1
|
DiNuzzo M, Dienel GA, Behar KL, Petroff OA, Benveniste H, Hyder F, Giove F, Michaeli S, Mangia S, Herculano-Houzel S, Rothman DL. Neurovascular coupling is optimized to compensate for the increase in proton production from nonoxidative glycolysis and glycogenolysis during brain activation and maintain homeostasis of pH, pCO 2, and pO 2. J Neurochem 2024; 168:632-662. [PMID: 37150946 PMCID: PMC10628336 DOI: 10.1111/jnc.15839] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
During transient brain activation cerebral blood flow (CBF) increases substantially more than cerebral metabolic rate of oxygen consumption (CMRO2) resulting in blood hyperoxygenation, the basis of BOLD-fMRI contrast. Explanations for the high CBF versus CMRO2 slope, termed neurovascular coupling (NVC) constant, focused on maintenance of tissue oxygenation to support mitochondrial ATP production. However, paradoxically the brain has a 3-fold lower oxygen extraction fraction (OEF) than other organs with high energy requirements, like heart and muscle during exercise. Here, we hypothesize that the NVC constant and the capillary oxygen mass transfer coefficient (which in combination determine OEF) are co-regulated during activation to maintain simultaneous homeostasis of pH and partial pressure of CO2 and O2 (pCO2 and pO2). To test our hypothesis, we developed an arteriovenous flux balance model for calculating blood and brain pH, pCO2, and pO2 as a function of baseline OEF (OEF0), CBF, CMRO2, and proton production by nonoxidative metabolism coupled to ATP hydrolysis. Our model was validated against published brain arteriovenous difference studies and then used to calculate pH, pCO2, and pO2 in activated human cortex from published calibrated fMRI and PET measurements. In agreement with our hypothesis, calculated pH, pCO2, and pO2 remained close to constant independently of CMRO2 in correspondence to experimental measurements of NVC and OEF0. We also found that the optimum values of the NVC constant and OEF0 that ensure simultaneous homeostasis of pH, pCO2, and pO2 were remarkably similar to their experimental values. Thus, the high NVC constant is overall determined by proton removal by CBF due to increases in nonoxidative glycolysis and glycogenolysis. These findings resolve the paradox of the brain's high CBF yet low OEF during activation, and may contribute to explaining the vulnerability of brain function to reductions in blood flow and capillary density with aging and neurovascular disease.
Collapse
Affiliation(s)
| | - Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131 USA
| | - Kevin L Behar
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511 USA
| | - Ognen A Petroff
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511 USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale University, New Haven, CT, 06520 USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520 USA
| | - Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520 USA
- Department of Radiology, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, 06520 USA
| | - Federico Giove
- Centro Ricerche Enrico Fermi, Rome, RM, 00184 Italy
- Fondazione Santa Lucia IRCCS, Rome, RM, 00179 Italy
| | - Shalom Michaeli
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, 55455 USA
| | - Silvia Mangia
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, 55455 USA
| | - Suzana Herculano-Houzel
- Department of Psychology, Vanderbilt University, Nashville, TN
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
| | - Douglas L Rothman
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520 USA
- Department of Radiology, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, 06520 USA
| |
Collapse
|
2
|
Kopylova V, Boronovskiy S, Nartsissov Y. Approaches to vascular network, blood flow, and metabolite distribution modeling in brain tissue. Biophys Rev 2023; 15:1335-1350. [PMID: 37974995 PMCID: PMC10643724 DOI: 10.1007/s12551-023-01106-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/24/2023] [Indexed: 11/19/2023] Open
Abstract
The cardiovascular system plays a key role in the transport of nutrients, ensuring a continuous supply of all cells of the body with the metabolites necessary for life. The blood supply to the brain is carried out by the large arteries located on its surface, which branch into smaller arterioles that penetrate the cerebral cortex and feed the capillary bed, thereby forming an extensive branching network. The formation of blood vessels is carried out via vasculogenesis and angiogenesis, which play an important role in both embryo and adult life. The review presents approaches to modeling various aspects of both the formation of vascular networks and the construction of the formed arterial tree. In addition, a brief description of models that allows one to study the blood flow in various parts of the circulatory system and the spatiotemporal metabolite distribution in brain tissues is given. Experimental study of these issues is not always possible due to both the complexity of the cardiovascular system and the mechanisms through which the perfusion of all body cells is carried out. In this regard, mathematical models are a good tool for studying hemodynamics and can be used in clinical practice to diagnose vascular diseases and assess the need for treatment.
Collapse
Affiliation(s)
- Veronika Kopylova
- Institute of Cytochemistry and Molecular Pharmacology, Moscow, 115404 Russia
| | | | - Yaroslav Nartsissov
- Institute of Cytochemistry and Molecular Pharmacology, Moscow, 115404 Russia
- Biomedical Research Group, BiDiPharma GmbH, Siek, 22962 Germany
| |
Collapse
|
3
|
Tomanek RJ. The coronary capillary bed and its role in blood flow and oxygen delivery: A review. Anat Rec (Hoboken) 2022; 305:3199-3211. [PMID: 35521832 PMCID: PMC9796134 DOI: 10.1002/ar.24951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 01/01/2023]
Abstract
The assumption that the coronary capillary blood flow is exclusively regulated by precapillary vessels is not supported by recent data. Rather, the complex coronary capillary bed has unique structural and geometric characteristics that invalidate many assumptions regarding red blood cell (RBC) transport, for example, data based on a single capillary or that increases in flow are the result of capillary recruitment. It is now recognized that all coronary capillaries are open and that their variations in flow are due to structural differences, local O2 demand and delivery, and variations in hematocrit. Recent data reveal that local mechanisms within the capillary bed regulate flow via signaling mechanisms involving RBC signaling and endothelial-associated pericytes that contract and relax in response to humoral and neural signaling. The discovery that pericytes respond to vasoactive signals (e.g., nitric oxide, phenylephrine, and adenosine) underscores the role of these cells in regulating capillary diameter and consequently RBC flux and oxygen delivery. RBCs also affect blood flow by sensing <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>P</mml:mi> <mml:msub><mml:mi>O</mml:mi> <mml:mn>2</mml:mn></mml:msub> </mml:msub> </mml:math> and releasing nitric oxide to facilitate relaxation of pericytes and a consequential capillary dilation. New data indicate that these signaling mechanisms allow control of blood flow in specific coronary capillaries according to their oxygen requirements. In conclusion, mechanisms in the coronary capillary bed facilitate RBC density and transit time, hematocrit, blood flow and O2 delivery, factors that decrease capillary heterogeneity. These findings have important clinical implications for myocardial ischemia and infarction, as well as other vascular diseases.
Collapse
Affiliation(s)
- Robert J. Tomanek
- Department of Anatomy and Cell Biology, Carver College of MedicineUniversity of IowaIowa CityIAUSA
| |
Collapse
|
4
|
Roy TK, Secomb TW. Functional implications of microvascular heterogeneity for oxygen uptake and utilization. Physiol Rep 2022; 10:e15303. [PMID: 35581743 PMCID: PMC9114652 DOI: 10.14814/phy2.15303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023] Open
Abstract
In the vascular system, an extensive network structure provides convective and diffusive transport of oxygen to tissue. In the microcirculation, parameters describing network structure, blood flow, and oxygen transport are highly heterogeneous. This heterogeneity can strongly affect oxygen supply and organ function, including reduced oxygen uptake in the lung and decreased oxygen delivery to tissue. The causes of heterogeneity can be classified as extrinsic or intrinsic. Extrinsic heterogeneity refers to variations in oxygen demand in the systemic circulation or oxygen supply in the lungs. Intrinsic heterogeneity refers to structural heterogeneity due to stochastic growth of blood vessels and variability in flow pathways due to geometric constraints, and resulting variations in blood flow and hematocrit. Mechanisms have evolved to compensate for heterogeneity and thereby improve oxygen uptake in the lung and delivery to tissue. These mechanisms, which involve long-term structural adaptation and short-term flow regulation, depend on upstream responses conducted along vessel walls, and work to redistribute flow and maintain blood and tissue oxygenation. Mathematically, the variance of a functional quantity such as oxygen delivery that depends on two or more heterogeneous variables can be reduced if one of the underlying variables is controlled by an appropriate compensatory mechanism. Ineffective regulatory mechanisms can result in poor oxygen delivery even in the presence of adequate overall tissue perfusion. Restoration of endothelial function, and specifically conducted responses, should be considered when addressing tissue hypoxemia and organ failure in clinical settings.
Collapse
Affiliation(s)
- Tuhin K. Roy
- Department of AnesthesiologyMayo ClinicRochesterMinnesotaUSA
| | | |
Collapse
|
5
|
Control of low flow regions in the cortical vasculature determines optimal arterio-venous ratios. Proc Natl Acad Sci U S A 2021; 118:2021840118. [PMID: 34413186 DOI: 10.1073/pnas.2021840118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The energy demands of neurons are met by a constant supply of glucose and oxygen via the cerebral vasculature. The cerebral cortex is perfused by dense, parallel arterioles and venules, consistently in imbalanced ratios. Whether and how arteriole-venule arrangement and ratio affect the efficiency of energy delivery to the cortex has remained an unanswered question. Here, we show by mathematical modeling and analysis of the mapped mouse sensory cortex that the perfusive efficiency of the network is predicted to be limited by low-flow regions produced between pairs of arterioles or pairs of venules. Increasing either arteriole or venule density decreases the size of these low-flow regions, but increases their number, setting an optimal ratio between arterioles and venules that matches closely that observed across mammalian cortical vasculature. Low-flow regions are reshaped in complex ways by changes in vascular conductance, creating geometric challenges for matching cortical perfusion with neuronal activity.
Collapse
|
6
|
Zhang Q, Gheres KW, Drew PJ. Origins of 1/f-like tissue oxygenation fluctuations in the murine cortex. PLoS Biol 2021; 19:e3001298. [PMID: 34264930 PMCID: PMC8282088 DOI: 10.1371/journal.pbio.3001298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 05/24/2021] [Indexed: 01/07/2023] Open
Abstract
The concentration of oxygen in the brain spontaneously fluctuates, and the distribution of power in these fluctuations has a 1/f-like spectra, where the power present at low frequencies of the power spectrum is orders of magnitude higher than at higher frequencies. Though these oscillations have been interpreted as being driven by neural activity, the origin of these 1/f-like oscillations is not well understood. Here, to gain insight of the origin of the 1/f-like oxygen fluctuations, we investigated the dynamics of tissue oxygenation and neural activity in awake behaving mice. We found that oxygen signal recorded from the cortex of mice had 1/f-like spectra. However, band-limited power in the local field potential did not show corresponding 1/f-like fluctuations. When local neural activity was suppressed, the 1/f-like fluctuations in oxygen concentration persisted. Two-photon measurements of erythrocyte spacing fluctuations and mathematical modeling show that stochastic fluctuations in erythrocyte flow could underlie 1/f-like dynamics in oxygenation. These results suggest that the discrete nature of erythrocytes and their irregular flow, rather than fluctuations in neural activity, could drive 1/f-like fluctuations in tissue oxygenation.
Collapse
Affiliation(s)
- Qingguang Zhang
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (QZ); (PJD)
| | - Kyle W. Gheres
- Graduate Program in Molecular Cellular and Integrative Biosciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Patrick J. Drew
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Neurosurgery, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (QZ); (PJD)
| |
Collapse
|
7
|
Schmid F, Conti G, Jenny P, Weber B. The severity of microstrokes depends on local vascular topology and baseline perfusion. eLife 2021; 10:60208. [PMID: 34003107 PMCID: PMC8421069 DOI: 10.7554/elife.60208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 05/17/2021] [Indexed: 01/26/2023] Open
Abstract
Cortical microinfarcts are linked to pathologies like cerebral amyloid angiopathy and dementia. Despite their relevance for disease progression, microinfarcts often remain undetected and the smallest scale of blood flow disturbance has not yet been identified. We employed blood flow simulations in realistic microvascular networks from the mouse cortex to quantify the impact of single-capillary occlusions. Our simulations reveal that the severity of a microstroke is strongly affected by the local vascular topology and the baseline flow rate in the occluded capillary. The largest changes in perfusion are observed in capillaries with two inflows and two outflows. This specific topological configuration only occurs with a frequency of 8%. The majority of capillaries have one inflow and one outflow and is likely designed to efficiently supply oxygen and nutrients. Taken together, microstrokes bear potential to induce a cascade of local disturbances in the surrounding tissue, which might accumulate and impair energy supply locally.
Collapse
Affiliation(s)
- Franca Schmid
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland
| | - Giulia Conti
- Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland
| | - Patrick Jenny
- Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Østergaard L. SARS CoV-2 related microvascular damage and symptoms during and after COVID-19: Consequences of capillary transit-time changes, tissue hypoxia and inflammation. Physiol Rep 2021; 9:e14726. [PMID: 33523608 PMCID: PMC7849453 DOI: 10.14814/phy2.14726] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Corona virus disease 2019 (COVID-19) causes symptoms from multiple organs after infection by severe acute respiratory syndrome corona virus 2 (SARS CoV-2). They range from early, low blood oxygen levels (hypoxemia) without breathlessness ("silent hypoxia"), delirium, rashes, and loss of smell (anosmia), to persisting chest pain, muscle weakness and -pain, fatigue, confusion, memory problems and difficulty to concentrate ("brain fog"), mood changes, and unexpected onset of hypertension or diabetes. SARS CoV-2 affects the microcirculation, causing endothelial cell swelling and damage (endotheliitis), microscopic blood clots (microthrombosis), capillary congestion, and damage to pericytes that are integral to capillary integrity and barrier function, tissue repair (angiogenesis), and scar formation. Similar to other instances of critical illness, COVID-19 is also associated with elevated cytokine levels in the systemic circulation. This review examines how capillary damage and inflammation may contribute to these acute and persisting COVID-19 symptoms by interfering with blood and tissue oxygenation and with brain function. Undetectable by current diagnostic methods, capillary flow disturbances limit oxygen diffusion exchange in lungs and tissue and may therefore cause hypoxemia and tissue hypoxia. The review analyzes the combined effects of COVID-19-related capillary damage, pre-existing microvascular changes, and upstream vascular tone on tissue oxygenation in key organs. It identifies a vicious cycle, as infection- and hypoxia-related inflammation cause capillary function to deteriorate, which in turn accelerates hypoxia-related inflammation and tissue damage. Finally, the review addresses the effects of low oxygen and high cytokine levels in brain tissue on neurotransmitter synthesis and mood. Methods to assess capillary functions in human organs and therapeutic means to protect capillary functions and stimulate capillary bed repair may prove important for the individualized management of COVID-19 patients and targeted rehabilitation strategies.
Collapse
Affiliation(s)
- Leif Østergaard
- Neuroradiology Research UnitSection of NeuroradiologyDepartment of RadiologyAarhus University HospitalAarhusDenmark
- Center of Functionally Integrative NeuroscienceDepartment of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
9
|
Roy TK, Secomb TW. Effects of impaired microvascular flow regulation on metabolism-perfusion matching and organ function. Microcirculation 2020; 28:e12673. [PMID: 33236393 DOI: 10.1111/micc.12673] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Impaired tissue oxygen delivery is a major cause of organ damage and failure in critically ill patients, which can occur even when systemic parameters, including cardiac output and arterial hemoglobin saturation, are close to normal. This review addresses oxygen transport mechanisms at the microcirculatory scale, and how hypoxia may occur in spite of adequate convective oxygen supply. The structure of the microcirculation is intrinsically heterogeneous, with wide variations in vessel diameters and flow pathway lengths, and consequently also in blood flow rates and oxygen levels. The dynamic processes of structural adaptation and flow regulation continually adjust microvessel diameters to compensate for heterogeneity, redistributing flow according to metabolic needs to ensure adequate tissue oxygenation. A key role in flow regulation is played by conducted responses, which are generated and propagated by endothelial cells and signal upstream arterioles to dilate in response to local hypoxia. Several pathophysiological conditions can impair local flow regulation, causing hypoxia and tissue damage leading to organ failure. Therapeutic measures targeted to systemic parameters may not address or may even worsen tissue oxygenation at the microvascular level. Restoration of tissue oxygenation in critically ill patients may depend on restoration of endothelial cell function, including conducted responses.
Collapse
Affiliation(s)
- Tuhin K Roy
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ, 85724, USA
| |
Collapse
|
10
|
Šket R, Deutsch L, Prevoršek Z, Mekjavić IB, Plavec J, Rittweger J, Debevec T, Eiken O, Stres B. Systems View of Deconditioning During Spaceflight Simulation in the PlanHab Project: The Departure of Urine 1 H-NMR Metabolomes From Healthy State in Young Males Subjected to Bedrest Inactivity and Hypoxia. Front Physiol 2020; 11:532271. [PMID: 33364971 PMCID: PMC7750454 DOI: 10.3389/fphys.2020.532271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 11/04/2020] [Indexed: 12/27/2022] Open
Abstract
We explored the metabolic makeup of urine in prescreened healthy male participants within the PlanHab experiment. The run-in (5 day) and the following three 21-day interventions [normoxic bedrest (NBR), hypoxic bedrest (HBR), and hypoxic ambulation (HAmb)] were executed in a crossover manner within a controlled laboratory setup (medical oversight, fluid and dietary intakes, microbial bioburden, circadian rhythm, and oxygen level). The inspired O2 (FiO2) fraction next to inspired O2 (PiO2) partial pressure were 0.209 and 133.1 ± 0.3 mmHg for the NBR variant in contrast to 0.141 ± 0.004 and 90.0 ± 0.4 mmHg (approx. 4,000 m of simulated altitude) for HBR and HAmb interventions, respectively. 1H-NMR metabolomes were processed using standard quantitative approaches. A consensus of ensemble of multivariate analyses showed that the metabolic makeup at the start of the experiment and at HAmb endpoint differed significantly from the NBR and HBR endpoints. Inactivity alone or combined with hypoxia resulted in a significant reduction of metabolic diversity and increasing number of affected metabolic pathways. Sliding window analysis (3 + 1) unraveled that metabolic changes in the NBR lagged behind those observed in the HBR. These results show that the negative effects of cessation of activity on systemic metabolism are further aggravated by additional hypoxia. The PlanHab HAmb variant that enabled ambulation, maintained vertical posture, and controlled but limited activity levels apparently prevented the development of negative physiological symptoms such as insulin resistance, low-level systemic inflammation, constipation, and depression. This indicates that exercise apparently prevented the negative spiral between the host's metabolism, intestinal environment, microbiome physiology, and proinflammatory immune activities in the host.
Collapse
Affiliation(s)
- Robert Šket
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Leon Deutsch
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Zala Prevoršek
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Igor B. Mekjavić
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Janez Plavec
- National Institute of Chemistry, NMR Center, Ljubljana, Slovenia
| | - Joern Rittweger
- German Aerospace Center, Institute of Aerospace Medicine, Muscle and Bone Metabolism, Köln, Germany
| | - Tadej Debevec
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Sports, University of Ljubljana, Ljubljana, Slovenia
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Blaz Stres
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Civil and Geodetic Engineering, Institute of Sanitary Engineering, University of Ljubljana, Ljubljana, Slovenia
- Laboratory for Clinical Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Relevance of Microvascular Flow Assessments in Critically Ill Neonates and Children: A Systematic Review. Pediatr Crit Care Med 2020; 21:373-384. [PMID: 31834246 PMCID: PMC10061570 DOI: 10.1097/pcc.0000000000002201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Resolution of impaired microvascular flow may lag the normalization of macrocirculatory variables. The significance of microcirculatory dysfunction in critically ill children and neonates is unknown, but microcirculatory variables can be measured using Doppler or videomicroscopy imaging techniques. We outline the current understanding of the role of the microcirculation in critical illness, review methods for its assessment, and perform a systematic review of how it has been monitored in critically ill neonates and children. DESIGN Systematic review (PROSPERO CRD42019117993). SETTING Not applicable. SUBJECTS Not applicable. INTERVENTIONS None. MEASUREMENTS AND RESULTS We systematically searched MEDLINE, EMBASE, PubMed, and Web of Science. We included studies of critically ill patients 0 to 18 years old investigating microcirculatory blood flow. Two reviewers analyzed abstracts and articles. Results were qualitatively analyzed due to study heterogeneity. A total of 2,559 abstracts met search criteria, of which 94 underwent full-text review. Of those, 36 met inclusion criteria. Seven studies investigated microcirculatory changes in critically ill children. Twenty studies investigated the microcirculatory changes in neonates with variable diagnoses compared with a diverse set of clinical endpoints. Nine studies assessed the effects of age, sex, and birth weight on microvascular flow in neonates. Across all studies, microcirculatory dysfunction was associated with poor outcomes and may not correlate with observed macrovascular function. CONCLUSIONS Assessment of microvascular flow in critically ill children and neonates is possible, although significant challenges remain. In many such patients, microvascular blood flow is disrupted despite medical management targeting normalized macrovascular variables. Future studies are needed to define normal pediatric microvascular flow variables and to assess the impact of patient and treatment factors on its function.
Collapse
|
12
|
Lu Y, Zhang C, Lu X, Moeini M, Thorin E, Lesage F. Impact of atherosclerotic disease on cerebral microvasculature and tissue oxygenation in awake LDLR-/-hApoB+/+ transgenic mice. NEUROPHOTONICS 2019; 6:045003. [PMID: 31673566 PMCID: PMC6811703 DOI: 10.1117/1.nph.6.4.045003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/17/2019] [Indexed: 05/17/2023]
Abstract
We explore cortical microvasculature changes during the progression of atherosclerosis using young and old transgenic atherosclerotic (ATX) mice with thinned-skull cranial window. In awake animals, exploiting intrinsic signal optical imaging, Doppler optical coherence tomography, and two-photon microscopy, we investigate how the progression of atherosclerotic disease affects the morphology and function of cortical microvasculature as well as baseline cerebral tissue oxygenation. Results show that aged ATX mice exhibited weaker hemodynamic response in the somatosensory cortex to whisker stimulation and that the diameter of their descending arterioles and associated mean blood flow decreased significantly compared with the young ATX group. Data from two-photon phosphorescence lifetime microscopy indicate that old ATX mice had lower and more heterogeneous partial pressure of oxygen ( PO 2 ) in cortical tissue than young ATX mice. In addition, hypoxic micropockets in cortical tissue were found in old, but not young, ATX mice. Capillary red blood cell (RBC) flux, RBC velocity, RBC velocity heterogeneity, hematocrit, and diameter were also measured using line scans with two-photon fluorescence microscopy. When compared with the young group, RBC flux, velocity, and hematocrit decreased and RBC velocity heterogeneity increased in old ATX mice, presumably due to disturbed blood supply from arterioles that were affected by atherosclerosis. Finally, dilation of capillaries in old ATX mice was observed, which suggests that capillaries play an active role in compensating for an oxygen deficit in brain tissue.
Collapse
Affiliation(s)
- Yuankang Lu
- École Polytechnique de Montréal, Laboratoire d’Imagerie optique et moléculaire, Montréal, Québec, Canada
| | - Cong Zhang
- Institut de Cardiologie de Montréal, Montréal, Québec, Canada
| | - Xuecong Lu
- École Polytechnique de Montréal, Laboratoire d’Imagerie optique et moléculaire, Montréal, Québec, Canada
| | - Mohammad Moeini
- Amirkabir University of Technology (Tehran Polytechnic), Biomedical Engineering Department, Tehran, Iran
| | - Eric Thorin
- Institut de Cardiologie de Montréal, Montréal, Québec, Canada
- Université de Montréal, Department of Pharmacology and Physiology, Faculty of Medicine, Montréal, Québec, Canada
| | - Frédéric Lesage
- École Polytechnique de Montréal, Laboratoire d’Imagerie optique et moléculaire, Montréal, Québec, Canada
- Institut de Cardiologie de Montréal, Montréal, Québec, Canada
- Address all correspondence to Frédéric Lesage, E-mail:
| |
Collapse
|
13
|
Guo L, Li Z, Lyu J, Mei Y, Vardakis JC, Chen D, Han C, Lou X, Ventikos Y. On the Validation of a Multiple-Network Poroelastic Model Using Arterial Spin Labeling MRI Data. Front Comput Neurosci 2019; 13:60. [PMID: 31551742 PMCID: PMC6733888 DOI: 10.3389/fncom.2019.00060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/19/2019] [Indexed: 02/05/2023] Open
Abstract
The Multiple-Network Poroelastic Theory (MPET) is a numerical model to characterize the transport of multiple fluid networks in the brain, which overcomes the problem of conducting separate analyses on individual fluid compartments and losing the interactions between tissue and fluids, in addition to the interaction between the different fluids themselves. In this paper, the blood perfusion results from MPET modeling are partially validated using cerebral blood flow (CBF) data obtained from arterial spin labeling (ASL) magnetic resonance imaging (MRI), which uses arterial blood water as an endogenous tracer to measure CBF. Two subjects—one healthy control and one patient with unilateral middle cerebral artery (MCA) stenosis are included in the validation test. The comparison shows several similarities between CBF data from ASL and blood perfusion results from MPET modeling, such as higher blood perfusion in the gray matter than in the white matter, higher perfusion in the periventricular region for both the healthy control and the patient, and asymmetric distribution of blood perfusion for the patient. Although the partial validation is mainly conducted in a qualitative way, it is one important step toward the full validation of the MPET model, which has the potential to be used as a testing bed for hypotheses and new theories in neuroscience research.
Collapse
Affiliation(s)
- Liwei Guo
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Zeyan Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jinhao Lyu
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Yuqian Mei
- Department of Computer Science, INSIGNEO Institute, University of Sheffield, Sheffield, United Kingdom
| | - John C Vardakis
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Duanduan Chen
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Cong Han
- Department of Neurosurgery, The Fifth Medical Centre of PLA General Hospital, Beijing, China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Yiannis Ventikos
- Department of Mechanical Engineering, University College London, London, United Kingdom.,School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
14
|
Schmid F, Barrett MJP, Obrist D, Weber B, Jenny P. Red blood cells stabilize flow in brain microvascular networks. PLoS Comput Biol 2019; 15:e1007231. [PMID: 31469820 PMCID: PMC6750893 DOI: 10.1371/journal.pcbi.1007231] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 09/18/2019] [Accepted: 07/01/2019] [Indexed: 12/28/2022] Open
Abstract
Capillaries are the prime location for oxygen and nutrient exchange in all tissues. Despite their fundamental role, our knowledge of perfusion and flow regulation in cortical capillary beds is still limited. Here, we use in vivo measurements and blood flow simulations in anatomically accurate microvascular network to investigate the impact of red blood cells (RBCs) on microvascular flow. Based on these in vivo and in silico experiments, we show that the impact of RBCs leads to a bias toward equating the values of the outflow velocities at divergent capillary bifurcations, for which we coin the term “well-balanced bifurcations”. Our simulation results further reveal that hematocrit heterogeneity is directly caused by the RBC dynamics, i.e. by their unequal partitioning at bifurcations and their effect on vessel resistance. These results provide the first in vivo evidence of the impact of RBC dynamics on the flow field in the cortical microvasculature. By structural and functional analyses of our blood flow simulations we show that capillary diameter changes locally alter flow and RBC distribution. A dilation of 10% along a vessel length of 100 μm increases the flow on average by 21% in the dilated vessel downstream a well-balanced bifurcation. The number of RBCs rises on average by 27%. Importantly, RBC up-regulation proves to be more effective the more balanced the outflow velocities at the upstream bifurcation are. Taken together, we conclude that diameter changes at capillary level bear potential to locally change the flow field and the RBC distribution. Moreover, our results suggest that the balancing of outflow velocities contributes to the robustness of perfusion. Based on our in silico results, we anticipate that the bi-phasic nature of blood and small-scale regulations are essential for a well-adjusted oxygen and energy substrate supply. Glucose and oxygen are key energy sources of the brain. As energy storage capabilities are limited in the brain, a continuous supply of oxygen and glucose via the bloodstream is crucial for the brain’s functioning. The bulk of discharge occurs at the level of capillaries, which are the smallest and most frequent vessels of the cortical vasculature. Nonetheless, our understanding of perfusion and topology of the capillary bed is still limited. Here, we use in vivo two-photon based blood flow measurements and numerical simulations in large realistic microvascular networks to study the flow in the cortical microvasculature. Our results reveal that the impact of red blood cells enhances the robustness of microvascular perfusion and increases the heterogeneity in red blood cell distribution. It is well established that higher neuronal activity leads to an increase in blood flow. However, the precise regulation mechanisms and their spatial extent remain largely unknown. We show that small-scale regulations locally alter flow and red blood cell distribution. We suggest that these mechanisms are key for an efficient and flexible circulatory system. Moreover, our results reveal a novel role of the bi-phasic nature of blood.
Collapse
Affiliation(s)
- Franca Schmid
- Institute of Fluid Dynamics, ETH Zurich, Sonneggstrasse 3, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- * E-mail:
| | - Matthew J. P. Barrett
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Dominik Obrist
- ARTORG Center for Biomedical Engineering Research, University of Bern, Murtenstrasse 50, Bern, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Patrick Jenny
- Institute of Fluid Dynamics, ETH Zurich, Sonneggstrasse 3, Zurich, Switzerland
| |
Collapse
|
15
|
Li B, Esipova TV, Sencan I, Kılıç K, Fu B, Desjardins M, Moeini M, Kura S, Yaseen MA, Lesage F, Østergaard L, Devor A, Boas DA, Vinogradov SA, Sakadžić S. More homogeneous capillary flow and oxygenation in deeper cortical layers correlate with increased oxygen extraction. eLife 2019; 8:42299. [PMID: 31305237 PMCID: PMC6636997 DOI: 10.7554/elife.42299] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 07/01/2019] [Indexed: 01/01/2023] Open
Abstract
Our understanding of how capillary blood flow and oxygen distribute across cortical layers to meet the local metabolic demand is incomplete. We addressed this question by using two-photon imaging of resting-state microvascular oxygen partial pressure (PO2) and flow in the whisker barrel cortex in awake mice. Our measurements in layers I-V show that the capillary red-blood-cell flux and oxygenation heterogeneity, and the intracapillary resistance to oxygen delivery, all decrease with depth, reaching a minimum around layer IV, while the depth-dependent oxygen extraction fraction is increased in layer IV, where oxygen demand is presumably the highest. Our findings suggest that more homogeneous distribution of the physiological observables relevant to oxygen transport to tissue is an important part of the microvascular network adaptation to local brain metabolism. These results will inform the biophysical models of layer-specific cerebral oxygen delivery and consumption and improve our understanding of the diseases that affect cerebral microcirculation.
Collapse
Affiliation(s)
- Baoqiang Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Tatiana V Esipova
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States.,Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| | - Ikbal Sencan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Kıvılcım Kılıç
- Department of Neurosciences, University of California, San Diego, La Jolla, United States
| | - Buyin Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Michele Desjardins
- Department of Radiology, University of California, San Diego, La Jolla, United States
| | - Mohammad Moeini
- Institute of Biomedical Engineering, École Polytechnique de Montréal, Montréal, Canada.,Research Centre, Montreal Heart Institute, Montréal, Canada
| | - Sreekanth Kura
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Mohammad A Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Frederic Lesage
- Institute of Biomedical Engineering, École Polytechnique de Montréal, Montréal, Canada.,Research Centre, Montreal Heart Institute, Montréal, Canada
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience and MINDLab, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anna Devor
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States.,Department of Neurosciences, University of California, San Diego, La Jolla, United States.,Department of Radiology, University of California, San Diego, La Jolla, United States
| | - David A Boas
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States.,Department of Biomedical Engineering, Boston University, Boston, United States
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States.,Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| |
Collapse
|
16
|
Lücker A, Secomb TW, Barrett MJP, Weber B, Jenny P. The Relation Between Capillary Transit Times and Hemoglobin Saturation Heterogeneity. Part 2: Capillary Networks. Front Physiol 2018; 9:1296. [PMID: 30298017 PMCID: PMC6160581 DOI: 10.3389/fphys.2018.01296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 08/29/2018] [Indexed: 12/22/2022] Open
Abstract
Brain metabolism is highly dependent on continuous oxygen supply. Cortical microvascular networks exhibit heterogeneous blood flow, leading to non-uniform tissue oxygenation and capillary hemoglobin saturation. We recently proposed capillary outflow saturation heterogeneity (COSH) to represent effects of heterogeneity on oxygen supply to tissue regions most vulnerable to hypoxia, and showed that diffusive oxygen exchange among red blood cells within capillaries and among capillaries (diffusive interaction) significantly reduces COSH in simplified geometrical configurations. Here, numerical simulations of oxygen transport in capillary network geometries derived from mouse somatosensory cortex are presented. Diffusive interaction was found to reduce COSH by 41 to 62% compared to simulations where diffusive interaction was excluded. Hemoglobin saturation drop across the microvascular network is strongly correlated with red blood cell transit time, but the coefficient of variation of saturation drop is approximately one third lower. Unexpectedly, the radius of the tissue cylinder supplied by a capillary correlates weakly with the anatomical tissue cylinder radius, but strongly with hemoglobin saturation. Thus, diffusive interaction contributes greatly to the microcirculation's ability to achieve tissue oxygenation, despite heterogeneous capillary transit time and hematocrit distribution. These findings provide insight into the effects of cerebral small vessel disease on tissue oxygenation and brain function.
Collapse
Affiliation(s)
- Adrien Lücker
- Department of Mechanical and Process Engineering, Institute of Fluid Dynamics, ETH Zürich, Zurich, Switzerland
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Matthew J P Barrett
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Patrick Jenny
- Department of Mechanical and Process Engineering, Institute of Fluid Dynamics, ETH Zürich, Zurich, Switzerland
| |
Collapse
|