1
|
Fu X, Guo W, Cheng Y, Li L. An ultra-high-performance tandem mass spectrometry method to quantify tryptophan metabolites in aqueous humor of primary angle-closure glaucoma patients. J Chromatogr A 2025; 1750:465939. [PMID: 40194501 DOI: 10.1016/j.chroma.2025.465939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/21/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
This study presented the development and validation of a robust ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous quantification of tryptophan (TRP) and its nine metabolites in aqueous humor (AH) to explore the regulation of the TRP metabolic pathway in primary angle-closure glaucoma (PACG). The optimized UPLC-MS/MS method demonstrated good linearity (R² > 0.99), sensitivity (LLMI: 0.11 - 1.31 ng/mL), precision (CVs: 2.18 % and 12.88 %), recovery rates (85.06 % - 105.74 %), bench-top, long-term and on-instrument stabilities (CVs: 2.35 % - 6.88 %). The validated UPLC-MS/MS method was applied to AH samples from PACG patients with cataract and cataract-alone patients. The results showed that kynurenine and 3-hydroxykynurenine concentrations were significantly increased in the AH of the PACG group, indicating up-regulated indoleamine 2,3-dioxygenase activity and a metabolic shift towards the production of the neurotoxic metabolites within the kynurenine pathway. These findings underscore the potential involvement of TRP metabolism in PACG pathogenesis.
Collapse
Affiliation(s)
- Xingang Fu
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Weiwei Guo
- Department of Anesthesiology, The Affiliated Chengdu 363 Hospital of Southwest Medical University, Chengdu, PR China
| | - Yuheng Cheng
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Lin Li
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China.
| |
Collapse
|
2
|
Yan L, Wang X, Xiang Y, Ru S, Fang C, Wu X. Progress and perspectives of metabolic biomarkers in blood sample for diabetic microvascular complications. Metabolomics 2025; 21:47. [PMID: 40164927 DOI: 10.1007/s11306-025-02245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Diabetes mellitus refers to a group of metabolic diseases characterized by chronic hyperglycemia due to multiple etiological factors. As the disease progresses, patients gradually develop microvascular complications, including diabetic nephropathy, diabetic retinopathy, and diabetic neuropathy. However, current clinical methods for detecting these microvascular complications are limitations, thus primary prevention and early diagnosis are of great importance. AIM OF REVIEW This review summarizes the known blood biomarkers of diabetic microvascular complications, classified according to type of structure, including amino acid metabolism, lipid metabolism, carnitine metabolism, organic acid metabolism, etc., which can be used for the simultaneous typing of diabetes mellitus based on microvascular complications, and to search for the trend of changes to lay the foundation for early diagnosis and understanding of the pathogenesis of diabetic microvascular complications, including oxidative stress, and mitochondrial dysfunction. Searches for the trend of changes to lay the foundation for early diagnosis and understanding of the pathogenesis of diabetic microvascular complications, including oxidative stress, mitochondrial dysfunction. KEY SCIENTIFIC CONCEPTS OF REVIEW Due to the limitations of diagnostic criteria for diabetic microvascular complications, some patients already have the disease for which they are being tested. Metabolomics reflects the physiological state of an organism by analyzing the small molecules metabolites present in a biological tissue that are related to clinical phenotypes, providing a snapshot of the physiological and pathophysiological metabolic processes occurring within that organism at any given time, thus opening the door for the development of diagnostic biomarkers and precise treatment. In clinical metabolomics, blood is considered a specialized type of connective tissue, which allows it to transport substances throughout the body, connecting different systems together. Also, blood components are probably the most frequently used matrix in metabolomics studies. Therefore, metabolomics is used to analyze blood biomarkers that reflect the course of diabetes and explore the pathways involved in the pathophysiology of the three most common diabetic microvascular complications. Finally, in this review, we discuss the current limitations of metabolomic analysis, and the integrative multi-omics data, including genomics, transcriptomics, and proteomics, required for developing specific biomarkers for diabetic microvascular complications.
Collapse
Affiliation(s)
- Li Yan
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Xu Wang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yujie Xiang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuyi Ru
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Cheng Fang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiuhong Wu
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
3
|
Jung YH, Chae CW, Han HJ. The potential role of gut microbiota-derived metabolites as regulators of metabolic syndrome-associated mitochondrial and endolysosomal dysfunction in Alzheimer's disease. Exp Mol Med 2024; 56:1691-1702. [PMID: 39085351 PMCID: PMC11372123 DOI: 10.1038/s12276-024-01282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/20/2024] [Accepted: 05/10/2024] [Indexed: 08/02/2024] Open
Abstract
Although the role of gut microbiota (GMB)-derived metabolites in mitochondrial and endolysosomal dysfunction in Alzheimer's disease (AD) under metabolic syndrome remains unclear, deciphering these host-metabolite interactions represents a major public health challenge. Dysfunction of mitochondria and endolysosomal networks (ELNs) plays a crucial role in metabolic syndrome and can exacerbate AD progression, highlighting the need to study their reciprocal regulation for a better understanding of how AD is linked to metabolic syndrome. Concurrently, metabolic disorders are associated with alterations in the composition of the GMB. Recent evidence suggests that changes in the composition of the GMB and its metabolites may be involved in AD pathology. This review highlights the mechanisms of metabolic syndrome-mediated AD development, focusing on the interconnected roles of mitochondrial dysfunction, ELN abnormalities, and changes in the GMB and its metabolites. We also discuss the pathophysiological role of GMB-derived metabolites, including amino acids, fatty acids, other metabolites, and extracellular vesicles, in mediating their effects on mitochondrial and ELN dysfunction. Finally, this review proposes therapeutic strategies for AD by directly modulating mitochondrial and ELN functions through targeting GMB metabolites under metabolic syndrome.
Collapse
Affiliation(s)
- Young Hyun Jung
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, 31151, Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea.
| |
Collapse
|
4
|
Gawel K. A Review on the Role and Function of Cinnabarinic Acid, a "Forgotten" Metabolite of the Kynurenine Pathway. Cells 2024; 13:453. [PMID: 38474418 PMCID: PMC10930587 DOI: 10.3390/cells13050453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
In the human body, the majority of tryptophan is metabolized through the kynurenine pathway. This consists of several metabolites collectively called the kynurenines and includes, among others, kynurenic acid, L-kynurenine, or quinolinic acid. The wealth of metabolites, as well as the associated molecular targets and biological pathways, bring about a situation wherein even a slight imbalance in the kynurenine levels, both in the periphery and central nervous system, have broad consequences regarding general health. Cinnabarinic acid (CA) is the least known trace kynurenine, and its physiological and pathological roles are not widely understood. Some studies, however, indicate that it might be neuroprotective. Information on its hepatoprotective properties have also emerged, although these are pioneering studies and need to be replicated. Therefore, in this review, I aim to present and critically discuss the current knowledge on CA and its role in physiological and pathological settings to guide future studies.
Collapse
Affiliation(s)
- Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b Str., 20-090 Lublin, Poland
| |
Collapse
|
5
|
Chen Q, Li XJ, Xie W, Su ZA, Qin GM, Yu CH. Postbiotics: emerging therapeutic approach in diabetic retinopathy. Front Microbiol 2024; 15:1359949. [PMID: 38500583 PMCID: PMC10946205 DOI: 10.3389/fmicb.2024.1359949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
Diabetic retinopathy (DR) is a prevalent microvascular complication in diabetic patients that poses a serious risk as it can cause substantial visual impairment and even vision loss. Due to the prolonged onset of DR, lengthy treatment duration, and limited therapeutic effectiveness, it is extremely important to find a new strategy for the treatment of DR. Postbiotic is an emerging dietary supplement which consists of the inactivate microbiota and its metabolites. Numerous animal experiments have demonstrated that intervention with postbiotics reduces hyperglycemia, attenuates retinal peripapillary and endothelial cell damage, improves retinal microcirculatory dysfunction, and consequently delays the progression of DR. More strikingly, unlike conventional probiotics and prebiotics, postbiotics with small molecules can directly colonize the intestinal epithelial cells, and exert heat-resistant, acid-resistant, and durable for storage. Despite few clinical significance, oral administration with postbiotics might become the effective management for the prevention and treatment of DR. In this review, we summarized the basic conception, classification, molecular mechanisms, and the advances in the therapeutic implications of postbiotics in the pathogenesis of DR. Postbiotics present great potential as a viable adjunctive therapy for DR.
Collapse
Affiliation(s)
- Qin Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Xue-Jian Li
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, China
| | - Wei Xie
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, China
| | - Zhao-An Su
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Guang-Ming Qin
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Chen-Huan Yu
- Animal Laboratory Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
6
|
Yagin FH, Yasar S, Gormez Y, Yagin B, Pinar A, Alkhateeb A, Ardigò LP. Explainable Artificial Intelligence Paves the Way in Precision Diagnostics and Biomarker Discovery for the Subclass of Diabetic Retinopathy in Type 2 Diabetics. Metabolites 2023; 13:1204. [PMID: 38132885 PMCID: PMC10745306 DOI: 10.3390/metabo13121204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
Diabetic retinopathy (DR), a common ocular microvascular complication of diabetes, contributes significantly to diabetes-related vision loss. This study addresses the imperative need for early diagnosis of DR and precise treatment strategies based on the explainable artificial intelligence (XAI) framework. The study integrated clinical, biochemical, and metabolomic biomarkers associated with the following classes: non-DR (NDR), non-proliferative diabetic retinopathy (NPDR), and proliferative diabetic retinopathy (PDR) in type 2 diabetes (T2D) patients. To create machine learning (ML) models, 10% of the data was divided into validation sets and 90% into discovery sets. The validation dataset was used for hyperparameter optimization and feature selection stages, while the discovery dataset was used to measure the performance of the models. A 10-fold cross-validation technique was used to evaluate the performance of ML models. Biomarker discovery was performed using minimum redundancy maximum relevance (mRMR), Boruta, and explainable boosting machine (EBM). The predictive proposed framework compares the results of eXtreme Gradient Boosting (XGBoost), natural gradient boosting for probabilistic prediction (NGBoost), and EBM models in determining the DR subclass. The hyperparameters of the models were optimized using Bayesian optimization. Combining EBM feature selection with XGBoost, the optimal model achieved (91.25 ± 1.88) % accuracy, (89.33 ± 1.80) % precision, (91.24 ± 1.67) % recall, (89.37 ± 1.52) % F1-Score, and (97.00 ± 0.25) % the area under the ROC curve (AUROC). According to the EBM explanation, the six most important biomarkers in determining the course of DR were tryptophan (Trp), phosphatidylcholine diacyl C42:2 (PC.aa.C42.2), butyrylcarnitine (C4), tyrosine (Tyr), hexadecanoyl carnitine (C16) and total dimethylarginine (DMA). The identified biomarkers may provide a better understanding of the progression of DR, paving the way for more precise and cost-effective diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Fatma Hilal Yagin
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya 44280, Turkey; (F.H.Y.); (A.P.)
| | - Seyma Yasar
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya 44280, Turkey; (F.H.Y.); (A.P.)
| | - Yasin Gormez
- Department of Management Information Systems, Faculty of Economics and Administrative Sciences, Sivas Cumhuriyet University, Sivas 58140, Turkey;
| | - Burak Yagin
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya 44280, Turkey; (F.H.Y.); (A.P.)
| | - Abdulvahap Pinar
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya 44280, Turkey; (F.H.Y.); (A.P.)
| | | | - Luca Paolo Ardigò
- Department of Teacher Education, NLA University College, Linstows Gate 3, 0166 Oslo, Norway;
| |
Collapse
|
7
|
Hebbar S, Traikov S, Hälsig C, Knust E. Modulating the Kynurenine pathway or sequestering toxic 3-hydroxykynurenine protects the retina from light-induced damage in Drosophila. PLoS Genet 2023; 19:e1010644. [PMID: 36952572 PMCID: PMC10035932 DOI: 10.1371/journal.pgen.1010644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/30/2023] [Indexed: 03/25/2023] Open
Abstract
Tissue health is regulated by a myriad of exogenous or endogenous factors. Here we investigated the role of the conserved Kynurenine pathway (KP) in maintaining retinal homeostasis in the context of light stress in Drosophila melanogaster. cinnabar, cardinal and scarlet are fly genes that encode different steps in the KP. Along with white, these genes are known regulators of brown pigment (ommochrome) biosynthesis. Using white as a sensitized genetic background, we show that mutations in cinnabar, cardinal and scarlet differentially modulate light-induced retinal damage. Mass Spectrometric measurements of KP metabolites in flies with different genetic combinations support the notion that increased levels of 3-hydroxykynurenine (3OH-K) and Xanthurenic acid (XA) enhance retinal damage, whereas Kynurenic Acid (KYNA) and Kynurenine (K) are neuro-protective. This conclusion was corroborated by showing that feeding 3OH-K results in enhanced retinal damage, whereas feeding KYNA protects the retina in sensitized genetic backgrounds. Interestingly, the harmful effects of free 3OH-K are diminished by its sub-cellular compartmentalization. Sequestering of 3OH-K enables the quenching of its toxicity through conversion to brown pigment or conjugation to proteins. This work enabled us to decouple the role of these KP genes in ommochrome formation from their role in retinal homeostasis. Additionally, it puts forward new hypotheses on the importance of the balance of KP metabolites and their compartmentalization in disease alleviation.
Collapse
Affiliation(s)
- Sarita Hebbar
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sofia Traikov
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Catrin Hälsig
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
8
|
Pradhan SS, Thota SM, Rajaratnam S, Bhagavatham SKS, Pulukool SK, Rathnakumar S, Phalguna KS, Dandamudi RB, Pargaonkar A, Joseph P, Joshy EV, Sivaramakrishnan V. Integrated multi-omics analysis of Huntington disease identifies pathways that modulate protein aggregation. Dis Model Mech 2022; 15:dmm049492. [PMID: 36052548 PMCID: PMC10655815 DOI: 10.1242/dmm.049492] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disease associated with polyglutamine expansion in the protein huntingtin (HTT). Although the length of the polyglutamine repeat correlates with age at disease onset and severity, psychological, cognitive and behavioral complications point to the existence of disease modifiers. Mitochondrial dysfunction and metabolic deregulation are both associated with the HD but, despite multi-omics characterization of patients and model systems, their mechanisms have remained elusive. Systems analysis of multi-omics data and its validation by using a yeast model could help to elucidate pathways that modulate protein aggregation. Metabolomics analysis of HD patients and of a yeast model of HD was, therefore, carried out. Our analysis showed a considerable overlap of deregulated metabolic pathways. Further, the multi-omics analysis showed deregulated pathways common in human, mice and yeast model systems, and those that are unique to them. The deregulated pathways include metabolic pathways of various amino acids, glutathione metabolism, longevity, autophagy and mitophagy. The addition of certain metabolites as well as gene knockouts targeting the deregulated metabolic and autophagy pathways in the yeast model system showed that these pathways do modulate protein aggregation. Taken together, our results showed that the modulation of deregulated pathways influences protein aggregation in HD, and has implications for progression and prognosis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sai S. Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Sai M. Thota
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Saiswaroop Rajaratnam
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Sai K. S. Bhagavatham
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Sujith K. Pulukool
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Sriram Rathnakumar
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Kanikaram S. Phalguna
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Rajesh B. Dandamudi
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515 134, India
| | - Ashish Pargaonkar
- Application Division, Agilent Technologies Ltd., Bengaluru 560048, India
| | - Prasanth Joseph
- Application Division, Agilent Technologies Ltd., Bengaluru 560048, India
| | - E. V. Joshy
- Department of Neurology, Sri Sathya Sai Institute of Higher Medical Sciences, Whitefield, Bengaluru, Karnataka 560066, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| |
Collapse
|
9
|
Zieliński G, Filipiak Z, Ginszt M, Matysik-Woźniak A, Rejdak R, Gawda P. The Organ of Vision and the Stomatognathic System-Review of Association Studies and Evidence-Based Discussion. Brain Sci 2021; 12:brainsci12010014. [PMID: 35053758 PMCID: PMC8773770 DOI: 10.3390/brainsci12010014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
The stomatognathic system is a functional complex of tissues and organs located within the oral and craniofacial cavities. The craniofacial anatomical factors and the biomechanics of the temporomandibular joints affect many systems throughout the body, including the organ of vision. However, few scientific reports have shown a relationship between the organ of vision and the stomatognathic system. The purpose of this review is to provide an overview of connections along neural, muscle-fascial, and biochemical pathways between the organ of vision and the stomatognathic system. Based on the literature presented in this review, the connections between the organ of vision and the stomatognathic system seem undeniable. Understanding the anatomical, physiological, and biochemical interrelationships may allow to explain the interactions between the mentioned systems. According to the current knowledge, it is not possible to indicate the main linking pathway; presumably, it may be a combination of several presented pathways. The awareness of this relationship among dentists, ophthalmologists, physiotherapists, and optometrists should increase for the better diagnosis and treatment of patients.
Collapse
Affiliation(s)
- Grzegorz Zieliński
- Department of Sports Medicine, Medical University of Lublin, 20-093 Lublin, Poland;
- Correspondence:
| | - Zuzanna Filipiak
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Michał Ginszt
- Department of Rehabilitation and Physiotherapy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Anna Matysik-Woźniak
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.-W.); (R.R.)
| | - Robert Rejdak
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.-W.); (R.R.)
| | - Piotr Gawda
- Department of Sports Medicine, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
10
|
Bratek-Gerej E, Ziembowicz A, Godlewski J, Salinska E. The Mechanism of the Neuroprotective Effect of Kynurenic Acid in the Experimental Model of Neonatal Hypoxia-Ischemia: The Link to Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10111775. [PMID: 34829646 PMCID: PMC8615281 DOI: 10.3390/antiox10111775] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
The over-activation of NMDA receptors and oxidative stress are important components of neonatal hypoxia-ischemia (HI). Kynurenic acid (KYNA) acts as an NMDA receptor antagonist and is known as a reactive oxygen species (ROS) scavenger, which makes it a potential therapeutic compound. This study aimed to establish the neuroprotective and antioxidant potential of KYNA in an experimental model of HI. HI on seven-day-old rats was used as an experimental model. The animals were injected i.p. with different doses of KYNA 1 h or 6 h after HI. The neuroprotective effect of KYNA was determined by the measurement of brain damage and elements of oxidative stress (ROS and glutathione (GSH) level, SOD, GPx, and catalase activity). KYNA applied 1 h after HI significantly reduced weight loss of the ischemic hemisphere, and prevented neuronal loss in the hippocampus and cortex. KYNA significantly reduced HI-increased ROS, GSH level, and antioxidant enzyme activity. Only the highest used concentration of KYNA showed neuroprotection when applied 6 h after HI. The presented results indicate induction of neuroprotection at the ROS formation stage. However, based on the presented data, it is not possible to pinpoint whether NMDA receptor inhibition or the scavenging abilities are the dominant KYNA-mediated neuroprotective mechanisms.
Collapse
Affiliation(s)
- Ewelina Bratek-Gerej
- Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.Z.); (E.S.)
- Correspondence:
| | - Apolonia Ziembowicz
- Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.Z.); (E.S.)
| | - Jakub Godlewski
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Elzbieta Salinska
- Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.Z.); (E.S.)
| |
Collapse
|
11
|
Elevated dimethylarginine, ATP, cytokines, metabolic remodeling involving tryptophan metabolism and potential microglial inflammation characterize primary open angle glaucoma. Sci Rep 2021; 11:9766. [PMID: 33963197 PMCID: PMC8105335 DOI: 10.1038/s41598-021-89137-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/20/2021] [Indexed: 02/03/2023] Open
Abstract
Glaucoma of which primary open angle glaucoma (POAG) constitutes 75%, is the second leading cause of blindness. Elevated intra ocular pressure and Nitric oxide synthase (NOS) dysfunction are hallmarks of POAG. We analyzed clinical data, cytokine profile, ATP level, metabolomics and GEO datasets to identify features unique to POAG. N9 microglial cells are used to gain mechanistic insights. Our POAG cohort showed elevated ATP in aqueous humor and cytokines in plasma. Metabolomic analysis showed changes in 21 metabolites including Dimethylarginine (DMAG) and activation of tryptophan metabolism in POAG. Analysis of GEO data sets and previously published proteomic data sets bins genes into signaling and metabolic pathways. Pathways from reanalyzed metabolomic data from literature significantly overlapped with those from our POAG data. DMAG modulated purinergic signaling, ATP secretion and cytokine expression were inhibited by N-Ethylmaleimide, NO donors, BAPTA and purinergic receptor inhibitors. ATP induced elevated intracellular calcium level and cytokines expression were inhibited by BAPTA. Metabolomics of cell culture supernatant from ATP treated sets showed metabolic deregulation and activation of tryptophan metabolism. DMAG and ATP induced IDO1/2 and TDO2 were inhibited by N-Ethylmaleimide, sodium nitroprusside and BAPTA. Our data obtained from clinical samples and cell culture studies reveal a strong association of elevated DMAG, ATP, cytokines and activation of tryptophan metabolism with POAG. DMAG mediated ATP signaling, inflammation and metabolic remodeling in microglia might have implications in management of POAG.
Collapse
|
12
|
Influence of Trace Elements on Neurodegenerative Diseases of The Eye-The Glaucoma Model. Int J Mol Sci 2021; 22:ijms22094323. [PMID: 33919241 PMCID: PMC8122456 DOI: 10.3390/ijms22094323] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is a heterogeneous group of chronic neurodegenerative disorders characterized by a relatively selective, progressive damage to the retinal ganglion cells (RGCs) and their axons, which leads to axon loss and visual field alterations. To date, many studies have shown the role of various elements, mainly metals, in maintaining the balance of prooxidative and antioxidative processes, regulation of fluid and ion flow through cell membranes of the ocular tissues. Based on the earlier and current research results, their relationship with the development and progression of glaucoma seems obvious and is increasingly appreciated. In this review, we aimed to summarize the current evidence on the role of trace elements in the pathogenesis and prevention of glaucomatous diseases. Special attention is also paid to the genetic background associated with glaucoma-related abnormalities of physiological processes that regulate or involve the ions of elements considered as trace elements necessary for the functioning of the cells.
Collapse
|
13
|
Fiedorowicz M, Choragiewicz T, Turski WA, Kocki T, Nowakowska D, Wertejuk K, Kamińska A, Avitabile T, Wełniak-Kaminska M, Grieb P, Zweifel S, Rejdak R, Toro MD. Tryptophan Pathway Abnormalities in a Murine Model of Hereditary Glaucoma. Int J Mol Sci 2021; 22:1039. [PMID: 33494373 PMCID: PMC7865582 DOI: 10.3390/ijms22031039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND It has been shown that a possible pathogenetic mechanism of neurodegeneration in the mouse model of glaucoma (DBA/2J) may be an alteration of kynurenic acid (KYNA) in the retina. This study aimed to verify the hypothesis that alterations of tryptophan (TRP) metabolism in DBA/2J mice is not limited to the retina. METHODS Samples of the retinal tissue and serum were collected from DBA/2J mice (6 and 10 months old) and control C57Bl/6 mice of the same age. The concentration of TRP, KYNA, kynurenine (KYN), and 3-hydroxykynurenine (3OH-K) was measured by HPLC. The activity of indoleamine 2,3-dioxygenase (IDO) was also determined as a KYN/TRP ratio. RESULTS TRP, KYNA, L-KYN, and 3OH-K concentration were significantly lower in the retinas of DBA/2J mice than in C57Bl/6 mice. 3OH-K concentration was higher in older mice in both strains. Serum TRP, L-KYN, and KYNA concentrations were lower in DBA/2J than in age-matched controls. However, serum IDO activity did not differ significantly between compared groups and strains. CONCLUSIONS Alterations of the TRP pathway seem not to be limited to the retina in the murine model of hereditary glaucoma.
Collapse
Affiliation(s)
- Michal Fiedorowicz
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.F.); (M.W.-K.); (P.G.)
| | - Tomasz Choragiewicz
- Department of General Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (T.C.); (D.N.); (K.W.); (R.R.)
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-079 Lublin, Poland; (W.A.T.); (T.K.)
| | - Tomasz Kocki
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-079 Lublin, Poland; (W.A.T.); (T.K.)
| | - Dominika Nowakowska
- Department of General Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (T.C.); (D.N.); (K.W.); (R.R.)
| | - Kamila Wertejuk
- Department of General Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (T.C.); (D.N.); (K.W.); (R.R.)
| | - Agnieszka Kamińska
- Faculty of Medical Sciences, Collegium Medicum, Cardinal Stefan Wyszyński University, 01-815 Warsaw, Poland;
| | - Teresio Avitabile
- Department of Ophthalmology, University of Catania, 95123 Catania, Italy;
| | - Marlena Wełniak-Kaminska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.F.); (M.W.-K.); (P.G.)
| | - Pawel Grieb
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.F.); (M.W.-K.); (P.G.)
| | - Sandrine Zweifel
- Department of Ophthalmology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Robert Rejdak
- Department of General Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (T.C.); (D.N.); (K.W.); (R.R.)
| | - Mario Damiano Toro
- Department of General Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland; (T.C.); (D.N.); (K.W.); (R.R.)
- Faculty of Medical Sciences, Collegium Medicum, Cardinal Stefan Wyszyński University, 01-815 Warsaw, Poland;
- Department of Ophthalmology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| |
Collapse
|
14
|
Yun JH, Kim JM, Jeon HJ, Oh T, Choi HJ, Kim BJ. Metabolomics profiles associated with diabetic retinopathy in type 2 diabetes patients. PLoS One 2020; 15:e0241365. [PMID: 33119699 PMCID: PMC7595280 DOI: 10.1371/journal.pone.0241365] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes, and it is the consequence of microvascular retinal changes due to high glucose levels over a long time. Metabolomics profiling is a rapidly evolving method used to identify the metabolites in biological fluids and investigate disease progression. In this study, we used a targeted metabolomics approach to quantify the serum metabolites in type 2 diabetes (T2D) patients. Diabetes patients were divided into three groups based on the status of their complications: non-DR (NDR, n = 143), non-proliferative DR (NPDR, n = 123), and proliferative DR (PDR, n = 51) groups. Multiple logistic regression analysis and multiple testing corrections were performed to identify the significant differences in the metabolomics profiles of the different analysis groups. The concentrations of 62 metabolites of the NDR versus DR group, 53 metabolites of the NDR versus NPDR group, and 30 metabolites of the NDR versus PDR group were found to be significantly different. Finally, sixteen metabolites were selected as specific metabolites common to NPDR and PDR. Among them, three metabolites including total DMA, tryptophan, and kynurenine were potential makers of DR progression in T2D patients. Additionally, several metabolites such as carnitines, several amino acids, and phosphatidylcholines also showed a marker potential. The metabolite signatures identified in this study will provide insight into the mechanisms underlying DR development and progression in T2D patients in future studies.
Collapse
Affiliation(s)
- Jun Ho Yun
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju, Chungbuk, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jeong-Min Kim
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju, Chungbuk, Republic of Korea
| | - Hyun Jeong Jeon
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Chungbuk, Republic of Korea
| | - Taekeun Oh
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Chungbuk, Republic of Korea
| | - Hyung Jin Choi
- Department of Biomedical Sciences & Department of Anatomy and Cell Biology, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- * E-mail: (BJK); (HJC)
| | - Bong-Jo Kim
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju, Chungbuk, Republic of Korea
- * E-mail: (BJK); (HJC)
| |
Collapse
|