1
|
Al Jaberi FM, Alzarzour R, Dewa A, Muhamad A, Zakaria F. Metabolic clues to memory loss: High-fat diets and brain-adipose crosstalk in zebrafish. Behav Brain Res 2025; 486:115559. [PMID: 40164316 DOI: 10.1016/j.bbr.2025.115559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Obesity is a growing public health concern that significantly impacts cognitive functions, including memory. This research explores how a high-fat diet affects short-term memory, employing the novel object recognition (NOR) test and NMR-based metabolomics to elucidate metabolic alterations in the brain and adipose tissue. The zebrafish were divided into two groups: one receiving a standard diet (SD) and the other a high-fat diet (HFD). Body mass index (BMI) was assessed every two weeks for a period of eight weeks. The NOR test was used to determine the discrimination index (DI) for evaluating the short-term memory of the SD and HFD groups. NMR spectroscopy was employed to investigate the metabolites in brain and adipose tissues, and multivariate data analysis was conducted to discover significant metabolic alterations. The high-fat diet (HFD) resulted in a significant increase in body mass index (BMI) (p < 0.0001) compared to the standard diet (SD) group from week 4 to week 8. A significant reduction in the discrimination index (24.95 %) in the HFD group against the SD group suggests a decline in memory performance among HFD subjects. NMR-based metabolomics of adipose tissue revealed that linoleic acid and caprylic acid were consistently found to exhibit increased levels in the HFD group across all assessments, whereas lauric acid, ALA, EPA, and DHA were consistently present at elevated levels in the adipose tissue of the SD group. NMR-based metabolomics of the brain identified GABA, taurine, and histamine as the key metabolites distinguishing the HFD from the SD group in female zebrafish. For male zebrafish brains, taurine, phenylalanine, and tryptophan were identified as the most significant metabolites for differentiating between HFD and SD. These metabolites demonstrated a notable decrease in the HFD group relative to the SD group. The results of this study align with those of previously reported studies in rodents and humans, indicating that memory impairment associated with obesity may stem from neuroinflammation and changes in synaptic plasticity. This research provides insights into the molecular changes in adipose tissue and the brain that occur when individuals receive a high-fat diet (HFD), which may enhance our understanding of the link between obesity and memory impairment, ultimately leading to a better comprehension of the disease.
Collapse
Affiliation(s)
- Farah Mejbel Al Jaberi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Pharmaceutical Chemistry Department, Faculty of Pharmacy, University of Misan, Amarah, Maysan, Iraq
| | - Ragdha Alzarzour
- Discipline of Pharmacology, School of Pharmacy, Arab International University (AIU), Damascus, Syria
| | - Aidiahmad Dewa
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Azira Muhamad
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia (NIBM), 43000 Bangi, Selangor, Malaysia
| | - Fauziahanim Zakaria
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
2
|
Wu Y, Yang Y, Du C, Peng X, Fan W, Chang B, Shan C. Berberine attenuates obesity-induced skeletal muscle atrophy via regulation of FUNDC1 in skeletal muscle of mice. Sci Rep 2025; 15:4918. [PMID: 39930016 PMCID: PMC11811154 DOI: 10.1038/s41598-025-89297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Skeletal muscle atrophy is a complication of obesity, partially induced by impaired mitophagy. This study investigates whether Berberine(BBR) protects mice from obese skeletal muscle atrophy and the underlying molecular mechanism. Twenty C57BL/6 mice were fed a high-fat diet until they weighed more than 20% of the average body weight of the control group. The mice were then divided into two groups and gavaged with BBR or vehicle for 8 weeks. 10 mice were used as controls. Fasting blood glucose was measured, an oral glucose tolerance test was performed, and the mice were measured for grip strength and exercise capacity. H&E and Oil Red O staining were used to observe the pathological changes of skeletal muscle. MURF1, FBXO32, BAX, BCL2, P62, LC3 and mitophagy receptor FUNDC1 were observed in mice. BBR was intervened in C2C12 myotubes. The role of FUNDC1 was verified by RNA interference. We found that BBR treatment increased grip strength and improved muscle function. BBR not only reduced weight gain, excessive lipid accumulation and hyperlipidemia, but also ameliorated obesity-induced skeletal muscle atrophy and apoptosis. BBR promoted autophagy and increased FUNDC1 protein expression. The same positive effects were observed after BBR intervening on C2C12 myotubes, whereas FUNDC1 RNA interference attenuated the anti-skeletal muscle atrophy effect of BBR. These results suggest that BBR ameliorated obesity-induced skeletal muscle atrophy in mice by modulating the skeletal muscle mitophagy receptor FUNDC1, which may be a potential therapeutic target for obesity-induced skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yijie Wu
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China, No.6 North Huanrui Rd, Beichen District, Tianjin, P.R China
| | - Yanhui Yang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China, No.6 North Huanrui Rd, Beichen District, Tianjin, P.R China
| | - Caixia Du
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China, No.6 North Huanrui Rd, Beichen District, Tianjin, P.R China
| | - Xiaoyue Peng
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China, No.6 North Huanrui Rd, Beichen District, Tianjin, P.R China
| | - Wenying Fan
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China, No.6 North Huanrui Rd, Beichen District, Tianjin, P.R China
| | - Baocheng Chang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China, No.6 North Huanrui Rd, Beichen District, Tianjin, P.R China.
| | - Chunyan Shan
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China, No.6 North Huanrui Rd, Beichen District, Tianjin, P.R China.
| |
Collapse
|
3
|
Zou J, Song Q, Shaw PC, Wu Y, Zuo Z, Yu R. Tangerine Peel-Derived Exosome-Like Nanovesicles Alleviate Hepatic Steatosis Induced by Type 2 Diabetes: Evidenced by Regulating Lipid Metabolism and Intestinal Microflora. Int J Nanomedicine 2024; 19:10023-10043. [PMID: 39371479 PMCID: PMC11451394 DOI: 10.2147/ijn.s478589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Non-alcoholic fatty liver disease (NAFLD) represents a significant global health burden, exhibiting a strong correlation with insulin resistance, obesity, and type 2 diabetes (T2DM). Despite the severity of hepatic steatosis in T2DM patients, no specific drugs have been approved for clinical treatment of the disease. Tangerine peel is one kind of popular functional food and reported to possess hypoglycemic and lipid-lowering potential. In this study, we investigated the effects of Tangerine-peel-derived exosome-like nanovesicles (TNVs) on hepatic lipotoxicity associated with T2DM. Methods The TNVs was prepared by differential centrifugation of the aqueous extract of Tangerine and chemical properties were characterized using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and LC-MS/MS. The hypoglycemic and lipid-lowering potential of TNVs were possessed by biochemical measurement, RT-PCR, 16S rRNA sequencing, GC/MS, UHPLC-MS/MS, in vivo small animal imaging assay and HE staining. Subsequently, effects of TNVs on lipid accumulation and glycolysis were investigated on 3T3-L1 and AML-12 cells. Results TNVs significantly inhibited insulin resistance, reduced hepatic lipid accumulation, facilitate intestinal mucosal repair, rescued gut microbiota dysbiosis, regulated colonic SCFA and liver bile acid metabolism in db/db mice. Furthermore, TNVs restored the expression of key genes in glucose and lipid metabolism (ACC, AMPK, CD36, LXRα, PPAR-γ, SREBP-1) while activating the expression of genes related to glycolysis (G6Pase, GLUT2, PCK1, PEPCK) in db/db mice. Further cell-based mechanistic studies revealed that TNVs reduced lipid accumulation in 3T3-L1 and AML-12 cells via regulation of glucose and lipid metabolism-related genes (UCP1, FGFR4, PRDM16, PGC-1α, Tmem26, Cpt1, Cpt2 and PPAR-α). Conclusion We for the first time demonstrated that TNVs could significantly improve glucose and lipid metabolism via activating the expression of genes related to fatty acid β-oxidation and glycolysis.
Collapse
Affiliation(s)
- Junju Zou
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Qianbo Song
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Pang Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Yongjun Wu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Rong Yu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| |
Collapse
|
4
|
Adeyi OE, Somade OT, Ugwor EI, Ajayi BO, Adeyi AO, Rahman SA, Adams SO, Ayanwale MO, Adediran OO, Ambali G, Phillip YP, Abass DO, Adebisi YO, Okwori KA, Moses D, Somoye AO, Ugbaja RN, Ademuyiwa O. Syringic acid through reduction of inflammation, oxidative injury, and downregulation of NF-κB-IL-6 pathway ameliorates HFD-induced pulmonary toxicity in male Wistar rats. COMPARATIVE CLINICAL PATHOLOGY 2024; 33:787-802. [DOI: 10.1007/s00580-024-03601-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 01/04/2025]
|
5
|
Jaime-Lara RB, Colina-Prisco C, De Jesus Vega M, Williams S, Usdin T, Matikainen-Ankney B, Kinkead A, Brooks B, Wang Y, Franks AT, Kravitz A, Joseph PV. Diet-Induced Obesity Induces Transcriptomic Changes in Neuroimmunometabolic-Related Genes in the Striatum and Olfactory Bulb. Int J Mol Sci 2024; 25:9330. [PMID: 39273278 PMCID: PMC11395036 DOI: 10.3390/ijms25179330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The incidence of obesity has markedly increased globally over the last several decades and is believed to be associated with the easier availability of energy-dense foods, including high-fat foods. The reinforcing hedonic properties of high-fat foods, including olfactory cues, activate reward centers in the brain, motivating eating behavior. Thus, there is a growing interest in the understanding of the genetic changes that occur in the brain that are associated with obesity and eating behavior. This growing interest has paralleled advances in genomic methods that enable transcriptomic-wide analyses. Here, we examined the transcriptomic-level differences in the olfactory bulb and striatum, regions of the brain associated with olfaction and hedonic food-seeking, respectively, in high-fat-diet (HFD)-fed obese mice. To isolate the dietary effects from obesity, we also examined transcriptomic changes in normal-chow-fed and limited-HFD-fed groups, with the latter being pair-fed with an HFD isocaloric to the consumption of the normal-chow-fed mice. Using RNA sequencing, we identified 274 differentially expressed genes (DEGs) in the striatum and 11 in the olfactory bulb of ad libitum HFD-fed mice compared to the chow-fed group, and thirty-eight DEGs in the striatum between the ad libitum HFD and limited-HFD-fed groups. The DEGs in both tissues were associated with inflammation and immune-related pathways, including oxidative stress and immune function, and with mitochondrial dysfunction and reward pathways in the striatum. These results shed light on potential obesity-associated genes in these regions of the brain.
Collapse
Affiliation(s)
- Rosario B Jaime-Lara
- National Institute of Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
- National Institute of Nursing Research, Bethesda, MD 20892, USA
- School of Nursing, University of California, Los Angeles, CA 90095, USA
| | - Claudia Colina-Prisco
- National Institute of Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
- National Institute of Nursing Research, Bethesda, MD 20892, USA
| | | | - Sarah Williams
- National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Ted Usdin
- National Institute of Mental Health, Bethesda, MD 20892, USA
| | | | - Alayna Kinkead
- National Institute of Nursing Research, Bethesda, MD 20892, USA
| | - Brianna Brooks
- National Institute of Nursing Research, Bethesda, MD 20892, USA
| | - Yupeng Wang
- National Institute of Nursing Research, Bethesda, MD 20892, USA
| | - Alexis T Franks
- National Institute of Nursing Research, Bethesda, MD 20892, USA
| | - Alexxai Kravitz
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Paule V Joseph
- National Institute of Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
- National Institute of Nursing Research, Bethesda, MD 20892, USA
- National Smell and Taste Center, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Slusher AL, Visavadiya NP, Fico BG, Estébanez B, Acevedo EO, Huang CJ. Impact of BMI and Cardiorespiratory Fitness on Oxidative Stress in Plasma and Circulating Exosomes Following Acute Exercise. BIOLOGY 2024; 13:599. [PMID: 39194537 DOI: 10.3390/biology13080599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024]
Abstract
The impact of cardiorespiratory fitness (VO2max) and obesity on indices of oxidative stress in plasma and circulating exosome-like extracellular vesicles (ELVs) were examined following acute exercise. Indices of oxidative stress in plasma and isolated plasma ELVs were examined in aerobically trained (NW-Tr; n = 15) and untrained (NW-UTr; n = 18) normal-weight individuals and aerobically untrained individuals with obesity (Ob-Utr; n = 10) prior to and immediately following acute maximal treadmill running. Following exercise, ELV flotillin-1 expression (p = 0.008) and plasma total antioxidant capacity (TAC; p = 0.010) increased more in NW-UTr compared to NW-Tr and Ob-UTr participants, whereas plasma protein carbonyls (PC) decreased more in Ob-UTr compared to NW-Tr and NW-UTr groups. ELV glutathione (GSH) concentrations decreased more in NW-Tr compared to NW-UTr and Ob-UTr participants (p = 0.009), whereas lipid peroxidase (LPO) concentrations increased more in Ob-UTr compared to NW-Tr and NW-UTr participants (p = 0.003). Body mass index (BMI) was associated negatively with plasma TAC and PC (p < 0.05) and positively with ELV LPO concentration responses (p = 0.009). Finally, plasma-to-total (plasma + ELV) GSH ratios decreased in Ob-UTr compared to NW-Tr and NW-UTr participants (p = 0.006), PC ratios increased in NW-Tr and NW-UTr compared to Ob-UTr subjects (p = 0.008), and reactive oxygen/nitrogen species ratios increased in NW-UTr and decreased in Ob-UTr participants (p < 0.001). BMI, independently of VO2max, differentially regulates indices of oxidative stress within plasma and circulating ELVs prior to and immediately following acute maximal treadmill exercise.
Collapse
Affiliation(s)
- Aaron L Slusher
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06519, USA
| | - Nishant P Visavadiya
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, FACSM 777 Glades Road, FH11A-126B, Boca Raton, FL 33431, USA
| | - Brandon G Fico
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, FACSM 777 Glades Road, FH11A-126B, Boca Raton, FL 33431, USA
| | - Brisamar Estébanez
- Institute of Biomedicine (BIOMED), University of León, 24071 León, Spain
| | - Edmund O Acevedo
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23220, USA
| | - Chun-Jung Huang
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, FACSM 777 Glades Road, FH11A-126B, Boca Raton, FL 33431, USA
| |
Collapse
|
7
|
Veluthakal R, Esparza D, Hoolachan JM, Balakrishnan R, Ahn M, Oh E, Jayasena CS, Thurmond DC. Mitochondrial Dysfunction, Oxidative Stress, and Inter-Organ Miscommunications in T2D Progression. Int J Mol Sci 2024; 25:1504. [PMID: 38338783 PMCID: PMC10855860 DOI: 10.3390/ijms25031504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Type 2 diabetes (T2D) is a heterogenous disease, and conventionally, peripheral insulin resistance (IR) was thought to precede islet β-cell dysfunction, promoting progression from prediabetes to T2D. New evidence suggests that T2D-lean individuals experience early β-cell dysfunction without significant IR. Regardless of the primary event (i.e., IR vs. β-cell dysfunction) that contributes to dysglycemia, significant early-onset oxidative damage and mitochondrial dysfunction in multiple metabolic tissues may be a driver of T2D onset and progression. Oxidative stress, defined as the generation of reactive oxygen species (ROS), is mediated by hyperglycemia alone or in combination with lipids. Physiological oxidative stress promotes inter-tissue communication, while pathological oxidative stress promotes inter-tissue mis-communication, and new evidence suggests that this is mediated via extracellular vesicles (EVs), including mitochondria containing EVs. Under metabolic-related stress conditions, EV-mediated cross-talk between β-cells and skeletal muscle likely trigger mitochondrial anomalies leading to prediabetes and T2D. This article reviews the underlying molecular mechanisms in ROS-related pathogenesis of prediabetes, including mitophagy and mitochondrial dynamics due to oxidative stress. Further, this review will describe the potential of various therapeutic avenues for attenuating oxidative damage, reversing prediabetes and preventing progression to T2D.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| | | | | | | | | | | | | | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| |
Collapse
|
8
|
Zhang L. Protective Effect of Tertiary Butylhydroquinone against Obesity-induced Skeletal Muscle Pathology in Post-weaning High Fat Diet Fed Rats. Curr Pharm Biotechnol 2024; 25:1276-1287. [PMID: 37565558 DOI: 10.2174/1389201024666230810094809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Obesity deleteriously affects skeletal muscle functionality starting from infancy to adulthood, leading to dysfunctional skeletal muscle. OBJECTIVES This study, therefore, evaluated the protective action of tert-butylhydroquinone (tBHQ) against obesity-induced skeletal muscle pathology in high-fat diet (HFD) fed rats. METHODS Twenty post-weaning male albino rats were randomized into four groups of five rats each as: Group 1 (control), Group 2 (HFD), Group 3 (orlistat) and Group 4 (tBHQ). Group one received rat pellets for 12 weeks, while groups 2 to 4 received HFD for 12 weeks. At the end of week 8, obesity was confirmed with Lee Obesity Index and body mass index values of ≥ 303 and ≥ 0.68 gcm2, respectively. Group 3 was given oral administration of orlistat (10 mg/kg, once daily), while group 4 was given oral administration of tBHQ (25 mg/kg, once daily). Administration of orlistat and tBHQ commenced from week 9 to the end of the experiment. RESULTS Chronic exposure of post-weaning rats to HFD led to their development of the metabolic syndrome phenotypes in adulthood, characterized by obesity, hyperglycemia, dyslipidaemia, hyperinsulinaemia, insulin resistance as well as induction of oxidative stress and alteration of skeletal muscle markers, which were mitigated following supplementation with orlistat and tBHQ. CONCLUSION The study showed the anti-obesity potentials of tBHQ and its protective action against HFD obesity-induced skeletal muscular pathology.
Collapse
Affiliation(s)
- Le Zhang
- Department of Pediatrics, Hanzhong Central Hospital, Hanzhong, 723000, China
| |
Collapse
|
9
|
Gora AH, Rehman S, Dias J, Fernandes JMO, Olsvik PA, Sørensen M, Kiron V. Microbial oil, alone or paired with β-glucans, can control hypercholesterolemia in a zebrafish model. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159383. [PMID: 37657755 DOI: 10.1016/j.bbalip.2023.159383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/12/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Dyslipidemia is often associated with unhealthy dietary habits, and many mammalian studies have explored the mode of action of certain bioactive compounds such as β-glucans and n-3 PUFAs to understand their potential to normalize the lipid metabolism. There are only a few investigations that adopted omic approaches to unveil their combined effect on hypercholesterolemia. Zebrafish (Danio rerio) was used as a model organism to reveal the efficacy of Schizochytrium oil and β-glucans (from Euglena gracilis and Phaeodactylum tricornutum) against cholesterol-rich diet induced dyslipidemia. One of the folowing four diets was fed to a particular group of fish: a control high-cholesterol diet, a Schizochytrium oil diet or one of the two diets containing the oil and β-glucan. The plasma HDL, expression of hepatic genes linked to, among others, ferric ion binding and plasma phosphatidylcholines were higher and plasma cholesterol esters and triacylglycerols were lower in the microbial oil-fed fish compared to the fish fed high cholesterol diet. While the fish fed a mix of microbial oil and Euglena β-glucan had lower plasma triacylglycerols and expression of hepatic genes linked to PPAR signaling pathway and enriched biosynthesis of plasma unsaturated fatty acids, the fish fed microbial oil-Phaeodactylum β-glucan combination had lower abundance of triacylglycerols rich in saturated and mono-unsaturated fatty acids and cholesterol esters in the plasma.
Collapse
Affiliation(s)
- Adnan H Gora
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Saima Rehman
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | | | - Pål A Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
| |
Collapse
|
10
|
Qin Y, Fan R, Liu Y, Qiu S, Wang L. Exploring the potential mechanism of Rubus corchorifolius L. fruit polyphenol-rich extract in mitigating non-alcoholic fatty liver disease by integration of metabolomics and transcriptomics profiling. Food Funct 2023; 14:9295-9308. [PMID: 37779461 DOI: 10.1039/d3fo02653a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), as the commonest chronic liver disease, is accompanied by liver oxidative stress and inflammatory responses. Herein, the extract obtained from Rubus corchorifolius fruits was purified and characterized for its polyphenol composition. The liver protective effect of the purified R. corchorifolius fruit extract (RCE) on mice with high-fat-diet (HFD)-induced NAFLD were investigated, and the potential mechanisms were explored through the integration of transcriptomics and metabolomics. Results showed that the polyphenolic compounds in RCE mainly included (-)-epigallocatechin, procyanidin B2, keracyanin, vanillin, dihydromyricetin, and ellagic acid. In addition, RCE intervention ameliorated liver and mitochondrial damage, which was evidenced by decreased indices of oxidative stress, liver function markers, and lipid profile levels. The liver metabonomics research revealed that RCE intervention affected the metabolic pathways of metabolites, including linoleic acid metabolism, galactose metabolism, alanine, aspartate and glutamate metabolism, retinol metabolism, glycine, serine and threonine metabolism, tryptophan metabolism, aminoacyl-tRNA biosynthesis, riboflavin metabolism, starch and sucrose metabolism, and arachidonic acid metabolism. Additionally, liver transcriptomics research indicated that pathways like fatty acid degradation, circadian rhythm, valine, leucine and isoleucine degradation, primary bile acid biosynthesis, cytokine-cytokine receptor interaction, adipocytokine signaling pathway, glutathione metabolism, lipid and atherosclerosis were significantly enriched. The transcriptomics and metabolomics analysis demonstrated that RCE intervention had significant modulatory effects on the metabolic pathways associated with glycolipid metabolism. Moreover, RT-PCR results verified that RCE intervention regulated liver mRNA levels associated with the inflammatory response. Therefore, our findings suggest that the intake of RCE might be an effective strategy to alleviate liver damage.
Collapse
Affiliation(s)
- Yin Qin
- College of Life Sciences/Institute of Agro-bioengineering, Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Guizhou University, Guiyang 550025, Guizhou Province, P. R. China.
- College of Food and Drug Manufacturing Engineering, Guizhou Institute of Technology, Guiyang 550003, P. R. China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Ruyan Fan
- School of Food Science and Engineering, Hainan University, Haikou 570228, P. R. China.
| | - Yingxin Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, P. R. China.
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, P. R. China
| | - Shuyi Qiu
- College of Life Sciences/Institute of Agro-bioengineering, Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Guizhou University, Guiyang 550025, Guizhou Province, P. R. China.
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, P. R. China.
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, P. R. China
| |
Collapse
|
11
|
Lesgards JF. Benefits of Whey Proteins on Type 2 Diabetes Mellitus Parameters and Prevention of Cardiovascular Diseases. Nutrients 2023; 15:nu15051294. [PMID: 36904293 PMCID: PMC10005124 DOI: 10.3390/nu15051294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major cause of morbidity and mortality, and it is a major risk factor for the early onset of cardiovascular diseases (CVDs). More than genetics, food, physical activity, walkability, and air pollution are lifestyle factors, which have the greatest impact on T2DM. Certain diets have been shown to be associated with lower T2DM and cardiovascular risk. Diminishing added sugar and processed fats and increasing antioxidant-rich vegetable and fruit intake has often been highlighted, as in the Mediterranean diet. However, less is known about the interest of proteins in low-fat dairy and whey in particular, which have great potential to improve T2DM and could be used safely as a part of a multi-target strategy. This review discusses all the biochemical and clinical aspects of the benefits of high-quality whey, which is now considered a functional food, for prevention and improvement of T2DM and CVDs by insulin- and non-insulin-dependent mechanisms.
Collapse
Affiliation(s)
- Jean-François Lesgards
- Ingénierie des Peptides Thérapeutiques, Ambrilia-Cellpep, Faculté de Médecine Nord, Aix-Marseille University, Boulevard Pierre Dramard, 13015 Marseille, France
| |
Collapse
|
12
|
Sudhakaran G, Rajesh R, Guru A, Arasu MV, Gopinath P, Arockiaraj J. Nimbin analogs N5 and N7 regulate the expression of lipid metabolic genes and inhibit lipid accumulation in high-fat diet-induced zebrafish larvae: An antihyperlipidemic study. Tissue Cell 2023; 80:102000. [PMID: 36542946 DOI: 10.1016/j.tice.2022.102000] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Excess accumulation of lipids leads to obesity. Triterpenoids are a group of plant compounds which poses various biological activities. The biological activities of Nimbin analogs N5 and N7 were addressed in this study on inhibiting lipid aggregation and underlying the derivatives molecular mechanisms for a therapeutical approach. AIM This study aims to evaluate the anti-adipogenic activity of semi-natural Nimbin analogs, N5 and N7, on zebrafish larvae induced with oxidative stress due to a high-fat diet (HFD) and adipogenesis using specific fluorescent stains. MATERIALS AND METHODS Zebrafish at 4 days post fertilized (dpf) larvae were divided into groups for the HFD diet along with exposure to various concentrations of N5 and N7. HFD induced accumulation of neutral lipids and triglycerides (Oil Red O and Nile red staining, respectively) with weight gain, which generated intracellular ROS (DCFH-DA staining) and superoxide anion production (DHE staining) with depleted glutathione levels (NDA staining) were assayed. HFD exposure promoted the accumulation of inflammatory macrophages (Neutral red staining) and impaired glucose metabolism (2NBDG staining). The ability of N5 and N7 to reduce total regulating lipogenic specific genes C/EBP-α, SREBP-1 and FAS were evaluated using relative gene expression. KEY FINDINGS The Nimbin analogues N5 and N7 suppressed adipogenesis, forming intracellular ROS and superoxide anion while simultaneously restoring glutathione levels. The analogues significantly lowered total TC and TG levels, prevented inflammatory macrophage build-up and boosted glucose absorption. Also, N5 and N7 down-regulate the lipogenic-specific genes. SIGNIFICANCE Nimbin analogs N5 and N7 enhance lipolysis and inhibit adipogenesis in in-vivo zebrafish larvae model.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Ravi Rajesh
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Ajay Guru
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Pusparathinam Gopinath
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India.
| |
Collapse
|
13
|
Sztolsztener K, Bzdęga W, Hodun K, Chabowski A. N-Acetylcysteine Decreases Myocardial Content of Inflammatory Mediators Preventing the Development of Inflammation State and Oxidative Stress in Rats Subjected to a High-Fat Diet. Int J Inflam 2023; 2023:5480199. [PMID: 36941865 PMCID: PMC10024630 DOI: 10.1155/2023/5480199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023] Open
Abstract
Arachidonic acid (AA) is a key precursor for proinflammatory and anti-inflammatory derivatives that regulate the inflammatory response. The modulation of AA metabolism is a target for searching a therapeutic agent with potent anti-inflammatory action in cardiovascular disorders. Therefore, our study aims to determine the potential preventive impact of N-acetylcysteine (NAC) supplementation on myocardial inflammation and the occurrence of oxidative stress in obesity induced by high-fat feeding. The experiment was conducted for eight weeks on male Wistar rats fed a standard chow or a high-fat diet (HFD) with intragastric NAC supplementation. The Gas-Liquid Chromatography (GLC) method was used to quantify the plasma and myocardial AA levels in the selected lipid fraction. The expression of proteins included in the inflammation pathway was measured by the Western blot technique. The concentrations of arachidonic acid derivatives, cytokines and chemokines, and oxidative stress parameters were determined by the ELISA, colorimetric, and multiplex immunoassay kits. We established that in the left ventricle tissue NAC reduced AA concentration, especially in the phospholipid fraction. NAC administration ameliorated the COX-2 and 5-LOX expression, leading to a decrease in the PGE2 and LTC4 contents, respectively, and augmented the 12/15-LOX expression, increasing the LXA4 content. In obese rats, NAC ameliorated NF-κB expression, inhibiting the secretion of proinflammatory cytokines. NAC also affected the antioxidant levels in HFD rats through an increase in GSH and CAT contents with a simultaneous decrease in the levels of 4-HNE and MDA. We concluded that NAC treatment weakens the NF-κB signaling pathway, limiting the development of myocardial low-grade inflammation, and increasing the antioxidant content that may protect against the development of oxidative stress in rats with obesity induced by an HFD.
Collapse
Affiliation(s)
- Klaudia Sztolsztener
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Wiktor Bzdęga
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Katarzyna Hodun
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
14
|
Ajoolabady A, Lebeaupin C, Wu NN, Kaufman RJ, Ren J. ER stress and inflammation crosstalk in obesity. Med Res Rev 2023; 43:5-30. [PMID: 35975736 DOI: 10.1002/med.21921] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/07/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023]
Abstract
The endoplasmic reticulum (ER) governs the proper folding of polypeptides and proteins through various chaperones and enzymes residing within the ER organelle. Perturbation in the ER folding process ensues when overwhelmed protein folding exceeds the ER handling capacity, leading to the accumulation of misfolded/unfolded proteins in the ER lumen-a state being referred to as ER stress. In turn, ER stress induces a gamut of signaling cascades, termed as the "unfolded protein response" (UPR) that reinstates the ER homeostasis through a panel of gene expression modulation. This type of UPR is usually deemed "adaptive UPR." However, persistent or unresolved ER stress hyperactivates UPR response, which ultimately, triggers cell death and inflammatory pathways, termed as "maladaptive/terminal UPR." A plethora of evidence indicates that crosstalks between ER stress (maladaptive UPR) and inflammation precipitate obesity pathogenesis. In this regard, the acquisition of the mechanisms linking ER stress to inflammation in obesity might unveil potential remedies to tackle this pathological condition. Herein, we aim to elucidate key mechanisms of ER stress-induced inflammation in the context of obesity and summarize potential therapeutic strategies in the management of obesity through maneuvering ER stress and ER stress-associated inflammation.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Cardiology and Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cynthia Lebeaupin
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ne N Wu
- Department of Cardiology and Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jun Ren
- Department of Cardiology and Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Wang R, Wang L, Wu H, Zhang L, Hu X, Li C, Liu S. Noni (Morinda citrifolia L.) fruit phenolic extract supplementation ameliorates NAFLD by modulating insulin resistance, oxidative stress, inflammation, liver metabolism and gut microbiota. Food Res Int 2022; 160:111732. [DOI: 10.1016/j.foodres.2022.111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
|
16
|
Su Y, Elshorbagy A, Turner C, Refsum H, Kwok T. The Association of Circulating Amino Acids and Dietary Inflammatory Potential with Muscle Health in Chinese Community-Dwelling Older People. Nutrients 2022; 14:nu14122471. [PMID: 35745201 PMCID: PMC9229609 DOI: 10.3390/nu14122471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/06/2023] Open
Abstract
Amino acids (AAs) and dietary inflammatory potential play essential roles in muscle health. We examined the associations of dietary inflammatory index (DII) of habitual diet with serum AA profile, and ascertained if the associations between DII and muscle outcomes were mediated by serum AAs, in 2994 older Chinese community-dwelling men and women (mean age 72 years) in Hong Kong. Higher serum branched chain AAs (BCAAs), aromatic AAs and total glutathione (tGSH) were generally associated with better muscle status at baseline. A more pro-inflammatory diet, correlating with higher serum total homocysteine and cystathionine, was directly (90.2%) and indirectly (9.8%) through lower tGSH associated with 4-year decline in hand grip strength in men. Higher tGSH was associated with favorable 4-year changes in hand grip strength, gait speed and time needed for 5-time chair stands in men and 4-year change in muscle mass in women. Higher leucine and isoleucine were associated with decreased risk of sarcopenia in men; the associations were abolished after adjustment for BMI. In older men, perturbations in serum sulfur AAs metabolism may be biomarkers of DII related adverse muscle status, while the lower risk of sarcopenia with higher BCAAs may partly be due to preserved BMI.
Collapse
Affiliation(s)
- Yi Su
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China;
| | - Amany Elshorbagy
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria 21526, Egypt;
- Department of Pharmacology, University of Oxford, Oxford OX1 2JD, UK;
| | - Cheryl Turner
- Department of Pharmacology, University of Oxford, Oxford OX1 2JD, UK;
| | - Helga Refsum
- Institute of Basic Medical Sciences, Department of Nutrition, University of Oslo, 0316 Oslo, Norway;
| | - Timothy Kwok
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China
- Jockey Club Centre for Osteoporosis Care and Control, The Chinese University of Hong Kong, Hong Kong 999077, China
- Correspondence: ; Tel.: +852-2632-3128; Fax: +852-2637-3852
| |
Collapse
|
17
|
Kim JS, Han YK, Kong MJ, Park KM. Short-term control of diet affects cisplatin-induced acute kidney injury through modulation of mitochondrial dynamics and mitochondrial GSH. Physiol Rep 2022; 10:e15348. [PMID: 35748040 PMCID: PMC9226808 DOI: 10.14814/phy2.15348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 04/21/2023] Open
Abstract
Obesity affects acute kidney injury (AKI) induced by various clinical settings, including transplantation and cisplatin-cancer therapy. However, the effect of short-term food intake change remains to be defined. Here, we investigated the effects of short-term high-fat diet intake and food restriction on cisplatin-induced AKI. Mice were fed either a high-fat diet (HFD) or a low-fat diet (LFD) for 11 days or were not fed for 40 hh (fasting), before cisplatin administration. Cisplatin-induced functional and structural damages to kidneys in both HFD- and LFD-fed mice, with greater damages in HFD-fed mice than LFD-fed mice. HFD decreased mitochondrial total glutathione (tGSH) level, along with increases in the plasma and kidney cholesterol levels. Cisplatin caused the increase of kidney cholesterol levels and oxidative stress, along with the decrease of mitochondrial tGSH levels. In addition, cisplatin-induced mitochondrial damage and apoptosis of tubular cells in both HFD- and LFD-fed mice. An increase of Fis1 (mitochondria fission 1 protein), whereas a decrease of Opa1 (mitochondria fusion 1 protein) occurred by cisplatin. These cisplatin effects were greater in HFD-fed mice than in LFD-fed mice. Administration of mitochondria-specific antioxidant treatment during HFD feeding inhibited these cisplatin-induced changes. Fasting for 40 h also significantly reduced the cisplatin-induced changes mentioned above. These data demonstrate that short-term HFD intake worsens cisplatin-induced oxidative stress by the reduction of mitochondrial tGSH, resulting in increased cisplatin-induced nephrotoxicity. These data newly indicate that the control of calorie intake, even for a short period, affects kidney susceptibility to injury. Although most studies described the effects of a long-term high-fat diet on the kidneys, in this study, we found that even if a high-fat diet was consumed for a short-term, physiological changes and mitochondria tGSH decrease in the kidneys, and consequently increased cisplatin-nephrotoxic susceptibility. These data suggest the association of calorie intake with kidney susceptibility to cisplatin.
Collapse
Affiliation(s)
- Ji Su Kim
- Department of Anatomy and BK21 PlusSchool of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Yong Kwon Han
- Department of Anatomy and BK21 PlusSchool of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Min Jung Kong
- Department of Anatomy and BK21 PlusSchool of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
- Cardiovascular Research Institute, Kyungpook National UniversityDaeguRepublic of Korea
| | - Kwon Moo Park
- Department of Anatomy and BK21 PlusSchool of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
- Cardiovascular Research Institute, Kyungpook National UniversityDaeguRepublic of Korea
| |
Collapse
|
18
|
Panic A, Stanimirovic J, Sudar-Milovanovic E, Isenovic ER. Oxidative stress in obesity and insulin resistance. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Since obesity is one of the main factors in the development of insulin resistance (IR) and is also associated with increased oxidative stress (OxS) rate, this study aims to review the published literature to collate and provide a comprehensive summary of the studies related to the status of the OxS in the pathogenesis of obesity and related IR. OxS represents an imbalance between the production of reactive oxygen and nitrogen
species (RONS) and the capacity of the antioxidant defense system (AOS) to neutralize RONS. A steady-state of RONS level is maintained through endogenous enzymatic and non-enzymatic AOS components. Three crucial enzymes, which suppress the formation of free radicals, are superoxide dismutases, catalases, and glutathione peroxidases. The second line of AOS includes non-enzymatic components such as vitamins C and E, coenzyme Q, and glutathione which neutralizes free radicals by donating electrons to RONS. Emerging evidence suggests that high RONS levels contribute to the progression of OxS in obesity by activating inflammatory pathways and thus leading to the development of pathological states, including IR. In addition, decreased level of AOS
components in obesity increases the susceptibility to oxidative tissue damage and further progression of its comorbidities. Increased OxS in accumulated adipose tissue should be an imperative target for developing new therapies in obesity-related IR.
Collapse
Affiliation(s)
- Anastasija Panic
- Department of Radiobiology and Molecular Genetics, VIN�A Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Julijana Stanimirovic
- Department of Radiobiology and Molecular Genetics, VIN�A Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Emina Sudar-Milovanovic
- Department of Radiobiology and Molecular Genetics, VIN�A Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VIN�A Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
19
|
de França Silva RC, de Souza MA, da Silva JYP, Ponciano CDS, Bordin Viera V, de Menezes Santos Bertozzo CC, Guerra GC, de Souza Araújo DF, da Conceição MM, Querino Dias CDC, Oliveira ME, Soares JKB. Evaluation of the effectiveness of macaíba palm seed kernel (Acrocomia intumescens drude) on anxiolytic activity, memory preservation and oxidative stress in the brain of dyslipidemic rats. PLoS One 2021; 16:e0246184. [PMID: 33730037 PMCID: PMC7968719 DOI: 10.1371/journal.pone.0246184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/14/2021] [Indexed: 11/19/2022] Open
Abstract
Macaíba palm seed kernel is a source of lipids and phenolic compounds. The objective of this study was to evaluate the effects of macaíba palm seed kernel on anxiety, memory, and oxidative stress in the brain of health and dyslipidemic rats. Forty rats were used, divided into 4 groups (n = 10 each): control (CONT), dyslipidemic (DG), kernel (KG), and Dyslipidemic kernel (DKG). Dyslipidemia was induced using a high fat emulsion for 14 days before treatment. KG and DKG received 1000 mg/kg of macaíba palm seed kernel per gavage for 28 days. After treatment, anxiety tests were carried out using the Open Field Test (OFT), Elevated Plus Maze (EPM), and the Object Recognition Test (ORT) to assess memory. In the animals’ brain tissue, levels of malondialdehyde (MDA) and total glutathione (GSH) were quantified to determine oxidative stress. The data were treated with Two Way ANOVA followed by Tukey (p <0.05). Results demonstrated that the animals treated with kernel realized more rearing. DG and KG groomed less compared with CONT and DKG compared with all groups in OFT. KG spent more time in aversive open arms compared with CONT and DKG compared with all groups in EPM. Only DKG spent more time in the central area in EMP. KG and DKG showed a reduction in the exploration rate and MDA values (p <0.05). Data showed that macaíba palm seed kernel consumption induced anxiolytic-like behaviour and decreased lipids peroxidation in rats’ brains. On the other hand, this consumption by healthy and dyslipidemic animals compromises memory.
Collapse
|
20
|
Liu S, Yang D, Yu L, Aluo Z, Zhang Z, Qi Y, Li Y, Song Z, Xu G, Zhou L. Effects of lycopene on skeletal muscle-fiber type and high-fat diet-induced oxidative stress. J Nutr Biochem 2021; 87:108523. [PMID: 33039582 DOI: 10.1016/j.jnutbio.2020.108523] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 01/05/2023]
Abstract
Increasing studies report that many natural products can participate in formation of muscle fibers. This study aimed to investigate the effect of lycopene on skeletal muscle-fiber type in vivo and in vitro. C2C12 myoblasts were used in vitro study, and the concentration of lycopene was 10 µM. In vivo, 8-week-old male C57/BL6 mice were used and divided into four groups (n=8): (1) ND: normal-fat diet; (2) ND+Lyc: normal-fat diet mixed with 0.33% w/w lycopene; (3) HFD: high-fat diet; and (4) HFD+Lyc: high-fat diet mixed with 0.33% w/w lycopene. The mice tissue samples were collected after 8 weeks feeding. We found that lycopene supplementation enhanced the protein expression of slow-twitch fiber, succinate dehydrogenase, and malic dehydrogenase enzyme activities, whereas lycopene reduced the protein expression of fast-twitch fibers, lactate dehydrogenase, pyruvate kinase enzyme activities. Moreover, lycopene can promote skeletal muscle triglyceride deposition, enhanced the mRNA expression of genes related to lipid synthesis, reduced the mRNA expression of genes related to lipolysis. And high-fat diet-induced dyslipidemia and oxidative stress were attenuated after lycopene supplementation. Additionally, lycopene supplementation reduced the glycolytic reserve but enhanced mitochondrial ATP production in C2C12 cells. These results demonstrated that lycopene affects the activities of metabolic enzymes in muscle fibers, promotes the expression of slow-twitch fibers, and enhanced mitochondrial respiratory capacity. We speculated that lycopene affects the muscle-fiber type through aerobic oxidation, suggesting that lycopene exerts potential beneficial effects on skeletal muscle metabolism.
Collapse
Affiliation(s)
- Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Dan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Lin Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Zhier Aluo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Zhiwang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Yilin Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Ziyi Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Gaoxiao Xu
- Teaching and Research Section of Biotechnology, Nanning University, Nanning, PR China.
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China.
| |
Collapse
|
21
|
Stott NL, Marino JS. High Fat Rodent Models of Type 2 Diabetes: From Rodent to Human. Nutrients 2020; 12:nu12123650. [PMID: 33261000 PMCID: PMC7761287 DOI: 10.3390/nu12123650] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Poor dietary habits contribute to increased incidences of obesity and related co-morbidities, such as type 2 diabetes (T2D). The biological, genetic, and pathological implications of T2D, are commonly investigated using animal models induced by a dietary intervention. In spite of significant research contributions, animal models have limitations regarding the translation to human pathology, which leads to questioning their clinical relevance. Important considerations include diet-specific effects on whole organism energy balance and glucose and insulin homeostasis, as well as tissue-specific changes in insulin and glucose tolerance. This review will examine the T2D-like phenotype in rodents resulting from common diet-induced models and their relevance to the human disease state. Emphasis will be placed on the disparity in percentages and type of dietary fat, the duration of intervention, and whole organism and tissue-specific changes in rodents. An evaluation of these models will help to identify a diet-induced rodent model with the greatest clinical relevance to the human T2D pathology. We propose that a 45% high-fat diet composed of approximately one-third saturated fats and two-thirds unsaturated fats may provide a diet composition that aligns closely to average Western diet macronutrient composition, and induces metabolic alterations mirrored by clinical populations.
Collapse
|
22
|
S-Nitrosoglutathione Reverts Dietary Sucrose-Induced Insulin Resistance. Antioxidants (Basel) 2020; 9:antiox9090870. [PMID: 32942712 PMCID: PMC7555592 DOI: 10.3390/antiox9090870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
The liver is a fundamental organ to ensure whole-body homeostasis, allowing for a proper increase in insulin sensitivity from the fast to the postprandial status. Hepatic regulation of glucose metabolism is crucial and has been shown to be modulated by glutathione (GSH) and nitric oxide (NO). However, knowledge of the metabolic action of GSH and NO in glucose homeostasis remains incomplete. The current study was designed to test the hypothesis that treatment with S-nitrosoglutathione is sufficient to revert insulin resistance induced by a high-sucrose diet. Male Wistar rats were divided in a control or high-sucrose group. Insulin sensitivity was determined: (i) in the fast state; (ii) after a standardized test meal; (iii) after GSH + NO; and after (iv) S-nitrosoglutathione (GSNO) administration. The fasting glucose level was not different between the control and high-sucrose group. In the liver, the high-sucrose model shows increased NO and unchanged GSH levels. In control animals, insulin sensitivity increased after a meal or administration of GSH+NO/GSNO, but this was abrogated by sucrose feeding. GSNO was able to revert insulin resistance induced by sucrose feeding, in a dose-dependent manner, suggesting that they have an insulin-sensitizing effect in vivo. These effects are associated with an increased insulin receptor and Akt phosphorylation in muscle cells. Our findings demonstrate that GSNO promotes insulin sensitivity in a sucrose-induced insulin-resistant animal model and further implicates that this antioxidant molecule may act as a potential pharmacological tool for the treatment of insulin resistance in obesity and type 2 diabetes.
Collapse
|
23
|
The Role of Glutathione in Protecting against the Severe Inflammatory Response Triggered by COVID-19. Antioxidants (Basel) 2020; 9:antiox9070624. [PMID: 32708578 PMCID: PMC7402141 DOI: 10.3390/antiox9070624] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
The novel COVID-19 pandemic is affecting the world’s population differently: mostly in the presence of conditions such as aging, diabetes and hypertension the virus triggers a lethal cytokine storm and patients die from acute respiratory distress syndrome, whereas in many cases the disease has a mild or even asymptomatic progression. A common denominator in all conditions associated with COVID-19 appears to be the impaired redox homeostasis responsible for reactive oxygen species (ROS) accumulation; therefore, levels of glutathione (GSH), the key anti-oxidant guardian in all tissues, could be critical in extinguishing the exacerbated inflammation that triggers organ failure in COVID-19. The present review provides a biochemical investigation of the mechanisms leading to deadly inflammation in severe COVID-19, counterbalanced by GSH. The pathways competing for GSH are described to illustrate the events concurring to cause a depletion of endogenous GSH stocks. Drawing on evidence from literature that demonstrates the reduced levels of GSH in the main conditions clinically associated with severe disease, we highlight the relevance of restoring GSH levels in the attempt to protect the most vulnerable subjects from severe symptoms of COVID-19. Finally, we discuss the current data about the feasibility of increasing GSH levels, which could be used to prevent and subdue the disease.
Collapse
|
24
|
Olaniyi KS, Sabinari IW, Olatunji LA. Oral L-glutamine restores adenosine and glutathione content in the skeletal muscle and adipose tissue of insulin-resistant pregnant rats. Nutrition 2020; 77:110789. [PMID: 32428839 DOI: 10.1016/j.nut.2020.110789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/21/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Mishandling of lipid and glycogen has been documented as a feature of metabolic tissues in insulin resistance-related disorders. However, reports exist detailing that L-glutamine (GLN) protects non-adipose tissue against the deleterious effects of metabolic disorders. Therefore, we hypothesized that GLN would protect skeletal muscle and adipose tissue against the deleterious effects of lipid and glycogen mishandlings by increasing adenosine and glutathione levels in pregnant rats exposed to fructose (FRU)-enriched drinks. METHODS Pregnant Wistar rats weighing 150 to 180 g were randomly assigned to control, GLN, FRU, and FRU + GLN groups (six rats/group). The groups received vehicle (P.o.), glutamine (1 g/kg), FRU (10%; w/v), and FRU + GLN, respectively, for 19 d. RESULTS Data show that FRU caused insulin resistance with corresponding increased blood glucose, circulating and pancreatic insulin levels, and lipid accumulation and glycogen depletion in skeletal muscle, but glycogen accumulation and a decreased lipid profile in adipose tissue. Adenosine and glutathione content decreased, whereas adenosine deaminase, xanthine oxidase, uric acid, and malondialdehyde concentrations increased in both tissues. In addition, glucose-6-phosphate dehydrogenase activity decreased in skeletal muscle but remained unaltered in adipose tissue. However, supplementation with GLN improved perturbed lipid and glycogen with a corresponding increase in adenosine and glutathione. CONCLUSIONS The present results collectively indicate that lipid and glycogen mishandlings caused by high gestational FRU intake result in the depletion of adenosine and glutathione in skeletal muscle and adipose tissue. These findings also suggest that L-glutamine protects against skeletal muscle and adipose tissue dysmetabolism by enhancing adenosine and glutathione.
Collapse
Affiliation(s)
- Kehinde Samuel Olaniyi
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria; Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Isaiah Woru Sabinari
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Lawrence Aderemi Olatunji
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.
| |
Collapse
|
25
|
Glutathione and Nitric Oxide: Key Team Players in Use and Disuse of Skeletal Muscle. Nutrients 2019; 11:nu11102318. [PMID: 31575008 PMCID: PMC6836164 DOI: 10.3390/nu11102318] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
Glutathione (GSH) is the main non-enzymatic antioxidant playing an important role in detoxification, signal transduction by modulation of protein thiols redox status and direct scavenging of radicals. The latter function is not only performed against reactive oxygen species (ROS) but GSH also has a fundamental role in buffering nitric oxide (NO), a physiologically-produced molecule having-multifaceted functions. The efficient rate of GSH synthesis and high levels of GSH-dependent enzymes are characteristic features of healthy skeletal muscle where, besides the canonical functions, it is also involved in muscle contraction regulation. Moreover, NO production in skeletal muscle is a direct consequence of contractile activity and influences several metabolic myocyte pathways under both physiological and pathological conditions. In this review, we will consider the homeostasis and intersection of GSH with NO and then we will restrict the discussion on their role in processes related to skeletal muscle function and degeneration.
Collapse
|