptosis in DCM. The better effects of combined treatment with GLP-1RAs and SGLT2is may lead to a potential strategy targeting DCM.
Collapse
|
19
|
Bulut GB, Alencar GF, Owsiany KM, Nguyen AT, Karnewar S, Haskins RM, Waller LK, Cherepanova OA, Deaton RA, Shankman LS, Keller SR, Owens GK. KLF4 (Kruppel-Like Factor 4)-Dependent Perivascular Plasticity Contributes to Adipose Tissue inflammation. Arterioscler Thromb Vasc Biol 2021; 41:284-301. [PMID: 33054397 PMCID: PMC7769966 DOI: 10.1161/atvbaha.120.314703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Smooth muscle cells and pericytes display remarkable plasticity during injury and disease progression. Here, we tested the hypothesis that perivascular cells give rise to Klf4-dependent macrophage-like cells that augment adipose tissue (AT) inflammation and metabolic dysfunction associated with diet-induced obesity (DIO). Approach and Results: Using Myh11-CreERT2 eYFP (enhanced yellow fluorescent protein) mice and flow cytometry of the stromovascular fraction of epididymal AT, we observed a large fraction of smooth muscle cells and pericytes lineage traced eYFP+ cells expressing macrophage markers. Subsequent single-cell RNA sequencing, however, showed that the majority of these cells had no detectable eYFP transcript. Further exploration revealed that intraperitoneal injection of tamoxifen in peanut oil, used for generating conditional knockout or reporter mice in thousands of previous studies, resulted in large increase in the autofluorescence and false identification of macrophages within epididymal AT as being eYFP+; and unintended proinflammatory consequences. Using newly generated Myh11-DreERT2tdTomato mice given oral tamoxifen, we virtually eliminated the problem with autofluorescence and identified 8 perivascular cell dominated clusters, half of which were altered upon DIO. Given that perivascular cell KLF4 (kruppel-like factor 4) can have beneficial or detrimental effects, we tested its role in obesity-associated AT inflammation. While smooth muscle cells and pericytes-specific Klf4 knockout (smooth muscle cells and pericytes Klf4Δ/Δ) mice were not protected from DIO, they displayed improved glucose tolerance upon DIO, and showed marked decreases in proinflammatory macrophages and increases in LYVE1+ lymphatic endothelial cells in the epididymal AT. CONCLUSIONS Perivascular cells within the AT microvasculature dynamically respond to DIO and modulate tissue inflammation and metabolism in a KLF4-dependent manner.
Collapse
Affiliation(s)
- Gamze B. Bulut
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Gabriel F. Alencar
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | | | - Anh T. Nguyen
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Santosh Karnewar
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Ryan M. Haskins
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Lillian K. Waller
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Olga A. Cherepanova
- Cardiovascular and Metabolic Sciences Lerner Research Institute, Cleveland Clinic
| | - Rebecca A. Deaton
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Laura S. Shankman
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Susanna R. Keller
- Department of Medicine-Division of Endocrinology and Metabolism, University of Virginia
| | - Gary K. Owens
- The Robert M. Berne Cardiovascular Research Center, University of Virginia
| |
Collapse
|
20
|
Hu Y, Yu J, Cui X, Zhang Z, Li Q, Guo W, Zhao C, Chen X, Meng M, Li Y, Guo M, Qiu J, Shen F, Wang D, Ma X, Xu L, Shen F, Gu X. Combination Usage of AdipoCount and Image-Pro Plus/ImageJ Software for Quantification of Adipocyte Sizes. Front Endocrinol (Lausanne) 2021; 12:642000. [PMID: 34421815 PMCID: PMC8371441 DOI: 10.3389/fendo.2021.642000] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
In recent decades, the prevalence of obesity has been rising. One of the major characteristics of obesity is fat accumulation, including hyperplasia (increase in number) and hypertrophy (increase in size). After histological staining, it is critical to accurately measure the number and size of adipocytes for assessing the severity of obesity in a timely fashion. Manual measurement is accurate but time-consuming. Although commercially available adipocyte counting tools, including AdipoCount, Image-Pro Plus, and ImageJ were helpful, limitations still exist in accuracy and time consuming. In the present study, we introduced the protocol of combined usage of these tools and illustrated the process with histological staining slides from adipose tissues of lean and obese mice. We found that the adipocyte sizes quantified by the tool combination were comparable as manual measurement, whereas the combined methods were more efficient. Besides, the recognition effect of monochrome segmentation image is better than that of color segmentation image. Overall, we developed a combination method to measure adipocyte sizes accurately and efficiently, which may be helpful for experimental process in laboratory and also for clinic diagnosis.
Collapse
Affiliation(s)
- Yepeng Hu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiangdi Cui
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhe Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Qianqian Li
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenxiu Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Cheng Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xin Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Fei Shen
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinran Ma
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lingyan Xu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- *Correspondence: Lingyan Xu, ; Feixia Shen, ; Xuejiang Gu,
| | - Feixia Shen
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Lingyan Xu, ; Feixia Shen, ; Xuejiang Gu,
| | - Xuejiang Gu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Lingyan Xu, ; Feixia Shen, ; Xuejiang Gu,
| |
Collapse
|
21
|
Ulmus parvifolia Jacq. Exhibits Antiobesity Properties and Potentially Induces Browning of White Adipose Tissue. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9358563. [PMID: 33425000 PMCID: PMC7773463 DOI: 10.1155/2020/9358563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/30/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022]
Abstract
The bark of Ulmus parvifolia Jacq. (UP) was traditionally used as a diuretic and to treat intestinal inflammation. With modern evidence of the correlation of diuretics, gut inflammation, and obesity, our study has shown the antiobesity effects of the bark of UP. UP treatment reduced lipid production and adipogenic genes in vitro. In vivo studies revealed that UP 100 mg/kg and UP 300 mg/kg treatment significantly reduced mouse weight without reducing food intake, indicating increased energy expenditure. UP significantly reduced the weight of epididymal and subcutaneous adipose tissue and decreased liver weight. Histological analysis revealed improvement in the progression of nonalcoholic fatty liver disease and epididymal white adipose tissue hypertrophy induced by a HFD. Real-Time PCR of epididymal adipose tissue revealed significant increases of uncoupling protein-1 (UCP-1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) expression after UP 300 mg/kg treatments. Phosphorylation of AMP-activated protein α (AMPKα) was increased, while phosphorylation of Acetyl-CoA Carboxylase (ACC) was reduced. Our findings reveal the ability of UP to reduce the occurrence of obesity through increased browning of white adipose tissue via increased AMPKα, PPARγ, PGC-1α, and UCP-1 expression.
Collapse
|
22
|
Duan YN, Ge X, Jiang HW, Zhang HJ, Zhao Y, Li JL, Zhang W, Li JY. Diphyllin Improves High-Fat Diet-Induced Obesity in Mice Through Brown and Beige Adipocytes. Front Endocrinol (Lausanne) 2020; 11:592818. [PMID: 33424769 PMCID: PMC7793827 DOI: 10.3389/fendo.2020.592818] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022] Open
Abstract
Brown adipose tissue (BAT) and beige adipose tissue dissipate metabolic energy and mediate nonshivering thermogenesis, thereby boosting energy expenditure. Increasing the browning of BAT and beige adipose tissue is expected to be a promising strategy for combatting obesity. Through phenotype screening of C3H10-T1/2 mesenchymal stem cells, diphyllin was identified as a promising molecule in promoting brown adipocyte differentiation. In vitro studies revealed that diphyllin promoted C3H10-T1/2 cell and primary brown/beige preadipocyte differentiation and thermogenesis, which resulted increased energy consumption. We synthesized the compound and evaluated its effect on metabolism in vivo. Chronic experiments revealed that mice fed a high-fat diet (HFD) with 100 mg/kg diphyllin had ameliorated oral glucose tolerance and insulin sensitivity and decreased body weight and fat content ratio. Adaptive thermogenesis in HFD-fed mice under cold stimulation and whole-body energy expenditure were augmented after chronic diphyllin treatment. Diphyllin may be involved in regulating the development of brown and beige adipocytes by inhibiting V-ATPase and reducing intracellular autophagy. This study provides new clues for the discovery of anti-obesity molecules from natural products.
Collapse
Affiliation(s)
- Ya-Nan Duan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Ge
- School of Pharmacy, Nantong University, Nantong, China
| | - Hao-Wen Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region, People’s Republic of China
| | - Yu Zhao
- School of Pharmacy, Nantong University, Nantong, China
| | - Jin-Long Li
- School of Pharmacy, Nantong University, Nantong, China
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region, People’s Republic of China
| | - Wei Zhang
- Kay Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University, Shanghai, China
| | - Jing-Ya Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
23
|
Lombardi FL, Jafari N, Bertrand KA, Oshry LJ, Cassidy MR, Ko NY, Denis GV. Novel semi-automated algorithm for high-throughput quantification of adipocyte size in breast adipose tissue, with applications for breast cancer microenvironment. Adipocyte 2020; 9:313-325. [PMID: 32633194 PMCID: PMC7469507 DOI: 10.1080/21623945.2020.1787582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/02/2022] Open
Abstract
The size distribution of adipocytes in fat tissue provides important information about metabolic status and overall health of patients. Histological measurements of biopsied adipose tissue can reveal cardiovascular and/or cancer risks, to complement typical prognosis parameters such as body mass index, hypertension or diabetes. Yet, current methods for adipocyte quantification are problematic and insufficient. Methods such as hand-tracing are tedious and time-consuming, ellipse approximation lacks precision, and fully automated methods have not proven reliable. A semi-automated method fills the gap in goal-directed computational algorithms, specifically for high-throughput adipocyte quantification. Here, we design and develop a tool, AdipoCyze, which incorporates a novel semi-automated tracing algorithm, along with benchmark methods, and use breast histological images from the Komen for the Cure Foundation to assess utility. Speed and precision of the new approach are superior to conventional methods and accuracy is comparable, suggesting a viable option to quantify adipocytes, while increasing user flexibility. This platform is the first to provide multiple methods of quantification in a single tool. Widespread laboratory and clinical use of this program may enhance productivity and performance, and yield insight into patient metabolism, which may help evaluate risks for breast cancer progression in patients with comorbidities of obesity. ABBREVIATIONS BMI: body mass index.
Collapse
Affiliation(s)
- Frank L. Lombardi
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Naser Jafari
- BU-BMC Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Kimberly A. Bertrand
- Slone Epidemiology Center, Boston University School of Medicine, Boston, MA, USA
| | - Lauren J. Oshry
- Section of Hematology-Oncology, Boston Medical Center, Boston, MA, USA
| | | | - Naomi Y. Ko
- Section of Hematology-Oncology, Boston Medical Center, Boston, MA, USA
| | - Gerald V. Denis
- BU-BMC Cancer Center, Boston University School of Medicine, Boston, MA, USA
- Section of Hematology-Oncology, Boston Medical Center, Boston, MA, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
24
|
Two-Week Isocaloric Time-Restricted Feeding Decreases Liver Inflammation without Significant Weight Loss in Obese Mice with Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:ijms21239156. [PMID: 33271781 PMCID: PMC7730100 DOI: 10.3390/ijms21239156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022] Open
Abstract
Prolonged, isocaloric, time-restricted feeding (TRF) protocols can promote weight loss, improve metabolic dysregulation, and mitigate non-alcoholic fatty liver disease (NAFLD). In addition, 3-day, severe caloric restriction can improve liver metabolism and glucose homeostasis prior to significant weight loss. Thus, we hypothesized that short-term, isocaloric TRF would improve NAFLD and characteristics of metabolic syndrome in diet-induced obese male mice. After 26 weeks of ad libitum access to western diet, mice either continued feeding ad libitum or were provided with access to the same quantity of western diet for 8 h daily, over the course of two weeks. Remarkably, this short-term TRF protocol modestly decreased liver tissue inflammation in the absence of changes in body weight or epidydimal fat mass. There were no changes in hepatic lipid accumulation or other characteristics of NAFLD. We observed no changes in liver lipid metabolism-related gene expression, despite increased plasma free fatty acids and decreased plasma triglycerides in the TRF group. However, liver Grp78 and Txnip expression were decreased with TRF suggesting hepatic endoplasmic reticulum (ER) stress and activation of inflammatory pathways may have been diminished. We conclude that two-week, isocaloric TRF can potentially decrease liver inflammation, without significant weight loss or reductions in hepatic steatosis, in obese mice with NAFLD.
Collapse
|
25
|
Lee YY, Kim M, Irfan M, Kim SH, Kim SD, Rhee MH. Physalis alkekengi Exhibits Antiobesity Effects in Mice with Potential of Inducing White Adipose Tissue Browning. J Med Food 2020; 23:312-318. [PMID: 32191579 DOI: 10.1089/jmf.2019.4625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the efficacy of an ethanol extract of Physalis alkekengi (PA) and its mechanistic pathway of action at the molecular level for its antiobesity properties. Four-week old male Institute of Cancer Research (ICR) mice were acclimatized for a week before starting the high-fat diet (HFD) for 2 weeks to induce obesity, followed by 8 more weeks of oral administration of 10 mg/kg orlistat and 300 mg/kg of PA extract, along with HFD. Body weights of the mice and feed and water intake were recorded weekly. After a total of 12 weeks, mice were euthanized, and blood, liver, and adipose tissues were harvested for further analysis. Administration of PA extract inhibited the progression of obesity by reducing weight gain, weight of adipose tissue, and normalizing serum triglyceride, glucose, total cholesterol, high-density lipoprotein, low-density lipoprotein, alanine aminotransferase, and aspartate aminotransferase. PA extract prevented the progression of nonalcoholic steatohepatitis induced by HFD and prevented the enlargement of liver. Phosphorylation of adenosine monophosphate-activated protein kinase α increased while phosphorylation of acetyl-CoA carboxylase was reduced. The browning gene uncoupling protein 1 expression was also increased by PA extract treatment. Our findings revealed that the antiobesity properties of PA extract may be mediated by browning of white adipose tissue.
Collapse
Affiliation(s)
- Yuan Yee Lee
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Minki Kim
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Muhammad Irfan
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Korea
| | - Sung-Dae Kim
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, Korea
| | - Man Hee Rhee
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
26
|
Isnaldi E, Richard F, De Schepper M, Vincent D, Leduc S, Maetens M, Geukens T, Floris G, Rouas G, Cardoso F, Sotiriou C, Zoppoli G, Larsimont D, Biganzoli E, Desmedt C. Digital analysis of distant and cancer-associated mammary adipocytes. Breast 2020; 54:179-186. [PMID: 33120083 PMCID: PMC7589564 DOI: 10.1016/j.breast.2020.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/04/2020] [Accepted: 10/13/2020] [Indexed: 11/02/2022] Open
Abstract
Adipocytes and cancer-associated adipocytes (CAAs) are poorly investigated cells in the tumor microenvironment. Different image analysis software exist for identifying and measuring these cells using scanned hematoxylin and eosin (H&E)-stained slides. It is however unclear which one is the most appropriate for breast cancer (BC) samples. Here, we compared three software (AdipoCount, Adiposoft, and HALO®). HALO® outperformed the other methods with regard to adipocyte identification, (> 96% sensitivity and specificity). All software performed equally good with regard to area and diameter measurement (concordance correlation coefficients > 0.97 and > 0.96, respectively). We then analyzed a series of 10 BCE samples (n = 51 H&E slides) with HALO®. Distant adipocytes were defined >2 mm away from cancer cells or fibrotic region, whereas CAAs as the first three lines of adipocytes close to the invasive front. Intra-mammary heterogeneity was limited, implying that measuring a single region of ∼500 adipocytes provides a reliable estimation of the distribution of their size features. CAAs had smaller areas (median fold-change: 2.62) and diameters (median fold-change: 1.64) as compared to distant adipocytes in the same breast (both p = 0.002). The size of CAAs and distant adipocytes was associated with the body mass index (BMI) of the patient (area: rho = 0.89, p = 0.001; rho = 0.71, p = 0.027, diameter: rho = 0.87 p = 0.002; rho = 0.65 p = 0.049, respectively). To conclude, we demonstrate that quantifying adipocytes in BC sections is feasible by digital pathology using H&E sections, setting the basis for a standardized analysis of mammary adiposity in larger series of patients.
Collapse
Affiliation(s)
- Edoardo Isnaldi
- KU Leuven, Department of Oncology, Laboratory for Translational Breast Cancer Research, B-3000, Leuven, Belgium; Department of Internal Medicine and Medical Specialties, University of Genoa, IT-16132, Genoa, Italy
| | - François Richard
- KU Leuven, Department of Oncology, Laboratory for Translational Breast Cancer Research, B-3000, Leuven, Belgium
| | - Maxim De Schepper
- KU Leuven, Department of Oncology, Laboratory for Translational Breast Cancer Research, B-3000, Leuven, Belgium
| | - Delphine Vincent
- Université Libre de Bruxelles, Institut Jules Bordet, J.C. Heuson Breast Cancer Translational Research Laboratory, B-1000, Brussels, Belgium
| | - Sophia Leduc
- KU Leuven, Department of Oncology, Laboratory for Translational Breast Cancer Research, B-3000, Leuven, Belgium
| | - Marion Maetens
- KU Leuven, Department of Oncology, Laboratory for Translational Breast Cancer Research, B-3000, Leuven, Belgium
| | - Tatjana Geukens
- KU Leuven, Department of Oncology, Laboratory for Translational Breast Cancer Research, B-3000, Leuven, Belgium
| | - Giuseppe Floris
- KU Leuven, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, B-3000, Leuven, Belgium; University Hospitals Leuven, Department of Pathology, B-3000, Leuven, Belgium
| | - Ghizlane Rouas
- Université Libre de Bruxelles, Institut Jules Bordet, J.C. Heuson Breast Cancer Translational Research Laboratory, B-1000, Brussels, Belgium
| | - Fatima Cardoso
- Champalimaud Clinical Center-Champalimaud Foundation, Breast Unit, P-1400-038, Lisbon, Portugal
| | - Christos Sotiriou
- Université Libre de Bruxelles, Institut Jules Bordet, J.C. Heuson Breast Cancer Translational Research Laboratory, B-1000, Brussels, Belgium
| | - Gabriele Zoppoli
- Department of Internal Medicine and Medical Specialties, University of Genoa, IT-16132, Genoa, Italy; Ospedale Policlinico San Martino IRCCS per L'Oncologia, IT-16132, Genoa, Italy
| | - Denis Larsimont
- Université Libre de Bruxelles, Institut Jules Bordet, Pathology Department, B-1000, Brussels, Belgium
| | - Elia Biganzoli
- Unit of Medical Statistics, Biometry and Bioinformatics "Giulio A. Maccacaro", Department of Clinical Sciences and Community Health & DSRC, University of Milan, Campus Cascina Rosa, Fondazione IRCCS Istituto Nazionale Tumori, IT-20133, Milan, Italy
| | - Christine Desmedt
- KU Leuven, Department of Oncology, Laboratory for Translational Breast Cancer Research, B-3000, Leuven, Belgium.
| |
Collapse
|
27
|
The marine compound and elongation factor 1A1 inhibitor, didemnin B, provides benefit in western diet-induced non-alcoholic fatty liver disease. Pharmacol Res 2020; 161:105208. [PMID: 32977024 DOI: 10.1016/j.phrs.2020.105208] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
Inhibition of eukaryotic elongation factor 1A1 (EEF1A1) with the marine compound didemnin B decreases lipotoxic HepG2 cell death in vitro and improves early stage non-alcoholic fatty liver disease (NAFLD) in young genetically obese mice. However, the effects of didemnin B on NAFLD in a model of long-term diet-induced obesity are not known. We investigated the effects of didemnin B on NAFLD severity and metabolic parameters in western diet-induced obese mice, and on the cell types that contribute to liver inflammation and fibrosis in vitro. Male 129S6 mice were fed either standard chow or western diet for 26 weeks, followed by intervention with didemnin B (50 μg/kg) or vehicle by intraperitoneal (i.p.) injection once every 3 days for 14 days. Didemnin B decreased liver and plasma triglycerides, improved oral glucose tolerance, and decreased NAFLD severity. Moreover, didemnin B moderately increased hepatic expression of genes involved in ER stress response (Perk, Chop), and fatty acid oxidation (Fgf21, Cpt1a). In vitro, didemnin B decreased THP-1 monocyte proliferation, disrupted THP-1 monocyte-macrophage differentiation, decreased THP-1 macrophage IL-1β secretion, and decreased hepatic stellate cell (HSteC) proliferation and collagen secretion under both basal and lipotoxic (high fatty acid) conditions. Thus, didemnin B improves hepatic steatosis, glucose tolerance, and blood lipids in obesity, in association with moderate, possibly hormetic, upregulation of pathways involved in cell stress response and energy balance in the liver. Furthermore, it decreases the activity of the cell types implicated in liver inflammation and fibrosis in vitro. These findings highlight the therapeutic potential of partial protein synthesis inhibition in the treatment of NAFLD.
Collapse
|
28
|
Jeddi S, Yousefzadeh N, Afzali H, Ghasemi A. Long-term nitrate administration increases expression of browning genes in epididymal adipose tissue of male type 2 diabetic rats. Gene 2020; 766:145155. [PMID: 32950634 DOI: 10.1016/j.gene.2020.145155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 01/31/2023]
Abstract
Expression of browning genes are lower in both humans and animals with type 2 diabetes (T2D). This study aims at determining effects of long-term nitrate administration on protein and mRNA levels of uncoupling protein 1 (UCP1), peroxisome proliferator activated receptor gamma (PPAR-γ), and PPAR-γ coactivator 1 alpha (PGC1-α) in epididymal adipose tissue (eAT) of rats with T2D. Male Wistar rats were divided into 4 groups (n = 6/group): Control, diabetes, control + nitrate (CN), and diabetes + nitrate (DN). T2D was induced using high fat diet combined with a low-dose of streptozotocin (30 mg/kg body weight). Sodium nitrate was administrated at a dose of 100 mg/L for 6 months in nitrate-treated rats. Fasting serum glucose and insulin concentrations were measured at months 0 (i.e. at start of the protocol), 3, and 6. At month 6, protein and mRNA levels of UCP1, PPAR-γ, and PGC1-α were measured in eAT samples. In addition, tissue concentration of cyclic guanosine monophosphate (cGMP) was measured and histological analyses were done at month 6. In rats with T2D, 6-month administration of nitrate decreased serum glucose and insulin concentrations by 13% and 23%, respectively and increased cGMP level by 85%. Rats with T2D had lower mRNA and protein levels of PPAR-γ (62%, P < 0.0001 and 18%, P = 0.0472), PGC1-α (49%, P = 0.0019 and 21%, P = 0.0482), and UCP1 (35%, P = 0.0613 and 30%, P = 0.0031) in eAT; 6-month nitrate administration restored these decreased levels to near control values. In addition, nitrate increased adipocyte density by 193% and decreased adipocyte area by 53% in rats with T2D. In conclusion, long-term low-dose nitrate administration increased mRNA and protein expressions of browning genes in white adipose tissue of male rats with T2D; these findings partly explain favorable metabolic effects of nitrate administration in diabetes.
Collapse
Affiliation(s)
- Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Afzali
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Heikelä H, Ruohonen ST, Adam M, Viitanen R, Liljenbäck H, Eskola O, Gabriel M, Mairinoja L, Pessia A, Velagapudi V, Roivainen A, Zhang FP, Strauss L, Poutanen M. Hydroxysteroid (17β) dehydrogenase 12 is essential for metabolic homeostasis in adult mice. Am J Physiol Endocrinol Metab 2020; 319:E494-E508. [PMID: 32691632 DOI: 10.1152/ajpendo.00042.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydroxysteroid 17β dehydrogenase 12 (HSD17B12) is suggested to be involved in the elongation of very long chain fatty acids. Previously, we have shown a pivotal role for the enzyme during mouse development. In the present study we generated a conditional Hsd17b12 knockout (HSD17B12cKO) mouse model by breeding mice homozygous for a floxed Hsd17b12 allele with mice expressing the tamoxifen-inducible Cre recombinase at the ROSA26 locus. Gene inactivation was induced by administering tamoxifen to adult mice. The gene inactivation led to a 20% loss of body weight within 6 days, associated with drastic reduction in both white (83% males, 75% females) and brown (65% males, 60% females) fat, likely due to markedly reduced food and water intake. Furthermore, the knockout mice showed sickness behavior and signs of liver toxicity, specifically microvesicular hepatic steatosis and increased serum alanine aminotransferase (4.6-fold in males, 7.7-fold in females). The hepatic changes were more pronounced in females than males. Proinflammatory cytokines, such as interleukin-6 (IL-6), IL-17, and granulocyte colony-stimulating factor, were increased in the HSD17B12cKO mice indicating an inflammatory response. Serum lipidomics study showed an increase in the amount of dihydroceramides, despite the dramatic overall loss of lipids. In line with the proposed role for HSD17B12 in fatty acid elongation, we observed accumulation of ceramides, dihydroceramides, hexosylceramides, and lactosylceramides with shorter than 18-carbon fatty acid side chains in the serum. The results indicate that HSD17B12 is essential for proper lipid homeostasis and HSD17B12 deficiency rapidly results in fatal systemic inflammation and lipolysis in adult mice.
Collapse
Affiliation(s)
- Hanna Heikelä
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Suvi T Ruohonen
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Marion Adam
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Heidi Liljenbäck
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku PET Centre, University of Turku, Turku, Finland
| | - Olli Eskola
- Turku PET Centre, University of Turku, Turku, Finland
| | - Michael Gabriel
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Laura Mairinoja
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Alberto Pessia
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Vidya Velagapudi
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Anne Roivainen
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Fu-Ping Zhang
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Leena Strauss
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Matti Poutanen
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
30
|
Glastonbury CA, Pulit SL, Honecker J, Censin JC, Laber S, Yaghootkar H, Rahmioglu N, Pastel E, Kos K, Pitt A, Hudson M, Nellåker C, Beer NL, Hauner H, Becker CM, Zondervan KT, Frayling TM, Claussnitzer M, Lindgren CM. Machine Learning based histology phenotyping to investigate the epidemiologic and genetic basis of adipocyte morphology and cardiometabolic traits. PLoS Comput Biol 2020; 16:e1008044. [PMID: 32797044 PMCID: PMC7449405 DOI: 10.1371/journal.pcbi.1008044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 08/26/2020] [Accepted: 06/11/2020] [Indexed: 12/29/2022] Open
Abstract
Genetic studies have recently highlighted the importance of fat distribution, as well as overall adiposity, in the pathogenesis of obesity-associated diseases. Using a large study (n = 1,288) from 4 independent cohorts, we aimed to investigate the relationship between mean adipocyte area and obesity-related traits, and identify genetic factors associated with adipocyte cell size. To perform the first large-scale study of automatic adipocyte phenotyping using both histological and genetic data, we developed a deep learning-based method, the Adipocyte U-Net, to rapidly derive mean adipocyte area estimates from histology images. We validate our method using three state-of-the-art approaches; CellProfiler, Adiposoft and floating adipocytes fractions, all run blindly on two external cohorts. We observe high concordance between our method and the state-of-the-art approaches (Adipocyte U-net vs. CellProfiler: R2visceral = 0.94, P < 2.2 × 10-16, R2subcutaneous = 0.91, P < 2.2 × 10-16), and faster run times (10,000 images: 6mins vs 3.5hrs). We applied the Adipocyte U-Net to 4 cohorts with histology, genetic, and phenotypic data (total N = 820). After meta-analysis, we found that mean adipocyte area positively correlated with body mass index (BMI) (Psubq = 8.13 × 10-69, βsubq = 0.45; Pvisc = 2.5 × 10-55, βvisc = 0.49; average R2 across cohorts = 0.49) and that adipocytes in subcutaneous depots are larger than their visceral counterparts (Pmeta = 9.8 × 10-7). Lastly, we performed the largest GWAS and subsequent meta-analysis of mean adipocyte area and intra-individual adipocyte variation (N = 820). Despite having twice the number of samples than any similar study, we found no genome-wide significant associations, suggesting that larger sample sizes and a homogenous collection of adipose tissue are likely needed to identify robust genetic associations.
Collapse
Affiliation(s)
- Craig A. Glastonbury
- Big Data Institute, University of Oxford, Oxford, United Kingdom
- BenevolentAI, London, United Kingdom
| | - Sara L. Pulit
- Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Julius Honecker
- Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jenny C. Censin
- Big Data Institute, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics (WCHG), Oxford, United Kingdom
| | - Samantha Laber
- Big Data Institute, University of Oxford, Oxford, United Kingdom
- Broad Institute of MIT and Harvard, Cambridge Massachusetts, United States of America
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, United Kingdom
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Nilufer Rahmioglu
- Wellcome Centre for Human Genetics (WCHG), Oxford, United Kingdom
- Endometriosis CaRe Centre Oxford, Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Emilie Pastel
- Genetics of Complex Traits, University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, United Kingdom
| | - Katerina Kos
- Genetics of Complex Traits, University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, United Kingdom
| | - Andrew Pitt
- NIHR Exeter Clinical Research Facility, University of Exeter Medical School, University of Exeter and Royal Devon and Exeter NHS Foundation Trust Exeter, United Kingdom
| | - Michelle Hudson
- NIHR Exeter Clinical Research Facility, University of Exeter Medical School, University of Exeter and Royal Devon and Exeter NHS Foundation Trust Exeter, United Kingdom
| | - Christoffer Nellåker
- Big Data Institute, University of Oxford, Oxford, United Kingdom
- Endometriosis CaRe Centre Oxford, Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Nicola L. Beer
- Novo Nordisk Research Centre Oxford (NNRCO), Oxford, United Kingdom
| | - Hans Hauner
- Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich
- German Center of Diabetes Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Christian M. Becker
- Endometriosis CaRe Centre Oxford, Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Krina T. Zondervan
- Wellcome Centre for Human Genetics (WCHG), Oxford, United Kingdom
- Endometriosis CaRe Centre Oxford, Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Timothy M. Frayling
- Genetics of Complex Traits, University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, United Kingdom
- NIHR Exeter Clinical Research Facility, University of Exeter Medical School, University of Exeter and Royal Devon and Exeter NHS Foundation Trust Exeter, United Kingdom
| | - Melina Claussnitzer
- Broad Institute of MIT and Harvard, Cambridge Massachusetts, United States of America
- University of Hohenheim, Stuttgart, Germany
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Cecilia M. Lindgren
- Big Data Institute, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics (WCHG), Oxford, United Kingdom
- Broad Institute of MIT and Harvard, Cambridge Massachusetts, United States of America
| |
Collapse
|