1
|
Le-Bert CR, Mitchell GS, Reznikov LR. Cardiopulmonary adaptations of a diving marine mammal, the bottlenose dolphin: Physiology during anesthesia. Physiol Rep 2024; 12:e16183. [PMID: 39245795 PMCID: PMC11381195 DOI: 10.14814/phy2.16183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Diving marine mammals are a diverse group of semi- to completely aquatic species. Some species are targets of conservation and rehabilitation efforts; other populations are permanently housed under human care and may contribute to clinical and biomedical investigations. Veterinary medical care for species under human care, at times, may necessitate the use of general anesthesia for diagnostic and surgical indications. However, the unique physiologic and anatomic adaptations of one representative diving marine mammal, the bottlenose dolphin, present several challenges in providing ventilatory and cardiovascular support to maintain adequate organ perfusion under general anesthesia. The goal of this review is to highlight the unique cardiopulmonary adaptations of the completely aquatic bottlenose dolphin (Tursiops truncatus), and to identify knowledge gaps in our understanding of how those adaptations influence their physiology and pose potential challenges for sedation and anesthesia of these mammals.
Collapse
Affiliation(s)
- Carolina R Le-Bert
- Department of Physiology & Aging, College of Medicine, University of Florida, Gainesville, Florida, USA
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific, San Diego, California, USA
| | - Gordon S Mitchell
- Department of Physical Therapy, College of Public Human and Health Professionals, University of Florida, Gainesville, Florida, USA
| | - Leah R Reznikov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Kjeld T, Isbrand AB, Arendrup HC, Højberg J, Bejder J, Krag TO, Vissing J, Tolbod LP, Harms JH, Gormsen LC, Fuglø D, Hansen EG. Pulmonary vascular adaptations to hypoxia in elite breath-hold divers. Front Physiol 2024; 15:1296537. [PMID: 39135706 PMCID: PMC11318387 DOI: 10.3389/fphys.2024.1296537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/24/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Elite breath-hold divers (BHD) possess several oxygen conserving adaptations to endure long dives similar to diving mammals. During dives, Bottlenose Dolphins may increase the alveolar ventilation (VA) to perfusion (Q) ratio to increase alveolar oxygen delivery. We hypothesized that BHD possess similar adaptive mechanisms during apnea. Methods and results Pulmonary blood volume (PBV) was determined by echocardiography, 15O-H2O PET/CT, and cardiac MRi, (n = 6) during and after maximum apneas. Pulmonary function was determined by body box spirometry and compared to matched controls. After 2 min of apnea, the PBV determined by echocardiography and 15O-H2O-PET/CT decreased by 26% and 41%, respectively. After 4 min of apnea, the PBV assessed by echocardiography and cardiac MRi decreased by 48% and 67%, respectively (n = 6). Fractional saturation (F)O2Hb determined by arterial blood-gas-analyses collected after warm-up and a 5-minute pool-apnea (n = 9) decreased by 43%. Compared to matched controls (n = 8), spirometry revealed a higher total and alveolar-lung-capacity in BHD (n = 9), but a lower diffusion-constant. Conclusion Our results contrast with previous studies, that demonstrated similar lung gas transfer in BHD and matched controls. We conclude that elite BHD 1) have a lower diffusion constant than matched controls, and 2) gradually decrease PBV during apnea and in turn increase VA/Q to increase alveolar oxygen delivery during maximum apnea. We suggest that BHD possess pulmonary adaptations similar to diving mammals to tolerate decreasing tissue oxygenation. New and noteworthy This manuscript addresses novel knowledge on tolerance to hypoxia during diving, which is shared by elite breath-hold divers and adult diving mammals: Our study indicates that elite breath-hold divers gradually decrease pulmonary blood volume and in turn increase VA/Q, to increase alveolar oxygen delivery during maximum apnea to tolerate decreasing oxygen levels similar to the Bottlenose Dolphin.
Collapse
Affiliation(s)
- Thomas Kjeld
- Department of Anesthesiology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anders Brenøe Isbrand
- Department of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Jens Højberg
- Department of Cardiothoracic Anesthesiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Bejder
- Department of Nutrition, Exercise and Sport (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Thomas O. Krag
- Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lars Poulsen Tolbod
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Johannes Hendrik Harms
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Christian Gormsen
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Dan Fuglø
- Department of Nuclear Medicine, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Egon Godthaab Hansen
- Department of Anesthesiology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Mari S, Lecomte CG, Merlet AN, Audet J, Yassine S, Al Arab R, Harnie J, Rybak IA, Prilutsky BI, Frigon A. Changes in intra- and interlimb reflexes from forelimb cutaneous afferents after staggered thoracic lateral hemisections during locomotion in cats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590723. [PMID: 38712151 PMCID: PMC11071401 DOI: 10.1101/2024.04.23.590723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In quadrupeds, such as cats, cutaneous afferents from the forepaw dorsum signal external perturbations and send signals to spinal circuits to coordinate the activity in muscles of all four limbs. How these cutaneous reflex pathways from forelimb afferents are reorganized after an incomplete spinal cord injury is not clear. Using a staggered thoracic lateral hemisections paradigm, we investigated changes in intralimb and interlimb reflex pathways by electrically stimulating the left and right superficial radial nerves in seven adult cats and recording reflex responses in five forelimb and ten hindlimb muscles. After the first (right T5-T6) and second (left T10-T11) hemisections, forelimb-hindlimb coordination was altered and weakened. After the second hemisection, cats required balance assistance to perform quadrupedal locomotion. Short-, mid- and long-latency homonymous and crossed reflex responses in forelimb muscles and their phase modulation remained largely unaffected after staggered hemisections. The occurrence of homolateral and diagonal mid- and long-latency responses in hindlimb muscles evoked with left and right superficial radial nerve stimulation was significantly reduced at the first time point after the first hemisection, but partially recovered at the second time point with left superficial radial nerve stimulation. These responses were lost or reduced after the second hemisection. When present, all reflex responses, including homolateral and diagonal, maintained their phase-dependent modulation. Therefore, our results show a considerable loss in cutaneous reflex transmission from cervical to lumbar levels after incomplete spinal cord injury, albeit with preservation of phase modulation, likely affecting functional responses to external perturbations.
Collapse
Affiliation(s)
- Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Charly G. Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Angèle N. Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Rasha Al Arab
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
4
|
Bubak MP, Davidyan A, O'Reilly CL, Mondal SA, Keast J, Doidge SM, Borowik AK, Taylor ME, Volovičeva E, Kinter MT, Britton SL, Koch LG, Stout MB, Lewis TL, Miller BF. Metformin treatment results in distinctive skeletal muscle mitochondrial remodeling in rats with different intrinsic aerobic capacities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582957. [PMID: 38496648 PMCID: PMC10942369 DOI: 10.1101/2024.03.01.582957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The rationale for the use of metformin as a treatment to slow aging was largely based on data collected from metabolically unhealthy individuals. For healthspan extension metformin will also be used in periods of good health. To understand potential context specificity of metformin treatment on skeletal muscle, we used a rat model (HCR/LCR) with a divide in intrinsic aerobic capacity. Outcomes of metformin treatment differed based on baseline intrinsic mitochondrial function, oxidative capacity of the muscle (gastroc vs soleus), and the mitochondrial population (IMF vs SS). Metformin caused lower ADP-stimulated respiration in LCRs, with less of a change in HCRs. However, a washout of metformin resulted in an unexpected doubling of respiratory capacity in HCRs. These improvements in respiratory capacity were accompanied by mitochondrial remodeling that included increases in protein synthesis and changes in morphology. Our findings raise questions about whether the positive findings of metformin treatment are broadly applicable.
Collapse
|
5
|
Fahlman A. Cardiorespiratory adaptations in small cetaceans and marine mammals. Exp Physiol 2024; 109:324-334. [PMID: 37968859 PMCID: PMC10988691 DOI: 10.1113/ep091095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023]
Abstract
The dive response, or the 'master switch of life', is probably the most studied physiological trait in marine mammals and is thought to conserve the available O2 for the heart and brain. Although generally thought to be an autonomic reflex, several studies indicate that the cardiovascular changes during diving are anticipatory and can be conditioned. The respiratory adaptations, where the aquatic breathing pattern resembles intermittent breathing in land mammals, with expiratory flow exceeding 160 litres s-1 has been measured in cetaceans, and where exposure to extreme pressures results in alveolar collapse (atelectasis) and recruitment upon ascent. Cardiorespiratory coupling, where breathing results in changes in heart rate, has been proposed to improve gas exchange. Cardiorespiratory coupling has also been reported in marine mammals, and in the bottlenose dolphin, where it alters both heart rate and stroke volume. When accounting for this respiratory dependence on cardiac function, several studies have reported an absence of a diving-related bradycardia except during dives that exceed the duration that is fuelled by aerobic metabolism. This review summarizes what is known about the respiratory physiology in marine mammals, with a special focus on cetaceans. The cardiorespiratory coupling is reviewed, and the selective gas exchange hypothesis is summarized, which provides a testable mechanism for how breath-hold diving vertebrates may actively prevent uptake of N2 during routine dives, and how stress results in failure of this mechanism, which results in diving-related gas emboli.
Collapse
Affiliation(s)
- Andreas Fahlman
- Global Diving Research SLValenciaSpain
- Fundación Oceanogràfic de la Comunidad ValencianaValenciaSpain
- Kolmården Wildlife ParkKolmårdenSweden
- IFMLinköping UniversityLinköpingSweden
| |
Collapse
|
6
|
Sparling T, Iyer L, Pasquina P, Petrus E. Cortical Reorganization after Limb Loss: Bridging the Gap between Basic Science and Clinical Recovery. J Neurosci 2024; 44:e1051232024. [PMID: 38171645 PMCID: PMC10851691 DOI: 10.1523/jneurosci.1051-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 09/29/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the increasing incidence and prevalence of amputation across the globe, individuals with acquired limb loss continue to struggle with functional recovery and chronic pain. A more complete understanding of the motor and sensory remodeling of the peripheral and central nervous system that occurs postamputation may help advance clinical interventions to improve the quality of life for individuals with acquired limb loss. The purpose of this article is to first provide background clinical context on individuals with acquired limb loss and then to provide a comprehensive review of the known motor and sensory neural adaptations from both animal models and human clinical trials. Finally, the article bridges the gap between basic science researchers and clinicians that treat individuals with limb loss by explaining how current clinical treatments may restore function and modulate phantom limb pain using the underlying neural adaptations described above. This review should encourage the further development of novel treatments with known neurological targets to improve the recovery of individuals postamputation.Significance Statement In the United States, 1.6 million people live with limb loss; this number is expected to more than double by 2050. Improved surgical procedures enhance recovery, and new prosthetics and neural interfaces can replace missing limbs with those that communicate bidirectionally with the brain. These advances have been fairly successful, but still most patients experience persistent problems like phantom limb pain, and others discontinue prostheses instead of learning to use them daily. These problematic patient outcomes may be due in part to the lack of consensus among basic and clinical researchers regarding the plasticity mechanisms that occur in the brain after amputation injuries. Here we review results from clinical and animal model studies to bridge this clinical-basic science gap.
Collapse
Affiliation(s)
- Tawnee Sparling
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Laxmi Iyer
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland 20817
| | - Paul Pasquina
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Emily Petrus
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland 20814
| |
Collapse
|
7
|
da Silva RJ, Cabo LF, George JL, Cahoon LA, Yang L, Coyne CB, Boyle JP. Human trophoblast stem cells can be used to model placental susceptibility to Toxoplasma gondii and highlight the critical importance of the trophoblast cell surface in pathogen resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566663. [PMID: 37986837 PMCID: PMC10659356 DOI: 10.1101/2023.11.10.566663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The placenta is a critical barrier against viral, bacterial, and eukaryotic pathogens. For most teratogenic pathogens, the precise molecular mechanisms of placental resistance are still being unraveled. Given the importance to understand these mechanisms and challenges in replicating trophoblast- pathogen interactions using in vitro models, we tested an existing stem-cell derived model of trophoblast development for its relevance to infection with Toxoplasma gondii . We grew human trophoblast stem cells (TS CT ) under conditions leading to either syncytiotrophoblast (TS SYN ) or cytotrophoblast (TS CYT ) and infected them with T. gondii . We evaluated T. gondii proliferation and invasion, cell ultrastructure, as well as for transcriptome changes after infection. TS SYNs cells showed similar ultrastructure compared to primary cells and villous explants when analyzed by TEM and SEM, a resistance to T. gondii adhesion could be visualized on the SEM level. Furthermore, TS SYNs were highly refractory to parasite adhesion and replication, while TS CYT were not. RNA-seq data on mock-treated and infected cells identified differences between cell types as well as how they responded to T. gondii infection. We also evaluated if TS SC -derived SYNs and CYTs had distinct resistance profiles to another vertically transmitted facultative intracellular pathogen, Listeria monocytogenes . We demonstrate that TS SYNs are highly resistant to L. monocytogenes , while TS CYTs are not. Like T. gondii , TS SYN resistance to L. monocytogenes was at the level of bacterial adhesion. Altogether, our data indicate that stem-cell derived trophoblasts recapitulate resistance profiles of primary cells to T. gondii and highlight the critical importance of the placental surface in cell-autonomous resistance to teratogens.
Collapse
|
8
|
Guo J, Jiang H, Schuftan D, Moreno JD, Ramahdita G, Aryan L, Bhagavan D, Silva J, Huebsch N. Mechanical Resistance to Micro-Heart Tissue Contractility unveils early Structural and Functional Pathology in iPSC Models of Hypertrophic Cardiomyopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564856. [PMID: 37961198 PMCID: PMC10634965 DOI: 10.1101/2023.10.30.564856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Hypertrophic cardiomyopathy is the most common cause of sudden death in the young. Because the disease exhibits variable penetrance, there are likely nongenetic factors that contribute to the manifestation of the disease phenotype. Clinically, hypertension is a major cause of morbidity and mortality in patients with HCM, suggesting a potential synergistic role for the sarcomeric mutations associated with HCM and mechanical stress on the heart. We developed an in vitro physiological model to investigate how the afterload that the heart muscle works against during contraction acts together with HCM-linked MYBPC3 mutations to trigger a disease phenotype. Micro-heart muscle arrays (μHM) were engineered from iPSC-derived cardiomyocytes bearing MYBPC3 loss-of-function mutations and challenged to contract against mechanical resistance with substrates stiffnesses ranging from the of embryonic hearts (0.4 kPa) up to the stiffness of fibrotic adult hearts (114 kPa). Whereas MYBPC3 +/- iPSC-cardiomyocytes showed little signs of disease pathology in standard 2D culture, μHMs that included components of afterload revealed several hallmarks of HCM, including cellular hypertrophy, impaired contractile energetics, and maladaptive calcium handling. Remarkably, we discovered changes in troponin C and T localization in the MYBPC3 +/- μHM that were entirely absent in 2D culture. Pharmacologic studies suggested that excessive Ca 2+ intake through membrane-embedded channels, rather than sarcoplasmic reticulum Ca 2+ ATPase (SERCA) dysfunction or Ca 2+ buffering at myofilaments underlie the observed electrophysiological abnormalities. These results illustrate the power of physiologically relevant engineered tissue models to study inherited disease mechanisms with iPSC technology.
Collapse
|
9
|
Ahangar AA, Elhanafy E, Blanton H, Li J. Mapping Structural Distribution and Gating-Property Impacts of Disease-Associated Missense Mutations in Voltage-Gated Sodium Channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558623. [PMID: 37781633 PMCID: PMC10541146 DOI: 10.1101/2023.09.20.558623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Thousands of voltage-gated sodium (Nav) channel variants contribute to a variety of disorders, including epilepsy, autism, cardiac arrhythmia, and pain disorders. Yet variant effects of more mutations remain unclear. The conventional gain-of-function (GoF) or loss-of-function (LoF) classifications is frequently employed to interpret of variant effects on function and guide precision therapy for sodium channelopathies. Our study challenges this binary classification by analyzing 525 mutations associated with 34 diseases across 366 electrophysiology studies, revealing that diseases with similar phenotypic effects can stem from unique molecular mechanisms. Our results show a high biophysical agreement (86%) between homologous disease-associated variants in different Nav genes, significantly surpassing the 60% phenotype (GoFo/LoFo) agreement among homologous mutants, suggesting the need for more nuanced disease categorization and treatment based on specific gating-property changes. Using UniProt data, we mapped over 2,400 disease-associated missense variants across nine human Nav channels and identified three clusters of mutation hotspots. Our findings indicate that mutations near the selectivity filter generally diminish the maximal current amplitude, while those in the fast inactivation region lean towards a depolarizing shift in half-inactivation voltage in steady-state activation, and mutations in the activation gate commonly enhance persistent current. In contrast to mutations in the PD, those within the VSD exhibit diverse impacts and subtle preferences on channel activity. This study shows great potential to enhance prediction accuracy for variant effects based on the structural context, laying the groundwork for targeted drug design in precision medicine.
Collapse
Affiliation(s)
- Amin Akbari Ahangar
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi
| | - Eslam Elhanafy
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi
| | - Hayden Blanton
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi
| | - Jing Li
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi
| |
Collapse
|
10
|
Shackleton C, Samejima S, Williams AM, Malik RN, Balthazaar SJ, Alrashidi A, Sachdeva R, Elliott SL, Nightingale TE, Berger MJ, Lam T, Krassioukov AV. Motor and autonomic concomitant health improvements with neuromodulation and exercise (MACHINE) training: a randomised controlled trial in individuals with spinal cord injury. BMJ Open 2023; 13:e070544. [PMID: 37451734 PMCID: PMC10351300 DOI: 10.1136/bmjopen-2022-070544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
INTRODUCTION Motor and autonomic dysfunctions are widespread among people with spinal cord injury (SCI), leading to poor health and reduced quality of life. Exercise interventions, such as locomotor training (LT), can promote sensorimotor and autonomic recovery post SCI. Recently, breakthroughs in SCI research have reported beneficial effects of electrical spinal cord stimulation (SCS) on motor and autonomic functions. Despite literature supporting the independent benefits of transcutaneous SCS (TSCS) and LT, the effect of pairing TSCS with LT is unknown. These therapies are non-invasive, customisable and have the potential to simultaneously benefit both sensorimotor and autonomic functions. The aim of this study is to assess the effects of LT paired with TSCS in people with chronic SCI on outcomes of sensorimotor and autonomic function. METHODS AND ANALYSIS Twelve eligible participants with chronic (>1 year) motor-complete SCI, at or above the sixth thoracic segment, will be enrolled in this single-blinded, randomised sham-controlled trial. Participants will undergo mapping for optimisation of stimulation parameters and baseline assessments of motor and autonomic functions. Participants will then be randomly assigned to either LT+TSCS or LT+Sham stimulation for 12 weeks, after which postintervention assessments will be performed to determine the effect of TSCS on motor and autonomic functions. The primary outcome of interest is attempted voluntary muscle activation using surface electromyography. The secondary outcomes relate to sensorimotor function, cardiovascular function, pelvic organ function and health-related quality of life. Statistical analysis will be performed using two-way repeated measures Analysis of variance (ANOVAs) or Kruskal-Wallis and Cohen's effect sizes. ETHICS AND DISSEMINATION This study has been approved after full ethical review by the University of British Columbia's Research Ethics Board. The stimulator used in this trial has received Investigation Testing Authorisation from Health Canada. Trial results will be disseminated through peer-reviewed publications, conference presentations and seminars. TRIAL REGISTRATION NUMBER NCT04726059.
Collapse
Affiliation(s)
- Claire Shackleton
- International Collaboration on Repair Discoveries, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Soshi Samejima
- International Collaboration on Repair Discoveries, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Alison Mm Williams
- International Collaboration on Repair Discoveries, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- School of Kinesiology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Raza N Malik
- International Collaboration on Repair Discoveries, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shane Jt Balthazaar
- International Collaboration on Repair Discoveries, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Division of Cardiology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Abdullah Alrashidi
- International Collaboration on Repair Discoveries, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physical Therapy, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Rahul Sachdeva
- International Collaboration on Repair Discoveries, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Stacy L Elliott
- International Collaboration on Repair Discoveries, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- GF Strong Rehabilitation Centre, Vancouver Coastal Health Authority, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas E Nightingale
- International Collaboration on Repair Discoveries, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- School of Sport, Exercise and Rehabilitation Sciences and Centre for Trauma Science Research, University of Birmingham, Birmingham, UK
- Centre for Trauma Science Research, University of Birmingham, Birmingham, UK
| | - Michael J Berger
- International Collaboration on Repair Discoveries, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Tania Lam
- International Collaboration on Repair Discoveries, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- School of Kinesiology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, The University of British Columbia, Vancouver, British Columbia, Canada
- GF Strong Rehabilitation Centre, Vancouver Coastal Health Authority, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Bonizzoni S, Gramolini R, Furey NB, Bearzi G. Bottlenose dolphin distribution in a Mediterranean area exposed to intensive trawling. MARINE ENVIRONMENTAL RESEARCH 2023; 188:105993. [PMID: 37084688 DOI: 10.1016/j.marenvres.2023.105993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
The Adriatic Sea is one of the areas most exposed to trawling, worldwide. We used four years (2018-2021) and 19,887 km of survey data to investigate factors influencing daylight dolphin distribution in its north-western sector, where common bottlenose dolphins Tursiops truncatus routinely follow fishing trawlers. We validated Automatic Identification System information on the position, type and activity of three types of trawlers based on observations from boats, and incorporated this information in a GAM-GEE modelling framework, together with physiographic, biological and anthropogenic variables. Along with bottom depth, trawlers (particularly otter and midwater trawlers) appeared to be important drivers of dolphin distribution, with dolphins foraging and scavenging behind trawlers during 39.3% of total observation time in trawling days. The spatial dimension of dolphin adaptations to intensive trawling, including distribution shifts between days with and without trawling, sheds light on the magnitude of ecological change driven by the trawl fishery.
Collapse
Affiliation(s)
- Silvia Bonizzoni
- Dolphin Biology and Conservation, via Cellina 5, 33084, Cordenons, PN, Italy; OceanCare, Gerbestrasse 6, Postfach 372, 8820, Wädenswil, Switzerland.
| | | | - Nathan B Furey
- Dolphin Biology and Conservation, via Cellina 5, 33084, Cordenons, PN, Italy; Department of Biological Sciences, University of New Hampshire, Spaulding Hall Rm 276, Durham, NH, 03824, USA
| | - Giovanni Bearzi
- Dolphin Biology and Conservation, via Cellina 5, 33084, Cordenons, PN, Italy; OceanCare, Gerbestrasse 6, Postfach 372, 8820, Wädenswil, Switzerland; ISMAR Institute of Marine Sciences, CNR National Research Council, Arsenale Tesa 104, Castello 2737/F, 30122, Venice, Italy
| |
Collapse
|
12
|
Sharma S, Littman R, Tompkins J, Arneson D, Contreras J, Dajani AH, Ang K, Tsanhani A, Sun X, Jay PY, Herzog H, Yang X, Ajijola OA. Tiered Sympathetic Control of Cardiac Function Revealed by Viral Tracing and Single Cell Transcriptome Profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524575. [PMID: 36711942 PMCID: PMC9882306 DOI: 10.1101/2023.01.18.524575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The cell bodies of postganglionic sympathetic neurons innervating the heart primarily reside in the stellate ganglion (SG), alongside neurons innervating other organs and tissues. Whether cardiac-innervating stellate ganglionic neurons (SGNs) exhibit diversity and distinction from those innervating other tissues is not known. To identify and resolve the transcriptomic profiles of SGNs innervating the heart we leveraged retrograde tracing techniques using adeno-associated virus (AAV) expressing fluorescent proteins (GFP or Td-tomato) with single cell RNA sequencing. We investigated electrophysiologic, morphologic, and physiologic roles for subsets of cardiac-specific neurons and found that three of five adrenergic SGN subtypes innervate the heart. These three subtypes stratify into two subpopulations; high (NA1a) and low (NA1b and NA1c) Npy-expressing cells, exhibit distinct morphological, neurochemical, and electrophysiologic characteristics. In physiologic studies in transgenic mouse models modulating NPY signaling, we identified differential control of cardiac responses by these two subpopulations to high and low stress states. These findings provide novel insights into the unique properties of neurons responsible for cardiac sympathetic regulation, with implications for novel strategies to target specific neuronal subtypes for sympathetic blockade in cardiac disease.
Collapse
|
13
|
Linnehan BK, Gomez FM, Huston SM, Hsu A, Takeshita R, Colegrove KM, Harms CA, Barratclough A, Deming AC, Rowles TK, Musser WB, Zolman ES, Wells RS, Jensen ED, Schwacke LH, Smith CR. Cardiac assessments of bottlenose dolphins (Tursiops truncatus) in the Northern Gulf of Mexico following exposure to Deepwater Horizon oil. PLoS One 2021; 16:e0261112. [PMID: 34905585 PMCID: PMC8670661 DOI: 10.1371/journal.pone.0261112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
The Deepwater Horizon (DWH) oil spill profoundly impacted the health of bottlenose dolphins (Tursiops truncatus) in Barataria Bay, LA (BB). To comprehensively assess the cardiac health of dolphins living within the DWH oil spill footprint, techniques for in-water cardiac evaluation were refined with dolphins cared for by the U.S. Navy Marine Mammal Program in 2018 and applied to free-ranging bottlenose dolphins in BB (n = 34) and Sarasota Bay, Florida (SB) (n = 19), a non-oiled reference population. Cardiac auscultation detected systolic murmurs in the majority of dolphins from both sites (88% BB, 89% SB) and echocardiography showed most of the murmurs were innocent flow murmurs attributed to elevated blood flow velocity [1]. Telemetric six-lead electrocardiography detected arrhythmias in BB dolphins (43%) and SB dolphins (31%), all of which were considered low to moderate risk for adverse cardiac events. Echocardiography showed BB dolphins had thinner left ventricular walls, with significant differences in intraventricular septum thickness at the end of diastole (p = 0.002), and left ventricular posterior wall thickness at the end of diastole (p = 0.033). BB dolphins also had smaller left atrial size (p = 0.004), higher prevalence of tricuspid valve prolapse (p = 0.003), higher prevalence of tricuspid valve thickening (p = 0.033), and higher prevalence of aortic valve thickening (p = 0.008). Two dolphins in BB were diagnosed with pulmonary arterial hypertension based on Doppler echocardiography-derived estimates and supporting echocardiographic findings. Histopathology of dolphins who stranded within the DWH oil spill footprint showed a significantly higher prevalence of myocardial fibrosis (p = 0.003), regardless of age, compared to dolphins outside the oil spill footprint. In conclusion, there were substantial cardiac abnormalities identified in BB dolphins which may be related to DWH oil exposure, however, future work is needed to rule out other hypotheses and further elucidate the connection between oil exposure, pulmonary disease, and the observed cardiac abnormalities.
Collapse
Affiliation(s)
- Barbara K. Linnehan
- National Marine Mammal Foundation, San Diego, California, United States of America
- * E-mail:
| | - Forrest M. Gomez
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Sharon M. Huston
- San Diego Veterinary Cardiology, San Diego, California, United States of America
| | - Adonia Hsu
- San Diego Veterinary Cardiology, San Diego, California, United States of America
| | - Ryan Takeshita
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Kathleen M. Colegrove
- Zoological Pathology Program, University of Illinois at Urbana-Champaign, Brookfield, Illinois, United States of America
| | - Craig A. Harms
- North Carolina State University, Center for Marine Sciences and Technology, Morehead City, North Carolina, United States of America
| | - Ashley Barratclough
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Alissa C. Deming
- Dauphin Island Sea Lab, Dauphin Island, Alabama, United States of America
| | - Teri K. Rowles
- National Oceanic and Atmospheric Administration, Office of Protected Resources, Silver Spring, Maryland, United States of America
| | - Whitney B. Musser
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Eric S. Zolman
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Randall S. Wells
- Chicago Zoological Society’s Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, Florida, United States of America
| | - Eric D. Jensen
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific, San Diego, California, United States of America
| | - Lori H. Schwacke
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Cynthia R. Smith
- National Marine Mammal Foundation, San Diego, California, United States of America
| |
Collapse
|
14
|
Robinson NJ, García-Párraga D, Stacy BA, Costidis AM, Blanco GS, Clyde-Brockway CE, Haas HL, Harms CA, Patel SH, Stacy NI, Fahlman A. A Baseline Model For Estimating the Risk of Gas Embolism in Sea Turtles During Routine Dives. Front Physiol 2021; 12:678555. [PMID: 34539425 PMCID: PMC8440993 DOI: 10.3389/fphys.2021.678555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Sea turtles, like other air-breathing diving vertebrates, commonly experience significant gas embolism (GE) when incidentally caught at depth in fishing gear and brought to the surface. To better understand why sea turtles develop GE, we built a mathematical model to estimate partial pressures of N2 (PN2), O2 (PO2), and CO2 (PCO2) in the major body-compartments of diving loggerheads (Caretta caretta), leatherbacks (Dermochelys coriacea), and green turtles (Chelonia mydas). This model was adapted from a published model for estimating gas dynamics in marine mammals and penguins. To parameterize the sea turtle model, we used values gleaned from previously published literature and 22 necropsies. Next, we applied this model to data collected from free-roaming individuals of the three study species. Finally, we varied body-condition and cardiac output within the model to see how these factors affected the risk of GE. Our model suggests that cardiac output likely plays a significant role in the modulation of GE, especially in the deeper diving leatherback turtles. This baseline model also indicates that even during routine diving behavior, sea turtles are at high risk of GE. This likely means that turtles have additional behavioral, anatomical, and/or physiologic adaptions that serve to reduce the probability of GE but were not incorporated in this model. Identifying these adaptations and incorporating them into future iterations of this model will further reveal the factors driving GE in sea turtles.
Collapse
Affiliation(s)
- Nathan J. Robinson
- Department of Research, Fundación Oceanogràfic de la Comunidad Valenciana, Valencia, Spain
| | - Daniel García-Párraga
- Department of Research, Fundación Oceanogràfic de la Comunidad Valenciana, Valencia, Spain
| | - Brian A. Stacy
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of Protected Resources, University of Florida (duty station), Washington, DC, United States
| | | | - Gabriela S. Blanco
- Instituto de Biología de Organismos Marinos (IBIOMAR-CCT CONICET-CENPAT), Puerto Madryn, Argentina
| | | | - Heather L. Haas
- Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Woods Hole, MA, United States
| | - Craig A. Harms
- Department of Clinical Sciences and Center for Marine Sciences and Technology, North Carolina State University, Raleigh, NC, United States
| | - Samir H. Patel
- Coonamessett Farm Foundation, East Falmouth, MA, United States
| | - Nicole I. Stacy
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Andreas Fahlman
- Department of Research, Fundación Oceanogràfic de la Comunidad Valenciana, Valencia, Spain
- Global Diving Research, Inc., Ottawa, ON, Canada
| |
Collapse
|
15
|
Blake HT, Stenner BJ, Buckley JD, Crozier AJ. Randomised controlled trial comparing two group-based exercise programmes (team sport vs circuit training) on men's health: study protocol. BMJ Open Sport Exerc Med 2021; 7:e001140. [PMID: 34422293 PMCID: PMC8344266 DOI: 10.1136/bmjsem-2021-001140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 11/06/2022] Open
Abstract
Introduction Physical activity promotes physical, psychological and social health. Despite this, almost half of middle-aged (35–54 years) Australian men are insufficiently active. Exercise adherence is increased with social interaction in a group setting. Team sport can leverage the power of groups and has shown to be more intrinsically motivating than discrete exercise modes. Evaluation of the effect of team sport compared with traditional group exercise on health, particularly psychological and social health, and physical activity levels of middle-aged men is limited. This study aims to compare the effects of team sport participation and group circuit training on physical activity levels and health in insufficiently active middle-aged men. Methods and analysis In this parallel randomised controlled trial, n=128 men aged 35–54 years will complete a 12-week team sport or group circuit exercise programme. Participants must self-report to not be meeting Australian physical activity guidelines or participating in team sport before recruitment. Health-related quality of life, exercise motivation, psychological needs satisfaction, sleep and physical activity levels (accelerometry), blood lipids, glucose and metabolic syndrome risk score will be assessed at baseline, end of the programme and 12 weeks follow-up. Linear mixed effect models will be used. Ethics and dissemination The study has received ethical approval from the University of South Australia’s Human Research Ethics Committee (Ethics Protocol 203274). Study results will be disseminated via publication in disciplinary-specific journals, conference presentations, and as part of a Doctoral thesis. Trial registration number ANCTRN12621000483853.
Collapse
Affiliation(s)
- Henry T Blake
- Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia.,Alliance for Research in Exercise, Nutrition and Activity, University of South Australia, Adelaide, South Australia, Australia
| | - Brad J Stenner
- Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia.,Alliance for Research in Exercise, Nutrition and Activity, University of South Australia, Adelaide, South Australia, Australia
| | - Jonathan David Buckley
- Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia.,Alliance for Research in Exercise, Nutrition and Activity, University of South Australia, Adelaide, South Australia, Australia
| | - Alyson J Crozier
- Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia.,Alliance for Research in Exercise, Nutrition and Activity, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
16
|
Blawas AM, Nowacek DP, Rocho-Levine J, Robeck TR, Fahlman A. Scaling of heart rate with breathing frequency and body mass in cetaceans. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200223. [PMID: 34121456 PMCID: PMC8200651 DOI: 10.1098/rstb.2020.0223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 01/23/2023] Open
Abstract
Plasticity in the cardiac function of a marine mammal facilitates rapid adjustments to the contrasting metabolic demands of breathing at the surface and diving during an extended apnea. By matching their heart rate (fH) to their immediate physiological needs, a marine mammal can improve its metabolic efficiency and maximize the proportion of time spent underwater. Respiratory sinus arrhythmia (RSA) is a known modulation of fH that is driven by respiration and has been suggested to increase cardiorespiratory efficiency. To investigate the presence of RSA in cetaceans and the relationship between fH, breathing rate (fR) and body mass (Mb), we measured simultaneous fH and fR in five cetacean species in human care. We found that a higher fR was associated with a higher mean instantaneous fH (ifH) and minimum ifH of the RSA. By contrast, fH scaled inversely with Mb such that larger animals had lower mean and minimum ifHs of the RSA. There was a significant allometric relationship between maximum ifH of the RSA and Mb, but not fR, which may indicate that this parameter is set by physical laws and not adjusted dynamically with physiological needs. RSA was significantly affected by fR and was greatly reduced with small increases in fR. Ultimately, these data show that surface fHs of cetaceans are complex and the fH patterns we observed are controlled by several factors. We suggest the importance of considering RSA when interpreting fH measurements and particularly how fR may drive fH changes that are important for efficient gas exchange. This article is part of the theme issue 'Measuring physiology in free-living animals (Part I)'.
Collapse
Affiliation(s)
- Ashley M. Blawas
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC 28516, USA
| | - Douglas P. Nowacek
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC 28516, USA
- Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | | | | | - Andreas Fahlman
- Fundación Oceanogràfic de la Comunitat Valenciana, Valencia, Spain 46005
- Global Diving Research, Inc., Ottawa, Canada, K2 J 5E8
| |
Collapse
|
17
|
Blawas AM, Ware KE, Schmaltz E, Zheng L, Spruance J, Allen AS, West N, Devos N, Corcoran DL, Nowacek DP, Eward WC, Fahlman A, Somarelli JA. An integrated comparative physiology and molecular approach pinpoints mediators of breath-hold capacity in dolphins. Evol Med Public Health 2021; 9:420-430. [PMID: 35169481 PMCID: PMC8833867 DOI: 10.1093/emph/eoab036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/17/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background and objectives
Ischemic events, such as ischemic heart disease and stroke, are the number one cause of death globally. Ischemia prevents blood, carrying essential nutrients and oxygen, from reaching tissues, leading to cell and tissue death, and eventual organ failure. While humans are relatively intolerant to ischemic events, other species, such as marine mammals, have evolved a unique tolerance to chronic ischemia/reperfusion during apneic diving. To identify possible molecular features of an increased tolerance for apnea, we examined changes in gene expression in breath-holding dolphins.
Methodology
Here, we capitalized on the adaptations possesed by bottlenose dolphins (Tursiops truncatus) for diving as a comparative model of ischemic stress and hypoxia tolerance to identify molecular features associated with breath holding. Given that signals in the blood may influence physiological changes during diving, we used RNA-Seq and enzyme assays to examine time-dependent changes in gene expression in the blood of breath-holding dolphins.
Results
We observed time-dependent upregulation of the arachidonate 5-lipoxygenase (ALOX5) gene and increased lipoxygenase activity during breath holding. ALOX5 has been shown to be activated during hypoxia in rodent models, and its metabolites, leukotrienes, induce vasoconstriction.
Conclusions and implications
The upregulation of ALOX5 mRNA occurred within the calculated aerobic dive limit of the species, suggesting that ALOX5 may play a role in the dolphin’s physiological response to diving, particularly in a pro-inflammatory response to ischemia and in promoting vasoconstriction. These observations pinpoint a potential molecular mechanism by which dolphins, and perhaps other marine mammals, respond to the prolonged breath holds associated with diving.
Collapse
Affiliation(s)
- Ashley M Blawas
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC, USA
| | - Kathryn E Ware
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Emma Schmaltz
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC, USA
| | - Larry Zheng
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC, USA
| | - Jacob Spruance
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Austin S Allen
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC, USA
| | | | - Nicolas Devos
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - David L Corcoran
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Douglas P Nowacek
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC, USA
- Pratt School of Engineering, Duke University, Durham, NC, USA
| | - William C Eward
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA
- Duke University Medical Center, Duke Cancer Institute, Durham, NC, USA
| | - Andreas Fahlman
- Global Diving Research, Inc., Ottawa, ON, Canada
- Research Department, Fundación Oceanogrāfic de la Comunitat Valenciana, Valencia, Spain
| | - Jason A Somarelli
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Duke University Medical Center, Duke Cancer Institute, Durham, NC, USA
| |
Collapse
|
18
|
Blawas AM, Nowacek DP, Allen AS, Rocho-Levine J, Fahlman A. Respiratory sinus arrhythmia and submersion bradycardia in bottlenose dolphins ( Tursiops truncatus). J Exp Biol 2021; 224:jeb234096. [PMID: 33257432 DOI: 10.1242/jeb.234096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/18/2020] [Indexed: 01/09/2023]
Abstract
Among the many factors that influence the cardiovascular adjustments of marine mammals is the act of respiration at the surface, which facilitates rapid gas exchange and tissue re-perfusion between dives. We measured heart rate (fH) in six adult male bottlenose dolphins (Tursiops truncatus) spontaneously breathing at the surface to quantify the relationship between respiration and fH, and compared this with fH during submerged breath-holds. We found that dolphins exhibit a pronounced respiratory sinus arrhythmia (RSA) during surface breathing, resulting in a rapid increase in fH after a breath followed by a gradual decrease over the following 15-20 s to a steady fH that is maintained until the following breath. RSA resulted in a maximum instantaneous fH (ifH) of 87.4±13.6 beats min-1 and a minimum ifH of 56.8±14.8 beats min-1, and the degree of RSA was positively correlated with the inter-breath interval (IBI). The minimum ifH during 2 min submerged breath-holds where dolphins exhibited submersion bradycardia (36.4±9.0 beats min-1) was lower than the minimum ifH observed during an average IBI; however, during IBIs longer than 30 s, the minimum ifH (38.7±10.6 beats min-1) was not significantly different from that during 2 min breath-holds. These results demonstrate that the fH patterns observed during submerged breath-holds are similar to those resulting from RSA during an extended IBI. Here, we highlight the importance of RSA in influencing fH variability and emphasize the need to understand its relationship to submersion bradycardia.
Collapse
Affiliation(s)
- Ashley M Blawas
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC 28516, USA
| | - Douglas P Nowacek
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC 28516, USA
- Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Austin S Allen
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC 28516, USA
| | | | - Andreas Fahlman
- Fundación Oceanogràfic de la Comunitat Valenciana, c/Gran Vía Marqués del Turia 19 , 46005, Valencia, Spain
- Global Diving Research, Inc., Ottawa, ON, Canada, K2J 5E8
| |
Collapse
|
19
|
Fahlman A, Miedler S, Marti-Bonmati L, Ferrero Fernandez D, Muñoz Caballero P, Arenarez J, Rocho-Levine J, Robeck T, Blawas A. Cardiorespiratory coupling in cetaceans; a physiological strategy to improve gas exchange? J Exp Biol 2020; 223:jeb226365. [PMID: 32680902 DOI: 10.1242/jeb.226365] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/15/2020] [Indexed: 11/20/2022]
Abstract
In the current study we used transthoracic echocardiography to measure stroke volume (SV), heart rate (fH) and cardiac output (CO) in adult bottlenose dolphins (Tursiops truncatus), a male beluga whale calf [Delphinapterus leucas, body mass (Mb) range: 151-175 kg] and an adult female false killer whale (Pseudorca crassidens, estimated Mb: 500-550 kg) housed in managed care. We also recorded continuous electrocardiogram (ECG) in the beluga whale, bottlenose dolphin, false killer whale, killer whale (Orcinus orca) and pilot whale (Globicephala macrorhynchus) to evaluate cardiorespiratory coupling while breathing spontaneously under voluntary control. The results show that cetaceans have a strong respiratory sinus arrythmia (RSA), during which both fH and SV vary within the interbreath interval, making average values dependent on the breathing frequency (fR). The RSA-corrected fH was lower for all cetaceans compared with that of similarly sized terrestrial mammals breathing continuously. As compared with terrestrial mammals, the RSA-corrected SV and CO were either lower or the same for the dolphin and false killer whale, while both were elevated in the beluga whale. When plotting fR against fH for an inactive mammal, cetaceans had a greater cardiac response to changes in fR as compared with terrestrial mammals. We propose that these data indicate an important coupling between respiration and cardiac function that enhances gas exchange, and that this RSA is important to maximize gas exchange during surface intervals, similar to that reported in the elephant seal.
Collapse
Affiliation(s)
- Andreas Fahlman
- Global Diving Research, Inc., Ottawa, ON, K2J 5E8, Canada
- Research Department, Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
- Research Group on Biomedical Imaging (GIBI230), Instituto de Investigación Sanitaria la Fe, 46026 Valencia, Spain
| | - Stefan Miedler
- Veterinary Cardiology, Plaza Mayor 7/10, 46120 Alboraya, Valencia, Spain
| | - Luis Marti-Bonmati
- Research Group on Biomedical Imaging (GIBI230), Instituto de Investigación Sanitaria la Fe, 46026 Valencia, Spain
| | - Diana Ferrero Fernandez
- Biology Department, Avanqua-Oceanográfic SL, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
| | - Paola Muñoz Caballero
- Biology Department, Avanqua-Oceanográfic SL, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
| | - Julietta Arenarez
- Biology Department, Avanqua-Oceanográfic SL, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
| | | | | | - Ashley Blawas
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC 28516, USA
| |
Collapse
|
20
|
Fahlman A, Sato K, Miller P. Improving estimates of diving lung volume in air-breathing marine vertebrates. ACTA ACUST UNITED AC 2020; 223:223/12/jeb216846. [PMID: 32587107 DOI: 10.1242/jeb.216846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The air volume in the respiratory system of marine tetrapods provides a store of O2 to fuel aerobic metabolism during dives; however, it can also be a liability, as the associated N2 can increase the risk of decompression sickness. In order to more fully understand the physiological limitations of different air-breathing marine vertebrates, it is therefore important to be able to accurately estimate the air volume in the respiratory system during diving. One method that has been used to do so is to calculate the air volume from glide phases - periods of movement during which no thrust is produced by the animal - which many species conduct during ascent periods, when gases are expanding owing to decreasing hydrostatic pressure. This method assumes that there is conservation of mass in the respiratory system, with volume changes only driven by pressure. In this Commentary, we use previously published data to argue that both the respiratory quotient and differences in tissue and blood gas solubility potentially alter the mass balance in the respiratory system throughout a dive. Therefore, near the end of a dive, the measured volume of gas at a given pressure may be 12-50% less than from the start of the dive; the actual difference will depend on the length of the dive, the cardiac output, the pulmonary shunt and the metabolic rate. Novel methods and improved understanding of diving physiology will be required to verify the size of the effects described here and to more accurately estimate the volume of gas inhaled at the start of a dive.
Collapse
Affiliation(s)
- Andreas Fahlman
- Global Diving Research Inc., Ottawa, ON, Canada, K2J 5E8 .,Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
| | - Katsufumi Sato
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Patrick Miller
- SMRU (Sea Mammal Research Unit), University of St Andrews, St Andrews, Fife KY16 8LB, UK
| |
Collapse
|
21
|
Shen Y, Wei Y, Bokkers RPH, Uyttenboogaart M, van Dijk JMC. Study protocol of validating a numerical model to assess the blood flow in the circle of Willis. BMJ Open 2020; 10:e036404. [PMID: 32503872 PMCID: PMC7279649 DOI: 10.1136/bmjopen-2019-036404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/12/2020] [Accepted: 05/18/2020] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION We developed a zero-dimensional (0D) model to assess the patient-specific haemodynamics in the circle of Willis (CoW). Similar numerical models for simulating the cerebral blood flow (CBF) had only been validated qualitatively in healthy volunteers by magnetic resonance (MR) angiography and transcranial Doppler (TCD). This study aims to validate whether a numerical model can simulate patient-specific blood flow in the CoW under pathological conditions. METHODS AND ANALYSIS This study is a diagnostic accuracy study. We aim to collect data from a previously performed prospective study that involved patients with aneurysmal subarachnoid haemorrhage (aSAH) receiving both TCD and brain Computerd Tomography angiography (CTA) at the same day. The cerebral flow velocities are calculated by the 0D model, based on the vessel diameters measured on the CTA of each patient. In this study, TCD is considered the gold standard for measuring flow velocity in the CoW. The agreement will be analysed using Pearson correlation coefficients. ETHICS AND DISSEMINATION This study protocol has been approved by the Medical Ethics Review Board of the University Medical Center Groningen: METc2019/103. The results will be submitted to an international scientific journal for peer-reviewed publication. TRIAL REGISTRATION NUMBER NL8114.
Collapse
Affiliation(s)
- Yuanyuan Shen
- Department of Neurosurgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Yanji Wei
- Engineering and Technology Institute Groningen, Faculty of Science & Engineering, University of Groningen, Groningen, The Netherlands
| | - Reinoud P H Bokkers
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, Groningen, The Netherlands
| | - Maarten Uyttenboogaart
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, Groningen, The Netherlands
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
| | - J Marc C van Dijk
- Department of Neurosurgery, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Li J, Zhang B, Liu WX, Lu K, Pan H, Wang T, Oh CD, Yi D, Huang J, Zhao L, Ning G, Xing C, Xiao G, Liu-Bryan R, Feng S, Chen D. Metformin limits osteoarthritis development and progression through activation of AMPK signalling. Ann Rheum Dis 2020; 79:635-645. [PMID: 32156705 PMCID: PMC7213329 DOI: 10.1136/annrheumdis-2019-216713] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 01/03/2023]
Abstract
Objectives In this study, we aim to determine the effect of metformin on osteoarthritis (OA) development and progression. Methods Destabilisation of the medial meniscus (DMM) surgery was performed in 10-week-old wild type and AMP-activated protein kinase (AMPK)α1 knockout (KO) mice. Metformin (4 mg/day in drinking water) was given, commencing either 2 weeks before or 2 weeks after DMM surgery. Mice were sacrificed 6 and 12 weeks after DMM surgery. OA phenotype was analysed by micro-computerised tomography (μCT), histology and pain-related behaviour tests. AMPKα1 (catalytic alpha subunit of AMPK) expression was examined by immunohistochemistry and immunofluorescence analyses. The OA phenotype was also determined by μCT and MRI in non-human primates. Results Metformin upregulated phosphorylated and total AMPK expression in articular cartilage tissue. Mild and more severe cartilage degeneration was observed at 6 and 12 weeks after DMM surgery, evidenced by markedly increased Osteoarthritis Research Society International scores, as well as reduced cartilage areas. The administration of metformin, commencing either before or after DMM surgery, caused significant reduction in cartilage degradation. Prominent synovial hyperplasia and osteophyte formation were observed at both 6 and 12 weeks after DMM surgery; these were significantly inhibited by treatment with metformin either before or after DMM surgery. The protective effects of metformin on OA development were not observed in AMPKα1 KO mice, suggesting that the chondroprotective effect of metformin is mediated by AMPK signalling. In addition, we demonstrated that treatment with metformin could also protect from OA progression in a partial medial meniscectomy animal model in non-human primates. Conclusions The present study suggests that metformin, administered shortly after joint injury, can limit OA development and progression in injury-induced OA animal models.
Collapse
Affiliation(s)
- Jun Li
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Bin Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei-Xiao Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ke Lu
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haobo Pan
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tingyu Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun-do Oh
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Dan Yi
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Cong Xing
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Guozhi Xiao
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Ru Liu-Bryan
- Division of Rheumatology, Allergy and Immunology, San Diego VA Healthcare System, San Diego, California, USA
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA .,Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
23
|
Denk M, Fahlman A, Dennison-Gibby S, Song Z, Moore M. Hyperbaric tracheobronchial compression in cetaceans and pinnipeds. J Exp Biol 2020; 223:jeb217885. [PMID: 32041809 DOI: 10.1242/jeb.217885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/31/2020] [Indexed: 11/20/2022]
Abstract
Assessment of the compressibility of marine mammal airways at depth is crucial to understanding vital physiological processes such as gas exchange during diving. Very few studies have directly assessed changes in cetacean and pinniped tracheobronchial shape, and none have quantified changes in volume with increasing pressure. A harbor seal, gray seal, harp seal, harbor porpoise and common dolphin were imaged promptly post mortem via computed tomography in a radiolucent hyperbaric chamber. Volume reconstructions were performed of segments of the trachea and bronchi of the pinnipeds and bronchi of the cetaceans for each pressure treatment. All specimens examined demonstrated significant decreases in airway volume with increasing pressure, with those of the harbor seal and common dolphin nearing complete collapse at the highest pressures. The common dolphin bronchi demonstrated distinctly different compression dynamics between 50% and 100% lung inflation treatments, indicating the importance of air in maintaining patent airways, and collapse occurred caudally to cranially in the 50% treatment. Dynamics of the harbor seal and gray seal airways indicated that the trachea was less compliant than the bronchi. These findings indicate potential species-specific variability in airway compliance, and cessation of gas exchange may occur at greater depths than those predicted in models assuming rigid airways. This may potentially increase the likelihood of decompression sickness in these animals during diving.
Collapse
Affiliation(s)
- Michael Denk
- Kansas State University College of Veterinary Medicine, Manhattan, KS 66502, USA
| | - Andreas Fahlman
- Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
| | | | - Zhongchang Song
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, People's Republic of China
| | - Michael Moore
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
24
|
Soon S, Svavarsdottir H, Downey C, Jayne DG. Wearable devices for remote vital signs monitoring in the outpatient setting: an overview of the field. ACTA ACUST UNITED AC 2020. [DOI: 10.1136/bmjinnov-2019-000354] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Early detection of physiological deterioration has been shown to improve patient outcomes. Due to recent improvements in technology, comprehensive outpatient vital signs monitoring is now possible. This is the first review to collate information on all wearable devices on the market for outpatient physiological monitoring.A scoping review was undertaken. The monitors reviewed were limited to those that can function in the outpatient setting with minimal restrictions on the patient’s normal lifestyle, while measuring any or all of the vital signs: heart rate, ECG, oxygen saturation, respiration rate, blood pressure and temperature.A total of 270 papers were included in the review. Thirty wearable monitors were examined: 6 patches, 3 clothing-based monitors, 4 chest straps, 2 upper arm bands and 15 wristbands. The monitoring of vital signs in the outpatient setting is a developing field with differing levels of evidence for each monitor. The most common clinical application was heart rate monitoring. Blood pressure and oxygen saturation measurements were the least common applications. There is a need for clinical validation studies in the outpatient setting to prove the potential of many of the monitors identified.Research in this area is in its infancy. Future research should look at aggregating the results of validity and reliability and patient outcome studies for each monitor and between different devices. This would provide a more holistic overview of the potential for the clinical use of each device.
Collapse
|
25
|
Rice SM, Gwyther K, Santesteban-Echarri O, Baron D, Gorczynski P, Gouttebarge V, Reardon CL, Hitchcock ME, Hainline B, Purcell R. Determinants of anxiety in elite athletes: a systematic review and meta-analysis. Br J Sports Med 2019; 53:722-730. [PMID: 31097452 PMCID: PMC6579501 DOI: 10.1136/bjsports-2019-100620] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objective To identify and quantify determinants of anxiety symptoms and disorders experienced by elite athletes. Design Systematic review and meta-analysis. Data sources Five online databases (PubMed, SportDiscus, PsycINFO, Scopus and Cochrane) were searched up to November 2018 to identify eligible citations. Eligibility criteria for selecting studies Articles were included if they were published in English, were quantitative studies and measured a symptom-level anxiety outcome in competing or retired athletes at the professional (including professional youth), Olympic or collegiate/university levels. Results and summary We screened 1163 articles; 61 studies were included in the systematic review and 27 of them were suitable for meta-analysis. Overall risk of bias for included studies was low. Athletes and non-athletes had no differences in anxiety profiles (d=−0.11, p=0.28). Pooled effect sizes, demonstrating moderate effects, were identified for (1) career dissatisfaction (d=0.45; higher anxiety in dissatisfied athletes), (2) gender (d=0.38; higher anxiety in female athletes), (3) age (d=−0.34; higher anxiety for younger athletes) and (4) musculoskeletal injury (d=0.31; higher anxiety for injured athletes). A small pooled effect was found for recent adverse life events (d=0.26)—higher anxiety in athletes who had experienced one or more recent adverse life events. Conclusion Determinants of anxiety in elite populations broadly reflect those experienced by the general population. Clinicians should be aware of these general and athlete-specific determinants of anxiety among elite athletes.
Collapse
Affiliation(s)
- Simon M Rice
- Research and Translation, Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia .,Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Kate Gwyther
- Research and Translation, Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Olga Santesteban-Echarri
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - David Baron
- Center for Health and Sport, Western University of Health Sciences, Pomona, California, USA
| | - Paul Gorczynski
- Department of Sport and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Vincent Gouttebarge
- Department of Orthopaedic Surgery, Amsterdam Movement Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef, The Netherlands.,AMC/VUmc IOC Research Center of Excellence, Amsterdam Collaboration on Health and Safety in Sports (ACHSS), Amsterdam, The Netherlands
| | - Claudia L Reardon
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.,University Health Services, University of Wisconsin, Madison, Wisconsin, USA
| | - Mary E Hitchcock
- Ebling Library for the Health Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brian Hainline
- National Collegiate Athletic Association (NCAA), Indianapolis, Indiana, USA
| | - Rosemary Purcell
- Research and Translation, Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Fahlman A, Miedler S, Rocho-Levine J, Jabois A, Arenarez J, Marti-Bonmati L, García-Párraga D, Cauture F. Re-evaluating the significance of the dive response during voluntary surface apneas in the bottlenose dolphin, Tursiops truncatus. Sci Rep 2019; 9:8613. [PMID: 31197193 PMCID: PMC6565721 DOI: 10.1038/s41598-019-45064-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/29/2019] [Indexed: 11/24/2022] Open
Abstract
The dive response is well documented for marine mammals, and includes a significant reduction in heart rate (fH) during submersion as compared while breathing at the surface. In the current study we assessed the influence of the Respiratory Sinus Arrhythmia (RSA) while estimating the resting fH while breathing. Using transthoracic echocardiography we measured fH, and stroke volume (SV) during voluntary surface apneas at rest up to 255 s, and during recovery from apnea in 11 adult bottlenose dolphins (Tursiops truncatus, 9 males and 2 females, body mass range: 140–235 kg). The dolphins exhibited a significant post-respiratory tachycardia and increased SV. Therefore, only data after this RSA had stabilized were used for analysis and comparison. The average (±s.d.) fH, SV, and cardiac output (CO) after spontaneous breaths while resting at the surface were 44 ± 6 beats min−1, 179 ± 31 ml, and 7909 ± 1814 l min−1, respectively. During the apnea the fH, SV, and CO decreased proportionally with the breath-hold duration, and after 255 s they, respectively, had decreased by an average of 18%, 1–21%, and 12–37%. During recovery, the fH, SV, and CO rapidly increased by as much as 117%, 34%, and 190%, respectively. Next, fH, SV and CO rapidly decreased to resting values between 90–110 s following the surface apnea. These data highlight the necessity to define how the resting fH is estimated at the surface, and separating it from the RSA associated with each breath to evaluate the significance of cardiorespiratory matching during diving.
Collapse
Affiliation(s)
- A Fahlman
- Research Group on Biomedical Imaging (GIBI230), Instituto de Investigación Sanitaria la Fe, 46026, Valencia, Spain. .,Departamento de Investigación, Fundación Oceanogràfic de la Comunidad Valenciana, Gran Vía Marqués del Turia 19, 46005, Valencia, Spain.
| | - S Miedler
- Departamento de Investigación, Fundación Oceanogràfic de la Comunidad Valenciana, Gran Vía Marqués del Turia 19, 46005, Valencia, Spain.,Veterinary Cardiology, Plaza Mayor 7/10, 46120 Alboraya, Valencia, Spain
| | | | - A Jabois
- Departamento de Biología, Avanqua-Oceanográfic SL, Gran Vía Marqués del Turia 19, 46005, Valencia, Spain
| | - J Arenarez
- Departamento de Biología, Avanqua-Oceanográfic SL, Gran Vía Marqués del Turia 19, 46005, Valencia, Spain
| | - L Marti-Bonmati
- Research Group on Biomedical Imaging (GIBI230), Instituto de Investigación Sanitaria la Fe, 46026, Valencia, Spain
| | - D García-Párraga
- Departamento de Investigación, Fundación Oceanogràfic de la Comunidad Valenciana, Gran Vía Marqués del Turia 19, 46005, Valencia, Spain.,Departamento de Biología, Avanqua-Oceanográfic SL, Gran Vía Marqués del Turia 19, 46005, Valencia, Spain
| | - F Cauture
- Departamento de Investigación, Fundación Oceanogràfic de la Comunidad Valenciana, Gran Vía Marqués del Turia 19, 46005, Valencia, Spain
| |
Collapse
|
27
|
Liu Y, Liu YE, Tong CC, Cong PF, Shi XY, Shi L, Jin XH, Wang Q. CD28 deficiency attenuates primary blast-induced renal injury in mice via the PI3K/Akt signalling pathway. BMJ Mil Health 2019; 166:e66-e69. [PMID: 31129646 DOI: 10.1136/jramc-2019-001181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Primary blast affects the kidneys due to direct shock wave damage and the production of proinflammatory cytokines without effective treatment. CD28 has been reported to be involved in regulating T cell activation and secretion of inflammatory cytokines. The aim of this study was to investigate the influence of primary blast on the kidney and the effect of CD28 in mice. METHODS A mouse model of primary blast-induced kidney injury was established using a custom-made explosive device. The severity of kidney injury was investigated by H&E staining. ELISA was applied to study serum inflammation factors' expression. Western blot assays were used to analyse the primary blast-induced inflammatory factors' expression in the kidney. Immunofluorescence analysis was used to examine the PI3K/Akt signalling pathway. RESULTS Histological examination demonstrated that compared with the primary blast group, CD28 deficiency caused a significant decrease in the severity of the primary blast-induced renal injury. Moreover, ELISA and western blotting revealed that CD28 deficiency significantly reduced the levels of interleukin (IL)-1β, IL-4 and IL-6, and increased the IL-10 level (p<0.05). Finally, immunofluorescence analysis indicated that PI3K/Akt expression also changed. CONCLUSIONS CD28 deficiency had protective effects on primary blast-induced kidney injury via the PI3K/Akt signalling pathway. These findings improve the knowledge on primary blast injury and provide theoretical basis for primary blast injury treatment.
Collapse
Affiliation(s)
- Ying Liu
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, China
| | - Y E Liu
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, China
| | - C C Tong
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, China
| | - P F Cong
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, China
| | - X Y Shi
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, China
| | - L Shi
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, China
| | - X H Jin
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, China
| | - Q Wang
- Nuclear Medicine Department of General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
28
|
Mental health in elite athletes: International Olympic Committee consensus statement (2019). Br J Sports Med 2019; 53:667-699. [PMID: 31097450 DOI: 10.1136/bjsports-2019-100715] [Citation(s) in RCA: 422] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2019] [Indexed: 11/03/2022]
Abstract
Mental health symptoms and disorders are common among elite athletes, may have sport related manifestations within this population and impair performance. Mental health cannot be separated from physical health, as evidenced by mental health symptoms and disorders increasing the risk of physical injury and delaying subsequent recovery. There are no evidence or consensus based guidelines for diagnosis and management of mental health symptoms and disorders in elite athletes. Diagnosis must differentiate character traits particular to elite athletes from psychosocial maladaptations.Management strategies should address all contributors to mental health symptoms and consider biopsychosocial factors relevant to athletes to maximise benefit and minimise harm. Management must involve both treatment of affected individual athletes and optimising environments in which all elite athletes train and compete. To advance a more standardised, evidence based approach to mental health symptoms and disorders in elite athletes, an International Olympic Committee Consensus Work Group critically evaluated the current state of science and provided recommendations.
Collapse
|
29
|
Fahlman A, Brodsky M, Miedler S, Dennison S, Ivančić M, Levine G, Rocho-Levine J, Manley M, Rocabert J, Borque-Espinosa A. Ventilation and gas exchange before and after voluntary static surface breath-holds in clinically healthy bottlenose dolphins, Tursiops truncatus. ACTA ACUST UNITED AC 2019; 222:jeb.192211. [PMID: 30760549 DOI: 10.1242/jeb.192211] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/05/2019] [Indexed: 01/14/2023]
Abstract
We measured respiratory flow (V̇), breathing frequency (f R), tidal volume (V T), breath duration and end-expired O2 content in bottlenose dolphins (Tursiops truncatus) before and after static surface breath-holds ranging from 34 to 292 s. There was considerable variation in the end-expired O2, V T and f R following a breath-hold. The analysis suggests that the dolphins attempt to minimize recovery following a dive by altering V T and f R to rapidly replenish the O2 stores. For the first breath following a surface breath-hold, the end-expired O2 decreased with dive duration, while V T and f R increased. Throughout the recovery period, end-expired O2 increased while the respiratory effort (V T, f R) decreased. We propose that the dolphins alter respiratory effort following a breath-hold according to the reduction in end-expired O2 levels, allowing almost complete recovery after 1.2 min.
Collapse
Affiliation(s)
- Andreas Fahlman
- Departamento de investigación, Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain .,Departamento de Zoología, Grupo de Investigación Biomédica en Imagen GIBI230, Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Micah Brodsky
- Micah Brodsky, V.M.D. Consulting, 1287 NE 96th Street, Miami Shores, FL 33138, USA
| | - Stefan Miedler
- Departamento de investigación, Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
| | - Sophie Dennison
- TeleVet Imaging Solutions, PLLC, PO BOX 3344, Oakton, VA 22124, USA
| | - Marina Ivančić
- Chicago Zoological Society, 3300 Golf Road, Brookfield, IL 60513, USA
| | - Gregg Levine
- Dolphin Quest, Oahu, 5000 Kahala Ave, Honolulu, HI 96816, USA
| | | | - Mercy Manley
- Siegfried & Roy's Secret Garden and Dolphin Habitat, The Mirage, Las Vegas, NV 89109, USA
| | - Joan Rocabert
- Mellow Design, C/ Bany dels pavesos 3, 46001 Valencia, Spain
| | - Alicia Borque-Espinosa
- Departamento de investigación, Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain.,Departamento de Zoología, Grupo de Investigación Biomédica en Imagen GIBI230, Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain.,Universidad de Valencia, Av. de Blasco Ibáñez, 13, 46010 Valencia, Spain
| |
Collapse
|
30
|
Fahlman A, Epple A, García-Párraga D, Robeck T, Haulena M, Piscitelli-Doshkov M, Brodsky M. Characterizing respiratory capacity in belugas (Delphinapterus leucas). Respir Physiol Neurobiol 2019; 260:63-69. [DOI: 10.1016/j.resp.2018.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 11/24/2022]
|
31
|
Tanioka S, Ishida F, Kishimoto T, Tsuji M, Tanaka K, Shimosaka S, Toyoda M, Kashiwagi N, Sano T, Suzuki H. Quantification of hemodynamic irregularity using oscillatory velocity index in the associations with the rupture status of cerebral aneurysms. J Neurointerv Surg 2019; 11:614-617. [PMID: 30670624 DOI: 10.1136/neurintsurg-2018-014489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/01/2018] [Accepted: 12/09/2018] [Indexed: 11/03/2022]
Abstract
BACKGROUND Complex and unstable flow patterns are reported to be associated with the rupture status of cerebral aneurysms, while their evaluation depends on qualitative analysis of streamlines of bloodflow. Oscillatory velocity index (OVI) is a hemodynamic parameter to quantify flow patterns. The aim of this study is to elucidate the associations between OVI and the rupture status of cerebral aneurysms. METHODS One hundred and twenty-nine ruptured and unruptured cerebral aneurysms were analyzed with computational fluid dynamics under pulsatile flow conditions. With the use of median value of OVI, all aneurysms were divided into high and low OVI groups. Statistical analysis was performed to compare rupture status, and morphological and hemodynamic parameters between the two groups. RESULTS The median value of OVI was 0.006. High OVI was more likely observed in ruptured aneurysms (P=0.028) and associated with irregular shape, complex flow patterns, and unstable flow patterns (P<0.001, respectively). In morphological parameters, maximum size, aspect, projection, size, and volume-to-ostium area ratios were significantly higher in the high OVI group (P<0.001, respectively). In hemodynamic parameters, wall shear stress and wall shear stress gradient were significantly lower, and oscillatory shear index and gradient oscillatory number were significantly higher in the high OVI group (P<0.001, respectively). CONCLUSION High OVI was associated with rupture status, and morphological and hemodynamic characteristics of ruptured aneurysms. These results indicate that OVI may serve as a valuable hemodynamic parameter for diagnosing rupture status and risks of aneurysms.
Collapse
Affiliation(s)
- Satoru Tanioka
- Department of Neurosurgery, Mie Chuo Medical Center, Tsu, Japan
| | - Fujimaro Ishida
- Department of Neurosurgery, Mie Chuo Medical Center, Tsu, Japan
| | - Tomoyuki Kishimoto
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masanori Tsuji
- Department of Neurosurgery, Mie Chuo Medical Center, Tsu, Japan
| | | | | | - Mitsuru Toyoda
- School of Statistical Thinking, The Institute of Statistical Mathematics, Tachikawa, Japan
| | - Nobuhisa Kashiwagi
- School of Statistical Thinking, The Institute of Statistical Mathematics, Tachikawa, Japan
| | - Takanori Sano
- Department of Neurosurgery, Japanese Red Cross Ise Hospital, Ise, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
32
|
García-Párraga D, Lorenzo T, Wang T, Ortiz JL, Ortega J, Crespo-Picazo JL, Cortijo J, Fahlman A. Deciphering function of the pulmonary arterial sphincters in loggerhead sea turtles ( Caretta caretta). ACTA ACUST UNITED AC 2018; 221:jeb.179820. [PMID: 30348649 DOI: 10.1242/jeb.179820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
Abstract
To provide new insight into the pathophysiological mechanisms underlying gas emboli (GE) in bycaught loggerhead sea turtles (Caretta caretta), we investigated the vasoactive characteristics of the pulmonary and systemic arteries, and the lung parenchyma (LP). Tissues were opportunistically excised from recently dead animals for in vitro studies of vasoactive responses to four different neurotransmitters: acetylcholine (ACh; parasympathetic), serotonin (5HT), adrenaline (Adr; sympathetic) and histamine. The significant amount of smooth muscle in the LP contracted in response to ACh, Adr and histamine. The intrapulmonary and systemic arteries contracted under both parasympathetic and sympathetic stimulation and when exposed to 5HT. However, proximal extrapulmonary arterial (PEPA) sections contracted in response to ACh and 5HT, whereas Adr caused relaxation. In sea turtles, the relaxation in the pulmonary artery was particularly pronounced at the level of the pulmonary artery sphincter (PASp), where the vessel wall was highly muscular. For comparison, we also studied tissue response in freshwater sliders turtles (Trachemys scripta elegans). Both PEPA and LP from freshwater sliders contracted in response to 5HT, ACh and also Adr. We propose that in sea turtles, the dive response (parasympathetic tone) constricts the PEPA, LP and PASp, causing a pulmonary shunt and limiting gas uptake at depth, which reduces the risk of GE during long and deep dives. Elevated sympathetic tone caused by forced submersion during entanglement with fishing gear increases the pulmonary blood flow causing an increase in N2 uptake, potentially leading to the formation of blood and tissue GE at the surface. These findings provide potential physiological and anatomical explanations on how these animals have evolved a cardiac shunt pattern that regulates gas exchange during deep and prolonged diving.
Collapse
Affiliation(s)
- Daniel García-Párraga
- Fundación Oceanografic de la Comunidad Valenciana, Gran Vía Marques del Turia 19, 46005 Valencia, Spain
| | - Teresa Lorenzo
- Fundación Oceanografic de la Comunidad Valenciana, Gran Vía Marques del Turia 19, 46005 Valencia, Spain
| | - Tobias Wang
- Zoophysiology, Department of Biosciences, Aarhus University, 8000 Aarhus C, Denmark
| | - Jose-Luis Ortiz
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Joaquín Ortega
- Patología y Sanidad Animal, Departamento PASAPTA, Facultad de Veterinaria, Universidad CEU-Cardenal Herrera, CEU Universities, Moncada, 46018 Valencia, Spain
| | - Jose-Luis Crespo-Picazo
- Fundación Oceanografic de la Comunidad Valenciana, Gran Vía Marques del Turia 19, 46005 Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Andreas Fahlman
- Fundación Oceanografic de la Comunidad Valenciana, Gran Vía Marques del Turia 19, 46005 Valencia, Spain.,Department of Life Science, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
33
|
Fahlman A, McHugh K, Allen J, Barleycorn A, Allen A, Sweeney J, Stone R, Faulkner Trainor R, Bedford G, Moore MJ, Jensen FH, Wells R. Resting Metabolic Rate and Lung Function in Wild Offshore Common Bottlenose Dolphins, Tursiops truncatus, Near Bermuda. Front Physiol 2018; 9:886. [PMID: 30065656 PMCID: PMC6056772 DOI: 10.3389/fphys.2018.00886] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/19/2018] [Indexed: 11/16/2022] Open
Abstract
Diving mammals have evolved a suite of physiological adaptations to manage respiratory gases during extended breath-hold dives. To test the hypothesis that offshore bottlenose dolphins have evolved physiological adaptations to improve their ability for extended deep dives and as protection for lung barotrauma, we investigated the lung function and respiratory physiology of four wild common bottlenose dolphins (Tursiops truncatus) near the island of Bermuda. We measured blood hematocrit (Hct, %), resting metabolic rate (RMR, l O2 ⋅ min-1), tidal volume (VT, l), respiratory frequency (fR, breaths ⋅ min-1), respiratory flow (l ⋅ min-1), and dynamic lung compliance (CL, l ⋅ cmH2O-1) in air and in water, and compared measurements with published results from coastal, shallow-diving dolphins. We found that offshore dolphins had greater Hct (56 ± 2%) compared to shallow-diving bottlenose dolphins (range: 30–49%), thus resulting in a greater O2 storage capacity and longer aerobic diving duration. Contrary to our hypothesis, the specific CL (sCL, 0.30 ± 0.12 cmH2O-1) was not different between populations. Neither the mass-specific RMR (3.0 ± 1.7 ml O2 ⋅ min-1 ⋅ kg-1) nor VT (23.0 ± 3.7 ml ⋅ kg-1) were different from coastal ecotype bottlenose dolphins, both in the wild and under managed care, suggesting that deep-diving dolphins do not have metabolic or respiratory adaptations that differ from the shallow-diving ecotypes. The lack of respiratory adaptations for deep diving further support the recently developed hypothesis that gas management in cetaceans is not entirely passive but governed by alteration in the ventilation-perfusion matching, which allows for selective gas exchange to protect against diving related problems such as decompression sickness.
Collapse
Affiliation(s)
- Andreas Fahlman
- Fundación Oceanografic de la Comunidad Valenciana, Gran Vía Marques del Turia, Valencia, Spain.,Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States.,Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Katherine McHugh
- Chicago Zoological Society's Sarasota Dolphin Research Program, Mote Marine Laboratory, Sarasota, FL, United States
| | - Jason Allen
- Chicago Zoological Society's Sarasota Dolphin Research Program, Mote Marine Laboratory, Sarasota, FL, United States
| | - Aaron Barleycorn
- Chicago Zoological Society's Sarasota Dolphin Research Program, Mote Marine Laboratory, Sarasota, FL, United States
| | - Austin Allen
- Duke University Marine Lab, Beaufort, NC, United States
| | | | - Rae Stone
- Dolphin Quest, Waikoloa, HI, United States
| | | | - Guy Bedford
- Wildlife Consulting Service, Currumbin, QLD, Australia
| | - Michael J Moore
- Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Frants H Jensen
- Woods Hole Oceanographic Institution, Woods Hole, MA, United States.,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Randall Wells
- Chicago Zoological Society's Sarasota Dolphin Research Program, Mote Marine Laboratory, Sarasota, FL, United States
| |
Collapse
|