1
|
Wang X, Lenartowicz M, Mazgaj R, Ogłuszka M, Szkopek D, Zaworski K, Kopeć Z, Żelazowska B, Lipiński P, Woliński J, Starzyński RR. Preterm Piglets Born by Cesarean Section as a Suitable Animal Model for the Study of Iron Metabolism in Premature Infants. Int J Mol Sci 2024; 25:11215. [PMID: 39456997 PMCID: PMC11508764 DOI: 10.3390/ijms252011215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Preterm infants are most at risk of iron deficiency. However, our knowledge of the regulation of iron homeostasis in preterm infants is poor. The main goal of our research was to develop and validate an animal model of human prematurity to assess iron status in preterm infants. We performed a cesarean section on sows on the 109th day of pregnancy, which corresponds to the last trimester of human pregnancy. Preterm piglets showed decreased body weight, red blood cell indices, plasma iron level and transferrin saturation. Interestingly, higher hepatic and splenic non-heme iron content and plasma and hepatic ferritin levels were found in premature piglets compared with term ones. In addition, premature piglets showed higher mRNA levels of iron-regulatory hormone hepcidin in the liver than term animals, which have not been reflected in higher plasma hepcidin-25 levels. We also showed changes in hepcidin regulators, including hepatic bone morphogenetic protein 6, plasma erythroferrone and growth differentiation factor 15 in preterm piglets. Consequently, no difference was observed in iron-exporter ferroportin levels in the spleen and liver. Overall, it seems that premature piglets show a pattern of iron metabolism characteristic of functional iron deficiency and iron accumulation in the tissue.
Collapse
Affiliation(s)
- Xiuying Wang
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (X.W.); (R.M.); (Z.K.); (B.Ż.); (P.L.)
| | - Małgorzata Lenartowicz
- Laboratory of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Mazgaj
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (X.W.); (R.M.); (Z.K.); (B.Ż.); (P.L.)
| | - Magdalena Ogłuszka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland;
| | - Dominika Szkopek
- Laboratory of Large Animal Models, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (D.S.); (J.W.)
| | - Kamil Zaworski
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Zuzanna Kopeć
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (X.W.); (R.M.); (Z.K.); (B.Ż.); (P.L.)
| | - Beata Żelazowska
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (X.W.); (R.M.); (Z.K.); (B.Ż.); (P.L.)
| | - Paweł Lipiński
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (X.W.); (R.M.); (Z.K.); (B.Ż.); (P.L.)
| | - Jarosław Woliński
- Laboratory of Large Animal Models, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (D.S.); (J.W.)
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Rafał Radosław Starzyński
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (X.W.); (R.M.); (Z.K.); (B.Ż.); (P.L.)
| |
Collapse
|
2
|
Boštjančič S, Spirovska A, Jerin A, Erčulj V, Avčin S, Kornhauser Cerar L, Grosek Š. Serum hepcidin and ferritin as markers of iron deficiency in premature infants born at less than 32 weeks of gestation: prospective observational study. Minerva Pediatr (Torino) 2024; 76:627-635. [PMID: 33890745 DOI: 10.23736/s2724-5276.21.06264-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Preterm infants born at less than 32 weeks of gestation are at higher risk of low total iron stores (iron deficiency). Serum ferritin is used as a valid total iron stores and iron deficiency biomarker, usually as a combination of ferritin and red blood cell counts. METHODS Serum hepcidin and ferritin values and red blood cell counts were obtained from 37 of 40 included premature infants born at less than 32 weeks of gestation at risk of iron deficiency. The first sample was obtained in the first week of life, and the second at transfer from the Neonatal intensive care unit to the maternity ward, when serum ferritin level below 25 µg/L has been defined as very low total iron stores (iron deficiency). RESULTS Ferritin median levels decreased from a median value of 152 µg/L at the first measurement to 54 µg/L at the second measurement. Hepcidin median levels also decreased from 30.1 µg/L to 2.1 µg/L. We found a positive and statistically significant correlation between levels of ferritin and hepcidin at both measurements (r=0.57; P<0.001 and r=0.72; P<0.001, respectively). Compared to serum hepcidin, ferritin at the first measurement has not statistically significant higher power in predicting children with iron deficiency before discharge from the hospital. CONCLUSIONS We found a correlation between ferritin and hepcidin levels. Nevertheless, hepcidin does not have a worse power in predicting children with iron deficiency compared to ferritin.
Collapse
Affiliation(s)
| | - Ana Spirovska
- Section of Neonatology, Division of Gynaecology and Obstetrics, Department of Perinatology, University Medical Center of Ljubljana, Ljubljana, Slovenia
| | - Aleš Jerin
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Center of Ljubljana, Ljubljana, Slovenia
| | - Vanja Erčulj
- Rho Sigma, Vanja Ida Erčulj s.p., Ljubljana, Slovenia
- Faculty of Criminal Justice and Security University of Maribor, Maribor, Slovenia
| | - Simona Avčin
- Department of Haematology, University Paediatric Clinic, University Medical Center of Ljubljana, Ljubljana, Slovenia
| | - Lilijana Kornhauser Cerar
- Section of Neonatology, Division of Gynaecology and Obstetrics, Department of Perinatology, University Medical Center of Ljubljana, Ljubljana, Slovenia
| | - Štefan Grosek
- Section of Neonatology, Division of Gynaecology and Obstetrics, Department of Perinatology, University Medical Center of Ljubljana, Ljubljana, Slovenia
- Division of Surgery, Department of Paediatric Surgery and Intensive Care, University Medical Center of Ljubljana, Ljubljana, Slovenia
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Faruk S, Sanusi KO, Ibrahim KG, Abubakar B, Malami I, Bello MB, Abubakar MB, Abbas AY, Imam MU. Age and sex-based impacts of maternal iron deficiency on offspring's cognitive function and anemia: A systematic review. Eur J Clin Nutr 2024; 78:477-485. [PMID: 38424158 DOI: 10.1038/s41430-024-01423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Iron deficiency is a recognized global health concern, particularly impactful during pregnancy where the mother serves as the primary source of iron for the developing fetus. Adequate maternal iron levels are crucial for fetal growth and cognitive development. This review investigates the correlation between maternal iron deficiency and cognitive impairment and anemia in offspring, considering age and gender differentials. PubMed, ScienceDirect, and Google Scholar databases were queried using keywords "maternal," "iron," "gender/sex," and "cognition." The review included studies on human and animal subjects where maternal iron deficiency was the exposure and offspring cognitive function and anemia were outcomes. Out of 1139 articles screened, fourteen met inclusion criteria. Twelve studies highlighted cognitive deficits in offspring of iron-deficient mothers, with females generally exhibiting milder impairment compared to males. Additionally, two studies noted increased anemia prevalence in offspring of iron-deficient mothers, particularly affecting males and younger individuals. The findings suggest that male offspring are at higher risk of both anemia and cognitive dysfunction during youth, while females face increased risks in adulthood. Thus, maternal iron deficiency elevates the likelihood of anemia and cognitive impairments in offspring, underscoring the importance of addressing maternal iron status for optimal child health.
Collapse
Affiliation(s)
- Saudatu Faruk
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2254, Sokoto, Nigeria
- Department of Biochemistry, Faculty of Science, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria
| | - Kamaldeen Olalekan Sanusi
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2254, Sokoto, Nigeria
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, PMB 2254, Sokoto, Nigeria
| | - Kasimu Ghandi Ibrahim
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2254, Sokoto, Nigeria
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, PMB 2254, Sokoto, Nigeria
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, P.O.Box 2000, Zarqa, 13110, Jordan
| | - Bilyaminu Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2254, Sokoto, Nigeria
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2254, Sokoto, Nigeria
| | - Ibrahim Malami
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2254, Sokoto, Nigeria
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2254, Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2254, Sokoto, Nigeria
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, PMB 2254, Sokoto, Nigeria
| | - Murtala Bello Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2254, Sokoto, Nigeria
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, PMB 2254, Sokoto, Nigeria
| | - Abdullahi Yahya Abbas
- Department of Biochemistry, Faculty of Science, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2254, Sokoto, Nigeria.
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, PMB 2254, Sokoto, Nigeria.
| |
Collapse
|
4
|
DelRosso LM, Artinian H, Mogavero MP, Bruni O, Witmans M, Tablizo MA, Sobremonte-King M, Ferri R. Polysomnographically Defined Restless Sleep Disorder and Periodic Limb Movements during Sleep in Children Born Prematurely. CHILDREN (BASEL, SWITZERLAND) 2024; 11:658. [PMID: 38929237 PMCID: PMC11202265 DOI: 10.3390/children11060658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION Children born prematurely (<37 weeks' gestation) are at increased risk of perinatal complications, comorbidities, and iron deficiency. Iron deficiency is associated with restless legs syndrome and periodic limb movement disorder. In this study, we assessed the prevalence of restless sleep disorder (RSD) and elevated periodic limb movements during sleep (PLMS) in children born prematurely who underwent polysomnography. METHODS A retrospective chart review of sleep studies was conducted in children aged 1-18 years (median age 4 years) with a history of premature birth. Children with genetic syndrome, airway surgery, or tracheostomy were excluded. Three groups were compared: children with PLMS index >5, children with RSD, and children with neither elevated PLMS index nor RSD. RESULTS During the study, 2577 sleep studies were reviewed. Ninety-two studies fit our criteria and were included in the analysis. The median age at birth was 31 weeks, and the interquartile range (IQR) was 27-34 weeks. A total of 32 (34.8%) children were referred for restless sleep and 55 (59.8%) for snoring. After polysomnography, 18% were found to have a PLMS index >5/h, and 14% fit the criteria for restless sleep disorder (RSD). There were no statistically significant differences in PSG parameters among the children with RSD, PLMS, and the remaining group, except for lower obstructive apnea/hypopnea index (Kruskal-Wallis ANOVA 8.621, p = 0.0135) in the RSD group (median 0.7, IQR 0.3-0.9) than in the PLMS (median 1.7, IQR 0.7-3.5) or the non-RSD/non-PLMS (median 2.0, IQR 0.8-4.5) groups. CONCLUSIONS There was an elevated frequency of RSD and elevated PLMS in our cohort of children born prematurely. Children born prematurely are at higher risk of iron deficiency which can be a contributor factor to sleep -related movement disorders. These results add new knowledge regarding the prevalence of RSD and PLMS in these children.
Collapse
Affiliation(s)
- Lourdes M. DelRosso
- University of California San Francisco, 155 N. Fresno St, Fresno, CA 93701, USA (M.A.T.)
- Seattle Childrens Hospital, Seattle, WA 98105, USA;
| | - Hovig Artinian
- University of California San Francisco, 155 N. Fresno St, Fresno, CA 93701, USA (M.A.T.)
| | - Maria P. Mogavero
- Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, 20127 Milan, Italy;
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Oliviero Bruni
- Department of Developmental and Social Psychology, Sapienza University, 00185 Rome, Italy;
| | - Manisha Witmans
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada;
| | - Mary Anne Tablizo
- University of California San Francisco, 155 N. Fresno St, Fresno, CA 93701, USA (M.A.T.)
- Department of Pediatrics, Division of Pediatric Pulmonary and Sleep Medicine, Stanford University, Palo Alto, CA 94305, USA
| | | | - Raffaele Ferri
- Sleep Research Centre, Department of Neurology IC, Oasi Research Institute-IRCCS, 94018 Troina, Italy;
| |
Collapse
|
5
|
Schildroth S, Valeri L, Kordas K, Shi B, Friedman A, Smith D, Placidi D, Wright RO, Lucchini RG, White RF, Horton M, Claus Henn B. Assessing the mediating role of iron status on associations between an industry-relevant metal mixture and verbal learning and memory in Italian adolescents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167435. [PMID: 37774885 PMCID: PMC10918745 DOI: 10.1016/j.scitotenv.2023.167435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Metals, including lead (Pb), manganese (Mn), chromium (Cr) and copper (Cu), have been associated with neurodevelopment; iron (Fe) plays a role in the metabolism and neurotoxicity of metals, suggesting Fe may mediate metal-neurodevelopment associations. However, no study to date has examined Fe as a mediator of the association between metal mixtures and neurodevelopment. OBJECTIVE We assessed Fe status as a mediator of a mixture of Pb, Mn, Cr and Cu in relation to verbal learning and memory in a cohort of Italian adolescents. METHODS We used cross-sectional data from 383 adolescents (10-14 years) in the Public Health Impact of Metals Exposure Study. Metals were quantified in blood (Pb) or hair (Mn, Cr, Cu) using ICP-MS, and three markers of Fe status (blood hemoglobin, serum ferritin and transferrin) were quantified using luminescence assays or immunoassays. Verbal learning and memory were assessed using the California Verbal Learning Test for Children (CVLT-C). We used Bayesian Kernel Machine Regression Causal Mediation Analysis to estimate four mediation effects: the natural direct effect (NDE), natural indirect effect (NIE), controlled direct effect (CDE) and total effect (TE). Beta (β) coefficients and 95 % credible intervals (CIs) were estimated for all effects. RESULTS The metal mixture was jointly associated with a greater number of words recalled on the CVLT-C, but these associations were not mediated by Fe status. For example, when ferritin was considered as the mediator, the NIE for long delay free recall was null (β = 0.00; 95 % CI = -0.22, 0.23). Conversely, the NDE (β = 0.23; 95 % CI = 0.01, 0.44) indicated a beneficial association of the mixture with recall that operated independently of Fe status. CONCLUSION An industry-relevant metal mixture was associated with learning and memory, but there was no evidence of mediation by Fe status. Further studies in populations with Fe deficiency and greater variation in metal exposure are warranted.
Collapse
Affiliation(s)
- Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.
| | - Linda Valeri
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, USA
| | - Baoyi Shi
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Donald Smith
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Donatella Placidi
- Department of Occupational Health, University of Brescia, Brescia, Italy
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roberto G Lucchini
- Department of Occupational Health, University of Brescia, Brescia, Italy; Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| | - Roberta F White
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA; Department of Neurology, Boston University, Boston, MA, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
6
|
Zhu H, Mao S, Li W. Association between Cu/Zn/Iron/Ca/Mg levels and cerebral palsy: a pooled-analysis. Sci Rep 2023; 13:18427. [PMID: 37891210 PMCID: PMC10611728 DOI: 10.1038/s41598-023-45697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023] Open
Abstract
It was well documented that macro/trace elements were associated with the neurodevelopment. We aimed to investigate the relationship between copper (Cu)/zinc (Zn)/iron/calcium (Ca)/magnesium (Mg) levels and cerebral palsy (CP) by performing a meta-analysis. We searched the PubMed, Embase, Cochrane and Chinese WanFang databases from January 1985 to June 2022 to yield studies that met our predefined criteria. Standard mean differences (SMDs) of Cu/Zn/Iron/Ca/Mg levels between CP cases and healthy controls were calculated using the fixed-effects model or the random-effects model, in the presence of heterogeneity. 95% confidence intervals (CI) were also computed. Sensitivity analysis was performed by omitting each study in turn. A total of 19 studies were involved in our investigation. CP cases showed markedly lower Cu, Zn, iron and Ca levels than those in controls among overall populations (SMD = - 2.156, 95% CI - 3.013 to - 1.299, P < 10-4; SMD = - 2.223, 95% CI - 2.966 to - 1.480, P < 10-4; SMD = - 1.092, 95% CI - 1.513 to - 0.672, P < 10-4; SMD = - 0.757, 95% CI - 1.475 to - 0.040, P = 0.038) and Asians (SMD = - 2.893, 95% CI - 3.977 to - 1.809, P < 10-4; SMD = - 2.559, 95% CI - 3.436 to - 1.683, P < 10-4; SMD = - 1.336, 95% CI - 1.807 to - 0.865, P < 10-4; SMD = - 1.000, 95% CI - 1.950 to - 0.051, P = 0.039). CP cases showed markedly lower Zn level than that in controls among Caucasians (SMD = - 0.462, 95% CI - 0.650 to - 0.274, P < 10-4). No significant differences of Cu, iron and Ca levels between CP cases and controls among Caucasians (SMD = - 0.188, 95% CI - 0.412 to 0.037, P = 0.101; SMD = - 0.004, 95% CI - 0.190 to 0.182, P = 0.968; SMD = 0.070, 95% CI - 0.116 to 0.257, P = 0.459) were observed. No marked difference of Mg level between CP cases and controls was noted among overall populations (SMD = - 0.139, 95% CI - 0.504 to 0.226, P = 0.455), Asians (SMD = - 0.131, 95% CI - 0.663 to 0.401, P = 0.629), and Caucasians (SMD = - 0.074, 95% CI - 0.361 to 0.213, P = 0.614). Sensitivity analysis did not change the overall results significantly for Cu, Zn, iron and Mg. CP cases demonstrated significantly lower levels of Cu/Zn/iron/Ca than those in healthy controls, particularly in Asians. Decreasing trend of Cu/Zn/iron/Ca levels merit attention, particularly in the population with high susceptibility to CP. Frequent monitoring and early intervention may be needed.
Collapse
Affiliation(s)
- Haiquan Zhu
- Department of Orthopaedics, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Song Mao
- Department of Pediatrics, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Li
- Department of General Surgery, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China.
| |
Collapse
|
7
|
Yu B, Ni M, Li H, Xu R, Wang A. Tailored pharmacist-led intervention to improve adherence to Iron supplementation in premature infants: a randomized controlled trial in China. Front Endocrinol (Lausanne) 2023; 14:1288347. [PMID: 37876544 PMCID: PMC10591074 DOI: 10.3389/fendo.2023.1288347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction Prematurity is due to a number of factors, especially genetics. This study was designed to evaluate the impact of a pharmacist-led patient-centered medication therapy management trial on iron deficiency and medication adherence among premature infants receiving iron supplementation at a tertiary hospital in Shaoxing, China. Methods In this randomised controlled trial, eighty-one premature infants, with or without genetic factors, born at 26 to 30 weeks and 6 days gestational age, will be recruited and randomised to an intervention group or a control group. The intervention group will receive a pharmacist-driven discharge counseling on iron supplements from recruitment, until 12 months. The control group will receive care as usual. The main outcomes were haemoglobin (g/L), serum iron (μg/L), medication adherence estimation and differentiation scale, the satisfaction with information about medicines scale, beliefs about medicines questionnaire and the Bayley scales for infant development. Results A total of 81 patients were enrolled in the study. After intervention, results for the haemoglobin and serum iron differed significantly between the control group and the intervention group (101.36 vs. 113.55, P < 0.0001 and 51.13 vs. 101.36, P = 0.004). Additionally, there was a substantial difference between the intervention group and the control group in terms of patient medication adherence estimation and differentiation scale (27 vs. 34, P = 0.0002). the intervention group had better mental development index and psychomotor development index, compared with the control group (91.03 vs. 87.29, P = 0.035 and 95.05 vs. 90.00, P = 0.022). Discussion In premature infants with iron deficiency, our pharmacist-led team significantly improved clinical outcomes and medication adherence.
Collapse
Affiliation(s)
- Beimeng Yu
- Shaoxing Key Laboratory of Reproductive Health, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, Zhejiang, China
- Neonatal Intensive Care Unit, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, Zhejiang, China
| | - Ming Ni
- Shaoxing Key Laboratory of Reproductive Health, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, Zhejiang, China
- Department of Clinical Pharmacy, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, Zhejiang, China
| | - Haijing Li
- Shaoxing Key Laboratory of Reproductive Health, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, Zhejiang, China
| | - Renjie Xu
- Shaoxing Key Laboratory of Reproductive Health, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, Zhejiang, China
- Department of Clinical Pharmacy, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, Zhejiang, China
| | - Aiping Wang
- Gynecological Fifth Ward, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
8
|
Uchida Y, Kan H, Furukawa G, Onda K, Sakurai K, Takada K, Matsukawa N, Oishi K. Relationship between brain iron dynamics and blood-brain barrier function during childhood: a quantitative magnetic resonance imaging study. Fluids Barriers CNS 2023; 20:60. [PMID: 37592310 PMCID: PMC10433620 DOI: 10.1186/s12987-023-00464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Mounting evidence suggests that the blood-brain barrier (BBB) plays an important role in the regulation of brain iron homeostasis in normal brain development, but these imaging profiles remain to be elucidated. We aimed to establish a relationship between brain iron dynamics and BBB function during childhood using a combined quantitative magnetic resonance imaging (MRI) to depict both physiological systems along developmental trajectories. METHODS In this single-center prospective study, consecutive outpatients, 2-180 months of age, who underwent brain MRI (3.0-T scanner; Ingenia; Philips) between January 2020 and January 2021, were included. Children with histories of preterm birth or birth defects, abnormalities on MRI, and diagnoses that included neurological diseases during follow-up examinations through December 2022 were excluded. In addition to clinical MRI, quantitative susceptibility mapping (QSM; iron deposition measure) and diffusion-prepared pseudo-continuous arterial spin labeling (DP-pCASL; BBB function measure) were acquired. Atlas-based analyses for QSM and DP-pCASL were performed to investigate developmental trajectories of regional brain iron deposition and BBB function and their relationships. RESULTS A total of 78 children (mean age, 73.8 months ± 61.5 [SD]; 43 boys) were evaluated. Rapid magnetic susceptibility progression in the brain (Δsusceptibility value) was observed during the first two years (globus pallidus, 1.26 ± 0.18 [× 10- 3 ppm/month]; substantia nigra, 0.68 ± 0.16; thalamus, 0.15 ± 0.04). The scattergram between the Δsusceptibility value and the water exchange rate across the BBB (kw) divided by the cerebral blood flow was well fitted to the sigmoidal curve model, whose inflection point differed among each deep gray-matter nucleus (globus pallidus, 2.96-3.03 [mL/100 g]-1; substantia nigra, 3.12-3.15; thalamus, 3.64-3.67) in accordance with the regional heterogeneity of brain iron accumulation. CONCLUSIONS The combined quantitative MRI study of QSM and DP-pCASL for pediatric brains demonstrated the relationship between brain iron dynamics and BBB function during childhood. TRIAL REGISTRATION UMIN Clinical Trials Registry identifier: UMIN000039047, registered January 6, 2020.
Collapse
Affiliation(s)
- Yuto Uchida
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 208 Traylor Building, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Aichi, Japan.
| | - Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1- 1-20, Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Aichi, Japan
| | - Gen Furukawa
- Department of Pediatrics, Fujita Health University School of Medicine, 1-98, Kutsukake-cho, Dengakugakubo, Toyoake, 470-1192, Aichi, Japan
| | - Kengo Onda
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 208 Traylor Building, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Morioka-cho, Obu, 474-8511, Aichi, Japan
| | - Koji Takada
- Department of Neurology, Toyokawa City Hospital, 23, Noji, Yawata-cho, Toyokawa, 442-0857, Aichi, Japan
| | - Noriyuki Matsukawa
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Aichi, Japan
| | - Kenichi Oishi
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 208 Traylor Building, 720 Rutland Avenue, Baltimore, MD, 21205, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Baltimore, MD, 21224, USA
| |
Collapse
|
9
|
Chen W, Zheng D, Yang C. The Emerging Roles of Ferroptosis in Neonatal Diseases. J Inflamm Res 2023; 16:2661-2674. [PMID: 37396013 PMCID: PMC10312340 DOI: 10.2147/jir.s414316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023] Open
Abstract
Ferroptosis is a novel type of programmed cell death involved in many diseases' pathological processes. Ferroptosis is characterized by lipid peroxidation, reactive oxygen species accumulation, and iron metabolism disorder. Newborns are susceptible to ferroptosis due to their special physiological state, which is prone to abnormal iron metabolism and the accumulation of reactive oxygen species. Recent studies have linked ferroptosis to a variety of diseases in the neonatal period (including hypoxic-ischemic encephalopathy, bronchopulmonary dysplasia, and necrotizing enterocolitis). Ferroptosis may become an effective target for the treatment of neonatal-related diseases. In this review, the ferroptosis molecular mechanism, metabolism characteristics of iron and reactive oxygen species in infants, the relationship between ferroptosis and common infant disorders, and the treatment of infant diseases targeted for ferroptosis are systematically summarized.
Collapse
Affiliation(s)
- Wenqian Chen
- Department of Neonatology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Dali Zheng
- Key Laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Changyi Yang
- Department of Neonatology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
10
|
Staneviciene I, Levinas D, Sadauskiene I, Liekis A, Viezeliene D, Kursvietiene L, Naginiene R, Baranauskiene D, Simakauskiene V, Vaitkiene P, Miniotaite G, Sulinskiene J. Effect of Organic Selenium on the Homeostasis of Trace Elements, Lipid Peroxidation, and mRNA Expression of Antioxidant Proteins in Mouse Organs. Int J Mol Sci 2023; 24:ijms24119704. [PMID: 37298655 DOI: 10.3390/ijms24119704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
(1) In this study we determined the effect of long-term selenomethionine administration on the oxidative stress level and changes in antioxidant protein/enzyme activity; mRNA expression; and the levels of iron, zinc, and copper. (2) Experiments were performed on 4-6-week-old BALB/c mice, which were given selenomethionine (0.4 mg Se/kg b.w.) solution for 8 weeks. The element concentration was determined via inductively coupled plasma mass spectrometry. mRNA expression of SelenoP, Cat, and Sod1 was quantified using real-time quantitative reverse transcription. Malondialdehyde content and catalase activity were determined spectrophotometrically. (3) After long-term SeMet administration, the amount of Se increased by 12-fold in mouse blood, 15-fold in the liver, and 42-fold in the brain, as compared to that in the control. Exposure to SeMet decreased amounts of Fe and Cu in blood, but increased Fe and Zn levels in the liver and increased the levels of all examined elements in the brain. Se increased malondialdehyde content in the blood and brain but decreased it in liver. SeMet administration increased the mRNA expression of selenoprotein P, dismutase, and catalase, but decreased catalase activity in brain and liver. (4) Eight-week-long selenomethionine consumption elevated Se levels in the blood, liver, and especially in the brain and disturbed the homeostasis of Fe, Zn, and Cu. Moreover, Se induced lipid peroxidation in the blood and brain, but not in the liver. In response to SeMet exposure, significant up-regulation of the mRNA expression of catalase, superoxide dismutase 1, and selenoprotein P in the brain, and especially in the liver, was determined.
Collapse
Affiliation(s)
- Inga Staneviciene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
| | - Dovydas Levinas
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
| | - Ilona Sadauskiene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Arunas Liekis
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Dale Viezeliene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
| | - Lolita Kursvietiene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
| | - Rima Naginiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Dale Baranauskiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Vaida Simakauskiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Paulina Vaitkiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Giedre Miniotaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Jurgita Sulinskiene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| |
Collapse
|
11
|
Kawahara M, Kato-Negishi M, Tanaka KI. Dietary Trace Elements and the Pathogenesis of Neurodegenerative Diseases. Nutrients 2023; 15:2067. [PMID: 37432185 PMCID: PMC10180548 DOI: 10.3390/nu15092067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 07/12/2023] Open
Abstract
Trace elements such as iron (Fe), zinc (Zn), copper (Cu), and manganese (Mn) are absorbed from food via the gastrointestinal tract, transported into the brain, and play central roles in normal brain functions. An excess of these trace elements often produces reactive oxygen species and damages the brain. Moreover, increasing evidence suggests that the dyshomeostasis of these metals is involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, prion diseases, and Lewy body diseases. The disease-related amyloidogenic proteins can regulate metal homeostasis at the synapses, and thus loss of the protective functions of these amyloidogenic proteins causes neurodegeneration. Meanwhile, metal-induced conformational changes of the amyloidogenic proteins contribute to enhancing their neurotoxicity. Moreover, excess Zn and Cu play central roles in the pathogenesis of vascular-type senile dementia. Here, we present an overview of the intake, absorption, and transport of four essential elements (Fe, Zn, Cu, Mn) and one non-essential element (aluminum: Al) in food and their connections with the pathogenesis of neurodegenerative diseases based on metal-protein, and metal-metal cross-talk.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Midori Kato-Negishi
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| |
Collapse
|
12
|
Tan X, Zhang T, Ding X, Zhao X, Liu Q, Xia Z, Cao Q, Yan F, Chen L, Zhu M, Tang Y, Song Y. Iron overload facilitates neonatal hypoxic-ischemic brain damage via SLC7A11-mediated ferroptosis. J Neurosci Res 2023; 101:1107-1124. [PMID: 36929608 DOI: 10.1002/jnr.25184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/26/2022] [Accepted: 01/09/2023] [Indexed: 03/18/2023]
Abstract
Oxidative damage and cell death are involved in the pathogenesis of hypoxic-ischemic brain damage (HIBD). Ferroptosis is a newly identified mode of cell death that results from the oxidative damage induced by excessive iron. In HIBD, iron accumulates in brain tissues due to the massive destruction of red blood cells and increased permeability of the blood brain barrier vasculature, which can trigger ferroptosis. Ferroptosis is implicated in various diseases involving neuronal injury; however, the roles of iron and ferroptosis in HIBD have not been identified. In the present study, we investigated the role of iron overload in neuronal ferroptosis both in HIBD rat models and in oxygen- and glucose-deprived (OGD) SH-SY5Y cells. We observed that iron deposition in the cerebral cortex was significantly increased in HIBD rats. Features of ferroptosis such as shrunken mitochondria, increased MDA (malondialdehyde) levels, and reduced solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) expression were observed in the cerebral cortex of HIBD rats. Administration of an iron chelator in HIBD rats upregulated SLC7A11 expression and alleviated neuronal ferroptosis in cerebral cortex tissue. Additionally, overexpression of SLC7A11 in SH-SY5Y cells increased cell viability and attenuated OGD-induced ferroptosis. Our results demonstrate that iron overload induces neuronal ferroptosis by inhibiting SLC7A11 expression in HIBD. Inhibition of neuronal ferroptosis may be a promising strategy to alleviate brain damage in HIBD.
Collapse
Affiliation(s)
- Xuying Tan
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Ting Zhang
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Xuejiao Ding
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Xiaopeng Zhao
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Qianjun Liu
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Zhenglong Xia
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Qihua Cao
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Feng Yan
- Department of Delivery Room, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Li Chen
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Mingwei Zhu
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Yaping Tang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Yanyan Song
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| |
Collapse
|
13
|
Uddin MS, Ashraf GM. Dysregulation of Neuronal Iron in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:2247-2250. [PMID: 34970955 PMCID: PMC10556378 DOI: 10.2174/1570159x20666211231163544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/26/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
Otani S, Fushimi Y, Iwanaga K, Tomotaki S, Shimotsuma T, Nakajima S, Sakata A, Okuchi S, Hinoda T, Wicaksono KP, Takita J, Kawai M, Nakamoto Y. Evaluation of deep gray matter for early brain development using quantitative susceptibility mapping. Eur Radiol 2022; 33:4488-4499. [PMID: 36418626 DOI: 10.1007/s00330-022-09267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/31/2022] [Accepted: 10/23/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To evaluate susceptibility values associated with iron accumulation in the deep gray matter during postnatal development and to compare magnetic susceptibility between patients with normal and delayed development. METHODS Patients with postmenstrual age (PMA) ≤ 1000 days underwent MR scans between August 2015 and April 2020 at our hospital. Quantitative susceptibility mapping (QSM) was performed, and magnetic susceptibility was measured using three-dimensional volumes of interest (VOIs) for the caudate nucleus (CN), globus pallidus (GP), putamen (PT), and ventrolateral thalamic nucleus (VL). Cross-sectional analysis was performed for 99 patients with normal development and 39 patients with delayed development. Longitudinal analysis was also performed to interpret changes over time in 13 patients with normal development. Correlations between magnetic susceptibility in VOIs and PMA or chronological age (CA) were assessed. RESULTS Susceptibility values for CN, GP, PT, and VL showed positive moderate correlations with both PMA (ρ = 0.45, 0.69, 0.62, and 0.33, respectively) and CA (ρ = 0.53, 0.69, 0.66, and 0.39, respectively). The slope of the correlation between susceptibility values and age was highest in the GP among the four gray matter areas. Susceptibility values for the CN, GP, PT, and VL were higher with normal development than with delayed development at early postnatal age, although a significant difference was only observed for the CN. Susceptibility values also increased with age in the longitudinal analysis. CONCLUSIONS Magnetic susceptibility values in deep gray matter increased with age ≤ 1000 days. The normal development group showed higher susceptibility values than the delayed development group at early postnatal age (PMA ≤ 285 days). KEY POINTS • Magnetic susceptibilities in deep gray matter nuclei increased with age (postmenstrual age ≤ 1000 days) in a large number of pediatric patients. • The normal development group showed higher susceptibility values than the delayed development group in the basal ganglia and ventrolateral thalamic nucleus at early postnatal age (PMA ≤ 285 days).
Collapse
Affiliation(s)
- Sayo Otani
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Kogoro Iwanaga
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Seiichi Tomotaki
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Taiki Shimotsuma
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Satoshi Nakajima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Sachi Okuchi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takuya Hinoda
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Krishna Pandu Wicaksono
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Masahiko Kawai
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
15
|
Li C, Wu Z, Xue H, Gao Q, Zhang Y, Wang C, Zhao P. Ferroptosis contributes to hypoxic-ischemic brain injury in neonatal rats: Role of the SIRT1/Nrf2/GPx4 signaling pathway. CNS Neurosci Ther 2022; 28:2268-2280. [PMID: 36184790 PMCID: PMC9627393 DOI: 10.1111/cns.13973] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS Hypoxic-ischemic brain injury (HIBI) often results in cognitive impairments. Herein, we investigated the roles of ferroptosis in HIBI and the underlying signaling pathways. METHODS Ferrostatin-1 (Fer-1) or resveratrol (Res) treatments were administered intracerebroventricularly 30 min before HIBI in 7-day-old rats. Glutathione peroxidase 4 (GPx4) expression, malondialdehyde (MDA) concentration, iron content, mitochondrial morphology, and the expression of silent information regulator factor 2-related enzyme 1 (SIRT1) and nuclear factor erythroid-2-related factor 2 (Nrf2) were measured after HIBI. Additionally, the weight ratio of left/right hemisphere, brain morphology, Nissl staining, and the Morris water maze test were conducted to estimate brain damage. RESULTS At 24-h post-HIBI, GPx4 expression was decreased, and MDA concentration and iron content were increased in the hippocampus. HIBI led to mitochondrial atrophy, brain atrophy/damage, and resultant learning and memory impairments, which were alleviated by Fer-1-mediated inhibition of ferroptosis. Furthermore, Res-mediated SIRT1 upregulation increased Nrf2 and GPx4 expression, thereby attenuating ferroptosis, reducing brain atrophy/damage, and improving learning and memory abilities. CONCLUSION The results demonstrated that during HIBI, ferroptosis occurs via the SIRT1/Nrf2/GPx4 signaling pathway, suggesting it as a potential therapeutic target for inhibiting ferroptosis and ameliorating HIBI-induced cognitive impairments.
Collapse
Affiliation(s)
- Chang Li
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Ziyi Wu
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Hang Xue
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Qiushi Gao
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yahan Zhang
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Changming Wang
- Department of AnesthesiologyPeople's Hospital of China Medical University (Liaoning Provincial People's Hospital)ShenyangLiaoningChina
| | - Ping Zhao
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
16
|
Xu S, Ma L, Li H, Wang X, Wu M, Jing J, Chen X, Lan R, Tang W, Zhu Y. Iron Supplementation Is Associated with Improvement of Motor Development, Hemoglobin Level, and Weight in Preterm Infants during the First Year of Life in China. Nutrients 2022; 14:nu14132624. [PMID: 35807810 PMCID: PMC9267941 DOI: 10.3390/nu14132624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 01/27/2023] Open
Abstract
Iron supplementation is recommended for preterm infants due to impaired iron endowment. However, the health outcomes of this recommendation remain controversial. Thus, this study aimed to determine the association of iron supplementation with neurobehavioral development, hemoglobin (Hb), and anthropometric characteristics in preterm infants. A retrospective cohort design was applied to collect data from 1568 preterm infants at 0–3 months of corrected age (mo CA) from a hospital in South China. Infants were categorized into a 3-month iron supplementation group (IG, n = 697) or a control group (CG, n = 871) according to medical records, and then followed through to 12 mo CA. Data on neurobehavioral development, anthropometry, Hb level, history of diseases, and nutrition were collected at 3, 6, and 12 mo CA. The results showed that, compared with the CG, iron supplementation was positively related to improved gross motor skills and weight at 6 mo CA (β = 1.894, β = 5.322) and 12 mo CA (β = 4.019, β = 6.830) and fine motor skills at 12 mo CA (β = 1.980), after adjustment for confounding factors including illness, nutritional supplements, and diet. Iron supplementation was also related to elevated Hb levels and its increase at 3 mo CA (β = 2.196, β = 3.920) and 6 mo CA (β = 3.011, β = 7.259). In conclusion, iron supplementation for 3 months in Chinese preterm infants is positively associated with improved motor development, elevated Hb levels, and higher body weight during the first year of life.
Collapse
Affiliation(s)
- Suhua Xu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (S.X.); (H.L.); (X.W.); (M.W.); (J.J.); (X.C.); (R.L.); (W.T.)
| | - Liya Ma
- Shenzhen Bao’an Women and Children’s Hospital, Jinan University, Shenzhen 518102, China;
| | - Hailin Li
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (S.X.); (H.L.); (X.W.); (M.W.); (J.J.); (X.C.); (R.L.); (W.T.)
| | - Xiaotong Wang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (S.X.); (H.L.); (X.W.); (M.W.); (J.J.); (X.C.); (R.L.); (W.T.)
| | - Miao Wu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (S.X.); (H.L.); (X.W.); (M.W.); (J.J.); (X.C.); (R.L.); (W.T.)
| | - Jiajia Jing
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (S.X.); (H.L.); (X.W.); (M.W.); (J.J.); (X.C.); (R.L.); (W.T.)
| | - Xiaoyan Chen
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (S.X.); (H.L.); (X.W.); (M.W.); (J.J.); (X.C.); (R.L.); (W.T.)
| | - Ruiling Lan
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (S.X.); (H.L.); (X.W.); (M.W.); (J.J.); (X.C.); (R.L.); (W.T.)
| | - Weike Tang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (S.X.); (H.L.); (X.W.); (M.W.); (J.J.); (X.C.); (R.L.); (W.T.)
| | - Yanna Zhu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (S.X.); (H.L.); (X.W.); (M.W.); (J.J.); (X.C.); (R.L.); (W.T.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Correspondence: ; Tel.: +86-20-87334627; Fax: +86-20-87330446
| |
Collapse
|
17
|
Sammallahti S, Tiemeier H, Reiss IKM, Muckenthaler MU, El Marroun H, Vermeulen M. Maternal early-pregnancy ferritin and offspring neurodevelopment: A prospective cohort study from gestation to school age. Paediatr Perinat Epidemiol 2022; 36:425-434. [PMID: 34964492 PMCID: PMC9306570 DOI: 10.1111/ppe.12854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/24/2021] [Accepted: 12/09/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Iron plays a role in many key processes in the developing brain. During pregnancy, iron supplementation is widely recommended to prevent and treat iron deficiency; however, the prevalence of iron deficiency and the risk of iron overload vary greatly between populations. Evidence on the role of high levels of maternal ferritin, a storage iron marker during pregnancy in relation to offspring neurodevelopment is lacking. OBJECTIVE Our main objective was to examine if maternal ferritin levels during pregnancy are associated with child cognitive and motor abilities. METHODS We included Dutch mother-child dyads from the prospective population-based Generation R Study, born in 2002-2006. We compared children whose mothers had high (standard deviation score >+1) or low (standard deviation score <-1) early-pregnancy ferritin to children whose mothers had intermediate ferritin (reference group) using linear regression. Children underwent non-verbal intelligence and language tests at 4-9 years (cognitive abilities), finger-tapping and balancing tests at 8-12 years (motor abilities), and structural magnetic resonance imaging at 8-12 years (brain morphology). Covariates were child age, sex, maternal intelligence quotient estimate, age, body-mass-index, education, parity, smoking and alcohol use. RESULTS Of the 2479 mother-child dyads with data on maternal ferritin and at least one child neurodevelopmental outcome, 387 mothers had low (mean = 20.6 µg/L), 1700 intermediate (mean = 64.6 µg/L) and 392 high (mean = 170.3 µg/L) early-pregnancy ferritin. High maternal ferritin was associated with 2.54 points (95% confidence interval -4.16, -0.92) lower child intelligence quotient and 16.02 cm3 (95% confidence interval -30.57, -1.48) smaller brain volume. Results remained similar after excluding mothers with high C-reactive protein. Low maternal ferritin was not associated with child cognitive abilities. Maternal ferritin was unrelated to child motor outcomes. CONCLUSION High maternal ferritin during pregnancy was associated with poorer child cognitive abilities and smaller brain volume. Maternal iron status during pregnancy may be associated with offspring neurodevelopment.
Collapse
Affiliation(s)
- Sara Sammallahti
- Department of Child and Adolescent Psychiatry/PsychologyErasmus MCSophia Children’s HospitalRotterdamNetherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/PsychologyErasmus MCSophia Children’s HospitalRotterdamNetherlands,Department of Social and Behavioral ScienceHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Irwin K. M. Reiss
- Department of PediatricsDivision of NeonatologyErasmus MCSophia Children’s HospitalRotterdamNetherlands
| | - Martina U. Muckenthaler
- Department of Pediatric OncologyHematology & ImmunologyUniversity Hospital HeidelbergHeidelbergGermany,Molecular Medicine Partnership UnitUniversity of HeidelbergHeidelbergGermany,Hopp Children’s Cancer Center Heidelberg (KITZ)HeidelbergGermany
| | - Hanan El Marroun
- Department of Child and Adolescent Psychiatry/PsychologyErasmus MCSophia Children’s HospitalRotterdamNetherlands,Department of Psychology, Education and Child StudiesErasmus School of Social and Behavioural SciencesErasmus University RotterdamRotterdamNetherlands
| | - Marijn Vermeulen
- Department of PediatricsDivision of NeonatologyErasmus MCSophia Children’s HospitalRotterdamNetherlands
| |
Collapse
|
18
|
Kaul S, Kaur K, Mehta N, Dhaliwal SS, Kennedy JF. Characterization and optimization of spray dried iron and zinc nanoencapsules based on potato starch and maltodextrin. Carbohydr Polym 2022; 282:119107. [DOI: 10.1016/j.carbpol.2022.119107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
|
19
|
Moscheo C, Licciardello M, Samperi P, La Spina M, Di Cataldo A, Russo G. New Insights into Iron Deficiency Anemia in Children: A Practical Review. Metabolites 2022; 12:metabo12040289. [PMID: 35448476 PMCID: PMC9029079 DOI: 10.3390/metabo12040289] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022] Open
Abstract
Iron deficiency anemia (IDA) is the most frequent hematological disorder in children, with an incidence in industrialized countries of 20.1% between 0 and 4 years of age and 5.9% between 5 and 14 years (39 and 48.1% in developing countries). Although IDA has been recognized for a long time, there are still uncovered issues and room for improving the management of this condition. New frontiers regarding its diagnosis and therapeutic options emerge every day; recently, innovative formulations of iron have been launched, both for oral and parenteral administration, with the aim of offering treatment schedules with higher efficacy and lower toxicity. As a matter of fact, glycinate and liposomal preparations, while maintaining a satisfying efficacy profile, have significantly fewer side effects, in comparison to the traditional elemental iron salts; parenteral iron, usually considered a second-choice therapy reserved to selected cases, may evolve further, as a consequence of the production of molecules with an interesting clinical profile such as ferrocarboxymaltose, which is already available for adolescents aged >14 years. The present article reports the clinically relevant latest insights regarding IDA in children and offers a practical guide to help pediatricians, particularly to choose the most appropriate prevention and therapy strategies.
Collapse
Affiliation(s)
- Carla Moscheo
- Pediatric Unit, Azienda Ospedaliero Universitaria Policlinico “Rodolico-San Marco”, viale Carlo Azeglio Ciampi n.1, 95121 Catania, Italy;
| | - Maria Licciardello
- Pediatric Onco-Hematology Unit, Azienda Ospedaliero Universitaria Policlinico “Rodolico-San Marco”, via Santa Sofia n.78, 95123 Catania, Italy; (M.L.); (P.S.); (M.L.S.)
| | - Piera Samperi
- Pediatric Onco-Hematology Unit, Azienda Ospedaliero Universitaria Policlinico “Rodolico-San Marco”, via Santa Sofia n.78, 95123 Catania, Italy; (M.L.); (P.S.); (M.L.S.)
| | - Milena La Spina
- Pediatric Onco-Hematology Unit, Azienda Ospedaliero Universitaria Policlinico “Rodolico-San Marco”, via Santa Sofia n.78, 95123 Catania, Italy; (M.L.); (P.S.); (M.L.S.)
| | - Andrea Di Cataldo
- Pediatric Onco-Hematology Unit, Azienda Ospedaliero Universitaria Policlinico “Rodolico-San Marco”, via Santa Sofia n.78, 95123 Catania, Italy; (M.L.); (P.S.); (M.L.S.)
- Department of Clinical and Experimental Medicine, University of Catania, via Santa Sofia 89, 95123 Catania, Italy
- Correspondence: (A.D.C.); (G.R.)
| | - Giovanna Russo
- Pediatric Onco-Hematology Unit, Azienda Ospedaliero Universitaria Policlinico “Rodolico-San Marco”, via Santa Sofia n.78, 95123 Catania, Italy; (M.L.); (P.S.); (M.L.S.)
- Department of Clinical and Experimental Medicine, University of Catania, via Santa Sofia 89, 95123 Catania, Italy
- Correspondence: (A.D.C.); (G.R.)
| |
Collapse
|
20
|
Bonilla DA, Moreno Y, Petro JL, Forero DA, Vargas-Molina S, Odriozola-Martínez A, Orozco CA, Stout JR, Rawson ES, Kreider RB. A Bioinformatics-Assisted Review on Iron Metabolism and Immune System to Identify Potential Biomarkers of Exercise Stress-Induced Immunosuppression. Biomedicines 2022; 10:724. [PMID: 35327526 PMCID: PMC8945881 DOI: 10.3390/biomedicines10030724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
The immune function is closely related to iron (Fe) homeostasis and allostasis. The aim of this bioinformatics-assisted review was twofold; (i) to update the current knowledge of Fe metabolism and its relationship to the immune system, and (ii) to perform a prediction analysis of regulatory network hubs that might serve as potential biomarkers during stress-induced immunosuppression. Several literature and bioinformatics databases/repositories were utilized to review Fe metabolism and complement the molecular description of prioritized proteins. The Search Tool for the Retrieval of Interacting Genes (STRING) was used to build a protein-protein interactions network for subsequent network topology analysis. Importantly, Fe is a sensitive double-edged sword where two extremes of its nutritional status may have harmful effects on innate and adaptive immunity. We identified clearly connected important hubs that belong to two clusters: (i) presentation of peptide antigens to the immune system with the involvement of redox reactions of Fe, heme, and Fe trafficking/transport; and (ii) ubiquitination, endocytosis, and degradation processes of proteins related to Fe metabolism in immune cells (e.g., macrophages). The identified potential biomarkers were in agreement with the current experimental evidence, are included in several immunological/biomarkers databases, and/or are emerging genetic markers for different stressful conditions. Although further validation is warranted, this hybrid method (human-machine collaboration) to extract meaningful biological applications using available data in literature and bioinformatics tools should be highlighted.
Collapse
Affiliation(s)
- Diego A. Bonilla
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogota 110311, Colombia; (Y.M.); (J.L.P.)
- Research Group in Biochemistry and Molecular Biology, Faculty of Science and Education, Universidad Distrital Francisco José de Caldas, Bogota 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Yurany Moreno
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogota 110311, Colombia; (Y.M.); (J.L.P.)
- Research Group in Biochemistry and Molecular Biology, Faculty of Science and Education, Universidad Distrital Francisco José de Caldas, Bogota 110311, Colombia
| | - Jorge L. Petro
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogota 110311, Colombia; (Y.M.); (J.L.P.)
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
| | - Diego A. Forero
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia; (D.A.F.); (C.A.O.)
| | - Salvador Vargas-Molina
- Faculty of Sport Sciences, EADE-University of Wales Trinity Saint David, 29018 Málaga, Spain;
| | - Adrián Odriozola-Martínez
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia, Spain
| | - Carlos A. Orozco
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia; (D.A.F.); (C.A.O.)
| | - Jeffrey R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL 32816, USA;
| | - Eric S. Rawson
- Department of Health, Nutrition and Exercise Science, Messiah University, Mechanicsburg, PA 17055, USA;
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
21
|
Zhou Y, Lin W, Rao T, Zheng J, Zhang T, Zhang M, Lin Z. Ferroptosis and Its Potential Role in the Nervous System Diseases. J Inflamm Res 2022; 15:1555-1574. [PMID: 35264867 PMCID: PMC8901225 DOI: 10.2147/jir.s351799] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/09/2022] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis is a novel regulated cell death characterized by metabolic disorders and iron-dependent oxidative destruction of the lipid bilayer. It is primarily caused by the imbalance of oxidation and anti-oxidation in the body and is precisely regulated by numerous factors and pathways inside and outside the cell. Recent studies have indicated that ferroptosis plays a vital role in the pathophysiological process of multiple systems of the body including the nervous system. Ferroptosis may be closely linked to the occurrence and development of neurodegenerative diseases, strokes, and brain tumors. It may also be involved in the development, maturation, and aging of the nervous system. Therefore, this study aims to investigate ferroptosis’s occurrence and regulatory mechanism and summarize its research progress in the pathogenesis and treatment of neurological diseases. This would allow for novel ideas for basic and clinical research of neurological diseases.
Collapse
Affiliation(s)
- Yiyang Zhou
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Wei Lin
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Tian Rao
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Jinyu Zheng
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Tianlei Zhang
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Min Zhang
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
- Correspondence: Zhenlang Lin, Email
| |
Collapse
|
22
|
Serum erythroferrone levels during the first month of life in premature infants. J Perinatol 2022; 42:97-102. [PMID: 34376791 DOI: 10.1038/s41372-021-01184-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To examine erythroferrone (ERFE)-hepcidin iron regulation in premature infants under intensive care at risk of iron metabolic disorders. STUDY DESIGN A retrospective cohort recruited 31 infants with a birth weight of <1500 g hospitalized in a tertiary center. Their hematological status was measured at birth and 2 and 4 weeks of life. RESULTS ERFE was positively correlated with the reticulocyte hemoglobin content at 2 (r2 = 0.2374) and 4 weeks (r2 = 0.6005). An assumed negative correlation between ERFE and hepcidin was not determined during the neonatal period. Hepcidin was positively correlated with the leukocyte count (r2 = 0.3089) and ferritin (r2 = 0.7476) at birth and C-reactive protein (r2 = 0.3591) at 2 weeks and negatively correlated with the reticulocyte count (r2 = 0.2887) at 4 weeks. CONCLUSION The vulnerability of the ERFE-hepcidin pathway within 4 weeks may contribute to iron imbalance in premature infants.
Collapse
|
23
|
Christensen RD, Bahr TM, Ward DM. Iron deficiency in newborn infants: global rewards for recognizing and treating this silent malady. NEWBORN (CLARKSVILLE, MD.) 2022; 1:97-103. [PMID: 35949271 PMCID: PMC9361392 DOI: 10.5005/jp-journals-11002-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Robert D Christensen
- Divisions of Neonatology and Hematology, Department of Pediatrics, and Division of Microbiology and Immunology, Department of Pathology, and the Center for Iron and Heme Disorders, University of Utah Health, and Women and Newborn's Research, Intermountain Healthcare, Salt Lake City, Utah, USA
| | - Timothy M Bahr
- Divisions of Neonatology and Hematology, Department of Pediatrics, and Division of Microbiology and Immunology, Department of Pathology, and the Center for Iron and Heme Disorders, University of Utah Health, and Women and Newborn's Research, Intermountain Healthcare, Salt Lake City, Utah, USA
| | - Diane M Ward
- Divisions of Neonatology and Hematology, Department of Pediatrics, and Division of Microbiology and Immunology, Department of Pathology, and the Center for Iron and Heme Disorders, University of Utah Health, and Women and Newborn's Research, Intermountain Healthcare, Salt Lake City, Utah, USA
| |
Collapse
|
24
|
Luciano R, Romeo DM, Mancini G, Sivo S, Dolci C, Velli C, Turriziani Colonna A, Vento G, Romagnoli C, Mercuri EM. Neurological development and iron supplementation in healthy late-preterm neonates: a randomized double-blind controlled trial. Eur J Pediatr 2022; 181:295-302. [PMID: 34291331 PMCID: PMC8760203 DOI: 10.1007/s00431-021-04181-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022]
Abstract
Late-preterm infants (LPT) are at increased risk for long-term neurodevelopmental sequelae and iron deficiency. The aim of the study is to assess the positive effect of iron supplementation on psychomotor development in healthy LPT. We designed a randomized placebo-controlled double-blind trial dividing the newborns into two groups. Every patient was assessed using the Griffiths Mental Development Scales (GMDS)-II edition at 12-month post-conceptional age. The study was performed at the Neonatology Unit of our Hospital, in Italy. Sixty-six healthy LPT infants born between 340⁄7 and 366⁄7 weeks of gestational age were enrolled in the study. One group received martial prophylaxis from the third week of life to 6 months of post-conceptional age (2 mg/kg/day of iron pidolate), the other received placebo. Fifty-two of the enrolled infants were assessed using the GMDS at 12-month of post-conceptional age. Statistical analysis of the mean scores of the Griffiths subscales was performed. There was a difference in the mean developmental quotient (DQ) (p < 0.01) between the two groups: iron group mean DQ 121.45 ± 10.53 vs placebo group mean DQ 113.25 ± 9.70. Moreover, mean scores of the Griffiths subscales A, B, and D showed significant differences between the two groups (scale A p < 0.05, scale B p < 0.02, scale D p < 0.01, respectively).Conclusions: We recommend that all LPT neonates receive iron supplementation during the first 6 months of life in order to improve their 1-year neurodevelopmental quotient. What is Known: • Late-preterm infants (LPT) are at increased risk for long-term neurodevelopmental sequelae and also for iron deficiency. • Iron deficiency is an independent risk factor for adverse neurological outcomes. What is New: • Healthy late-preterm who received iron supplementation during the first 6 months of life achieved better neurological outcomes at 12-month post-conceptional age than LPT who received placebo. • Our study strongly supports the need for the implementation of martial prophylaxis in LPT neonates.
Collapse
Affiliation(s)
- R. Luciano
- Neonatology Unit, Department of Woman and Child Health and Public Health, Child Health Area, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of Sacred Heart, Rome, Italy
| | - D. M. Romeo
- Pediatric Neurology Unit, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - G. Mancini
- Department of Woman and Child Health and Public Health, Child Health Area, Catholic University of Sacred Heart, Rome, Italy
| | - S. Sivo
- Pediatric Neurology Unit, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - C. Dolci
- Department of Woman and Child Health and Public Health, Child Health Area, Catholic University of Sacred Heart, Rome, Italy
| | - C. Velli
- Pediatric Neurology Unit, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - A. Turriziani Colonna
- Department of Woman and Child Health and Public Health, Child Health Area, Catholic University of Sacred Heart, Rome, Italy
| | - G. Vento
- Neonatology Unit, Department of Woman and Child Health and Public Health, Child Health Area, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of Sacred Heart, Rome, Italy
| | - C. Romagnoli
- Neonatology Unit, Department of Woman and Child Health and Public Health, Child Health Area, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - E. M. Mercuri
- Pediatric Neurology Unit, Department of Woman and Child Health and Public Health, Child Health Area, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of Sacred Heart, Rome, Italy
| |
Collapse
|
25
|
Review and update of the importance of micronutrients in pediatric age: a holistic view. NUTR HOSP 2022; 39:21-25. [DOI: 10.20960/nh.04305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
26
|
Chandrapalan T, Kwong RWM. Functional significance and physiological regulation of essential trace metals in fish. J Exp Biol 2021; 224:273675. [PMID: 34882772 DOI: 10.1242/jeb.238790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trace metals such as iron, copper, zinc and manganese play essential roles in various biological processes in fish, including development, energy metabolism and immune response. At embryonic stages, fish obtain essential metals primarily from the yolk, whereas in later life stages (i.e. juvenile and adult), the gastrointestine and the gill are the major sites for the acquisition of trace metals. On a molecular level, the absorption of metals is thought to occur at least in part via specific metal ion transporters, including the divalent metal transporter-1 (DMT1), copper transporter-1 (CTR1), and Zrt- and Irt-like proteins (ZIP). A variety of other proteins are also involved in maintaining cellular and systemic metal homeostasis. Interestingly, the expression and function of these metal transport- and metabolism-related proteins can be influenced by a range of trace metals and major ions. Increasing evidence also demonstrates an interplay between the gastrointestine and the gill for the regulation of trace metal absorption. Therefore, there is a complex network of regulatory and compensatory mechanisms involved in maintaining trace metal balance. Yet, an array of factors is known to influence metal metabolism in fish, such as hormonal status and environmental changes. In this Review, we summarize the physiological significance of iron, copper, zinc and manganese, and discuss the current state of knowledge on the mechanisms underlying transepithelial metal ion transport, metal-metal interactions, and cellular and systemic handling of these metals in fish. Finally, we identify knowledge gaps in the regulation of metal homeostasis and discuss potential future research directions.
Collapse
Affiliation(s)
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|
27
|
Kartamihardja AAP, Ariyani W, Hanaoka H, Taketomi-Takahashi A, Koibuchi N, Tsushima Y. The Role of Ferrous Ion in the Effect of the Gadolinium-Based Contrast Agents (GBCA) on the Purkinje Cells Arborization: An In Vitro Study. Diagnostics (Basel) 2021; 11:2310. [PMID: 34943547 PMCID: PMC8699861 DOI: 10.3390/diagnostics11122310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 11/27/2022] Open
Abstract
Gadolinium deposition in the brain has been observed in areas rich in iron, such as the dentate nucleus of the cerebellum. We investigated the role of Fe2+ in the effect of gadolinium-based contrast agents (GBCA) on thyroid hormone-mediated Purkinje cell dendritogenesis in a cerebellar primary culture. The study comprises the control group, Fe2+ group, GBCA groups (gadopentetate group or gadobutrol group), and GBCA+Fe2+ groups. Immunocytochemistry was performed with an anti-calbindin-28K (anti-CaBP28k) antibody, and the nucleus was stained with 4',6-diamidino-2-phenylindole (DAPI). The number of Purkinje cells and their arborization were evaluated with an analysis of variance with a post-hoc test. The number of Purkinje cells was similar to the control groups among all treated groups. There were no significant differences in dendrite arborization between the Fe2+ group and the control groups. The dendrite arborization was augmented in the gadopentetate and the gadobutrol groups when compared to the control group (p < 0.01, respectively). Fe2+ significantly increased the effect of gadopentetate on dendrite arborization (p < 0.01) but did not increase the effect of gadobutrol. These findings suggested that the chelate thermodynamic stability and Fe2+ may play important roles in attenuating the effect of GBCAs on the thyroid hormone-mediated dendritogenesis of Purkinje cells in in vitro settings.
Collapse
Affiliation(s)
- Achmad Adhipatria Perayabangsa Kartamihardja
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (A.A.P.K.); (A.T.-T.)
- Department of Nuclear Medicine and Molecular Imaging, Universitas Padjajaran, Bandung 40161, Indonesia
| | - Winda Ariyani
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (W.A.); (N.K.)
| | - Hirofumi Hanaoka
- Department of Bioimaging and Information Analysis, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan;
| | - Ayako Taketomi-Takahashi
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (A.A.P.K.); (A.T.-T.)
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (W.A.); (N.K.)
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (A.A.P.K.); (A.T.-T.)
- Division of Integrated Oncology Research, Gunma Initiative for Advanced Research, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| |
Collapse
|
28
|
Diffusion Tensor Imaging Changes Do Not Affect Long-Term Neurodevelopment following Early Erythropoietin among Extremely Preterm Infants in the Preterm Erythropoietin Neuroprotection Trial. Brain Sci 2021; 11:brainsci11101360. [PMID: 34679424 PMCID: PMC8533828 DOI: 10.3390/brainsci11101360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
We aimed to evaluate diffusion tensor imaging (DTI) in infants born extremely preterm, to determine the effect of erythropoietin (Epo) on DTI, and to correlate DTI with neurodevelopmental outcomes at 2 years of age for infants in the Preterm Erythropoietin Neuroprotection (PENUT) Trial. Infants who underwent MRI with DTI at 36 weeks postmenstrual age were included. Neurodevelopmental outcomes were evaluated by Bayley Scales of Infant and Toddler Development (BSID-III). Generalized linear models were used to assess the association between DTI parameters and treatment group, and then with neurodevelopmental outcomes. A total of 101 placebo- and 93 Epo-treated infants underwent MRI. DTI white matter mean diffusivity (MD) was lower in placebo- compared to Epo-treated infants in the cingulate and occipital regions, and occipital white matter fractional isotropy (FA) was lower in infants born at 24-25 weeks vs. 26-27 weeks. These values were not associated with lower BSID-III scores. Certain decreases in clustering coefficients tended to have lower BSID-III scores. Consistent with the PENUT Trial findings, there was no effect on long-term neurodevelopment in Epo-treated infants even in the presence of microstructural changes identified by DTI.
Collapse
|
29
|
Hossain Z, Qasem WA, Friel JK, Omri A. Effects of Total Enteral Nutrition on Early Growth, Immunity, and Neuronal Development of Preterm Infants. Nutrients 2021; 13:2755. [PMID: 34444915 PMCID: PMC8401306 DOI: 10.3390/nu13082755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/16/2022] Open
Abstract
The feeding of colostrum and mother's transitional milk improves immune protection and neurodevelopmental outcomes. It also helps with gut maturation and decreases the risks of infection. The supply of nutrients from human milk (HM) is not adequate for preterm infants, even though preterm mother's milk contains higher concentrations of protein, sodium, zinc, and calcium than mature HM. The human milk fortifiers, particularly those with protein, calcium, and phosphate, should be used to supplement HM to meet the necessities of preterm infants. The management of fluid and electrolytes is a challenging aspect of neonatal care of preterm infants. Trace minerals such as iron, zinc, copper, iodine, manganese, molybdenum, selenium, chromium, and fluoride are considered essential for preterm infants. Vitamins such as A, D, E, and K play an important role in the prevention of morbidities, such as bronchopulmonary dysplasia, retinopathy of prematurity, and intraventricular hemorrhage. Therefore, supplementation of HM with required nutrients is recommended for all preterm infants.
Collapse
Affiliation(s)
- Zakir Hossain
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Wafaa A Qasem
- Department of Surgery, Mubarak AlKabeer Hospital, Hawally 32052, Kuwait;
- Community Medicine Department, Faculty of Medicine, Kuwait University, Kuwait City 13003, Kuwait
| | - James K. Friel
- Richardson Centre for Functional Foods and Nutraceuticals, Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 6C5, Canada;
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| |
Collapse
|
30
|
Cibulskis CC, Maheshwari A, Rao R, Mathur AM. Anemia of prematurity: how low is too low? J Perinatol 2021; 41:1244-1257. [PMID: 33664467 DOI: 10.1038/s41372-021-00992-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022]
Abstract
Anemia of prematurity (AOP) is a common condition with a well-described chronology, nadir hemoglobin levels, and timeline of recovery. However, the underlying pathophysiology and impact of prolonged exposure of the developing infant to low levels of hemoglobin remains unclear. Phlebotomy losses exacerbate the gradual decline of hemoglobin levels which is insidious in presentation, often without any clinical signs. Progressive anemia in preterm infants is associated with poor weight gain, inability to take oral feeds, tachycardia and exacerbation of apneic, and bradycardic events. There remains a lack of consensus on treatment thresholds for RBC transfusion which vary considerably. This review elaborates on the current state of the problem, its implication for the premature infant including association with subphysiologic cerebral tissue oxygenation, necrotizing enterocolitis, and retinopathy of prematurity. It outlines the impact of prophylaxis and treatment of anemia of prematurity and offers suggestions on improving monitoring and management of the condition.
Collapse
Affiliation(s)
- Catherine C Cibulskis
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Akhil Maheshwari
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rakesh Rao
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amit M Mathur
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
31
|
Degremont A, Jain R, Philippou E, Latunde-Dada GO. Brain iron concentrations in the pathophysiology of children with attention deficit/hyperactivity disorder: a systematic review. Nutr Rev 2021; 79:615-626. [PMID: 32974643 DOI: 10.1093/nutrit/nuaa065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CONTEXT Attention deficit/hyperactivity disorder (ADHD) is a neurological disorder associated with iron dysregulation in children. Although previous focus was on examining systemic iron status, brain iron content may be a more reliable biomarker of the disorder. OBJECTIVE This systematic review examines whether children with ADHD have lower serum as well as brain iron concentrations, compared with healthy control subjects (HCS). DATA SOURCES A systematic literature search was conducted in Medline via PubMed, the Cochrane Library, Web of Science, Embase. and Ovid for papers published between 2000 and June 7, 2019. DATA EXTRACTION Studies were included if the mean difference of iron concentration, measured as serum iron, serum ferritin, or brain iron, between children with ADHD and HCS was an outcome measure. DATA ANALYSIS Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. Risks of bias within and between studies were assessed using the quality assessment tools of the National Institutes of Health. Of 599 records screened, 20 case-control studies met the inclusion criteria. In 10 of 18 studies in which serum ferritin concentration was assessed, and 2 of 10 studies that assessed serum iron, a significant difference between children with ADHD and HCS was observed. Results of systemic iron levels were inconsistent. In 3 studies in which brain iron concentration was assessed, a statistically significant, lower thalamic iron concentration was found in children with ADHD than in HCS. CONCLUSION The evidence, though limited, reveals that brain iron rather than systemic iron levels may be more associated with the pathophysiology of ADHD in children. Larger, longitudinal, magnetic resonance imaging studies are needed to examine any correlations of iron deficiency in specific brain regions and symptoms of ADHD.
Collapse
Affiliation(s)
- Alexia Degremont
- Department of Nutrition and Dietetics, King's College London, London, UK
| | - Rishika Jain
- Department of Nutrition and Dietetics, King's College London, London, UK
| | - Elena Philippou
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | | |
Collapse
|
32
|
Guan W, Xia M, Ji M, Chen B, Li S, Zhang M, Liang S, Chen B, Gong W, Dong C, Wen G, Zhan X, Zhang D, Li X, Zhou Y, Guan D, Verkhratsky A, Li B. Iron induces two distinct Ca 2+ signalling cascades in astrocytes. Commun Biol 2021; 4:525. [PMID: 33953326 PMCID: PMC8100120 DOI: 10.1038/s42003-021-02060-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Iron is the fundamental element for numerous physiological functions. Plasmalemmal divalent metal ion transporter 1 (DMT1) is responsible for cellular uptake of ferrous (Fe2+), whereas transferrin receptors (TFR) carry transferrin (TF)-bound ferric (Fe3+). In this study we performed detailed analysis of the action of Fe ions on cytoplasmic free calcium ion concentration ([Ca2+]i) in astrocytes. Administration of Fe2+ or Fe3+ in μM concentrations evoked [Ca2+]i in astrocytes in vitro and in vivo. Iron ions trigger increase in [Ca2+]i through two distinct molecular cascades. Uptake of Fe2+ by DMT1 inhibits astroglial Na+-K+-ATPase, which leads to elevation in cytoplasmic Na+ concentration, thus reversing Na+/Ca2+ exchanger and thereby generating Ca2+ influx. Uptake of Fe3+ by TF-TFR stimulates phospholipase C to produce inositol 1,4,5-trisphosphate (InsP3), thus triggering InsP3 receptor-mediated Ca2+ release from endoplasmic reticulum. In summary, these findings reveal the mechanisms of iron-induced astrocytic signalling operational in conditions of iron overload.
Collapse
Affiliation(s)
- Wenzheng Guan
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- The First Department of Reproduction, Shengjing Hospital, China Medical University, Shenyang, China
| | - Maosheng Xia
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, PR China
| | - Ming Ji
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Beina Chen
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Shuai Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Manman Zhang
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Shanshan Liang
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Binjie Chen
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Wenliang Gong
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Chengyi Dong
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, PR China
| | - Gehua Wen
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xiaoni Zhan
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Dianjun Zhang
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xinyu Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Yuefei Zhou
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, PR China
| | - Dawei Guan
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain.
- Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Baoman Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| |
Collapse
|
33
|
Ilardi L, Proto A, Ceroni F, Morniroli D, Martinelli S, Mosca F, Giannì ML. Overview of Important Micronutrients Supplementation in Preterm Infants after Discharge: A Call for Consensus. Life (Basel) 2021; 11:331. [PMID: 33920163 PMCID: PMC8069002 DOI: 10.3390/life11040331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 01/10/2023] Open
Abstract
Preterm infants have a lower level of nutrient body stores and immature body systems, resulting in a higher risk of malnutrition. Imbalanced complementary feeding could lead to further risk of nutritional deficits and excesses. However, evidence on their nutritional requirements following hospital discharge is limited. When planning complementary feeding, appropriate micronutrient intake should be considered for their critical role in supporting various body functions. This narrative review summarizes the need for iron, zinc, vitamin D, calcium, phosphate and long-chain polyunsaturated fatty acids (LCPUFAs) supplementation in preterm infants during complementary feeding. Regarding iron and vitamin D, the scientific community is reaching an agreement on supplementation in some categories of prematures. On the contrary, there is still not enough evidence to detail possible recommendations for LCPUFAs, zinc, calcium and phosphorus supplementation. However, these micronutrients are paramount for preterms' health: LCPUFAs can promote retinal and brain development while calcium and phosphorus supplementation is essential to prevent preterms' metabolic bone disease (MBD). Waiting for a consensus on these micronutrients, it is clear how the knowledge of the heterogeneity of the prematures population can help adjust the nutritional planning regarding the growth rate, comorbidities and comprehensive clinical history of the preterm infant.
Collapse
Affiliation(s)
- Laura Ilardi
- Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (L.I.); (A.P.); (S.M.)
| | - Alice Proto
- Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (L.I.); (A.P.); (S.M.)
| | - Federica Ceroni
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (F.C.); (F.M.)
| | - Daniela Morniroli
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, NICU, 20122 Milan, Italy;
| | - Stefano Martinelli
- Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (L.I.); (A.P.); (S.M.)
| | - Fabio Mosca
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (F.C.); (F.M.)
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, NICU, 20122 Milan, Italy;
| | - Maria Lorella Giannì
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (F.C.); (F.M.)
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, NICU, 20122 Milan, Italy;
| |
Collapse
|
34
|
Vlasova RM, Wang Q, Willette A, Styner MA, Lubach GR, Kling PJ, Georgieff MK, Rao RB, Coe CL. Infantile Iron Deficiency Affects Brain Development in Monkeys Even After Treatment of Anemia. Front Hum Neurosci 2021; 15:624107. [PMID: 33716694 PMCID: PMC7947927 DOI: 10.3389/fnhum.2021.624107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/25/2021] [Indexed: 12/26/2022] Open
Abstract
A high percent of oxidative energy metabolism is needed to support brain growth during infancy. Unhealthy diets and limited nutrition, as well as other environmental insults, can compromise these essential developmental processes. In particular, iron deficiency anemia (IDA) has been found to undermine both normal brain growth and neurobehavioral development. Even moderate ID may affect neural maturation because when iron is limited, it is prioritized first to red blood cells over the brain. A primate model was used to investigate the neural effects of a transient ID and if deficits would persist after iron treatment. The large size and postnatal growth of the monkey brain makes the findings relevant to the metabolic and iron needs of human infants, and initiating treatment upon diagnosis of anemia reflects clinical practice. Specifically, this analysis determined whether brain maturation would still be compromised at 1 year of age if an anemic infant was treated promptly once diagnosed. The hematology and iron status of 41 infant rhesus monkeys was screened at 2-month intervals. Fifteen became ID; 12 met clinical criteria for anemia and were administered iron dextran and B vitamins for 1-2 months. MRI scans were acquired at 1 year. The volumetric and diffusion tensor imaging (DTI) measures from the ID infants were compared with monkeys who remained continuously iron sufficient (IS). A prior history of ID was associated with smaller total brain volumes, driven primarily by significantly less total gray matter (GM) and smaller GM volumes in several cortical regions. At the macrostructual level, the effect on white matter volumes (WM) was not as overt. However, DTI analyses of WM microstructure indicated two later-maturating anterior tracts were negatively affected. The findings reaffirm the importance of iron for normal brain development. Given that brain differences were still evident even after iron treatment and following recovery of iron-dependent hematological indices, the results highlight the importance of early detection and preemptive supplementation to limit the neural consequences of ID.
Collapse
Affiliation(s)
- Roza M. Vlasova
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Qian Wang
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Auriel Willette
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Martin A. Styner
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Gabriele R. Lubach
- Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, WI, United States
| | - Pamela J. Kling
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
| | - Michael K. Georgieff
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Raghavendra B. Rao
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Christopher L. Coe
- Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
35
|
Gómez-Martín M, Domínguez B, Gueimonde M, González S. Identification of Nutritional Targets in Spanish Children Belonging to the LAyDI Cohort for the Development of Health Promotion Strategies in the First Two Years of Life. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18030939. [PMID: 33498994 PMCID: PMC7908140 DOI: 10.3390/ijerph18030939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
The first 1000 days of life seem to represent the temporal window of opportunity for modulating some of the risk factors associated with the later development of pathologies. Nonetheless, the dietary pattern and nutritional status of children receiving complementary feeding is still understudied. We aimed to assess the food intake in children from the LAyDI cohort (Spain) at 18 and 24 months of age and evaluate this in relation to nutrient requirements and bioactive compound consumption. This was a prospective and multicenter study analyzing information from administered questionnaires about general characteristics and food frequency consumption in 426 children of 18 months and 336 of 24 months. The observed intake of vegetables, fruits, dairy, and eggs was lower than the recommendations in both periods, contrary to the consumption of meat, fish, and pulses. The consumption of energy and macronutrients was similar for all ages studied, with protein intake being slightly higher than the recommended values. Regarding micronutrients, practically the whole sample fell below the vitamin D requirements. In addition, the estimated daily intakes of vitamin E and iron, at 24 months, were below the recommended values for this population group. The mean intake of phenols was around 650 mg/day. Flavanol intake as well as both types of fiber decreased from 18 to 24 months. In conclusion, although these results have to be confirmed in other populations, it seems pertinent to propose the design of nutritional strategies aimed at increasing the intake of vitamins D and E as well as iron in Spanish children up to 2 years.
Collapse
Affiliation(s)
- María Gómez-Martín
- Area of Physiology, Department of Functional Biology, Faculty of Medicine, University of Oviedo, Julián Claveria, 33006 Oviedo, Spain;
- Group Diet, Microbiota and Health, Instituto de Investigaciones Sanitarias del Principado de Asturias (ISPA), Avd. Roma, 33011 Oviedo, Spain;
| | - Begoña Domínguez
- Group Comprehensive Approach to Childhood Overweight, Instituto de Investigaciones Sanitarias del Principado de Asturias (ISPA), Avd. Roma, 33011 Oviedo, Spain;
- Spanish Association of Primary Care Pediatrics (AEPap), Avda. de Burgos, 28036 Madrid, Spain
| | - Miguel Gueimonde
- Group Diet, Microbiota and Health, Instituto de Investigaciones Sanitarias del Principado de Asturias (ISPA), Avd. Roma, 33011 Oviedo, Spain;
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares, 33300 Villaviciosa, Spain
| | - Sonia González
- Area of Physiology, Department of Functional Biology, Faculty of Medicine, University of Oviedo, Julián Claveria, 33006 Oviedo, Spain;
- Group Diet, Microbiota and Health, Instituto de Investigaciones Sanitarias del Principado de Asturias (ISPA), Avd. Roma, 33011 Oviedo, Spain;
- Correspondence: ; Tel.: +34-985-104-209
| |
Collapse
|
36
|
Kalteren WS, Mebius MJ, Verhagen EA, Tanis JC, Kooi EMW, Bos AF. Neonatal Hemoglobin Levels in Preterm Infants Are Associated with Early Neurological Functioning. Neonatology 2021; 118:593-599. [PMID: 34515185 DOI: 10.1159/000518655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/10/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Neonatal anemia may compromise oxygen transport to the brain. The effects of anemia and cerebral oxygenation on neurological functioning in the early neonatal period are largely unknown. OBJECTIVE This study aimed to determine the association between initial hemoglobin levels (Hb) and early neurological functioning in preterm infants by assessing their general movements (GMs). METHODS A retrospective analysis of prospectively collected data on preterm infants born before 32 weeks of gestation was conducted. We excluded infants with intraventricular hemorrhage > grade II. On day 8, we assessed infants' GMs, both generally as normal/abnormal and in detail using the general movement optimality score (GMOS). We measured cerebral tissue oxygen saturation (rcSO2) on day 1 using near-infrared spectroscopy. RESULTS We included 65 infants (median gestational age 29.9 weeks [IQR 28.2-31.0]; median birth weight 1,180 g [IQR 930-1,400]). Median Hb on day 1 was 10.3 mmol/L (range 4.2-13.7). Lower Hb on day 1 was associated with a higher risk of abnormal GMs (OR = 2.3, 95% CI: 1.3-4.1) and poorer GMOSs (B = 0.9, 95% CI: 0.2-1.7). Hemoglobin strongly correlated with rcSO2 (rho = 0.62, p < 0.01). Infants with lower rcSO2 values tended to have a higher risk of abnormal GMs (p = 0.06). After adjusting for confounders, Hb on day 1 explained 44% of the variance of normal/abnormal GMs and rcSO2 explained 17%. Regarding the explained variance of the GMOS, this was 25% and 16%, respectively. CONCLUSIONS In preterm infants, low Hb on day 1 is associated with impaired neurological functioning on day 8, which is partly explained by low cerebral oxygenation.
Collapse
Affiliation(s)
- Willemien S Kalteren
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mirthe J Mebius
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elise A Verhagen
- Division of Neonatology, Department of Pediatrics, Amsterdam University Medical Center, location VU Medical Center, Amsterdam, The Netherlands
| | - Jozien C Tanis
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth M W Kooi
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arend F Bos
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
37
|
Song J, Wang Y, Xu F, Sun H, Zhang X, Xia L, Zhang S, Li K, Peng X, Li B, Zhang Y, Kang W, Wang X, Zhu C. Erythropoietin Improves Poor Outcomes in Preterm Infants with Intraventricular Hemorrhage. CNS Drugs 2021; 35:681-690. [PMID: 33959935 PMCID: PMC8219571 DOI: 10.1007/s40263-021-00817-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Intraventricular hemorrhage (IVH) is a common complication in preterm infants that has poor outcomes, especially in severe cases, and there are currently no widely accepted effective treatments. Erythropoietin has been shown to be neuroprotective in neonatal brain injury. OBJECTIVE The objective of this study was to evaluate the protective effect of repeated low-dose recombinant human erythropoietin (rhEPO) in preterm infants with IVH. METHODS This was a single-blinded prospective randomized controlled trial. Preterm infants ≤ 32 weeks gestational age who were diagnosed with IVH within 72 h after birth were randomized to receive rhEPO 500 IU/kg or placebo (equivalent volume of saline) every other day for 2 weeks. The primary outcome was death or neurological disability assessed at 18 months of corrected age. RESULTS A total of 316 eligible infants were included in the study, with 157 in the rhEPO group and 159 in the placebo group. Although no significant differences in mortality (p = 0.176) or incidence of neurological disability (p = 0.055) separately at 18 months of corrected age were seen between the rhEPO and placebo groups, significantly fewer infants had poor outcomes (death and neurological disability) in the rhEPO group: 14.9 vs. 26.4%; odds ratio (OR) 0.398; 95% confidence interval (CI) 0.199-0.796; p = 0.009. In addition, the incidence of Mental Development Index scores of < 70 was lower in the rhEPO group than in the placebo group: 7.2 vs. 15.3%; OR 0.326; 95% CI 0.122-0.875; p = 0.026. CONCLUSIONS Treatment with repeated low-dose rhEPO improved outcomes in preterm infants with IVH. TRIAL REGISTRATION The study was retrospectively registered on ClinicalTrials.gov on 16 April 2019 (NCT03914690).
Collapse
Affiliation(s)
- Juan Song
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Yong Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Falin Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Huiqing Sun
- Department of Neonatology, Children’s Hospital of Zhengzhou University, Zhengzhou, 450018 China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Lei Xia
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Shan Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Kenan Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Xirui Peng
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Bingbing Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Yaodong Zhang
- Department of Neonatology, Children’s Hospital of Zhengzhou University, Zhengzhou, 450018 China
| | - Wenqing Kang
- Department of Neonatology, Children’s Hospital of Zhengzhou University, Zhengzhou, 450018 China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,Center for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden. .,Department of Women's and Children's Health, Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|
38
|
Abstract
Oxidative stress (OS) plays a key role in the pathophysiology of preterm infants. Accurate assessment of OS remains an analytical challenge that has been partially addressed during the last few decades. A plethora of approaches have been developed to assess preterm biofluids to demonstrate a link postnatally with preterm OS, giving rise to a set of widely employed biomarkers. However, the vast number of different analytic methods and lack of standardization hampers reliable comparison of OS-related biomarkers. In this chapter, we discuss approaches for the study of OS in prematurity with respect to methodologic considerations, the metabolic source of different biomarkers and their role in clinical studies.
Collapse
|
39
|
Lauringson V, Veldre G, Hõrak P. Adolescent Cranial Volume as a Sensitive Marker of Parental Investment: The Role of Non-material Resources? Front Psychol 2020; 11:602401. [PMID: 33384647 PMCID: PMC7769954 DOI: 10.3389/fpsyg.2020.602401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
Growth of different body parts in humans is sensitive to different resource constraints that are mediated by parental investment. Parental investment can involve the expenditure of material, cognitive, and emotional resources on offspring. Cranial volume, an important predictor of cognitive ability, appears understudied in this context. We asked (1) whether there are associations between growth and family structure, self-reported estimates for resource availability, and sibling number; and (2) whether these constraints relate to head and body growth in a similar manner. We assessed the associations between parental investment, height, and cranial volume in a cross-sectional study of Estonian children (born 1980-87, aged 11-17). Height correlated negatively with the number of siblings but this association became negligible in a model controlling for birthweight, parental heights, and mother's age at birth. Unlike height, cranial volume was unrelated to sibling number, but it was negatively associated with self-reported meat and general resource shortage. Cranial volume was related to family structure and paternal education. Children living with both birth-parents had larger heads than those living in families containing a step-parent. Since these family types did not differ with respect to meat or general resource shortage, our findings suggest that families including both genetic parents provide non-material benefits that stimulate predominantly cranial growth. For the studied developmental period, cranial volume appeared a more sensitive marker of growth constraints than height. The potential of using cranial volume for quantifying physical impact of non-material parental investment deserves further attention.
Collapse
Affiliation(s)
| | - Gudrun Veldre
- Department of Anatomy, Centre for Physical Anthropology, University of Tartu, Tartu, Estonia
| | - Peeter Hõrak
- Department of Zoology, University of Tartu, Tartu, Estonia
| |
Collapse
|
40
|
Baj J, Forma A, Sitarz E, Karakuła K, Flieger W, Sitarz M, Grochowski C, Maciejewski R, Karakula-Juchnowicz H. Beyond the Mind-Serum Trace Element Levels in Schizophrenic Patients: A Systematic Review. Int J Mol Sci 2020; 21:E9566. [PMID: 33334078 PMCID: PMC7765526 DOI: 10.3390/ijms21249566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/06/2020] [Accepted: 12/12/2020] [Indexed: 12/19/2022] Open
Abstract
The alterations in serum trace element levels are common phenomena observed in patients with different psychiatric conditions such as schizophrenia, autism spectrum disorder, or major depressive disorder. The fluctuations in the trace element concentrations might act as potential diagnostic and prognostic biomarkers of many psychiatric and neurological disorders. This paper aimed to assess the alterations in serum trace element concentrations in patients with a diagnosed schizophrenia. The authors made a systematic review, extracting papers from the PubMed, Web of Science, and Scopus databases according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Among 5009 articles identified through database searching, 59 of them were assessed for eligibility. Ultimately, 33 articles were included in the qualitative synthesis. This review includes the analysis of serum levels of the following trace elements: iron, nickel, molybdenum, phosphorus, lead, chromium, antimony, uranium, magnesium, aluminum, zinc, copper, selenium, calcium, and manganese. Currently, there is no consistency regarding serum trace element levels in schizophrenic patients. Thus, it cannot be considered as a reliable prognostic or diagnostic marker of schizophrenia. However, it can be assumed that altered concentrations of those elements are crucial regarding the onset and exaggeration of either psychotic or negative symptoms or cognitive dysfunctions.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Elżbieta Sitarz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland; (E.S.); (K.K.); (H.K.-J.)
| | - Kaja Karakuła
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland; (E.S.); (K.K.); (H.K.-J.)
| | - Wojciech Flieger
- Faculty of Medicine, Medical University of Lublin, Aleje Racławickie 1, 20-059 Lublin, Poland;
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Cezary Grochowski
- Laboratory of Virtual Man, Chair of Anatomy, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Ryszard Maciejewski
- Department of Human Anatomy, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Hanna Karakula-Juchnowicz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland; (E.S.); (K.K.); (H.K.-J.)
- Department of Clinical Neuropsychiatry, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland
| |
Collapse
|
41
|
Dutta Chowdhury S, Ghosh T. Serum iron deficiency was associated with lower cognitive development in the children of the Santal tribe of West Bengal. Acta Paediatr 2020; 109:2131-2136. [PMID: 32073673 DOI: 10.1111/apa.15239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/06/2019] [Accepted: 02/18/2020] [Indexed: 12/01/2022]
Abstract
AIM Poor cognitive scores and low serum iron have been reported among chronically undernourished children from the Santal tribe, West Bengal. Our aim was to investigate the association between iron status and non-verbal cognitive development. METHODS We randomly selected 170 children (52.9% boys) aged 5-12 years from the Purulia district of West Bengal during 2007-2008 and assessed their iron status: haemoglobin concentration, serum concentration of iron, ferritin, transferrin, total iron-binding capacity and transferrin saturation. Their non-verbal cognitive development was assessed using the Raven's Coloured Progressive Matrices. RESULTS The haemoglobin concentration, serum iron, serum ferritin and transferrin saturation levels of the 27 children with an intellectual deficit and the 32 who had a below average intelligence quotient (IQ) were significantly lower (P < .05) than the 65 children with an average IQ. A large number of boys (55.6%) and girls (41.7%) who have an intellectual deficit had stage III iron depletion. The cognitive scores of children with stage II and III iron depletion were significantly lower (P < .05) than those with a normal IQ. CONCLUSION The iron depletion stage was associated with the severity of non-verbal cognitive impairment and serum ferritin appeared to be a sensitive biomarker for predicting non-verbal cognitive development.
Collapse
|
42
|
Tang S, Gao P, Chen H, Zhou X, Ou Y, He Y. The Role of Iron, Its Metabolism and Ferroptosis in Traumatic Brain Injury. Front Cell Neurosci 2020; 14:590789. [PMID: 33100976 PMCID: PMC7545318 DOI: 10.3389/fncel.2020.590789] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/04/2020] [Indexed: 12/29/2022] Open
Abstract
Traumatic brain injury (TBI) is a structural and physiological disruption of brain function caused by external forces. It is a major cause of death and disability for patients worldwide. TBI includes both primary and secondary impairments. Iron overload and ferroptosis highly involved in the pathophysiological process of secondary brain injury. Ferroptosis is a form of regulatory cell death, as increased iron accumulation in the brain leads to lipid peroxidation, reactive oxygen species (ROS) production, mitochondrial dysfunction and neuroinflammatory responses, resulting in cellular and neuronal damage. For this reason, eliminating factors like iron deposition and inhibiting lipid peroxidation may be a promising therapy. Iron chelators can be used to eliminate excess iron and to alleviate some of the clinical manifestations of TBI. In this review we will focus on the mechanisms of iron and ferroptosis involving the manifestations of TBI, broaden our understanding of the use of iron chelators for TBI. Through this review, we were able to better find novel clinical therapeutic directions for further TBI study.
Collapse
Affiliation(s)
- Sicheng Tang
- Medical Clinic and Polyclinic IV, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
| | - Pan Gao
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Hanmin Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
How to Improve the Antioxidant Defense in Asphyxiated Newborns-Lessons from Animal Models. Antioxidants (Basel) 2020; 9:antiox9090898. [PMID: 32967335 PMCID: PMC7554981 DOI: 10.3390/antiox9090898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Oxygen free radicals have been implicated in brain damage after neonatal asphyxia. In the early phase of asphyxia/reoxygenation, changes in antioxidant enzyme activity play a pivotal role in switching on and off the cascade of events that can kill the neurons. Hypoxia/ischemia (H/I) forces the brain to activate endogenous mechanisms (e.g., antioxidant enzymes) to compensate for the lost or broken neural circuits. It is important to evaluate therapies to enhance the self-protective capacity of the brain. In animal models, decreased body temperature during neonatal asphyxia has been shown to increase cerebral antioxidant capacity. However, in preterm or severely asphyxiated newborns this therapy, rather than beneficial seems to be harmful. Thus, seeking new therapeutic approaches to prevent anoxia-induced complications is crucial. Pharmacotherapy with deferoxamine (DFO) is commonly recognized as a beneficial regimen for H/I insult. DFO, via iron chelation, reduces oxidative stress. It also assures an optimal antioxidant protection minimizing depletion of the antioxidant enzymes as well as low molecular antioxidants. In the present review, some aspects of recently acquired insight into the therapeutic effects of hypothermia and DFO in promoting neuronal survival after H/I are discussed.
Collapse
|
44
|
Iron Homeostasis Disruption and Oxidative Stress in Preterm Newborns. Nutrients 2020; 12:nu12061554. [PMID: 32471148 PMCID: PMC7352191 DOI: 10.3390/nu12061554] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential micronutrient for early development, being involved in several cellular processes and playing a significant role in neurodevelopment. Prematurity may impact on iron homeostasis in different ways. On the one hand, more than half of preterm infants develop iron deficiency (ID)/ID anemia (IDA), due to the shorter duration of pregnancy, early postnatal growth, insufficient erythropoiesis, and phlebotomy losses. On the other hand, the sickest patients are exposed to erythrocytes transfusions, increasing the risk of iron overload under conditions of impaired antioxidant capacity. Prevention of iron shortage through placental transfusion, blood-sparing practices for laboratory assessments, and iron supplementation is the first frontier in the management of anemia in preterm infants. The American Academy of Pediatrics recommends the administration of 2 mg/kg/day of oral elemental iron to human milk-fed preterm infants from one month of age to prevent ID. To date, there is no consensus on the type of iron preparations, dosages, or starting time of administration to meet optimal cost-efficacy and safety measures. We will identify the main determinants of iron homeostasis in premature infants, elaborate on iron-mediated redox unbalance, and highlight areas for further research to tailor the management of iron metabolism.
Collapse
|
45
|
Kawahara M, Kato-Negishi M, Tanaka KI. Amyloids: Regulators of Metal Homeostasis in the Synapse. Molecules 2020; 25:molecules25061441. [PMID: 32210005 PMCID: PMC7145306 DOI: 10.3390/molecules25061441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Conformational changes in amyloidogenic proteins, such as β-amyloid protein, prion proteins, and α-synuclein, play a critical role in the pathogenesis of numerous neurodegenerative diseases, including Alzheimer’s disease, prion disease, and Lewy body disease. The disease-associated proteins possess several common characteristics, including the ability to form amyloid oligomers with β-pleated sheet structure, as well as cytotoxicity, although they differ in amino acid sequence. Interestingly, these amyloidogenic proteins all possess the ability to bind trace metals, can regulate metal homeostasis, and are co-localized at the synapse, where metals are abundantly present. In this review, we discuss the physiological roles of these amyloidogenic proteins in metal homeostasis, and we propose hypothetical models of their pathogenetic role in the neurodegenerative process as the loss of normal metal regulatory functions of amyloidogenic proteins. Notably, these amyloidogenic proteins have the capacity to form Ca2+-permeable pores in membranes, suggestive of a toxic gain of function. Therefore, we focus on their potential role in the disruption of Ca2+ homeostasis in amyloid-associated neurodegenerative diseases.
Collapse
|
46
|
Beluska-Turkan K, Korczak R, Hartell B, Moskal K, Maukonen J, Alexander DE, Salem N, Harkness L, Ayad W, Szaro J, Zhang K, Siriwardhana N. Nutritional Gaps and Supplementation in the First 1000 Days. Nutrients 2019; 11:E2891. [PMID: 31783636 PMCID: PMC6949907 DOI: 10.3390/nu11122891] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/23/2022] Open
Abstract
Optimized nutrition during the first 1000 days (from conception through the 2nd birthday) is critical for healthy development and a healthy life for the newborn. Pregnancy and the postpartum period are accompanied by physiological changes, increased energy needs, and changing requirements in the nutrients critical for optimal growth and development. Infants and toddlers also experience physiological changes and have specific nutritional needs. Food and nutrition experts can provide women of childbearing age with adequate dietary advice to optimize nutrition, as well as guidance on selecting appropriate dietary supplements. Considering the approaching 2020-2025 Dietary Guidelines for Americans (DGA) will be making specific recommendations for children, it is important to provide accurate scientific information to support health influencers in the field of nutrition. The purpose of this review is to summarize the nutrition and supplementation literature for the first 1000 days; to highlight nutritional and knowledge gaps; and to educate nutrition influencers to provide thoughtful guidance to mothers and families. Optimal nutrition during pregnancy through early childhood is critical for supporting a healthy life. Nutrition influencers, such as dietitians, obstetricians/gynecologists, and other relevant health professionals, should continue guiding supplement and food intake and work closely with expectant families and nutrition gatekeepers.
Collapse
Affiliation(s)
- Katrina Beluska-Turkan
- Church & Dwight, Co., Inc., Product Development Nutritional Sciences, Princeton, NJ 08540, USA; (K.B.-T.); (K.M.); (L.H.); (W.A.); (J.S.); (K.Z.)
| | - Renee Korczak
- Premier Nutrition, LLC, Bernardsville, NJ 07924, USA;
| | - Beth Hartell
- PearTree Nutrition, LLC, Seattle, WA 98115, USA;
| | - Kristin Moskal
- Church & Dwight, Co., Inc., Product Development Nutritional Sciences, Princeton, NJ 08540, USA; (K.B.-T.); (K.M.); (L.H.); (W.A.); (J.S.); (K.Z.)
| | | | | | - Norman Salem
- DSM Nutritional Products, Columbia, MD 21045, USA;
| | - Laura Harkness
- Church & Dwight, Co., Inc., Product Development Nutritional Sciences, Princeton, NJ 08540, USA; (K.B.-T.); (K.M.); (L.H.); (W.A.); (J.S.); (K.Z.)
| | - Wafaa Ayad
- Church & Dwight, Co., Inc., Product Development Nutritional Sciences, Princeton, NJ 08540, USA; (K.B.-T.); (K.M.); (L.H.); (W.A.); (J.S.); (K.Z.)
| | - Jacalyn Szaro
- Church & Dwight, Co., Inc., Product Development Nutritional Sciences, Princeton, NJ 08540, USA; (K.B.-T.); (K.M.); (L.H.); (W.A.); (J.S.); (K.Z.)
| | - Kelly Zhang
- Church & Dwight, Co., Inc., Product Development Nutritional Sciences, Princeton, NJ 08540, USA; (K.B.-T.); (K.M.); (L.H.); (W.A.); (J.S.); (K.Z.)
| | - Nalin Siriwardhana
- Church & Dwight, Co., Inc., Product Development Nutritional Sciences, Princeton, NJ 08540, USA; (K.B.-T.); (K.M.); (L.H.); (W.A.); (J.S.); (K.Z.)
| |
Collapse
|
47
|
Nielsen P. [Not Available]. MMW Fortschr Med 2019; 161:22-24. [PMID: 31556049 DOI: 10.1007/s15006-019-0888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Peter Nielsen
- Institut für Biochemie und Molekulare Zellbiologie (IBMZ), Interdisziplinäre Arbeitsgruppe Eisenstoffwechsel, Martinistr. 52, D-20246, Hamburg, Deutschland.
| |
Collapse
|
48
|
Ferreira A, Neves P, Gozzelino R. Multilevel Impacts of Iron in the Brain: The Cross Talk between Neurophysiological Mechanisms, Cognition, and Social Behavior. Pharmaceuticals (Basel) 2019; 12:ph12030126. [PMID: 31470556 PMCID: PMC6789770 DOI: 10.3390/ph12030126] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Iron is a critical element for most organisms, which plays a fundamental role in the great majority of physiological processes. So much so, that disruption of iron homeostasis has severe multi-organ impacts with the brain being particularly sensitive to such modifications. More specifically, disruption of iron homeostasis in the brain can affect neurophysiological mechanisms, cognition, and social behavior, which eventually contributes to the development of a diverse set of neuro-pathologies. This article starts by exploring the mechanisms of iron action in the brain and follows with a discussion on cognitive and behavioral implications of iron deficiency and overload and how these are framed by the social context. Subsequently, we scrutinize the implications of the disruption of iron homeostasis for the onset and progression of psychosocial disorders. Lastly, we discuss the links between biological, psychological, and social dimensions and outline potential avenues of research. The study of these interactions could ultimately contribute to a broader understanding of how individuals think and act under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Ana Ferreira
- Centro Interdisciplinar de Ciências Sociais (CICS.NOVA), Faculdade de Ciências Sociais e Humanas da Universidade NOVA de Lisboa (NOVA FCSH), 1069-061 Lisbon, Portugal
| | - Pedro Neves
- School of Business and Economics, NOVA University of Lisbon, 2775-405 Lisbon, Portugal
| | - Raffaella Gozzelino
- Chronic Diseases Research Center (CEDOC)/NOVA Medical School, Universidade NOVA de Lisboa, 1180-052, 1150-082 Lisbon, Portugal.
| |
Collapse
|