1
|
De Leonardis F, Ahmed A, Vozza A, Capobianco L, Riley CL, Barile SN, Di Molfetta D, Tiziani S, DiGiovanni J, Palmieri L, Dolce V, Fiermonte G. Human mitochondrial uncoupling protein 3 functions as a metabolite transporter. FEBS Lett 2024; 598:338-346. [PMID: 38058167 PMCID: PMC10922436 DOI: 10.1002/1873-3468.14784] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Since its discovery, a major debate about mitochondrial uncoupling protein 3 (UCP3) has been whether its metabolic actions result primarily from mitochondrial inner membrane proton transport, a process that decreases respiratory efficiency and ATP synthesis. However, UCP3 expression and activity are induced by conditions that would seem at odds with inefficient 'uncoupled' respiration, including fasting and exercise. Here, we demonstrate that the bacterially expressed human UCP3, reconstituted into liposomes, catalyses a strict exchange of aspartate, malate, sulphate and phosphate. The R282Q mutation abolishes the transport activity of the protein. Although the substrate specificity and inhibitor sensitivity of UCP3 display similarity with that of its close homolog UCP2, the two proteins significantly differ in their transport mode and kinetic constants.
Collapse
Affiliation(s)
- Francesco De Leonardis
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Amer Ahmed
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Angelo Vozza
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Christopher L. Riley
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Simona Nicole Barile
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Daria Di Molfetta
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX. USA
| | - Luigi Palmieri
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Fiermonte
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| |
Collapse
|
2
|
Kreiter J, Tyschuk T, Pohl EE. Uncoupling Protein 3 Catalyzes the Exchange of C4 Metabolites Similar to UCP2. Biomolecules 2023; 14:21. [PMID: 38254621 PMCID: PMC10813146 DOI: 10.3390/biom14010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Uncoupling protein 3 (UCP3) belongs to the mitochondrial carrier protein superfamily SLC25 and is abundant in brown adipose tissue (BAT), the heart, and muscles. The expression of UCP3 in tissues mainly dependent on fatty acid oxidation suggests its involvement in cellular metabolism and has drawn attention to its possible transport function beyond the transport of protons in the presence of fatty acids. Based on the high homology between UCP2 and UCP3, we hypothesized that UCP3 transports C4 metabolites similar to UCP2. To test this, we measured the transport of substrates against phosphate (32Pi) in proteoliposomes reconstituted with recombinant murine UCP3 (mUCP3). We found that mUCP3 mainly transports aspartate and sulfate but also malate, malonate, oxaloacetate, and succinate. The transport rates calculated from the exchange of 32Pi against extraliposomal aspartate and sulfate were 23.9 ± 5.8 and 17.5 ± 5.1 µmol/min/mg, respectively. Using site-directed mutagenesis, we revealed that mutation of R84 resulted in impaired aspartate/phosphate exchange, demonstrating its critical role in substrate transport. The difference in substrate preference between mUCP2 and mUCP3 may be explained by their different tissue expression patterns and biological functions in these tissues.
Collapse
Affiliation(s)
| | | | - Elena E. Pohl
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, 1210 Vienna, Austria; (J.K.); (T.T.)
| |
Collapse
|
3
|
Walker MA, Chen H, Yadav A, Ritterhoff J, Villet O, McMillen T, Wang Y, Purcell H, Djukovic D, Raftery D, Isoherranen N, Tian R. Raising NAD + Level Stimulates Short-Chain Dehydrogenase/Reductase Proteins to Alleviate Heart Failure Independent of Mitochondrial Protein Deacetylation. Circulation 2023; 148:2038-2057. [PMID: 37965787 PMCID: PMC10842390 DOI: 10.1161/circulationaha.123.066039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Strategies to increase cellular NAD+ (oxidized nicotinamide adenine dinucleotide) level have prevented cardiac dysfunction in multiple models of heart failure, but molecular mechanisms remain unclear. Little is known about the benefits of NAD+-based therapies in failing hearts after the symptoms of heart failure have appeared. Most pretreatment regimens suggested mechanisms involving activation of sirtuin, especially Sirt3 (sirtuin 3), and mitochondrial protein acetylation. METHODS We induced cardiac dysfunction by pressure overload in SIRT3-deficient (knockout) mice and compared their response with nicotinamide riboside chloride treatment with wild-type mice. To model a therapeutic approach, we initiated the treatment in mice with established cardiac dysfunction. RESULTS We found nicotinamide riboside chloride improved mitochondrial function and blunted heart failure progression. Similar benefits were observed in wild-type and knockout mice. Boosting NAD+ level improved the function of NAD(H) redox-sensitive SDR (short-chain dehydrogenase/reductase) family proteins. Upregulation of Mrpp2 (mitochondrial ribonuclease P protein 2), a multifunctional SDR protein and a subunit of mitochondrial ribonuclease P, improves mitochondrial DNA transcripts processing and electron transport chain function. Activation of SDRs in the retinol metabolism pathway stimulates RXRα (retinoid X receptor α)/PPARα (proliferator-activated receptor α) signaling and restores mitochondrial oxidative metabolism. Downregulation of Mrpp2 and impaired mitochondrial ribonuclease P were found in human failing hearts, suggesting a shared mechanism of defective mitochondrial biogenesis in mouse and human heart failure. CONCLUSIONS These findings identify SDR proteins as important regulators of mitochondrial function and molecular targets of NAD+-based therapy. Furthermore, the benefit is observed regardless of Sirt3-mediated mitochondrial protein deacetylation, a widely held mechanism for NAD+-based therapy for heart failure. The data also show that NAD+-based therapy can be useful in pre-existing heart failure.
Collapse
Affiliation(s)
- Matthew A. Walker
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Hongye Chen
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Aprajita Yadav
- Department of Pharmaceutics, School of Pharmacy, University
of Washington, Seattle, WA 98195
| | - Julia Ritterhoff
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Outi Villet
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Tim McMillen
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Yuliang Wang
- Department of Computer Science & Engineering,
University of Washington, Seattle, WA 98195
| | - Hayley Purcell
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Danijel Djukovic
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Daniel Raftery
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University
of Washington, Seattle, WA 98195
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| |
Collapse
|
4
|
Kim Y, Ajayi PT, Bleck CKE, Glancy B. Three-dimensional remodelling of the cellular energy distribution system during postnatal heart development. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210322. [PMID: 36189814 PMCID: PMC9527916 DOI: 10.1098/rstb.2021.0322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/11/2022] [Indexed: 11/12/2022] Open
Abstract
The heart meets the high energy demands of constant muscle contraction and calcium cycling primarily through the conversion of fatty acids into adenosine triphosphate (ATP) by a large volume of mitochondria. As such, the spatial relationships among lipid droplets (LDs), mitochondria, the sarcotubular system and the contractile apparatus are critical to the efficient distribution of energy within the cardiomyocyte. However, the connectivity among components of the cardiac cellular energy distribution system during postnatal development remains unclear. Here, we use volume electron microscopy to demonstrate that the sarcomere branches uniting the myofibrillar network occur more than twice as frequently during early postnatal development as in mature cardiomyocytes. Moreover, we show that the mitochondrial networks arranged in parallel to the contractile apparatus are composed of larger, more compact mitochondria with greater connectivity to adjacent mitochondria in mature as compared with early postnatal cardiomyocytes. Finally, we find that connectivity among mitochondria, LDs and the sarcotubular network is greater in developing than in mature muscles. These data suggest that physical connectivity among cellular structures may facilitate the communication needed to coordinate developmental processes within the cardiac muscle cell. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
Collapse
Affiliation(s)
- Yuho Kim
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Peter T. Ajayi
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher K. E. Bleck
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian Glancy
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Serano M, Pietrangelo L, Paolini C, Guarnier FA, Protasi F. Oxygen Consumption and Basal Metabolic Rate as Markers of Susceptibility to Malignant Hyperthermia and Heat Stroke. Cells 2022; 11:2468. [PMID: 36010545 PMCID: PMC9406760 DOI: 10.3390/cells11162468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 12/28/2022] Open
Abstract
Calsequestrin 1 (CASQ1) and Ryanodine receptor 1 (RYR1) are two of the main players in excitation-contraction (EC) coupling. CASQ1-knockout mice and mice carrying a mutation in RYR1 (Y522S) linked to human malignant hyperthermia susceptibility (MHS) both suffer lethal hypermetabolic episodes when exposed to halothane (MHS crises) and to environmental heat (heat stroke, HS). The phenotype of Y522S is more severe than that of CASQ1-null mice. As MHS and HS are hypermetabolic responses, we studied the metabolism of adult CASQ1-null and Y522S mice using wild-type (WT) mice as controls. We found that CASQ1-null and Y522S mice have increased food consumption and higher core temperature at rest. By indirect calorimetry, we then verified that CASQ1-null and Y522S mice show an increased oxygen consumption and a lower respiratory quotient (RQ). The accelerated metabolism of CASQ1-null and Y522S mice was also accompanied with a reduction in body fat. Moreover, both mouse models displayed increased oxygen consumption and a higher core temperature during heat stress. The results collected suggest that metabolic rate, oxygen consumption, and body temperature at rest, all more elevated in Y522S than in CASQ1-null mice, could possibly be used as predictors of the level of susceptibility to hyperthermic crises of mice (and possibly humans).
Collapse
Affiliation(s)
- Matteo Serano
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Cecilia Paolini
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- DNICS, Department of Neuroscience and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Flavia A. Guarnier
- Department of General Pathology, Londrina State University, Londrina 86057-970, Brazil
| | - Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
6
|
Kutsche HS, Schreckenberg R, Schlüter KD. Uncoupling Proteins in Striated Muscle Tissue: Known Facts and Open Questions. Antioxid Redox Signal 2022; 37:324-335. [PMID: 35044239 DOI: 10.1089/ars.2021.0258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Uncoupling proteins (UCPs) are a family of proteins that allow proton leakage across the inner mitochondrial membrane. Although UCP1, also known as thermogenin, is well known and important for heat generation in brown adipose tissue, striated muscles express two distinct members of UCP, namely UCP2 and UCP3. Unlike UCP1, the main function of UCP2 and UCP3 does not appear to be heat production. Recent Advances: Interestingly, UCP2 is the main isoform expressed in cardiac tissues, whereas UCP3 is the dominant isoform in skeletal muscles. In the past years, researchers have started to investigate the regulation of UCP2 and UCP3 expression in striated muscles. Furthermore, concepts about the proposed functions of UCP2 and UCP3 in striated muscles are developed but are still a matter of debate. Critical Issues: Potential functions of UCP2 and UCP3 in striated muscles include a role in protection against mitochondria-dependent oxidative stress, as transporter for pyruvate, fatty acids, and protons into and out of the mitochondria, and in metabolic sensing. In this context, the different isoform expression of UCP2 and UCP3 in the skeletal and cardiac muscle may be related to different metabolic requirements of the two organs. Future Directions: The level of expression of UCP2 and UCP3 in striated muscles changes in different disease stages. This suggests that UCPs may become drug targets for therapy in the future. Antioxid. Redox Signal. 37, 324-335.
Collapse
Affiliation(s)
| | - Rolf Schreckenberg
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | | |
Collapse
|
7
|
Čater M, Bombek LK. Protective Role of Mitochondrial Uncoupling Proteins against Age-Related Oxidative Stress in Type 2 Diabetes Mellitus. Antioxidants (Basel) 2022; 11:antiox11081473. [PMID: 36009191 PMCID: PMC9404801 DOI: 10.3390/antiox11081473] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
The accumulation of oxidative damage to DNA and other biomolecules plays an important role in the etiology of aging and age-related diseases such as type 2 diabetes mellitus (T2D), atherosclerosis, and neurodegenerative disorders. Mitochondrial DNA (mtDNA) is especially sensitive to oxidative stress. Mitochondrial dysfunction resulting from the accumulation of mtDNA damage impairs normal cellular function and leads to a bioenergetic crisis that accelerates aging and associated diseases. Age-related mitochondrial dysfunction decreases ATP production, which directly affects insulin secretion by pancreatic beta cells and triggers the gradual development of the chronic metabolic dysfunction that characterizes T2D. At the same time, decreased glucose oxidation in skeletal muscle due to mitochondrial damage leads to prolonged postprandial blood glucose rise, which further worsens glucose homeostasis. ROS are not only highly reactive by-products of mitochondrial respiration capable of oxidizing DNA, proteins, and lipids but can also function as signaling and effector molecules in cell membranes mediating signal transduction and inflammation. Mitochondrial uncoupling proteins (UCPs) located in the inner mitochondrial membrane of various tissues can be activated by ROS to protect cells from mitochondrial damage. Mitochondrial UCPs facilitate the reflux of protons from the mitochondrial intermembrane space into the matrix, thereby dissipating the proton gradient required for oxidative phosphorylation. There are five known isoforms (UCP1-UCP5) of mitochondrial UCPs. UCP1 can indirectly reduce ROS formation by increasing glutathione levels, thermogenesis, and energy expenditure. In contrast, UCP2 and UCP3 regulate fatty acid metabolism and insulin secretion by beta cells and modulate insulin sensitivity. Understanding the functions of UCPs may play a critical role in developing pharmacological strategies to combat T2D. This review summarizes the current knowledge on the protective role of various UCP homologs against age-related oxidative stress in T2D.
Collapse
Affiliation(s)
- Maša Čater
- Correspondence: (M.Č.); (L.K.B.); Tel.: +386-2-2345-847 (L.K.B.)
| | | |
Collapse
|
8
|
Dias-Rocha CP, Almeida MM, Woyames J, Mendonça R, Andrade CBV, Pazos-Moura CC, Trevenzoli IH. Maternal high-fat diet alters thermogenic markers but not muscle or brown adipose cannabinoid receptors in adult rats. Life Sci 2022; 306:120831. [PMID: 35882274 DOI: 10.1016/j.lfs.2022.120831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 12/26/2022]
Abstract
AIMS The endocannabinoid system (ECS) increases food intake, appetite for fat and lipogenesis, while decreases energy expenditure (thermogenesis), contributing to metabolic dysfunctions. We demonstrated that maternal high-fat diet (HFD) alters cannabinoid signaling in brown adipose tissue (BAT) of neonate and weanling male rat offspring, which have increased adiposity but also higher energy expenditure in adulthood. In this study, the main objective was to investigate the ECS expression in thermogenic tissues as BAT and skeletal muscle of adult rats programmed by maternal HFD. We hypothesized that maternal HFD would modulate ECS and energy metabolism markers in BAT and skeletal muscle of adult male offspring. MATERIALS AND METHODS Female rats received standard diet (9.4 % of calories as fat) or isocaloric HFD (28.9 % of calories as fat) for 8 weeks premating and throughout gestation and lactation. Male offspring were weaned on standard diet and euthanatized in adulthood. KEY FINDINGS Maternal HFD increased body weight, adiposity, glycemia, leptinemia while decreased testosterone levels in adult offspring. Maternal HFD did not change cannabinoid receptors in BAT or skeletal muscle as hypothesized but increased the content of uncoupling protein and tyrosine hydroxylase (thermogenic markers) in parallel to changes in mitochondrial morphology in skeletal muscle of adult offspring. SIGNIFICANCE In metabolic programming models, the ECS modulation in the BAT and skeletal muscle may be more important early in life to adapt energy metabolism during maternal dietary insult, and other mechanisms are possibly involved in muscle metabolism long-term regulation.
Collapse
Affiliation(s)
- Camilla P Dias-Rocha
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Mariana M Almeida
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Juliana Woyames
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Raphael Mendonça
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Cherley B V Andrade
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Carmen C Pazos-Moura
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Isis H Trevenzoli
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
9
|
Rigaud VO, Zarka C, Kurian J, Harlamova D, Elia A, Kasatkin N, Johnson J, Behanan M, Kraus L, Pepper H, Snyder NW, Mohsin S, Houser S, Khan M. UCP2 modulates cardiomyocyte cell cycle activity, acetyl-CoA and histone acetylation in response to moderate hypoxia. JCI Insight 2022; 7:155475. [PMID: 35771638 PMCID: PMC9462500 DOI: 10.1172/jci.insight.155475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Developmental cardiac tissue is regenerative while operating under low oxygen. After birth, ambient oxygen is associated with cardiomyocyte cell cycle exit and regeneration. Likewise, cardiac metabolism undergoes a shift with cardiac maturation. Whether there are common regulators of cardiomyocyte cell cycle linking metabolism to oxygen tension remains unknown. The objective of the study is to determine whether mitochondrial UCP2 is a metabolic oxygen sensor regulating cardiomyocyte cell cycle. Neonatal rat ventricular myocytes (NRVMs) under moderate hypoxia showed increased cell cycle activity and UCP2 expression. NRVMs exhibited a metabolic shift towards glycolysis, reduced citrate synthase, mtDNA, ΔΨm and DNA damage/oxidative stress while loss of UCP2 reversed this phenotype. Next, WT and UCP2KO mice kept under hypoxia for 4 weeks showed significant decline in cardiac function that was more pronounced in UCP2KO animals. Cardiomyocyte cell cycle activity was reduced while fibrosis and DNA damage was significantly increased in UCP2KO animals compared to WT under hypoxia. Mechanistically, UCP2 increased acetyl-CoA levels, histone acetylation and altered chromatin modifiers linking metabolism to cardiomyocyte cell cycle under hypoxia. Here, we show a novel role for mitochondrial UCP2 as an oxygen sensor regulating cardiomyocyte cell cycle activity, acetyl-CoA levels and histone acetylation in response to moderate hypoxia.
Collapse
Affiliation(s)
- Vagner Oc Rigaud
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Clare Zarka
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Justin Kurian
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Daria Harlamova
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Andrea Elia
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Nicole Kasatkin
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Jaslyn Johnson
- Cardiovascular Research Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Michael Behanan
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Lindsay Kraus
- Cardiovascular Research Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Hannah Pepper
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Nathaniel W Snyder
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Sadia Mohsin
- Cardiovascular Research Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Steven Houser
- Cardiovascular Research Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Mohsin Khan
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| |
Collapse
|
10
|
Osorio-Conles Ó, Olbeyra R, Moizé V, Ibarzabal A, Giró O, Viaplana J, Jiménez A, Vidal J, de Hollanda A. Positive Effects of a Mediterranean Diet Supplemented with Almonds on Female Adipose Tissue Biology in Severe Obesity. Nutrients 2022; 14:nu14132617. [PMID: 35807797 PMCID: PMC9267991 DOI: 10.3390/nu14132617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
It has been suggested that weight-loss-independent Mediterranean diet benefits on cardiometabolic health and diabetes prevention may be mediated, at least in part, through the modulation of white adipose tissue (WAT) biology. This study aimed to evaluate the short-term effects of a dietary intervention based on the Mediterranean diet supplemented with almonds (MDSA) on the main features of obesity-associated WAT dysfunction. A total of 38 women with obesity were randomly assigned to a 3-month intervention with MDSA versus continuation of their usual dietary pattern. Subcutaneous (SAT) and visceral adipose tissue (VAT) biopsies were obtained before and after the dietary intervention, and at the end of the study period, respectively. MDSA favored the abundance of small adipocytes in WAT. In SAT, the expression of angiogenesis genes increased after MDSA intervention. In VAT, the expression of genes implicated in adipogenesis, angiogenesis, autophagy and fatty acid usage was upregulated. In addition, a higher immunofluorescence staining for PPARG, CD31+ cells and M2-like macrophages and increased ADRB1 and UCP2 protein contents were found compared to controls. Changes in WAT correlated with a significant reduction in circulating inflammatory markers and LDL-cholesterol levels. These results support a protective effect of a Mediterranean diet supplemented with almonds on obesity-related WAT dysfunction.
Collapse
Affiliation(s)
- Óscar Osorio-Conles
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (Ó.O.-C.); (V.M.); (J.V.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
| | - Romina Olbeyra
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
| | - Violeta Moizé
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (Ó.O.-C.); (V.M.); (J.V.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Ainitze Ibarzabal
- Gastrointestinal Surgery Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain;
| | - Oriol Giró
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
| | - Judith Viaplana
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (Ó.O.-C.); (V.M.); (J.V.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
| | - Amanda Jiménez
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Josep Vidal
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (Ó.O.-C.); (V.M.); (J.V.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Correspondence: (J.V.); (A.d.H.); Tel.: +34-93-227-20-12 (J.V.); +34-93-227-98-46 (A.d.H.); Fax: +34-93-227-55-89 (J.V. & A.d.H.)
| | - Ana de Hollanda
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: (J.V.); (A.d.H.); Tel.: +34-93-227-20-12 (J.V.); +34-93-227-98-46 (A.d.H.); Fax: +34-93-227-55-89 (J.V. & A.d.H.)
| |
Collapse
|
11
|
Sato T, Ichise N, Kobayashi T, Fusagawa H, Yamazaki H, Kudo T, Tohse N. Enhanced glucose metabolism through activation of HIF-1α covers the energy demand in a rat embryonic heart primordium after heartbeat initiation. Sci Rep 2022; 12:74. [PMID: 34996938 PMCID: PMC8741773 DOI: 10.1038/s41598-021-03832-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
The initiation of heartbeat is an essential step in cardiogenesis in the heart primordium, but it remains unclear how intracellular metabolism responds to increased energy demands after heartbeat initiation. In this study, embryos in Wistar rats at embryonic day 10, at which heartbeat begins in rats, were divided into two groups by the heart primordium before and after heartbeat initiation and their metabolic characteristics were assessed. Metabolome analysis revealed that increased levels of ATP, a main product of glucose catabolism, and reduced glutathione, a by-product of the pentose phosphate pathway, were the major determinants in the heart primordium after heartbeat initiation. Glycolytic capacity and ATP synthesis-linked mitochondrial respiration were significantly increased, but subunits in complexes of mitochondrial oxidative phosphorylation were not upregulated in the heart primordium after heartbeat initiation. Hypoxia-inducible factor (HIF)-1α was activated and a glucose transporter and rate-limiting enzymes of the glycolytic and pentose phosphate pathways, which are HIF-1α-downstream targets, were upregulated in the heart primordium after heartbeat initiation. These results suggest that the HIF-1α-mediated enhancement of glycolysis with activation of the pentose phosphate pathway, potentially leading to antioxidant defense and nucleotide biosynthesis, covers the increased energy demand in the beating and developing heart primordium.
Collapse
Affiliation(s)
- Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan.
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Nobutoshi Ichise
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Takeshi Kobayashi
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Hiroyori Fusagawa
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroya Yamazaki
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Taiki Kudo
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Noritsugu Tohse
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| |
Collapse
|
12
|
Bayat G, Hashemi SA, Karim H, Fallah P, Hedayatyanfard K, Bayat M, Khalili A. Biliary cirrhosis-induced cardiac abnormality in rats: Interaction between Farnesoid-X-activated receptors and the cardiac uncoupling proteins 2 and 3. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:126-133. [PMID: 35656450 PMCID: PMC9118280 DOI: 10.22038/ijbms.2022.60888.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/03/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES This study aimed to evaluate the relationship between Farnesoid-X-activated receptors (FXR) as nuclear regulators of the antioxidant defense system as well as cardiac mitochondrial carrier proteins of UCP2 and UCP3 in cardiac damage induced by cirrhosis. MATERIALS AND METHODS Twenty-two male Wistar rats (200-250 g) were randomly divided into 3 experimental groups, including a control group (n=6), a sham-operated group (n=8), and a bile duct ligated (BDL) group (n=8). Four weeks after surgical intervention, biochemical assessment (AST, ALT, GGT, LDH, and ALP), histological observation, and molecular evaluation (FXR, UCP2, UCP3, BNP, Caspase3, and GAPDH) using real-time RT-PCR were performed. RESULTS Compared with the sham-operation group, the BDL group showed a significant rise in liver enzymes of AST, ALT, GGT, LDH, and ALP. Defined fibrotic and necrotic bundles and thick reticulin fibers were also found in BDL liver tissue. Besides liver morphological alterations, left ventricles of BDL ones were also associated with defined cardiomyocyte hypertrophy, myofiber vacuolization, and clear pigmentation. Findings showed a significant up-regulation of cardiac Brain Natriuretic Peptide (BNP) along with marked down-regulation in hepatic FXR, cardiac FXR, and cardiac UCP2 and UCP3. However, the expression of caspase 3 in the cardiac tissue was not affected by BDL operation during 4 weeks. CONCLUSION Expression of FXR as an upstream regulator of cellular redox status, besides the non-enzymatic ROS buffering defense system of cardiac UCPs, has a pivotal role in the pathogenesis of cirrhotic-induced cardiac abnormality in rats.
Collapse
Affiliation(s)
- Gholamreza Bayat
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Seyed Ali Hashemi
- Department of Pathology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Hosein Karim
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Cardiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Parviz Fallah
- Department of Medical Laboratory Sciences, Faculty of Para-Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Keshvad Hedayatyanfard
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azadeh Khalili
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
13
|
Mitochondrial Uncoupling Proteins (UCP1-UCP3) and Adenine Nucleotide Translocase (ANT1) Enhance the Protonophoric Action of 2,4-Dinitrophenol in Mitochondria and Planar Bilayer Membranes. Biomolecules 2021; 11:biom11081178. [PMID: 34439844 PMCID: PMC8392417 DOI: 10.3390/biom11081178] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022] Open
Abstract
2,4-Dinitrophenol (DNP) is a classic uncoupler of oxidative phosphorylation in mitochondria which is still used in “diet pills”, despite its high toxicity and lack of antidotes. DNP increases the proton current through pure lipid membranes, similar to other chemical uncouplers. However, the molecular mechanism of its action in the mitochondria is far from being understood. The sensitivity of DNP’s uncoupling action in mitochondria to carboxyatractyloside, a specific inhibitor of adenine nucleotide translocase (ANT), suggests the involvement of ANT and probably other mitochondrial proton-transporting proteins in the DNP’s protonophoric activity. To test this hypothesis, we investigated the contribution of recombinant ANT1 and the uncoupling proteins UCP1-UCP3 to DNP-mediated proton leakage using the well-defined model of planar bilayer lipid membranes. All four proteins significantly enhanced the protonophoric effect of DNP. Notably, only long-chain free fatty acids were previously shown to be co-factors of UCPs and ANT1. Using site-directed mutagenesis and molecular dynamics simulations, we showed that arginine 79 of ANT1 is crucial for the DNP-mediated increase of membrane conductance, implying that this amino acid participates in DNP binding to ANT1.
Collapse
|
14
|
The anabolic role of the Warburg, Cori-cycle and Crabtree effects in health and disease. Clin Nutr 2021; 40:2988-2998. [PMID: 33674148 DOI: 10.1016/j.clnu.2021.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
In evolution, genes survived that could code for metabolic pathways, promoting long term survival during famines or fasting when suffering from trauma, disease or during physiological growth. This requires utilization of substrates, already present in some form in the body. Carbohydrate stores are limited and to survive long, their utilization is restricted to survival pathways, by inhibiting glucose oxidation and glycogen synthesis. This leads to insulin resistance and spares muscle protein, because being the main supplier of carbon for new glucose production. In these survival pathways, part of the glucose is degraded in glycolysis in peripheral (muscle) tissues to pyruvate and lactate (Warburg effect), which are partly reutilized for glucose formation in liver and kidney, completing the Cori-cycle. Another part of the glucose taken up by muscle contributes, together with muscle derived amino acids, to the production of substrates consisting of a complete amino acid mix but extra non-essential amino acids like glutamine, alanine, glycine and proline. These support cell proliferation, matrix deposition and redox regulation in tissues, specifically active in host response and during growth. In these tissues, also glucose is taken up delivering glycolytic intermediates, that branch off and act as building blocks and produce reducing equivalents. Lactate is also produced and released in the circulation, adding to the lactate released by muscle in the Cori-cycle and completing secondary glucose cycles. Increased fluxes through these cycles lead to modest hyperglycemia and hyperlactatemia in states of healthy growth and disease and are often misinterpreted as induced by hypoxia.
Collapse
|
15
|
O’Connor EB, Muñoz-Wolf N, Leon G, Lavelle EC, Mills KHG, Walsh PT, Porter RK. UCP3 reciprocally controls CD4+ Th17 and Treg cell differentiation. PLoS One 2020; 15:e0239713. [PMID: 33211703 PMCID: PMC7676685 DOI: 10.1371/journal.pone.0239713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 09/14/2020] [Indexed: 11/20/2022] Open
Abstract
Uncoupling proteins (UCPs) are members of the mitochondrial anion carrier superfamily that can mediate the transfer of protons into the mitochondrial matrix from the intermembrane space. We have previously reported UCP3 expression in thymocytes, mitochondria of total splenocytes and splenic lymphocytes. Here, we demonstrate that Ucp3 is expressed in peripheral naive CD4+ T cells at the mRNA level before being markedly downregulated following activation. Non-polarized, activated T cells (Th0 cells) from Ucp3-/- mice produced significantly more IL-2, had increased expression of CD25 and CD69 and were more proliferative than Ucp3+/+ Th0 cells. The altered IL-2 expression observed between T cells from Ucp3+/+ and Ucp3-/- mice may be a factor in determining differentiation into Th17 or induced regulatory (iTreg) cells. When compared to Ucp3+/+, CD4+ T cells from Ucp3-/- mice had increased FoxP3 expression under iTreg conditions. Conversely, Ucp3-/- CD4+ T cells produced a significantly lower concentration of IL-17A under Th17 cell-inducing conditions in vitro. These effects were mirrored in antigen-specific T cells from mice immunized with KLH and CT. Interestingly, the altered responses of Ucp3-/- T cells were partially reversed upon neutralisation of IL-2. Together, these data indicate that UCP3 acts to restrict the activation of naive T cells, acting as a rheostat to dampen signals following TCR and CD28 co-receptor ligation, thereby limiting early activation responses. The observation that Ucp3 ablation alters the Th17:Treg cell balance in vivo as well as in vitro suggests that UCP3 is a potential target for the treatment of Th17 cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Emma B. O’Connor
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Natalia Muñoz-Wolf
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Gemma Leon
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin 2, Ireland and National Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland
| | - Ed C. Lavelle
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kingston H. G. Mills
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Patrick T. Walsh
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin 2, Ireland and National Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland
| | - Richard K. Porter
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
16
|
Koshenov Z, Oflaz FE, Hirtl M, Bachkoenig OA, Rost R, Osibow K, Gottschalk B, Madreiter-Sokolowski CT, Waldeck-Weiermair M, Malli R, Graier WF. The contribution of uncoupling protein 2 to mitochondrial Ca 2+ homeostasis in health and disease - A short revisit. Mitochondrion 2020; 55:164-173. [PMID: 33069910 DOI: 10.1016/j.mito.2020.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
Considering the versatile functions attributed to uncoupling protein 2 (UCP2) in health and disease, a profound understanding of the protein's molecular actions under physiological and pathophysiological conditions is indispensable. This review aims to revisit and shed light on the fundamental molecular functions of UCP2 in mitochondria, with particular emphasis on its intricate role in regulating mitochondrial calcium (Ca2+) uptake. UCP2's modulating effect on various vital processes in mitochondria makes it a crucial regulator of mitochondrial homeostasis in health and disease.
Collapse
Affiliation(s)
- Zhanat Koshenov
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Furkan E Oflaz
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Martin Hirtl
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Olaf A Bachkoenig
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Rene Rost
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Karin Osibow
- Diagnostic and Research Institute for Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; Department of Health Sciences and Technology, ETH Zurich, Schorenstraße 16, 8603 Schwerzenbach, Switzerland
| | - Benjamin Gottschalk
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; Diagnostic and Research Institute for Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Markus Waldeck-Weiermair
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; BioTechMed, Graz, Austria
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; BioTechMed, Graz, Austria.
| |
Collapse
|
17
|
Silvestri E, Senese R, De Matteis R, Cioffi F, Moreno M, Lanni A, Gentile A, Busiello RA, Salzano AM, Scaloni A, de Lange P, Goglia F, Lombardi A. Absence of uncoupling protein 3 at thermoneutrality influences brown adipose tissue mitochondrial functionality in mice. FASEB J 2020; 34:15146-15163. [PMID: 32946628 DOI: 10.1096/fj.202000995r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/31/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
The physiological role played by uncoupling protein 3 (UCP3) in brown adipose tissue (BAT) has not been fully elucidated so far. In the present study, we evaluated the impact of the absence of UCP3 on BAT mitochondrial functionality and morphology. To this purpose, wild type (WT) and UCP3 Knockout (KO) female mice were housed at thermoneutrality (30°C), a condition in which BAT contributes to energy homeostasis independently of its cold-induced thermogenic function. BAT mitochondria from UCP3 KO mice presented a lower ability to oxidize the fatty acids and glycerol-3-phosphate, and an enhanced oxidative stress as revealed by enhanced mitochondrial electron leak, lipid hydroperoxide levels, and induction of antioxidant mitochondrial enzymatic capacity. The absence of UCP3 also influenced the mitochondrial super-molecular protein aggregation, an important feature for fatty acid oxidation rate as well as for adequate cristae organization and mitochondrial shape. Indeed, electron microscopy revealed alterations in mitochondrial morphology in brown adipocytes from KO mice. In the whole, data here reported show that the absence of UCP3 results in a significant alteration of BAT mitochondrial physiology and morphology. These observations could also help to clarify some aspects of the association between metabolic disorders associated with low UCP3 levels, as previously reported in human studies.
Collapse
Affiliation(s)
- Elena Silvestri
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Rosalba Senese
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rita De Matteis
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Federica Cioffi
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Maria Moreno
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Antonia Lanni
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | | | | | - Anna Maria Salzano
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Pieter de Lange
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Fernando Goglia
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
18
|
Kurian J, Yuko AE, Kasatkin N, Rigaud VOC, Busch K, Harlamova D, Wagner M, Recchia FA, Wang H, Mohsin S, Houser SR, Khan M. Uncoupling protein 2-mediated metabolic adaptations define cardiac cell function in the heart during transition from young to old age. Stem Cells Transl Med 2020; 10:144-156. [PMID: 32964621 PMCID: PMC7780806 DOI: 10.1002/sctm.20-0123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/20/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular replacement in the heart is restricted to postnatal stages with the adult heart largely postmitotic. Studies show that loss of regenerative properties in cardiac cells seems to coincide with alterations in metabolism during postnatal development and maturation. Nevertheless, whether changes in cellular metabolism are linked to functional alternations in cardiac cells is not well studied. We report here a novel role for uncoupling protein 2 (UCP2) in regulation of functional properties in cardiac tissue derived stem‐like cells (CTSCs). CTSC were isolated from C57BL/6 mice aged 2 days (nCTSC), 2 month (CTSC), and 2 years old (aCTSC), subjected to bulk‐RNA sequencing that identifies unique transcriptome significantly different between CTSC populations from young and old heart. Moreover, results show that UCP2 is highly expressed in CTSCs from the neonatal heart and is linked to maintenance of glycolysis, proliferation, and survival. With age, UCP2 is reduced shifting energy metabolism to oxidative phosphorylation inversely affecting cellular proliferation and survival in aged CTSCs. Loss of UCP2 in neonatal CTSCs reduces extracellular acidification rate and glycolysis together with reduced cellular proliferation and survival. Mechanistically, UCP2 silencing is linked to significant alteration of mitochondrial genes together with cell cycle and survival signaling pathways as identified by RNA‐sequencing and STRING bioinformatic analysis. Hence, our study shows UCP2‐mediated metabolic profile regulates functional properties of cardiac cells during transition from neonatal to aging cardiac states.
Collapse
Affiliation(s)
- Justin Kurian
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Antonia E Yuko
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Nicole Kasatkin
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Vagner O C Rigaud
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Kelsey Busch
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Daria Harlamova
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Marcus Wagner
- Cardiovascular Research Institute (CVRC), Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Fabio A Recchia
- Cardiovascular Research Institute (CVRC), Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.,Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Sadia Mohsin
- Cardiovascular Research Institute (CVRC), Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Steven R Houser
- Cardiovascular Research Institute (CVRC), Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.,Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Mohsin Khan
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.,Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
The evolving systemic biomarker milieu in obese ZSF1 rat model of human cardiometabolic syndrome: Characterization of the model and cardioprotective effect of GDF15. PLoS One 2020; 15:e0231234. [PMID: 32804947 PMCID: PMC7430742 DOI: 10.1371/journal.pone.0231234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
Cardiometabolic syndrome has become a global health issue. Heart failure is a common comorbidity of cardiometabolic syndrome. Successful drug development to prevent cardiometabolic syndrome and associated comorbidities requires preclinical models predictive of human conditions. To characterize the heart failure component of cardiometabolic syndrome, cardiometabolic, metabolic, and renal biomarkers were evaluated in lean and obese ZSF1 19- to 32-week-old male rats. Histopathological assessment of kidneys and hearts was performed. Cardiac function, exercise capacity, and left ventricular gene expression were also analyzed. Obese ZSF1 rats exhibited multiple features of human cardiometabolic syndrome by pathological changes in systemic renal, metabolic, and cardiovascular disease circulating biomarkers. Hemodynamic assessment, echocardiography, and decreased exercise capacity confirmed heart failure with preserved ejection fraction. RNA-seq results demonstrated changes in left ventricular gene expression associated with fatty acid and branched chain amino acid metabolism, cardiomyopathy, cardiac hypertrophy, and heart failure. Twelve weeks of growth differentiation factor 15 (GDF15) treatment significantly decreased body weight, food intake, blood glucose, and triglycerides and improved exercise capacity in obese ZSF1 males. Systemic cardiovascular injury markers were significantly lower in GDF15-treated obese ZSF1 rats. Obese ZSF1 male rats represent a preclinical model for human cardiometabolic syndrome with established heart failure with preserved ejection fraction. GDF15 treatment mediated dietary response and demonstrated a cardioprotective effect in obese ZSF1 rats.
Collapse
|
20
|
De Munck TJI, Soeters PB, Koek GH. The role of ectopic adipose tissue: benefit or deleterious overflow? Eur J Clin Nutr 2020; 75:38-48. [PMID: 32801303 DOI: 10.1038/s41430-020-00713-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/01/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
Ectopic adipose tissues (EAT) are present adjacent to many organs and have predominantly been described in overweight and obesity. They have been suggested to be related to fatty acid overflow and to have harmful effects. The objective of this semi-comprehensive review is to explore whether EAT may play a supportive role rather than interfering with its function, when the adjacent organ is challenged metabolically and functionally. EAT are present adhered to different tissues or organs, including lymph nodes, heart, kidney, ovaries and joints. In this review, we only focused on epicardial, perinodal, and peritumoral fat since these locations have been studied in more detail. Evidence was found that EAT volume significantly increased, associated with chronic metabolic challenges of the corresponding tissue. In vitro evidence revealed transfer of fatty acids from peritumoral and perinodal fat to the adjacent tissue. Cytokine expression in these EAT is upregulated when the adjacent tissue is challenged. In these tissues, glycolysis is enhanced, whereas fatty acid oxidation is increased. Together with more direct evidence, this shows that glucose is oxidized to a lesser degree, but used to support anabolic metabolism of the adjacent tissue. In these situations, browning occurs, resulting from upregulation of anabolic metabolism, stimulated by uncoupling proteins 1 and 2 and possibly 3. In conclusion, the evidence found is fragmented but the available data support the view that accumulation and browning of adipocytes adjacent to the investigated organs or tissues may be a normal physiological response promoting healing and (patho)physiological growth.
Collapse
Affiliation(s)
- Toon J I De Munck
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, The Netherlands. .,School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands.
| | - Peter B Soeters
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands.,Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ger H Koek
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, The Netherlands.,School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands.,Department of Surgery, Klinikum RWTH Aachen, Aachen, Germany
| |
Collapse
|
21
|
Esfandiary A, Kutsche HS, Schreckenberg R, Weber M, Pak O, Kojonazarov B, Sydykov A, Hirschhäuser C, Wolf A, Haag D, Hecker M, Fink L, Seeger W, Ghofrani HA, Schermuly RT, Weißmann N, Schulz R, Rohrbach S, Li L, Sommer N, Schlüter KD. Protection against pressure overload-induced right heart failure by uncoupling protein 2 silencing. Cardiovasc Res 2020; 115:1217-1227. [PMID: 30850841 PMCID: PMC6529920 DOI: 10.1093/cvr/cvz049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/31/2019] [Accepted: 03/06/2019] [Indexed: 12/14/2022] Open
Abstract
Aims The role of uncoupling protein 2 (UCP2) in cardiac adaptation to pressure overload remains unclear. In a classical model of left ventricular pressure overload genetic deletion of UCP2 (UCP2−/−) protected against cardiac hypertrophy and failure. However, in UCP2−/− mice increased proliferation of pulmonary arterial smooth muscle cells induces mild pulmonary hypertension, right ventricular (RV) hypertrophy, and reduced cardiac output. This suggests a different role for UCP2 in RV and left ventricular adaptation to pressure overload. To clarify this situation in more detail UCP2−/− and wild-type mice were exposed to pulmonary arterial banding (PAB). Methods and results Mice were analysed (haemodynamics, morphometry, and echocardiography) 3 weeks after PAB or sham surgery. Myocytes and non-myocytes were isolated and analysed separately. Cell shortening of myocytes and fura-2 loading of cardiomyocytes were used to characterize their function. Brd assay was performed to study fibroblast proliferation. Isolated mitochondria were analysed to investigate the role of UCP2 for reactive oxygen species (ROS) production. UCP2 mRNA was 2.7-fold stronger expressed in RV myocytes than in left ventricular myocytes and stronger expressed in non-myocytes compared with myocytes. Three weeks after PAB, cardiac output was reduced in wild type but preserved in UCP2−/− mice. UCP2−/− had increased RV wall thickness, but lower RV internal diameters and displayed a significant stronger fibrosis. Cardiac fibroblasts from UCP2−/− had reduced proliferation rates but higher collagen-1 expression. Myocytes isolated from mice after PAB banding showed preserved function that was further improved by UCP2−/−. Mitochondrial ROS production and respiration was similar between UCP2−/− or wild-type hearts. Conclusion Despite a mild pulmonary hypertension in UCP2−/− mice, hearts from these mice are well preserved against additional pressure overload (severe pulmonary hypertension). This—at least in part—depends on different behaviour of non-myocytes (fibroblasts).
Collapse
Affiliation(s)
| | - Hanna S Kutsche
- Department of Physiology, Justus-Liebig University Gießen, Aulweg 129, Gießen, Germany
| | - Rolf Schreckenberg
- Department of Physiology, Justus-Liebig University Gießen, Aulweg 129, Gießen, Germany
| | - Martin Weber
- Department of Physiology, Justus-Liebig University Gießen, Aulweg 129, Gießen, Germany
| | - Oleg Pak
- Justus-Liebig-University Gießen, ECCPS, Aulweg 130, Gießen, Germany
| | | | - Akylbek Sydykov
- Justus-Liebig-University Gießen, ECCPS, Aulweg 130, Gießen, Germany
| | | | - Annemarie Wolf
- Department of Physiology, Justus-Liebig University Gießen, Aulweg 129, Gießen, Germany
| | - Daniela Haag
- Justus-Liebig-University Gießen, ECCPS, Aulweg 130, Gießen, Germany
| | - Matthias Hecker
- Justus-Liebig-University Gießen, ECCPS, Aulweg 130, Gießen, Germany
| | - Ludger Fink
- Justus-Liebig-University Gießen, ECCPS, Aulweg 130, Gießen, Germany
| | - Werner Seeger
- Justus-Liebig-University Gießen, ECCPS, Aulweg 130, Gießen, Germany
| | | | | | - Norbert Weißmann
- Justus-Liebig-University Gießen, ECCPS, Aulweg 130, Gießen, Germany
| | - Rainer Schulz
- Department of Physiology, Justus-Liebig University Gießen, Aulweg 129, Gießen, Germany
| | - Susanne Rohrbach
- Department of Physiology, Justus-Liebig University Gießen, Aulweg 129, Gießen, Germany
| | - Ling Li
- Department of Physiology, Justus-Liebig University Gießen, Aulweg 129, Gießen, Germany
| | - Natascha Sommer
- Justus-Liebig-University Gießen, ECCPS, Aulweg 130, Gießen, Germany
| | - Klaus-Dieter Schlüter
- Department of Physiology, Justus-Liebig University Gießen, Aulweg 129, Gießen, Germany
| |
Collapse
|
22
|
Makrecka‐Kuka M, Liepinsh E, Murray AJ, Lemieux H, Dambrova M, Tepp K, Puurand M, Käämbre T, Han WH, Goede P, O'Brien KA, Turan B, Tuncay E, Olgar Y, Rolo AP, Palmeira CM, Boardman NT, Wüst RCI, Larsen TS. Altered mitochondrial metabolism in the insulin-resistant heart. Acta Physiol (Oxf) 2020; 228:e13430. [PMID: 31840389 DOI: 10.1111/apha.13430] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022]
Abstract
Obesity-induced insulin resistance and type 2 diabetes mellitus can ultimately result in various complications, including diabetic cardiomyopathy. In this case, cardiac dysfunction is characterized by metabolic disturbances such as impaired glucose oxidation and an increased reliance on fatty acid (FA) oxidation. Mitochondrial dysfunction has often been associated with the altered metabolic function in the diabetic heart, and may result from FA-induced lipotoxicity and uncoupling of oxidative phosphorylation. In this review, we address the metabolic changes in the diabetic heart, focusing on the loss of metabolic flexibility and cardiac mitochondrial function. We consider the alterations observed in mitochondrial substrate utilization, bioenergetics and dynamics, and highlight new areas of research which may improve our understanding of the cause and effect of cardiac mitochondrial dysfunction in diabetes. Finally, we explore how lifestyle (nutrition and exercise) and pharmacological interventions can prevent and treat metabolic and mitochondrial dysfunction in diabetes.
Collapse
Affiliation(s)
| | | | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience University of Cambridge Cambridge UK
| | - Hélène Lemieux
- Department of Medicine Faculty Saint‐Jean, Women and Children's Health Research Institute University of Alberta Edmonton AB Canada
| | | | - Kersti Tepp
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Marju Puurand
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Tuuli Käämbre
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Woo H. Han
- Faculty Saint‐Jean University of Alberta Edmonton AB Canada
| | - Paul Goede
- Laboratory of Endocrinology Amsterdam Gastroenterology & Metabolism Amsterdam University Medical Center University of Amsterdam Amsterdam The Netherlands
| | - Katie A. O'Brien
- Department of Physiology, Development and Neuroscience University of Cambridge Cambridge UK
| | - Belma Turan
- Laboratory of Endocrinology Amsterdam Gastroenterology & Metabolism Amsterdam University Medical Center University of Amsterdam Amsterdam The Netherlands
| | - Erkan Tuncay
- Department of Biophysics Faculty of Medicine Ankara University Ankara Turkey
| | - Yusuf Olgar
- Department of Biophysics Faculty of Medicine Ankara University Ankara Turkey
| | - Anabela P. Rolo
- Department of Life Sciences University of Coimbra and Center for Neurosciences and Cell Biology University of Coimbra Coimbra Portugal
| | - Carlos M. Palmeira
- Department of Life Sciences University of Coimbra and Center for Neurosciences and Cell Biology University of Coimbra Coimbra Portugal
| | - Neoma T. Boardman
- Cardiovascular Research Group Department of Medical Biology UiT the Arctic University of Norway Tromso Norway
| | - Rob C. I. Wüst
- Laboratory for Myology Department of Human Movement Sciences Faculty of Behavioural and Movement Sciences Amsterdam Movement Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Terje S. Larsen
- Cardiovascular Research Group Department of Medical Biology UiT the Arctic University of Norway Tromso Norway
| |
Collapse
|
23
|
Beauchamp P, Jackson CB, Ozhathil LC, Agarkova I, Galindo CL, Sawyer DB, Suter TM, Zuppinger C. 3D Co-culture of hiPSC-Derived Cardiomyocytes With Cardiac Fibroblasts Improves Tissue-Like Features of Cardiac Spheroids. Front Mol Biosci 2020; 7:14. [PMID: 32118040 PMCID: PMC7033479 DOI: 10.3389/fmolb.2020.00014] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/24/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose: Both cardiomyocytes and cardiac fibroblasts (CF) play essential roles in cardiac development, function, and remodeling. Properties of 3D co-cultures are incompletely understood. Hence, 3D co-culture of cardiomyocytes and CF was characterized, and selected features compared with single-type and 2D culture conditions. Methods: Human cardiomyocytes derived from induced-pluripotent stem cells (hiPSC-CMs) were obtained from Cellular Dynamics or Ncardia, and primary human cardiac fibroblasts from ScienCell. Cardiac spheroids were investigated using cryosections and whole-mount confocal microscopy, video motion analysis, scanning-, and transmission-electron microscopy (SEM, TEM), action potential recording, and quantitative PCR (qPCR). Results: Spheroids formed in hanging drops or in non-adhesive wells showed spontaneous contractions for at least 1 month with frequent media changes. SEM of mechanically opened spheroids revealed a dense inner structure and no signs of blebbing. TEM of co-culture spheroids at 1 month showed myofibrils, intercalated disc-like structures and mitochondria. Ultrastructural features were comparable to fetal human myocardium. We then assessed immunostained 2D cultures, cryosections of spheroids, and whole-mount preparations by confocal microscopy. CF in co-culture spheroids assumed a small size and shape similar to the situation in ventricular tissue. Spheroids made only of CF and cultured for 3 weeks showed no stress fibers and strongly reduced amounts of alpha smooth muscle actin compared to early spheroids and 2D cultures as shown by confocal microscopy, western blotting, and qPCR. The addition of CF to cardiac spheroids did not lead to arrhythmogenic effects as measured by sharp-electrode electrophysiology. Video motion analysis showed a faster spontaneous contraction rate in co-culture spheroids compared to pure hiPSC-CMs, but similar contraction amplitudes and kinetics. Spontaneous contraction rates were not dependent on spheroid size. Applying increasing pacing frequencies resulted in decreasing contraction amplitudes without positive staircase effect. Gene expression analysis of selected cytoskeleton and myofibrillar proteins showed more tissue-like expression patterns in co-culture spheroids than with cardiomyocytes alone or in 2D culture. Conclusion: We demonstrate that the use of 3D co-culture of hiPSC-CMs and CF is superior over 2D culture conditions for co-culture models and more closely mimicking the native state of the myocardium with relevance to drug development as well as for personalized medicine.
Collapse
Affiliation(s)
- Philippe Beauchamp
- Cardiology Department, DBMR MEM C812, Bern University Hospital, Bern, Switzerland
| | - Christopher B. Jackson
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- IKELOS GmbH, Bern, Switzerland
| | | | | | - Cristi L. Galindo
- Division of Cardiovascular Medicine, Vanderbilt University Medical School, Nashville, TN, United States
- Department of Cell Biology and Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Douglas B. Sawyer
- Department of Cardiac Services, Maine Medical Center, Scarborough, ME, United States
| | - Thomas M. Suter
- Cardiology Department, DBMR MEM C812, Bern University Hospital, Bern, Switzerland
| | - Christian Zuppinger
- Cardiology Department, DBMR MEM C812, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
24
|
Pohl EE, Jovanovic O. The Role of Phosphatidylethanolamine Adducts in Modification of the Activity of Membrane Proteins under Oxidative Stress. Molecules 2019; 24:E4545. [PMID: 31842328 PMCID: PMC6943717 DOI: 10.3390/molecules24244545] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) and their derivatives, reactive aldehydes (RAs), have been implicated in the pathogenesis of many diseases, including metabolic, cardiovascular, and inflammatory disease. Understanding how RAs can modify the function of membrane proteins is critical for the design of therapeutic approaches in the above-mentioned pathologies. Over the last few decades, direct interactions of RA with proteins have been extensively studied. Yet, few studies have been performed on the modifications of membrane lipids arising from the interaction of RAs with the lipid amino group that leads to the formation of adducts. It is even less well understood how various multiple adducts affect the properties of the lipid membrane and those of embedded membrane proteins. In this short review, we discuss a crucial role of phosphatidylethanolamine (PE) and PE-derived adducts as mediators of RA effects on membrane proteins. We propose potential PE-mediated mechanisms that explain the modulation of membrane properties and the functions of membrane transporters, channels, receptors, and enzymes. We aim to highlight this new area of research and to encourage a more nuanced investigation of the complex nature of the new lipid-mediated mechanism in the modification of membrane protein function under oxidative stress.
Collapse
Affiliation(s)
- Elena E. Pohl
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna A-1210, Austria
| | - Olga Jovanovic
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna A-1210, Austria
| |
Collapse
|
25
|
Moschinger M, Hilse KE, Rupprecht A, Zeitz U, Erben RG, Rülicke T, Pohl EE. Age-related sex differences in the expression of important disease-linked mitochondrial proteins in mice. Biol Sex Differ 2019; 10:56. [PMID: 31806023 PMCID: PMC6896328 DOI: 10.1186/s13293-019-0267-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/17/2019] [Indexed: 11/10/2022] Open
Abstract
The prevalence and progression of many illnesses, such as neurodegenerative and cardiovascular diseases, obesity, and cancer, vary between women and men, often in an age-dependent manner. A joint hallmark of these diseases is some type of mitochondrial dysfunction. While several mitochondrial proteins are known to be regulated by sex hormones, the levels of those proteins have not been systematically analyzed with regard to sex and age, and studies that consider sex and/or age differences in the protein expression are very rare. In this study, we compared the expression patterns of physiologically important mitochondrial proteins in female and male C57BL/6N mice of age cohorts frequently used in experiments. We found that sex-related differences in the expression of uncoupling proteins 1 and 3 (UCP1 and UCP3) occur in an age-dependent manner. The sex-specific expression of UCP1 and UCP3 in brown adipose tissue (BAT) was inversely correlated with differences in body weight. Expression of UCP4 in the brain, Complex I in the spleen, and Complex II in the brain and BAT was least affected by the sex of the mouse. We further demonstrated that there are serious limitations in using VDAC1 and actin as markers in western blot analyses, due to their sex- and age-specific fluctuations. Our results confirm that sex and age are important parameters and should be taken into account by researchers who examine the mechanistic aspects of diseases. HIGHLIGHTS: I.The levels of UCP1 and UCP3 protein expression differ between females and males in an age-dependent manner.II.Pre-pubertal expression of almost all proteins tested in this study does not depend on the sex of the mouse.III.Expression of VDAC1 and actin, which are often used as loading control proteins in western blot analysis, is tissue-specifically influenced by sex and age.
Collapse
Affiliation(s)
- Michael Moschinger
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Karolina E Hilse
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Anne Rupprecht
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria.,Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Ute Zeitz
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Reinhold G Erben
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Elena E Pohl
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
26
|
Absence of Uncoupling Protein-3 at Thermoneutrality Impacts Lipid Handling and Energy Homeostasis in Mice. Cells 2019; 8:cells8080916. [PMID: 31426456 PMCID: PMC6721699 DOI: 10.3390/cells8080916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022] Open
Abstract
The role of uncoupling protein-3 (UCP3) in energy and lipid metabolism was investigated. Male wild-type (WT) and UCP3-null (KO) mice that were housed at thermoneutrality (30 °C) were used as the animal model. In KO mice, the ability of skeletal muscle mitochondria to oxidize fatty acids (but not pyruvate or succinate) was reduced. At whole animal level, adult KO mice presented blunted resting metabolic rates, energy expenditure, food intake, and the use of lipids as metabolic substrates. When WT and KO mice were fed with a standard/low-fat diet for 80 days, since weaning, they showed similar weight gain and body composition. Interestingly, KO mice showed lower fat accumulation in visceral adipose tissue and higher ectopic fat accumulation in liver and skeletal muscle. When fed with a high-fat diet for 80 days, since weaning, KO mice showed enhanced energy efficiency and an increased lipid gain (thus leading to a change in body composition between the two genotypes). We conclude that UCP3 plays a role in energy and lipid homeostasis and in preserving lean tissues by lipotoxicity, in mice that were housed at thermoneutrality.
Collapse
|
27
|
Plaza A, Antonazzi M, Blanco-Urgoiti J, Del Olmo N, Ruiz-Gayo M. Potential Role of Leptin in Cardiac Steatosis Induced by Highly Saturated Fat Intake during Adolescence. Mol Nutr Food Res 2019; 63:e1900110. [PMID: 31298470 DOI: 10.1002/mnfr.201900110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/16/2019] [Indexed: 01/06/2023]
Abstract
SCOPE To identify the age-dependent effect of diets containing elevated amounts of either saturated or unsaturated fatty acids on cardiac steatosis in mice. METHODS AND RESULTS Five- and eight-week-old C57BL/6J mice cohorts are given free access to either a saturated or an unsaturated fatty-acid-enriched diet during 8 weeks. Body weight (BW) and food intake are monitored during this period. Cardiac lipid content, carnitine palmitoyltransferase-I (CPT-I) activity, and the amount of uncoupling proteins 2 and 3 (UCP2 and UCP3) are analyzed and correlated with blood leptin concentration. Leptin and PPARγ gene expression is quantified in white adipose tissue (WAT). Both diets have a similar effect on food intake, BW, and adiposity, independently of the age. Nevertheless, cardiac steatosis is specifically identified in adolescent mice consuming the saturated diet. These animals also display lower activity of cardiac CPT-I, a down-regulation of cardiac UCP2, together with lower concentration of plasma leptin. Accordingly, leptin gene expression is reduced in the visceral WAT. CONCLUSION Consumption of diets containing elevated amounts of saturated fat during adolescence and early adult life promotes cardiac steatosis in mice. An insufficient endocrine activity of WAT, in terms of leptin production, may account for such an effect.
Collapse
Affiliation(s)
- Adrián Plaza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28925, Madrid, Spain
| | - Marco Antonazzi
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28925, Madrid, Spain
| | | | - Nuria Del Olmo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28925, Madrid, Spain
| | - Mariano Ruiz-Gayo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28925, Madrid, Spain
| |
Collapse
|
28
|
Pohl EE, Rupprecht A, Macher G, Hilse KE. Important Trends in UCP3 Investigation. Front Physiol 2019; 10:470. [PMID: 31133866 PMCID: PMC6524716 DOI: 10.3389/fphys.2019.00470] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/04/2019] [Indexed: 11/13/2022] Open
Abstract
Membrane uncoupling protein 3 (UCP3), a member of the mitochondrial uncoupling protein family, was discovered in 1997. UCP3's properties, such as its high homology to other mitochondrial carriers, especially to UCP2, its short lifetime and low specificity of UCP3 antibodies, have hindered progress in understanding its biological function and transport mechanism over decades. The abundance of UCP3 is highest in murine brown adipose tissue (BAT, 15.0 pmol/mg protein), compared to heart (2.7 pmol/mg protein) and the gastrocnemius muscle (1.7 pmol/mg protein), but it is still 400-fold lower than the abundance of UCP1, a biomarker for BAT. Investigation of UCP3 reconstituted in planar bilayer membranes revealed that it transports protons only when activated by fatty acids (FA). Although purine nucleotides (PN) inhibit UCP3-mediated transport, the molecular mechanism differs from that of UCP1. It remains a conundrum that two homologous proton-transporting proteins exist within the same tissue. Recently, we proposed that UCP3 abundance directly correlates with the degree of FA β-oxidation in cell metabolism. Further development in this field implies that UCP3 may have dual function in transporting substrates, which have yet to be identified, alongside protons. Evaluation of the literature with respect to UCP3 is a complex task because (i) UCP3 features are often extrapolated from its "twin" UCP2 without additional proof, and (ii) the specificity of antibodies against UCP3 used in studies is rarely evaluated. In this review, we primarily focus on recent findings obtained for UCP3 in biological and biomimetic systems.
Collapse
Affiliation(s)
- Elena E. Pohl
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Anne Rupprecht
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Gabriel Macher
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Karolina E. Hilse
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
29
|
Upregulation of UCP2 Expression Protects against LPS-Induced Oxidative Stress and Apoptosis in Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2758262. [PMID: 31182990 PMCID: PMC6512061 DOI: 10.1155/2019/2758262] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/21/2019] [Accepted: 03/10/2019] [Indexed: 12/17/2022]
Abstract
Uncoupling protein 2 (UCP2) has a cardioprotective role under septic conditions, but the underlying mechanism remains unclear. This study aimed at investigating the effects of UCP2 on the oxidative stress and apoptosis of cardiomyocytes induced by lipopolysaccharide (LPS). First, LPS increased UCP2 expression in cardiomyocytes in a time-dependent manner. LPS increased the production of lactate dehydrogenase (LDH), reactive oxygen species (ROS), and malondialdehyde (MDA) and decreased the level of superoxide dismutase (SOD). However, UCP2 knockdown increased the LPS-induced cardiac injury and oxidative stress. In addition, LPS damaged the mitochondrial ultrastructure and led to the disruption of mitochondrial membrane potential (MMP), as well as the release of mitochondrial cytochrome c. UCP2 knockdown aggravated mitochondrial injury and the release of mitochondrial cytochrome c. LPS increased the protein levels of Bax and cleaved-caspase-3, decreased the protein level of Bcl-2, and upregulated the protein level of mitogen-activated protein kinase. However, upon UCP2 knockdown, the protein levels of Bax and cleaved-caspase-3 increased even further, and the protein level of Bcl-2 was further decreased. The protein level of phosphorylated p38 was also further enhanced. Thus, UCP2 protects against LPS-induced oxidative stress and apoptosis in cardiomyocytes.
Collapse
|
30
|
Jarmuszkiewicz W, Szewczyk A. Energy-dissipating hub in muscle mitochondria: Potassium channels and uncoupling proteins. Arch Biochem Biophys 2019; 664:102-109. [DOI: 10.1016/j.abb.2019.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/15/2023]
|