1
|
Lusta KA, Churov AV, Beloyartsev DF, Golovyuk AL, Lee AA, Sukhorukov VN, Orekhov AN. The two coin sides of bacterial extracellular membrane nanovesicles: atherosclerosis trigger or remedy. DISCOVER NANO 2024; 19:179. [PMID: 39532781 PMCID: PMC11557815 DOI: 10.1186/s11671-024-04149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Among the numerous driving forces that cause the atherosclerotic cardiovascular disease (ASCVD), pathogenic bacterial extracellular membrane nanovesicles (BEMNs) containing toxins and virulence factors appear to be the key trigger of inflammation and atherogenesis, the major processes involved in the pathogenesis of ASCVD. Since BEMNs are the carriers of nanosized biomolecules to distant sites, they are now being considered as a novel drug delivery system. Nowadays, many therapeutic strategies are used to treat ASCVD. However, the conventional anti-atherosclerotic therapies are not effective enough. This primarily due to the inefficiency of non-targeted drug delivery systems to tissue affected areas, which, in turn, leads to numerous side effects, as well as faulty pharmacokinetics. In this regard, nanomedicine methods using nanoparticles (NPs) as targeted drug delivery vehicles proved to be extremely useful. Bioengineered BEMNs equipped with disease-specific ligand moieties and loaded with corresponding drugs represent a promising tool in nanomedicine, which can be used as a novel drug delivery system for a successful therapy of ASCVD. In this review, we outline the involvement of pathogenic BEMNs in the triggering of ASCVD, the conventional therapeutic strategies for the treatment of ASCVD, and the recent trends in nanomedicine using BEMNs and NPs as a vehicle for targeted drug delivery.
Collapse
Affiliation(s)
- Konstantin A Lusta
- Institute for Atherosclerosis Research, Ltd, Osennyaya Street 4-1-207, Moscow, Russia, 121609.
| | - Alexey V Churov
- Institute on Aging Research, Russian Gerontology Clinical Research Center, Pirogov Russian National Research Medical University, Moscow, Russia, 129226
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, Russia, 125315
| | - Dmitry F Beloyartsev
- Vascular Surgery Department, A.V. Vishnevsky National Medical Research Center of Surgery, 27 Bolshaya Serpukhovskaya Street, Moscow, Russia, 117997
| | - Alexander L Golovyuk
- Vascular Surgery Department, A.V. Vishnevsky National Medical Research Center of Surgery, 27 Bolshaya Serpukhovskaya Street, Moscow, Russia, 117997
| | - Arthur A Lee
- Insitute of Human Morphology, Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, Moscow, Russia, 119991
| | - Vasily N Sukhorukov
- Insitute of Human Morphology, Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, Moscow, Russia, 119991
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, Russia, 125315
| | - Alexander N Orekhov
- Insitute of Human Morphology, Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, Moscow, Russia, 119991
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, Russia, 125315
| |
Collapse
|
2
|
Liou JW, Chen PY, Gao WY, Yen JH. Natural phytochemicals as small-molecule proprotein convertase subtilisin/kexin type 9 inhibitors. Tzu Chi Med J 2024; 36:360-369. [PMID: 39421488 PMCID: PMC11483095 DOI: 10.4103/tcmj.tcmj_46_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/01/2024] [Accepted: 06/03/2024] [Indexed: 10/19/2024] Open
Abstract
A decrease in the levels of low-density lipoprotein receptors (LDLRs) leads to the accumulation of LDL cholesterol (LDL-C) in the bloodstream, resulting in hypercholesterolemia and atherosclerotic cardiovascular diseases. Increasing the expression level or inducing the activity of LDLR in hepatocytes can effectively control hypercholesterolemia. Proprotein convertase subtilisin/kexin type 9 (PCSK9) protein, primarily produced in the liver, promotes the degradation of LDLR. Inhibiting the expression and/or function of PCSK9 can increase the levels of LDLR on the surface of hepatocytes and promote LDL-C clearance from the plasma. Thus, targeting PCSK9 represents a new strategy for developing preventive and therapeutic interventions for hypercholesterolemia. Currently, monoclonal antibodies are used as PCSK9 inhibitors in clinical practice. However, the need for oral and affordable anti-PCSK9 medications limits the perspective of choosing PCSK9 inhibitors for clinical usage. Emerging research reports have demonstrated that natural phytochemicals have efficacy in maintaining cholesterol stability and regulating lipid metabolism. Developing novel natural phytochemical PCSK9 inhibitors can serve as a starting point for developing small-molecule drugs to reduce plasma LDL-C levels in patients. In this review, we summarize the current literature on the critical role of PCSK9 in controlling LDLR degradation and hypercholesterolemia, and we discuss the results of studies attempting to develop PCSK9 inhibitors, with an emphasis on the inhibitory effects of natural phytochemicals on PCSK9. Furthermore, we provide insight into the mechanisms of action by which the reported phytochemicals exert their potential PCSK9 inhibitory effects against hypercholesterolemia.
Collapse
Affiliation(s)
- Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Pei-Yi Chen
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Wan-Yun Gao
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
3
|
Makhmudova U, Steinhagen-Thiessen E, Volpe M, Landmesser U. Advances in nucleic acid-targeted therapies for cardiovascular disease prevention. Cardiovasc Res 2024; 120:1107-1125. [PMID: 38970537 DOI: 10.1093/cvr/cvae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 07/08/2024] Open
Abstract
Nucleic acid-based therapies are being rapidly developed for prevention and management of cardiovascular diseases (CVD). Remarkable advancements have been achieved in the delivery, safety, and effectiveness of these therapeutics in the past decade. These therapies can also modulate therapeutic targets that cannot be sufficiently addressed using traditional drugs or antibodies. Among the nucleic acid-targeted therapeutics under development for CVD prevention are RNA-targeted approaches, including antisense oligonucleotides (ASO), small interfering RNAs (siRNA), and novel genome editing techniques. Genetic studies have identified potential therapeutic targets that are suggested to play a causative role in development and progression of CVD. RNA- and DNA-targeted therapeutics can be particularly well delivered to the liver, where atherogenic lipoproteins and angiotensinogen (AGT) are produced. Current targets in lipid metabolism include proprotein convertase subtilisin/kexin type 9 (PCSK9), apolipoprotein A (ApoA), apolipoprotein C3 (ApoC3), angiopoietin-like 3 (ANGPTL3). Several large-scale clinical development programs for nucleic acid-targeted therapies in cardiovascular prevention are under way, which may also be attractive from a therapy adherence point of view, given the long action of these therapeutics. In addition to genome editing, the concept of gene transfer is presently under assessment in preclinical and clinical investigations as a potential approach for addressing low-density lipoprotein receptor deficiency. Furthermore, ongoing research is exploring the use of RNA-targeted therapies to treat arterial hypertension by reducing hepatic angiotensinogen (AGT) production. This review summarizes the rapid translation of siRNA and ASO therapeutics as well as gene editing into clinical studies to treat dyslipidemia and arterial hypertension for CVD prevention. It also outlines potential innovative therapeutic options that are likely relevant to the future of cardiovascular medicine.
Collapse
Affiliation(s)
- Umidakhon Makhmudova
- Department of Cardiology, Angiology, and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Friede Springer Cardiovascular Prevention Center at Charité, Hindenburgdamm 30, 12203 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik/Centrum, Charitéplatz 1, 10117 Berlin, Germany
| | - Elisabeth Steinhagen-Thiessen
- Friede Springer Cardiovascular Prevention Center at Charité, Hindenburgdamm 30, 12203 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik/Centrum, Charitéplatz 1, 10117 Berlin, Germany
- Department of Endocrinology and Metabolic Diseases, Charite Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035-1039, Rome 00189, Italy
- Cardiology Department, IRCCS San Raffaele Roma, Via di Valcannuta 250, Rome 00166, Italy
| | - Ulf Landmesser
- Department of Cardiology, Angiology, and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Friede Springer Cardiovascular Prevention Center at Charité, Hindenburgdamm 30, 12203 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik/Centrum, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Centre for Cardiovascular Research, DZHK, Partner Site Berlin, Germany
| |
Collapse
|
4
|
Netala VR, Teertam SK, Li H, Zhang Z. A Comprehensive Review of Cardiovascular Disease Management: Cardiac Biomarkers, Imaging Modalities, Pharmacotherapy, Surgical Interventions, and Herbal Remedies. Cells 2024; 13:1471. [PMID: 39273041 PMCID: PMC11394358 DOI: 10.3390/cells13171471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Cardiovascular diseases (CVDs) continue to be a major global health concern, representing a leading cause of morbidity and mortality. This review provides a comprehensive examination of CVDs, encompassing their pathophysiology, diagnostic biomarkers, advanced imaging techniques, pharmacological treatments, surgical interventions, and the emerging role of herbal remedies. The review covers various cardiovascular conditions such as coronary artery disease, atherosclerosis, peripheral artery disease, deep vein thrombosis, pulmonary embolism, cardiomyopathy, rheumatic heart disease, hypertension, ischemic heart disease, heart failure, cerebrovascular diseases, and congenital heart defects. The review presents a wide range of cardiac biomarkers such as troponins, C-reactive protein, CKMB, BNP, NT-proBNP, galectin, adiponectin, IL-6, TNF-α, miRNAs, and oxylipins. Advanced molecular imaging techniques, including chest X-ray, ECG, ultrasound, CT, SPECT, PET, and MRI, have significantly enhanced our ability to visualize myocardial perfusion, plaque characterization, and cardiac function. Various synthetic drugs including statins, ACE inhibitors, ARBs, β-blockers, calcium channel blockers, antihypertensives, anticoagulants, and antiarrhythmics are fundamental in managing CVDs. Nonetheless, their side effects such as hepatic dysfunction, renal impairment, and bleeding risks necessitate careful monitoring and personalized treatment strategies. In addition to conventional therapies, herbal remedies have garnered attention for their potential cardiovascular benefits. Plant extracts and their bioactive compounds, such as flavonoids, phenolic acids, saponins, and alkaloids, offer promising cardioprotective effects and enhanced cardiovascular health. This review underscores the value of combining traditional and modern therapeutic approaches to improve cardiovascular outcomes. This review serves as a vital resource for researchers by integrating a broad spectrum of information on CVDs, diagnostic tools, imaging techniques, pharmacological treatments and their side effects, and the potential of herbal remedies.
Collapse
Affiliation(s)
- Vasudeva Reddy Netala
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| | - Sireesh Kumar Teertam
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Huizhen Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| | - Zhijun Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| |
Collapse
|
5
|
Dutka M, Zimmer K, Ćwiertnia M, Ilczak T, Bobiński R. The role of PCSK9 in heart failure and other cardiovascular diseases-mechanisms of action beyond its effect on LDL cholesterol. Heart Fail Rev 2024; 29:917-937. [PMID: 38886277 PMCID: PMC11306431 DOI: 10.1007/s10741-024-10409-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a protein that regulates low-density lipoprotein (LDL) cholesterol metabolism by binding to the hepatic LDL receptor (LDLR), ultimately leading to its lysosomal degradation and an increase in LDL cholesterol (LDLc) levels. Treatment strategies have been developed based on blocking PCSK9 with specific antibodies (alirocumab, evolocumab) and on blocking its production with small regulatory RNA (siRNA) (inclisiran). Clinical trials evaluating these drugs have confirmed their high efficacy in reducing serum LDLc levels and improving the prognosis in patients with atherosclerotic cardiovascular diseases. Most studies have focused on the action of PCSK9 on LDLRs and the subsequent increase in LDLc concentrations. Increasing evidence suggests that the adverse cardiovascular effects of PCSK9, particularly its atherosclerotic effects on the vascular wall, may also result from mechanisms independent of its effects on lipid metabolism. PCSK9 induces the expression of pro-inflammatory cytokines contributing to inflammation within the vascular wall and promotes apoptosis, pyroptosis, and ferroptosis of cardiomyocytes and is thus involved in the development and progression of heart failure. The elimination of PCSK9 may, therefore, not only be a treatment for hypercholesterolaemia but also for atherosclerosis and other cardiovascular diseases. The mechanisms of action of PCSK9 in the cardiovascular system are not yet fully understood. This article reviews the current understanding of the mechanisms of PCSK9 action in the cardiovascular system and its contribution to cardiovascular diseases. Knowledge of these mechanisms may contribute to the wider use of PCSK9 inhibitors in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Mieczysław Dutka
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland.
| | - Karolina Zimmer
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland
| | - Michał Ćwiertnia
- Department of Emergency Medicine, Faculty of Health Sciences, University of Bielsko-Biala, 43-309, Bielsko-Biała, Poland
| | - Tomasz Ilczak
- Department of Emergency Medicine, Faculty of Health Sciences, University of Bielsko-Biala, 43-309, Bielsko-Biała, Poland
| | - Rafał Bobiński
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland
| |
Collapse
|
6
|
Katzmann JL, Laufs U. PCSK9-directed therapies: an update. Curr Opin Lipidol 2024; 35:117-125. [PMID: 38277255 DOI: 10.1097/mol.0000000000000919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
PURPOSE OF REVIEW Two large cardiovascular outcomes trials of monoclonal antibodies against proprotein convertase subtilisin/kexin type 9 (PCSK9) demonstrated that therapeutic inhibition of extracellular PCSK9 markedly reduces LDL cholesterol concentration and cardiovascular risk. Several novel strategies to inhibit PCSK9 function are in development. Different mechanisms of action may determine specific properties with potential relevance for patient care. RECENT FINDINGS For the monoclonal antibodies evolocumab und alirocumab as first-generation PCSK9 inhibitors, follow-up data of up to 8 years of exposure complement the information on efficacy and safety available from outcome trials. For the small-interfering RNA inclisiran as second-generation PCSK9 inhibitor, several phase III trials have been published and a cardiovascular outcome trial has completed recruitment and is ongoing. Third-generation PCSK9 inhibitors encompass, among others, orally available drugs such as MK-0616 and the fusion protein lerodalcibep. Additional strategies to inhibit PCSK9 include vaccination and gene editing. SUMMARY Long-term inhibition of PCSK9 with monoclonal antibodies is safe and conveys sustained cardiovascular benefit. Novel strategies to inhibit PCSK9 function such as orally available drugs, RNA targeting, and one-time treatment with gene editing may further enhance the therapeutic armamentarium and enable novel preventive strategies.
Collapse
Affiliation(s)
- Julius L Katzmann
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | | |
Collapse
|
7
|
Reijman MD, Kusters DM, Groothoff JW, Arbeiter K, Dann EJ, de Boer LM, de Ferranti SD, Gallo A, Greber-Platzer S, Hartz J, Hudgins LC, Ibarretxe D, Kayikcioglu M, Klingel R, Kolovou GD, Oh J, Planken RN, Stefanutti C, Taylan C, Wiegman A, Schmitt CP. Clinical practice recommendations on lipoprotein apheresis for children with homozygous familial hypercholesterolaemia: An expert consensus statement from ERKNet and ESPN. Atherosclerosis 2024; 392:117525. [PMID: 38598969 DOI: 10.1016/j.atherosclerosis.2024.117525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
Homozygous familial hypercholesterolaemia is a life-threatening genetic condition, which causes extremely elevated LDL-C levels and atherosclerotic cardiovascular disease very early in life. It is vital to start effective lipid-lowering treatment from diagnosis onwards. Even with dietary and current multimodal pharmaceutical lipid-lowering therapies, LDL-C treatment goals cannot be achieved in many children. Lipoprotein apheresis is an extracorporeal lipid-lowering treatment, which is used for decades, lowering serum LDL-C levels by more than 70% directly after the treatment. Data on the use of lipoprotein apheresis in children with homozygous familial hypercholesterolaemia mainly consists of case-reports and case-series, precluding strong evidence-based guidelines. We present a consensus statement on lipoprotein apheresis in children based on the current available evidence and opinions from experts in lipoprotein apheresis from over the world. It comprises practical statements regarding the indication, methods, treatment goals and follow-up of lipoprotein apheresis in children with homozygous familial hypercholesterolaemia and on the role of lipoprotein(a) and liver transplantation.
Collapse
Affiliation(s)
- M Doortje Reijman
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - D Meeike Kusters
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jaap W Groothoff
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Klaus Arbeiter
- Division of Paediatric Nephrology and Gastroenterology, Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Eldad J Dann
- Blood Bank and Apheresis Unit Rambam Health Care Campus, Haifa, Israel
| | - Lotte M de Boer
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Sarah D de Ferranti
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Antonio Gallo
- Sorbonne Université, INSERM, UMR 1166, Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié-Salpêtrière, F-75013, Paris, France
| | - Susanne Greber-Platzer
- Clinical Division of Paediatric Pulmonology, Allergology and Endocrinology, Department of Paediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Jacob Hartz
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Lisa C Hudgins
- The Rogosin Institute, Weill Cornell Medical College, New York, NY, USA
| | - Daiana Ibarretxe
- Vascular Medicine and Metabolism Unit (UVASMET), Hospital Universitari Sant Joan, Spain; Universitat Rovira i Virgili, Spain; Institut Investigació Sanitària Pere Virgili (IISPV)-CERCA, Spain; Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
| | - Meral Kayikcioglu
- Department of Cardiology, Medical Faculty, Ege University, 35100, Izmir, Turkey
| | - Reinhard Klingel
- Apheresis Research Institute, Stadtwaldguertel 77, 50935, Cologne, Germany(†)
| | - Genovefa D Kolovou
- Metropolitan Hospital, Department of Preventive Cardiology, 9, Ethn. Makariou & 1, El. Venizelou, N. Faliro, 185 47, Athens, Greece
| | - Jun Oh
- University Medical Center Hamburg/Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - R Nils Planken
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands
| | - Claudia Stefanutti
- Department of Molecular Medicine, Lipid Clinic and Atherosclerosis Prevention Centre, 'Umberto I' Hospital 'Sapienza' University of Rome, I-00161, Rome, Italy
| | - Christina Taylan
- Paediatric Nephrology, Children's and Adolescents' Hospital, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Albert Wiegman
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Claus Peter Schmitt
- Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University of Heidelberg, Germany
| |
Collapse
|
8
|
Muzammil K, Hooshiar MH, Varmazyar S, Omar TM, Karim MM, Aadi S, Kalavi S, Yasamineh S. Potential use of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition and prevention method in viral infection. Microb Cell Fact 2024; 23:90. [PMID: 38528584 PMCID: PMC10962113 DOI: 10.1186/s12934-024-02355-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/03/2024] [Indexed: 03/27/2024] Open
Abstract
Cellular lipid membranes serve as the primary barrier preventing viral infection of the host cell and provide viruses with a critical initial point of contact. Occasionally, viruses can utilize lipids as viral receptors. Viruses depend significantly on lipid rafts for infection at virtually every stage of their life cycle. The pivotal role that proprotein convertase subtilisin/kexin Type 9 (PCSK9) plays in cholesterol homeostasis and atherosclerosis, primarily by post-transcriptionally regulating hepatic low-density lipoprotein receptor (LDLR) and promoting its lysosomal degradation, has garnered increasing interest. Conversely, using therapeutic, fully humanized antibodies to block PCSK9 leads to a significant reduction in high LDL cholesterol (LDL-C) levels. The Food and Drug Administration (FDA) has approved PCSK9 inhibitors, including inclisiran (Leqvio®), alirocumab (Praluent), and evolocumab (Repatha). At present, active immunization strategies targeting PCSK9 present a compelling substitute for passive immunization through the administration of antibodies. In addition to the current inquiry into the potential therapeutic application of PCSK9 inhibition in human immunodeficiency virus (HIV)-infected patients for hyperlipidemia associated with HIV and antiretroviral therapy (ART), preclinical research suggests that PCSK9 may also play a role in inhibiting hepatitis C virus (HCV) replication. Furthermore, PCSK9 inhibition has been suggested to protect against dengue virus (DENV) potentially and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses. Recent evidence regarding the impact of PCSK9 on a variety of viral infections, including HCV, HIV, DENV, and SARS-CoV-2, is examined in this article. As a result, PCSK9 inhibitors and vaccines may serve as viable host therapies for viral infections, as our research indicates that PCSK9 is significantly involved in the pathogenesis of viral infections.
Collapse
Affiliation(s)
- Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Khamis Mushait Campus, Abha, KSA, Saudi Arabia
| | | | - Shirin Varmazyar
- Department of Medicine, Shahroud Islamic azad university of medical sciences, Sharoud, Iran
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | - Manal Morad Karim
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Sadeq Aadi
- College of Dentistry, Al-Mustaqbal University, Babylon, 51001, Iraq
| | - Shaylan Kalavi
- Department of Clinical Pharmacy, faculty of pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran.
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
9
|
Polak A, Machnik G, Bułdak Ł, Ruczyński J, Prochera K, Bujak O, Mucha P, Rekowski P, Okopień B. The Application of Peptide Nucleic Acids (PNA) in the Inhibition of Proprotein Convertase Subtilisin/Kexin 9 ( PCSK9) Gene Expression in a Cell-Free Transcription/Translation System. Int J Mol Sci 2024; 25:1463. [PMID: 38338741 PMCID: PMC10855603 DOI: 10.3390/ijms25031463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Proprotein convertase subtilisin/kexin 9 (PCSK9) is a protein that plays a key role in the metabolism of low-density lipoprotein (LDL) cholesterol. The gain-of-function mutations of the PCSK9 gene lead to a reduced number of surface LDL receptors by binding to them, eventually leading to endosomal degradation. This, in turn, is the culprit of hypercholesterolemia, resulting in accelerated atherogenesis. The modern treatment for hypercholesterolemia encompasses the use of biological drugs against PCSK9, like monoclonal antibodies and gene expression modulators such as inclisiran-a short, interfering RNA (siRNA). Peptide nucleic acid (PNA) is a synthetic analog of nucleic acid that possesses a synthetic peptide skeleton instead of a phosphate-sugar one. This different structure determines the unique properties of PNA (e.g., neutral charge, enzymatic resistance, and an enormously high affinity with complementary DNA and RNA). Therefore, it might be possible to use PNA against PCSK9 in the treatment of hypercholesterolemia. We sought to explore the impact of three selected PNA oligomers on PCSK9 gene expression. Using a cell-free transcription/translation system, we showed that one of the tested PNA strands was able to reduce the PCSK9 gene expression down to 74%, 64%, and 68%, as measured by RT-real-time PCR, Western blot, and HPLC, respectively. This preliminary study shows the high applicability of a cell-free enzymatic environment as an efficient tool in the initial evaluation of biologically active PNA molecules in the field of hypercholesterolemia research. This cell-free approach allows for the omission of the hurdles associated with transmembrane PNA transportation at the early stage of PNA selection.
Collapse
Affiliation(s)
- Agnieszka Polak
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Science in Katowice, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland
| | - Grzegorz Machnik
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Science in Katowice, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland
| | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Science in Katowice, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland
| | - Jarosław Ruczyński
- Laboratory of Chemistry of Biologically Active Compounds, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (J.R.); (K.P.)
| | - Katarzyna Prochera
- Laboratory of Chemistry of Biologically Active Compounds, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (J.R.); (K.P.)
| | - Oliwia Bujak
- Laboratory of Chemistry of Biologically Active Compounds, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (J.R.); (K.P.)
| | - Piotr Mucha
- Laboratory of Chemistry of Biologically Active Compounds, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (J.R.); (K.P.)
| | - Piotr Rekowski
- Laboratory of Chemistry of Biologically Active Compounds, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (J.R.); (K.P.)
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Science in Katowice, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland
| |
Collapse
|
10
|
Tian Y, Li D, Cui H, Zhang X, Fan X, Lu F. Epidemiology of multimorbidity associated with atherosclerotic cardiovascular disease in the United States, 1999-2018. BMC Public Health 2024; 24:267. [PMID: 38262992 PMCID: PMC10804461 DOI: 10.1186/s12889-023-17619-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/30/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND The multimorbidity of Atherosclerotic cardiovascular disease (ASCVD) and many other chronic conditions is becoming common. This study aimed to assess multimorbidity distribution in ASCVD among adults in the United States from 1999 to 2018. METHODS This cross-sectional survey from the National Health and Nutrition Examination Survey (NHANES) 1999-2018 using stratified multistage probability design. Among the 53,083 survey respondents during the study period, 5,729 US adults aged ≥ 20 years with ASCVD. Joinpoint regression was used to assess the statistical significance of prevalence trends in the prevalence of ASCVD stratified by multimorbidity. The Apriori association rule mining algorithm was used to identify common multimorbidity association patterns in ASCVD patients. RESULTS Overall, 5,729 of 53,083 individuals had ASCVD, and the prevalence showed a slow declining trend (biannual percentage change = -0.81%, p = 0.035, average 7.71%). The prevalence of ASCVD significantly decreased in populations without dyslipidemia, diabetes mellitus (DM), hypertension, asthma, chronic obstructive pulmonary disease (COPD), and arthritis (all groups, p < 0.05). Additionally, 65.6% of ASCVD patients had at least four of the 12 selected chronic conditions, with four and five being the most common numbers of conditions (17.9% and 17.7%, respectively). The five most common chronic conditions were (in order) dyslipidemia, hypertension, arthritis, chronic kidney disease, and DM. The coexistence of hypertension and dyslipidemia had the highest support in association rules (support = 0.63), while the coexistence of dyslipidemia, hypertension, metabolic syndrome, and DM had the highest lift (lift = 1.82). CONCLUSIONS During the 20-year survey period, there was a significant decrease in the overall prevalence of ASCVD. However, this reduction was primarily observed in individuals without dyslipidemia, DM, hypertension, asthma, COPD, and arthritis. Among populations with any of the evaluated chronic conditions, the prevalence of ASCVD remained unchanged. Most of ASCVD patients had four or more concurrent chronic conditions.
Collapse
Affiliation(s)
- Ying Tian
- Clinical Research Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dongna Li
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Haoliang Cui
- School of Public Health, Peking University, Beijing, 100191, China
| | - Xin Zhang
- Clinical Research Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaoyan Fan
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Feng Lu
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
11
|
Wang X, Zhang L, Wang X, Zhu D, Xu G, Li H, Zhang L. Discovery of (2-(4-Substituted phenyl)quinolin-4-yl)(4-isopropylpiperazin-1-yl)methanone Derivatives as Potent Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors. ChemMedChem 2024; 19:e202300498. [PMID: 38054966 DOI: 10.1002/cmdc.202300498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an increasingly important role in the treatment of hyperlipidemia. In pursuit of potent small molecules that block the PCSK9/low-density lipoprotein receptor (LDLR) protein-protein interaction (PPI), a series of 2-phenylquinoline-4-carboxylic acid derivatives were designed and synthesized based on previously derived molecules. In the in vitro PPI inhibition test, compounds M1, M12, M14, M18 and M27 exhibited potent activities with IC50 values of 6.25 μM, 0.91 μM, 2.81 μM, 4.26 μM and 0.76 μM, respectively, compared with SBC-115337 (IC50 value of 9.24 μM). Molecular docking and molecular dynamics simulations revealed the importance of hydrophobic interactions in the binding of inhibitors to the PPI interface of PCSK9. In LDLR expression and LDL uptake assays, the tested compounds M1, M12 and M14 were found to restore LDLR expression levels and to increase the extracellular LDL uptake capacity of HepG2 cells in the presence of exogenous PCSK9. Collectively, novel small-molecule PCSK9/LDLR PPI inhibitors (especially M12) with in vitro lipid lowering ability, were discovered as lead compounds for further development of hypolipidemic drugs.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Medicinal Chemistry School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Lihui Zhang
- School of Stomatology, Weifang Medical University, Weifang, Shandong, China
| | - Xue Wang
- Department of Pharmacology School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Dongqi Zhu
- Department of Pharmacology School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Guangzhao Xu
- Harway Pharma Co., Ltd., Dongying, Shandong, China
- Weifang Synovtech New Material Technology Co., Ltd., Weifang, Shandong, China
| | - Honggang Li
- Weifang Medical University, Weifang, Shandong, China
| | - Lei Zhang
- Department of Medicinal Chemistry School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
12
|
Bao X, Liang Y, Chang H, Cai T, Feng B, Gordon K, Zhu Y, Shi H, He Y, Xie L. Targeting proprotein convertase subtilisin/kexin type 9 (PCSK9): from bench to bedside. Signal Transduct Target Ther 2024; 9:13. [PMID: 38185721 PMCID: PMC10772138 DOI: 10.1038/s41392-023-01690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 01/09/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has evolved as a pivotal enzyme in lipid metabolism and a revolutionary therapeutic target for hypercholesterolemia and its related cardiovascular diseases (CVD). This comprehensive review delineates the intricate roles and wide-ranging implications of PCSK9, extending beyond CVD to emphasize its significance in diverse physiological and pathological states, including liver diseases, infectious diseases, autoimmune disorders, and notably, cancer. Our exploration offers insights into the interaction between PCSK9 and low-density lipoprotein receptors (LDLRs), elucidating its substantial impact on cholesterol homeostasis and cardiovascular health. It also details the evolution of PCSK9-targeted therapies, translating foundational bench discoveries into bedside applications for optimized patient care. The advent and clinical approval of innovative PCSK9 inhibitory therapies (PCSK9-iTs), including three monoclonal antibodies (Evolocumab, Alirocumab, and Tafolecimab) and one small interfering RNA (siRNA, Inclisiran), have marked a significant breakthrough in cardiovascular medicine. These therapies have demonstrated unparalleled efficacy in mitigating hypercholesterolemia, reducing cardiovascular risks, and have showcased profound value in clinical applications, offering novel therapeutic avenues and a promising future in personalized medicine for cardiovascular disorders. Furthermore, emerging research, inclusive of our findings, unveils PCSK9's potential role as a pivotal indicator for cancer prognosis and its prospective application as a transformative target for cancer treatment. This review also highlights PCSK9's aberrant expression in various cancer forms, its association with cancer prognosis, and its crucial roles in carcinogenesis and cancer immunity. In conclusion, this synthesized review integrates existing knowledge and novel insights on PCSK9, providing a holistic perspective on its transformative impact in reshaping therapeutic paradigms across various disorders. It emphasizes the clinical value and effect of PCSK9-iT, underscoring its potential in advancing the landscape of biomedical research and its capabilities in heralding new eras in personalized medicine.
Collapse
Affiliation(s)
- Xuhui Bao
- Institute of Therapeutic Cancer Vaccines, Fudan University Pudong Medical Center, Shanghai, China.
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China.
- Center for Clinical Research, Fudan University Pudong Medical Center, Shanghai, China.
- Clinical Research Center for Cell-based Immunotherapy, Fudan University, Shanghai, China.
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| | - Yongjun Liang
- Center for Medical Research and Innovation, Fudan University Pudong Medical Center, Shanghai, China
| | - Hanman Chang
- Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Tianji Cai
- Department of Sociology, University of Macau, Taipa, Macau, China
| | - Baijie Feng
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China
| | - Konstantin Gordon
- Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia
- A. Tsyb Medical Radiological Research Center, Obninsk, Russia
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-tech Park, Shanghai, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Liyi Xie
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Anderson AM, Manet I, Malanga M, Clemens DM, Sadrerafi K, Piñeiro Á, García-Fandiño R, O'Connor MS. Addressing the complexities in measuring cyclodextrin-sterol binding constants: A multidimensional study. Carbohydr Polym 2024; 323:121360. [PMID: 37940263 DOI: 10.1016/j.carbpol.2023.121360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 11/10/2023]
Abstract
A class of cyclodextrin (CD) dimers has emerged as a potential new treatment for atherosclerosis; they work by forming strong, soluble inclusion complexes with oxysterols, allowing the body to reduce and heal arterial plaques. However, characterizing the interactions between CD dimers and oxysterols presents formidable challenges due to low sterol solubility, the synthesis of modified CDs resulting in varying number and position of molecular substitutions, and the diversity of interaction mechanisms. To address these challenges and illuminate the nuances of CD-sterol interactions, we have used multiple orthogonal approaches for a comprehensive characterization. Results obtained from three independent techniques - metadynamics simulations, competitive isothermal titration calorimetry, and circular dichroism - to quantify CD-sterol binding are presented. The objective of this study is to obtain the binding constants and gain insights into the intricate nature of the system, while accounting for the advantages and limitations of each method. Notably, our findings demonstrate ∼1000× stronger affinity of the CD dimer for 7-ketocholesterol in comparison to cholesterol for the 1:1 complex in direct binding assays. These methodologies and findings not only enhance our understanding of CD dimer-sterol interactions, but could also be generally applicable to prediction and quantification of other challenging host-guest complex systems.
Collapse
Affiliation(s)
- Amelia M Anderson
- Cyclarity Therapeutics, 8001 Redwood Blvd Novato, CA 94945, USA; Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Ilse Manet
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, Bologna 40129, Italy
| | - Milo Malanga
- CarboHyde, Budapest, Berlini u. 47-49, 1045, Hungary; Cyclolab Cyclodextrin Research and Development Ltd., Budapest, Illatos út 7 1097, Hungary
| | | | | | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; MD.USE Innovative Solutions S.L., Edificio Emprendia, Campus Vida, Santiago de Compostela, Spain
| | - Rebeca García-Fandiño
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain; MD.USE Innovative Solutions S.L., Edificio Emprendia, Campus Vida, Santiago de Compostela, Spain
| | | |
Collapse
|
14
|
Parsamanesh N, Poudineh M, Siami H, Butler AE, Almahmeed W, Sahebkar A. RNA interference-based therapies for atherosclerosis: Recent advances and future prospects. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 204:1-43. [PMID: 38458734 DOI: 10.1016/bs.pmbts.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Atherosclerosis represents a pathological state that affects the arterial system of the organism. This chronic, progressive condition is typified by the accumulation of atheroma within arterial walls. Modulation of RNA molecules through RNA-based therapies has expanded the range of therapeutic options available for neurodegenerative diseases, infectious diseases, cancer, and, more recently, cardiovascular disease (CVD). Presently, microRNAs and small interfering RNAs (siRNAs) are the most widely employed therapeutic strategies for targeting RNA molecules, and for regulating gene expression and protein production. Nevertheless, for these agents to be developed into effective medications, various obstacles must be overcome, including inadequate binding affinity, instability, challenges of delivering to the tissues, immunogenicity, and off-target toxicity. In this comprehensive review, we discuss in detail the current state of RNA interference (RNAi)-based therapies.
Collapse
Affiliation(s)
- Negin Parsamanesh
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Haleh Siami
- School of Medicine, Islamic Azad University of Medical Science, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, Adliya, Bahrain
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Reijman MD, Kusters DM, Groothoff JW, Arbeiter K, Dann EJ, de Boer LM, de Ferranti SD, Gallo A, Greber-Platzer S, Hartz J, Hudgins LC, Ibarretxe D, Kayikcioglu M, Klingel R, Kolovou GD, Oh J, Planken RN, Stefanutti C, Taylan C, Wiegman A, Schmitt CP. Clinical practice recommendations on lipoprotein apheresis for children with homozygous familial hypercholesterolemia: an expert consensus statement from ERKNet and ESPN. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.14.23298547. [PMID: 38014132 PMCID: PMC10680892 DOI: 10.1101/2023.11.14.23298547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Homozygous familial hypercholesterolaemia is a life-threatening genetic condition, which causes extremely elevated LDL-C levels and atherosclerotic cardiovascular disease very early in life. It is vital to start effective lipid-lowering treatment from diagnosis onwards. Even with dietary and current multimodal pharmaceutical lipid-lowering therapies, LDL-C treatment goals cannot be achieved in many children. Lipoprotein apheresis is an extracorporeal lipid-lowering treatment, which is well established since three decades, lowering serum LDL-C levels by more than 70% per session. Data on the use of lipoprotein apheresis in children with homozygous familial hypercholesterolaemia mainly consists of case-reports and case-series, precluding strong evidence-based guidelines. We present a consensus statement on lipoprotein apheresis in children based on the current available evidence and opinions from experts in lipoprotein apheresis from over the world. It comprises practical statements regarding the indication, methods, treatment targets and follow-up of lipoprotein apheresis in children with homozygous familial hypercholesterolaemia and on the role of lipoprotein(a) and liver transplantation.
Collapse
Affiliation(s)
- M. Doortje Reijman
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, Netherlands
| | - D. Meeike Kusters
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, Netherlands
| | - Jaap W. Groothoff
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, Netherlands
| | - Klaus Arbeiter
- Division of Paediatric Nephrology and Gastroenterology, Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Eldad J. Dann
- Blood Bank and apheresis unit Rambam Health care campus, Haifa, Israel
| | - Lotte M. de Boer
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, Netherlands
| | - Sarah D. de Ferranti
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Antonio Gallo
- Sorbonne Université, INSERM, UMR 1166, Lipidology and cardiovascular prevention Unit, Department of Nutrition, APHP, Hôpital Pitié-Salpêtrière F-75013 Paris, France
| | - Susanne Greber-Platzer
- Clinical Division of Paediatric Pulmonology, Allergology and Endocrinology, Department of Paediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Jacob Hartz
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Lisa C. Hudgins
- The Rogosin Institute, Weill Cornell Medical College, New York, New York, USA
| | - Daiana Ibarretxe
- Vascular Medicine and Metabolism Unit (UVASMET), Hospital Universitari Sant Joan; Universitat Rovira i Virgili; Institut Investigació Sanitària Pere Virgili (IISPV)-CERCA, Spain; Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
| | - Meral Kayikcioglu
- Department of Cardiology, Medical Faculty, Ege University, 35100 Izmir, Turkey
| | - Reinhard Klingel
- Apheresis Research Institute, Stadtwaldguertel 77, 50935 Cologne, Germany (www.apheresis-research.org)
| | - Genovefa D. Kolovou
- Metropolitan Hospital, Department of Preventive Cardiology. 9, Ethn. Makariou & 1, El. Venizelou, N. Faliro, 185 47, Athens, Greece
| | - Jun Oh
- University Medical Center Hamburg/Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - R. Nils Planken
- Department of Radiology and nuclear medicine, Amsterdam UMC, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, The Netherlands
| | - Claudia Stefanutti
- Department of Molecular Medicine, Lipid Clinic and Atherosclerosis Prevention Centre, ‘Umberto I’ Hospital ‘Sapienza’ University of Rome, I-00161 Rome, Italy
| | - Christina Taylan
- Paediatric Nephrology, Children’s and Adolescents’ Hospital, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Albert Wiegman
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, Netherlands
| | - Claus Peter Schmitt
- Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University of Heidelberg, Germany
| |
Collapse
|
16
|
Matyas C, Trojnar E, Zhao S, Arif M, Mukhopadhyay P, Kovacs A, Fabian A, Tokodi M, Bagyura Z, Merkely B, Kohidai L, Lajko E, Takacs A, He Y, Gao B, Paloczi J, Lohoff FW, Haskó G, Ding WX, Pacher P. PCSK9, A Promising Novel Target for Age-Related Cardiovascular Dysfunction. JACC Basic Transl Sci 2023; 8:1334-1353. [PMID: 38094682 PMCID: PMC10715889 DOI: 10.1016/j.jacbts.2023.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 12/29/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death among elderly people. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an important regulator of cholesterol metabolism. Herein, we investigated the role of PCSK9 in age-related CVD. Both in humans and rats, blood PCSK9 level correlated positively with increasing age and the development of cardiovascular dysfunction. Age-related fatty degeneration of liver tissue positively correlated with serum PCSK9 levels in the rat model, while development of age-related nonalcoholic fatty liver disease correlated with cardiovascular functional impairment. Network analysis identified PCSK9 as an important factor in age-associated lipid alterations and it correlated positively with intima-media thickness, a clinical parameter of CVD risk. PCSK9 inhibition with alirocumab effectively reduced the CVD progression in aging rats, suggesting that PCSK9 plays an important role in cardiovascular aging.
Collapse
Affiliation(s)
- Csaba Matyas
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
- Department of Medical Imaging, Medical School, University of Pécs, Pécs, Hungary
| | - Eszter Trojnar
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Suxian Zhao
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Muhammad Arif
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Partha Mukhopadhyay
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Attila Kovacs
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Alexandra Fabian
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Marton Tokodi
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Zsolt Bagyura
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Bela Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Laszlo Kohidai
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Eszter Lajko
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Angela Takacs
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Falk W. Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, New York, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Arif M, Matyas C, Mukhopadhyay P, Yokus B, Trojnar E, Paloczi J, Paes-Leme B, Zhao S, Lohoff FW, Haskó G, Pacher P. Data-driven transcriptomics analysis identifies PCSK9 as a novel key regulator in liver aging. GeroScience 2023; 45:3059-3077. [PMID: 37726433 PMCID: PMC10643490 DOI: 10.1007/s11357-023-00928-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
The liver, as a crucial metabolic organ, undergoes significant pathological changes during the aging process, which can have a profound impact on overall health. To gain a comprehensive understanding of these alterations, we employed data-driven approaches, along with biochemical methods, histology, and immunohistochemistry techniques, to systematically investigate the effects of aging on the liver. Our study utilized a well-established rat aging model provided by the National Institute of Aging. Systems biology approaches were used to analyze genome-wide transcriptomics data from liver samples obtained from young (4-5 months old) and aging (20-21 months old) Fischer 344 rats. Our findings revealed pathological changes occurring in various essential biological processes in aging livers. These included mitochondrial dysfunction, increased oxidative/nitrative stress, decreased NAD + content, impaired amino acid and protein synthesis, heightened inflammation, disrupted lipid metabolism, enhanced apoptosis, senescence, and fibrosis. These results were validated using independent datasets from both human and rat aging studies. Furthermore, by employing co-expression network analysis, we identified novel driver genes responsible for liver aging, confirmed our findings in human aging subjects, and pointed out the cellular localization of the driver genes using single-cell RNA-sequencing human data. Our study led to the discovery and validation of a liver-specific gene, proprotein convertase subtilisin/kexin type 9 (PCSK9), as a potential therapeutic target for mitigating the pathological processes associated with aging in the liver. This finding envisions new possibilities for developing interventions aimed to improve liver health during the aging process.
Collapse
Affiliation(s)
- Muhammad Arif
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Section On Fibrotic Disorders, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Csaba Matyas
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Partha Mukhopadhyay
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Burhan Yokus
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Eszter Trojnar
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Bruno Paes-Leme
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Suxian Zhao
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Falk W Lohoff
- Section On Clinical Genomics and Experimental Therapeutics, National Institute On Alcohol Abuse and Alcoholism National Institutes of Health, Bethesda, MD, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
18
|
Rikhi R, Shapiro MD. Proprotein Convertase Subtilisin/Kexin Type 9 Inhibition: The Big Step Forward in Lipid Control. Eur Cardiol 2023; 18:e45. [PMID: 37456766 PMCID: PMC10345936 DOI: 10.15420/ecr.2023.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/14/2023] [Indexed: 07/18/2023] Open
Abstract
The breakthrough discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9) 20 years ago revolutionised the current understanding of cholesterol homeostasis. Genetic studies have shown that gain-of-function mutations in PCSK9 lead to elevated LDL cholesterol and increased risk of atherosclerotic cardiovascular disease, while loss-of-function mutations in PCSK9 result in lifelong low levels of circulating LDL cholesterol and dramatic reduction in atherosclerotic cardiovascular disease. Therapies inhibiting PCSK9 lead to a higher density of LDL receptor on the surface of hepatocytes, resulting in greater ability to clear circulating LDL. Thus far, randomised controlled trials have shown that subcutaneous fully human monoclonal antibodies targeting PCSK9, evolocumab and alirocumab, and PCSK9 silencing with inclisiran result in drastic reductions in LDL cholesterol. Additionally, several novel strategies to target PCSK9 are in development, including oral antibody, gene silencing, DNA base editing and vaccine therapies. This review highlights the efficacy, safety and clinical use of these various approaches in PCSK9 inhibition.
Collapse
Affiliation(s)
- Rishi Rikhi
- Center for Prevention of Cardiovascular Disease, Section on Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine Winston-Salem, NC, US
| | - Michael D Shapiro
- Center for Prevention of Cardiovascular Disease, Section on Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine Winston-Salem, NC, US
| |
Collapse
|
19
|
Lozano M, Cid J. How do we forecast tomorrows' transfusion: Non-transfusional hemotherapy. Transfus Clin Biol 2023; 30:282-286. [PMID: 36754141 DOI: 10.1016/j.tracli.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
Hemotherapy is the treatment of diseases by the use of blood or blood products from blood donation (by others of for oneself). It is clear that blood components transfusion represents the most important part of the activities of the professionals (doctors, nurses, technicians…) working in hemotherapy. But there are others forms of hemotherapy that are steadily growing, that we will discuss: plasma exchange, mononuclear cells collections for cellular therapies, extracorporeal photoapheresis, ABO antigen specific immunoadsorption and autologous platelet lysate.
Collapse
Affiliation(s)
- Miquel Lozano
- Apheresis and Cellular Therapy Unit. Department of Hemotherapy and Hemostasis, Clinic Institute of Hematology and Oncology, Hospital Clínic of Barcelona, IDIBAPS, University of Barcelona, Barcelona. Spain.
| | - Joan Cid
- Apheresis and Cellular Therapy Unit. Department of Hemotherapy and Hemostasis, Clinic Institute of Hematology and Oncology, Hospital Clínic of Barcelona, IDIBAPS, University of Barcelona, Barcelona. Spain
| |
Collapse
|
20
|
Hong J, Salazar L, Acevedo J, Thakker R, Jneid H, Shalaby M, McCracken J, Khalife W. The Role of Monoclonal Antibodies in the Treatment of Atherosclerosis. Curr Probl Cardiol 2023; 48:101585. [PMID: 36627005 DOI: 10.1016/j.cpcardiol.2023.101585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Atherosclerosis is an inflammatory disease that involves antibody immune responses. Progression of hyperlipidemia can lead to atherosclerosis and subsequently cardiovascular diseases with high mortality. Additional lipid-lowering therapies other than statins are currently being studied, such as monoclonal antibodies. In this contemporary review, we examine the various monoclonal antibody therapies targeted toward atherosclerotic disease.
Collapse
Affiliation(s)
- Jimmy Hong
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX.
| | - Leonardo Salazar
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX
| | - Joanne Acevedo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX
| | - Ravi Thakker
- Division of Cardiology, University of Texas Medical Branch, Galveston, TX
| | - Hani Jneid
- Division of Cardiology, University of Texas Medical Branch, Galveston, TX
| | - Mostafa Shalaby
- Division of Cardiology, University of Texas Medical Branch, Galveston, TX
| | - Jennifer McCracken
- Division of Allergy and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Wissam Khalife
- Division of Cardiology, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
21
|
You S, Luo Z, Cheng N, Wu M, Lai Y, Wang F, Zheng X, Wang Y, Liu X, Liu J, Zhao B. Magnetically responsive nanoplatform targeting circRNA circ_0058051 inhibits hepatocellular carcinoma progression. Drug Deliv Transl Res 2023; 13:782-794. [PMID: 36114310 PMCID: PMC9892167 DOI: 10.1007/s13346-022-01237-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 02/05/2023]
Abstract
Circular RNAs (circRNAs) are a class of highly stable and closed-loop noncoding RNA that are involved in the occurrence and development of hepatocellular carcinoma (HCC). However, little is known about the therapeutic role of circRNAs in HCC. We found that high circ_0058051 expression was negatively correlated with the prognosis of HCC patients. Circ_0058051 knockdown attenuated the proliferation and colony formation, meanwhile inhibited migration of HCC cells. Circ_0058051 may be used as a target for HCC gene therapy. We synthesized a novel small interfering RNA (siRNA) delivery system, PEG-PCL-PEI-C14-SPIONs (PPPCSs), based on superparamagnetic iron oxide nanoparticles (SPIONs). PPPCSs protected the siRNA of circ_0058051 from degradation in serum and effectively delivered siRNA into SMMC-7721 cells. Meanwhile, intravenous injection of the PPPCSs/siRNA complex could inhibit tumor growth in the subcutaneous tumor model. In addition, the nanocomposite is not toxic to the organs of nude mice. The above results show that PPPCSs/si-circ_0058051 complex may provide a novel and promising method of HCC treatment.
Collapse
Affiliation(s)
- Song You
- Department of Hepatobiliary Surgery, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, 350014, People's Republic of China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Zijin Luo
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Niangmei Cheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Yongping Lai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Fei Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Xiaoyuan Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Jingfeng Liu
- Department of Hepatobiliary Surgery, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, 350014, People's Republic of China.
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China.
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China.
| |
Collapse
|
22
|
Rabih AM, Niaj A, Raman A, Uprety M, Calero MJ, Villanueva MRB, Joshaghani N, Villa N, Badla O, Goit R, Saddik SE, Dawood SN, Mohammed L. Reduction of Cardiovascular Risk Using Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors in Patients With Acute Coronary Syndrome: A Systematic Review. Cureus 2023; 15:e34648. [PMID: 36895542 PMCID: PMC9990958 DOI: 10.7759/cureus.34648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/05/2023] [Indexed: 02/09/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a hepatic enzyme that regulates blood cholesterol levels by degrading low-density lipoprotein (LDL) receptors from the surface of hepatocytes. Studies have shown that inhibiting this molecule decreases the cardiovascular risk in individuals with atherosclerotic cardiovascular disease (ASCVD) by lowering low-density lipoprotein cholesterol (LDL-C). Two major cardiovascular outcome trials showed that the use of the PCSK9 inhibitors (alirocumab and evolocumab) in patients with recent acute coronary syndrome (ACS) is associated with a lower risk of further cardiovascular (CV) events. Information regarding the use of these monoclonal antibodies for primary prevention has also been reported by these trials. The goal of this systematic review is to describe the mechanism of PCSK9 inhibitors and further discuss their ability to reduce CV risk in high-risk populations. The search strategy was used in a systematic way using PubMed Central, Google Scholar, and ScienceDirect. We included randomized control trials (RCTs), systematic reviews, and narrative reviews in English published in the last five years. Observational studies, case reports, and case studies were excluded. The quality of the studies was evaluated using the Cochrane Collaboration Risk of Bias Tool, Assessment of Multiple Systematic Reviews 2, and Scale for the Assessment of Narrative Review Articles. A total of 10 articles were included in this systematic review. These included an RCT, a systematic review, and eight narrative reviews. Our study suggested that adding PCSK9 inhibitors to background statin therapy for selected patients with high-risk factors demonstrated substantial benefits in reducing overall CV morbidity and mortality after ACS. Multiple studies have demonstrated the short-term safety of low LDL-C levels caused by these drugs. However, long-term safety must be assessed with further studies.
Collapse
Affiliation(s)
- Ahmad M Rabih
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ahmad Niaj
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aishwarya Raman
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Manish Uprety
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Maria Jose Calero
- Obstetrics and Gynecology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Narges Joshaghani
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nicole Villa
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Omar Badla
- General Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Raman Goit
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Samia E Saddik
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sarah N Dawood
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
23
|
Li F, Zhang L, Feng J, Zhang L. Discovery and SAR analysis of phenylbenzo[d][1,3]dioxole-based proprotein convertase subtilisin/kexin type 9 inhibitors. J Enzyme Inhib Med Chem 2022; 37:2017-2035. [PMID: 35854672 PMCID: PMC9307114 DOI: 10.1080/14756366.2022.2101645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a novel therapeutic target for the development of cholesterol-lowering drugs. In the discovery of PCSK9/LDLR (low-density lipoprotein receptor) protein-protein interaction (PPI) impairing small molecules, a total of 47 phenylbenzo[d][1,3] dioxole-based compounds were designed and synthesised. The result revealed that the 4-chlorobenzyl substitution in the amino group is important for the PPI disrupting activity. In the hepatocyte-based functional tests, active compounds such as A12, B1, B3, B4 and B14, restored the LDLR levels on the surface of hepatic HepG2 cells and increased extracellular LDL uptake in the presence of PCSK9. It is notable that molecule B14 exhibited good performance in all the evaluations. Collectively, novel structures targeting PCSK9/LDLR PPI have been developed with hypolipidemic potential. Further structural modification of derived active compounds is promising in the discovery of lead compounds with improved activity for the treatment of hyperlipidaemia-related disorders.
Collapse
Affiliation(s)
- Fahui Li
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Lihui Zhang
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Jinhong Feng
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
24
|
Katzmann JL, Becker C, Bilitou A, Laufs U. Simulation study on LDL cholesterol target attainment, treatment costs, and ASCVD events with bempedoic acid in patients at high and very-high cardiovascular risk. PLoS One 2022; 17:e0276898. [PMID: 36301892 PMCID: PMC9612573 DOI: 10.1371/journal.pone.0276898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/15/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND AIMS The LDL cholesterol (LDL-C) treatment goals recommended by the 2019 ESC/EAS guidelines are only achieved in a minority of patients. The study objective was to estimate the impact of bempedoic acid treatment on LDL-C target attainment, drug costs, and atherosclerotic cardiovascular disease (ASCVD) events. The simulation used a Monte Carlo approach in a representative cohort of German outpatients at high or very-high cardiovascular risk. Additionally to statins, consecutive treatment with ezetimibe, bempedoic acid, and a PCSK9 inhibitor was simulated in patients not achieving their LDL-C goal. Considered were scenarios without and with bempedoic acid (where bempedoic acid was replaced by a PCSK9 inhibitor when LDL-C was not controlled). RESULTS The simulation cohort consisted of 105,577 patients, of whom 76,900 had very-high and 28,677 high cardiovascular risk. At baseline, 11.2% of patients achieved their risk-based LDL-C target. Sequential addition of ezetimibe and bempedoic acid resulted in target LDL-C in 33.1% and 61.9%, respectively. Treatment with bempedoic acid reduced the need for a PCSK9 inhibitor from 66.6% to 37.8% and reduced drug costs by 35.9% per year on stable lipid-lowering medication. Compared to using only statins and ezetimibe, this approach is projected to prevent additional 6,148 ASCVD events annually per 1 million patients, whereas PCSK9 inhibition alone would prevent 7,939 additional ASCVD events annually. CONCLUSIONS A considerably larger proportion of cardiovascular high- and very-high-risk patients can achieve guideline-recommended LDL-C goals with escalated lipid-lowering medication. Bempedoic acid is projected to substantially decrease the need for PCSK9 inhibitor treatment to achieve LDL-C targets, associated with reduced drug costs albeit with fewer prevented events.
Collapse
Affiliation(s)
- Julius L. Katzmann
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | | | | | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| |
Collapse
|
25
|
Sarkar SK, Matyas A, Asikhia I, Hu Z, Golder M, Beehler K, Kosenko T, Lagace TA. Pathogenic gain-of-function mutations in the prodomain and C-terminal domain of PCSK9 inhibit LDL binding. Front Physiol 2022; 13:960272. [PMID: 36187800 PMCID: PMC9515655 DOI: 10.3389/fphys.2022.960272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a secreted protein that binds and mediates endo-lysosomal degradation of low-density lipoprotein receptor (LDLR), limiting plasma clearance of cholesterol-rich LDL particles in liver. Gain-of-function (GOF) point mutations in PCSK9 are associated with familial hypercholesterolemia (FH). Approximately 30%–40% of PCSK9 in normolipidemic human plasma is bound to LDL particles. We previously reported that an R496W GOF mutation in a region of PCSK9 known as cysteine-histidine–rich domain module 1 (CM1) prevents LDL binding in vitro [Sarkar et al., J. Biol. Chem. 295 (8), 2285–2298 (2020)]. Herein, we identify additional GOF mutations that inhibit LDL association, localized either within CM1 or a surface-exposed region in the PCSK9 prodomain. Notably, LDL binding was nearly abolished by a prodomain S127R GOF mutation, one of the first PCSK9 mutations identified in FH patients. PCSK9 containing alanine or proline substitutions at amino acid position 127 were also defective for LDL binding. LDL inhibited cell surface LDLR binding and degradation induced by exogenous PCSK9-D374Y but had no effect on an S127R-D374Y double mutant form of PCSK9. These studies reveal that multiple FH-associated GOF mutations in two distinct regions of PCSK9 inhibit LDL binding, and that the Ser-127 residue in PCSK9 plays a critical role.
Collapse
Affiliation(s)
- Samantha K. Sarkar
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Angela Matyas
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Ikhuosho Asikhia
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Zhenkun Hu
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Mia Golder
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | | | - Tanja Kosenko
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Thomas A. Lagace
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- *Correspondence: Thomas A. Lagace,
| |
Collapse
|
26
|
Gouni-Berthold I, Schwarz J, Berthold HK. PCSK9 Monoclonal Antibodies: New Developments and Their Relevance in a Nucleic Acid-Based Therapy Era. Curr Atheroscler Rep 2022; 24:779-790. [PMID: 35900635 PMCID: PMC9474394 DOI: 10.1007/s11883-022-01053-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 12/26/2022]
Abstract
Purpose of Review To report on recent data about PCSK9 monoclonal antibodies and to evaluate their relevance in a nucleic acid–based therapy era for lipid lowering and prevention of cardiovascular disease. Recent Findings New methods of PCSK9 inhibition based on nucleic acid therapeutics such as antisense oligonucleotides, small interfering RNAs, and CRISPR tools for therapeutic gene editing are reported, and interesting new data regarding the clinical relevance of PCSK9 antibodies are discussed. Summary Promising methods of PCSK9 inhibition are in development, and one of them, the siRNA inclisiran targeting PCSK9, has already been approved for clinical use. However, PCSK9-mAb remains the PCSK9-inhibiting tool with the longest safety data and the only one having positive cardiovascular outcome trials. An ongoing cardiovascular outcome trial with inclisiran is planned to be completed in 2026. Other forms of PCSK9 inhibition, such as antisense oligonucleotides targeting PCSK9 and CRISPR base editing of PCSK9, are still in early phases of development, and their potential clinical relevance remains to be established.
Collapse
Affiliation(s)
- Ioanna Gouni-Berthold
- Center for Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Jonas Schwarz
- Center for Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Heiner K Berthold
- Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB) and University Hospital OWL, Campus Bielefeld-Bethel, Bielefeld, Germany
| |
Collapse
|
27
|
Hughes-Hubley F, Iskander M, Cheng-Lai A, Frishman WH, Nawarskas J. Inclisiran: Small Interfering Ribonucleic Acid Injectable for the Treatment of Hyperlipidemia. Cardiol Rev 2022; 30:214-219. [PMID: 35666780 DOI: 10.1097/crd.0000000000000452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Elevated plasma lipid levels, especially low-density lipoprotein, are correlated with atherosclerotic cardiovascular disease (ASCVD) and increased risk of ischemic heart disease and stroke. Statins are first-line agents for reducing low-density lipoprotein cholesterol (LDL-C) and the risk of major cardiovascular events, but patients with a genetic susceptibility or established ASCVD oftentimes remain subtherapeutic on statin therapy alone. Biotechnological advancements in medication therapy have led to the development of inclisiran, a recently approved twice-yearly injectable agent to help patients with heterozygous familial hypercholesterolemia and clinical ASCVD on a maximally tolerated statin to reach LDL-C targets. Inclisiran has demonstrated robust LDL-C reduction in clinical trials in combination with a favorable safety profile; however, the effect on cardiovascular clinical outcomes still remains under evaluation.
Collapse
Affiliation(s)
| | - Mina Iskander
- Department of Medicine, University of Miami/Jackson Health System, Miami, FL
| | - Angela Cheng-Lai
- From the Department of Pharmacy, Montefiore Medical Center, Bronx, NY
| | - William H Frishman
- Departments of Medicine and Cardiology, New York Medical College/Westchester Medical Center, Valhalla, NY
| | - James Nawarskas
- Department of Pharmacy Practice and Administrative Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM
| |
Collapse
|
28
|
Kettunen S, Ruotsalainen AK, Ylä-Herttuala S. RNA interference-based therapies for the control of atherosclerosis risk factors. Curr Opin Cardiol 2022; 37:364-371. [PMID: 35731681 DOI: 10.1097/hco.0000000000000972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Atherosclerosis, characterized by lipid accumulation and chronic inflammation in the arterial wall, is the leading causes of death worldwide. The purpose of this article is to review the status of RNA interference (RNAi) based therapies in clinical trials for the treatment and prevention of atherosclerosis risk factors. RECENT FINDINGS There is a growing interest on using RNAi technology for the control of atherosclerosis risk factors. Current clinical trials utilizing RNAi for atherosclerosis are targeting lipid metabolism regulating genes including proprotein convertase subtilisin/kexin 9, apolipoprotein C-III, lipoprotein (a) and angiopoietin-like protein 3. Currently, three RNAi-based drugs have been approved by U.S. Food and Drug Administration, but there are several therapies in clinical trials at the moment, and potentially entering the market in near future. In addition, recent preclinical studies on regulating vascular inflammation have shown promising results. SUMMARY In recent years, RNAi based technologies and therapies have been intensively developed for the treatment of atherosclerosis risk factors, such as hyperlipidemia and vascular inflammation. Multiple potential therapeutic targets have emerged, and many of the reported clinical trials have already been successful in plasma lipid lowering. The scope of RNAi therapies is well recognized and recent approvals are encouraging for the treatment of cardiovascular and metabolic disorders.
Collapse
Affiliation(s)
| | | | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
29
|
Parikh RR, Breve F, Magnusson P, Behzadi P, Pergolizzi J. The Use of Monoclonal Antibody-Based Proprotein Convertase Subtilisin-Kexin Type 9 (PCSK9) Inhibitors in the Treatment of Hypercholesterolemia. Cureus 2022; 14:e25641. [PMID: 35795514 PMCID: PMC9250913 DOI: 10.7759/cureus.25641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022] Open
Abstract
In this review, we evaluated several studies in the literature to analyze the benefits and deleterious effects of the use of monoclonal antibodies (MABs)-based proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors in patients with hypercholesterolemia. Increased low-density lipoprotein cholesterol (LDL-C) levels lead to an increase in the risk of cardiovascular (CV) disease. Statins are the cornerstones of hypercholesterolemia treatment, but the patient response may often vary, and additional therapies may be needed to control the increased LDL-C levels. MABs bind to PCSK9 receptors, causing a reduction in LDL-C levels. MAB-based PCSK9 inhibitors such as alirocumab and evolocumab have been approved for use in hypercholesterolemia in combination with statins. Studies have suggested that both alirocumab and evolocumab are effective in lowering LDL-C levels, have favorable side effect profiles, and can be administered at convenient dosing intervals; however, further double-blind, randomized trials evaluating the long-term safety and efficacy of both the agents could assist with clinical decision-making.
Collapse
|
30
|
Ferhatbegović L, Mršić D, Kušljugić S, Pojskić B. LDL-C: The Only Causal Risk Factor for ASCVD. Why Is It Still Overlooked and Underestimated? Curr Atheroscler Rep 2022; 24:635-642. [PMID: 35635632 DOI: 10.1007/s11883-022-01037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Low-density lipoprotein cholesterol (LDL-C) is the most important causal risk factor for atherosclerotic cardiovascular disease (ASCVD). This article reviews why LDL-C remains overlooked and underestimated despite numerous studies that have proved its role. RECENT FINDINGS Recently published EAS/ESC Guidelines for dyslipidemia and EAS Guidelines for prevention set new targets for LDL-C levels in primary and secondary prevention of ASCVD. These guidelines are based on data from large studies and meta-analyzes that have shown that lower LDL-C also means lower cardiovascular event rates. Real-life experience published in registries worldwide has shown us that the guidelines have not been translated to everyday clinical practice, meaning that a significant number of patients are undertreated and have LDL-C levels well above target. Potential reasons for the abovementioned are poor adherence and education of the patient and physician and health care system related factors. Implementation of the latest version of guidelines will require continuous patient and physicians education, as well as a shared decision-making process between physician and patient.
Collapse
Affiliation(s)
- Lamija Ferhatbegović
- Department for Internal Diseases and Hemodialysis, Cantonal Hospital Zenica, 72 000, Zenica, Bosnia and Herzegovina.
| | - Denis Mršić
- Clinic for Internal Disease, University Clinical Center Tuzla, 75 000, Tuzla, Bosnia and Herzegovina
| | - Sabina Kušljugić
- Medical Faculty Tuzla, University Clinical Center Tuzla, 75 000, Tuzla, Bosnia and Herzegovina
| | - Belma Pojskić
- Department for Internal Diseases and Hemodialysis, Cantonal Hospital Zenica, 72 000, Zenica, Bosnia and Herzegovina
| |
Collapse
|
31
|
Abstract
This article reviews the discovery of PCSK9, its structure-function characteristics, and its presently known and proposed novel biological functions. The major critical function of PCSK9 deduced from human and mouse studies, as well as cellular and structural analyses, is its role in increasing the levels of circulating low-density lipoprotein (LDL)-cholesterol (LDLc), via its ability to enhance the sorting and escort of the cell surface LDL receptor (LDLR) to lysosomes. This implicates the binding of the catalytic domain of PCSK9 to the EGF-A domain of the LDLR. This also requires the presence of the C-terminal Cys/His-rich domain, its binding to the secreted cytosolic cyclase associated protein 1, and possibly another membrane-bound "protein X". Curiously, in PCSK9-deficient mice, an alternative to the downregulation of the surface levels of the LDLR by PCSK9 is taking place in the liver of female mice in a 17β-estradiol-dependent manner by still an unknown mechanism. Recent studies have extended our understanding of the biological functions of PCSK9, namely its implication in septic shock, vascular inflammation, viral infections (Dengue; SARS-CoV-2) or immune checkpoint modulation in cancer via the regulation of the cell surface levels of the T-cell receptor and MHC-I, which govern the antitumoral activity of CD8+ T cells. Because PCSK9 inhibition may be advantageous in these processes, the availability of injectable safe PCSK9 inhibitors that reduces by 50% to 60% LDLc above the effect of statins is highly valuable. Indeed, injectable PCSK9 monoclonal antibody or small interfering RNA could be added to current immunotherapies in cancer/metastasis.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| |
Collapse
|
32
|
Tang Y, Li H, Chen C. Non-coding RNA-Associated Therapeutic Strategies in Atherosclerosis. Front Cardiovasc Med 2022; 9:889743. [PMID: 35548442 PMCID: PMC9081650 DOI: 10.3389/fcvm.2022.889743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis has been the main cause of disability and mortality in the world, resulting in a heavy medical burden for all countries. It is widely known to be a kind of chronic inflammatory disease in the blood walls, of which the key pathogenesis is the accumulation of immunologic cells in the lesion, foam cells formation, and eventually plaque rupture causing ischemia of various organs. Non-coding RNAs (ncRNAs) play a vital role in regulating the physiologic and pathophysiologic processes in cells. More and more studies have revealed that ncRNAs also participated in the development of atherosclerosis and regulated cellular phenotypes such as endothelial dysfunction, leukocyte recruitment, foam cells formation, and vascular smooth muscle cells phenotype-switching and apoptosis. Given the broad functions of ncRNAs in atherogenesis, they have become potential therapeutic targets. Apart from that, ncRNAs have become powerful blueprints to design new drugs. For example, RNA interference drugs were inspired by small interfering RNAs that exist in normal cellular physiologic processes and behave as negative regulators of specific proteins. For instance, inclisiran is a kind of RNAi drug targeting PCKS9 mRNA, which can lower the level of LDL-C and treat atherosclerosis. We introduce some recent research progresses on ncRNAs related to atherosclerotic pathophysiologic process and the current clinical trials of RNA drugs pointed at atherosclerosis.
Collapse
Affiliation(s)
- Yuyan Tang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- *Correspondence: Huaping Li
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- Chen Chen
| |
Collapse
|
33
|
Katzmann JL, Custodis F, Schirmer SH, Laufs U. [Update on PCSK9 inhibition]. Herz 2022; 47:196-203. [PMID: 35445838 DOI: 10.1007/s00059-022-05112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 12/01/2022]
Abstract
Lowering of low-density lipoprotein (LDL) cholesterol represents one of the most effective interventions in cardiovascular prevention. Besides the oral treatment with statins, ezetimibe and bempedoic acid, subcutaneously administered inhibitors of proprotein convertase subtilisin-kexin type 9 (PCSK9) have been established as further cornerstones of lipid-lowering treatment. The antibodies evolocumab and alirocumab are administered subcutaneously every 2-4 weeks and lower LDL cholesterol by around 60%, independent of pre-treatment with very good tolerability. Both drugs successfully reduced cardiovascular endpoints in large outcome trials. A novel principle of PCSK9 inhibition is RNA interference, which is exploited by the novel compound inclisiran. Inclisiran is a double-stranded modified RNA molecule, which neutralizes the mRNA of PCSK9 and thus inhibits PCSK9 protein synthesis intracellularly. Inclisiran only needs to be administered every 6 months. The cardiovascular outcome trial ORION‑4 is currently ongoing. In Germany, prescription of PCSK9 inhibitors is regulated by the decision of the Federal Joint Committee. Novel strategies to inhibit PCSK9 function are under development and include orally available drugs and animal experiment concepts on gene editing, which are in different states of evaluation.
Collapse
Affiliation(s)
- Julius L Katzmann
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstraße 20, 04103, Leipzig, Deutschland.
| | - Florian Custodis
- Klinik für Innere Medizin II, Klinikum Saarbrücken, Saarbrücken, Deutschland
| | - Stephan H Schirmer
- Kardiopraxis Schirmer, Kaiserslautern, Deutschland
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Deutschland
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstraße 20, 04103, Leipzig, Deutschland
| |
Collapse
|
34
|
Katzmann JL, Laufs U. [Modern lipid-lowering drugs-A means to counter the problem of undertreatment?]. Internist (Berl) 2022; 63:1316-1322. [PMID: 35391570 DOI: 10.1007/s00108-022-01322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND An elevated low-density lipoproteincholesterol (LDL-C) level is one of the most important modifiable cardiovascular risk factors. Despite potent combination treatment, the LDL‑C target values are not achieved in many high-risk patients. OBJECTIVE Presentation of the rationale for lowering LDL‑C, the current status of lipid-lowering treatment and established and novel approaches to lower LDL‑C. CURRENT DATA Based on the large outcome trials with ezetimibe and antibodies against proprotein convertase subtilisin-kexin type 9 (PCSK9), the professional societies recommend LDL‑C target values depending on the individual cardiovascular risk. For patients with manifest atherosclerosis, the LDL‑C target value is < 55 mg/dL (1.4 mmol/L). The LDL‑C target values are only achieved in the minority of patients. The reasons for this include a lack of awareness among treating physicians, low medication adherence, restrictions in prescriptions and intolerance. On the basis of a healthy lifestyle, statins are the cornerstone of LDL-C-lowering treatment. If LDL‑C targets are not achieved, the cholesterol absorption inhibitor ezetimibe is additionally recommended. As a third step, PCSK9 antibodies are added. A novel drug to lower LDL‑C is the orally available bempedoic acid, which acts on the same metabolic pathway as statins but is specifically activated in the liver and not in the skeletal muscle. Another novel drug is inclisiran, which acts as an intracellular PCSK9 inhibitor through RNA interference. Inclisiran is administered subcutaneously only every 6 months and has potential advantages regarding adherence. According to the new recommendations, active substances should be combined and fixed-dose combinations should be used early for lowering of LDL‑C. CONCLUSION Using established and novel LDL-C-lowering drugs, the recommended LDL‑C target values can be achieved in the majority of patients with a high cardiovascular risk.
Collapse
Affiliation(s)
- Julius L Katzmann
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstraße 20, 04103, Leipzig, Deutschland.
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstraße 20, 04103, Leipzig, Deutschland
| |
Collapse
|
35
|
Pleiotropic Effects of PCSK9: Focus on Thrombosis and Haemostasis. Metabolites 2022; 12:metabo12030226. [PMID: 35323669 PMCID: PMC8950753 DOI: 10.3390/metabo12030226] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
The proprotein convertase subtilisin/keying 9 (PCSK9) is a serine protease that has gained importance in recent years as a drug target, mainly due to its effect on cholesterol metabolism in promoting the degradation of the low-density lipoprotein receptor (LDLR). However, this protease may also play an important role in lipid-independent reactions, including the process of thrombogenesis. Considering this, we reviewed the effects and implications of PCSK9 on platelet function and blood coagulation. PCSK9 knockout mice exhibited reduced platelet activity and developed less agonist-induced arterial thrombi compared to the respective control animals. This is in line with known research that elevated blood levels of PCSK9 are associated with an increased platelet reactivity and total number of circulating platelets in humans. Moreover, PCSK9 also has an effect on crucial factors of the coagulation cascade, such as increasing factor VIII plasma levels, since the degradation of this blood clotting factor is promoted by the LDLR. The aforementioned pleiotropic effects of the PCSK9 are important to take into account when evaluating the clinical benefit of PCSK9 inhibitors.
Collapse
|
36
|
Grewal T, Buechler C. Emerging Insights on the Diverse Roles of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in Chronic Liver Diseases: Cholesterol Metabolism and Beyond. Int J Mol Sci 2022; 23:ijms23031070. [PMID: 35162992 PMCID: PMC8834914 DOI: 10.3390/ijms23031070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
Chronic liver diseases are commonly associated with dysregulated cholesterol metabolism. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease of the proprotein convertase family that is mainly synthetized and secreted by the liver, and represents one of the key regulators of circulating low-density lipoprotein (LDL) cholesterol levels. Its ability to bind and induce LDL-receptor degradation, in particular in the liver, increases circulating LDL-cholesterol levels in the blood. Hence, inhibition of PCSK9 has become a very potent tool for the treatment of hypercholesterolemia. Besides PCSK9 limiting entry of LDL-derived cholesterol, affecting multiple cholesterol-related functions in cells, more recent studies have associated PCSK9 with various other cellular processes, including inflammation, fatty acid metabolism, cancerogenesis and visceral adiposity. It is increasingly becoming evident that additional roles for PCSK9 beyond cholesterol homeostasis are crucial for liver physiology in health and disease, often contributing to pathophysiology. This review will summarize studies analyzing circulating and hepatic PCSK9 levels in patients with chronic liver diseases. The factors affecting PCSK9 levels in the circulation and in hepatocytes, clinically relevant studies and the pathophysiological role of PCSK9 in chronic liver injury are discussed.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
37
|
Katzmann JL, Cupido AJ, Laufs U. Gene Therapy Targeting PCSK9. Metabolites 2022; 12:metabo12010070. [PMID: 35050192 PMCID: PMC8781734 DOI: 10.3390/metabo12010070] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
The last decades of research in cardiovascular prevention have been characterized by successful bench-to-bedside developments for the treatment of low-density lipoprotein (LDL) hypercholesterolemia. Recent examples include the inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) with monoclonal antibodies, small interfering RNA and antisense RNA drugs. The cumulative effects of LDL cholesterol on atherosclerosis make early, potent, and long-term reductions in LDL cholesterol desirable-ideally without the need of regular intake or application of medication and importantly, without side effects. Current reports show durable LDL cholesterol reductions in primates following one single treatment with PCSK9 gene or base editors. Use of the CRISPR/Cas system enables precise genome editing down to single-nucleotide changes. Provided safety and documentation of a reduction in cardiovascular events, this novel technique has the potential to fundamentally change our current concepts of cardiovascular prevention. In this review, the application of the CRISPR/Cas system is explained and the current state of in vivo approaches of PCSK9 editing is presented.
Collapse
Affiliation(s)
- Julius L. Katzmann
- Department of Cardiology, University Hospital Leipzig, 04103 Leipzig, Germany;
- Correspondence:
| | - Arjen J. Cupido
- Department of Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, The Netherlands;
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ulrich Laufs
- Department of Cardiology, University Hospital Leipzig, 04103 Leipzig, Germany;
| |
Collapse
|
38
|
Xia XD, Peng ZS, Gu HM, Wang M, Wang GQ, Zhang DW. Regulation of PCSK9 Expression and Function: Mechanisms and Therapeutic Implications. Front Cardiovasc Med 2021; 8:764038. [PMID: 34782856 PMCID: PMC8589637 DOI: 10.3389/fcvm.2021.764038] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/16/2021] [Indexed: 12/25/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes degradation of low-density lipoprotein receptor (LDLR) and plays a central role in regulating plasma levels of LDL cholesterol levels, lipoprotein(a) and triglyceride-rich lipoproteins, increasing the risk of cardiovascular disease. Additionally, PCSK9 promotes degradation of major histocompatibility protein class I and reduces intratumoral infiltration of cytotoxic T cells. Inhibition of PCSK9 increases expression of LDLR, thereby reducing plasma levels of lipoproteins and the risk of cardiovascular disease. PCSK9 inhibition also increases cell surface levels of major histocompatibility protein class I in cancer cells and suppresses tumor growth. Therefore, PCSK9 plays a vital role in the pathogenesis of cardiovascular disease and cancer, the top two causes of morbidity and mortality worldwide. Monoclonal anti-PCSK9 antibody-based therapy is currently the only available treatment that can effectively reduce plasma LDL-C levels and suppress tumor growth. However, high expenses limit their widespread use. PCSK9 promotes lysosomal degradation of its substrates, but the detailed molecular mechanism by which PCSK9 promotes degradation of its substrates is not completely understood, impeding the development of more cost-effective alternative strategies to inhibit PCSK9. Here, we review our current understanding of PCSK9 and focus on the regulation of its expression and functions.
Collapse
Affiliation(s)
- Xiao-Dan Xia
- Department of Orthopedics, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Zhong-Sheng Peng
- School of Economics, Management and Law, University of South China, Hengyang, China
| | - Hong-Mei Gu
- Group on the Molecular and Cell Biology of Lipids, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Maggie Wang
- Group on the Molecular and Cell Biology of Lipids, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Gui-Qing Wang
- Department of Orthopedics, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
39
|
Momtazi-Borojeni AA, Pirro M, Xu S, Sahebkar A. PCSK9 inhibition-based therapeutic approaches: an immunotherapy perspective. Curr Med Chem 2021; 29:980-999. [PMID: 34711156 DOI: 10.2174/0929867328666211027125245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors (PCSK9-I) are novel therapeutic tools to decrease cardiovascular risk. These agents work by lowering the low-density lipoprotein cholesterol (LDL-C) in hypercholesterolemic patients who are statin resistant/intolerant. Current clinically approved and investigational PCSK9-I act generally by blocking PCSK9 activity in the plasma or suppressing its expression or secretion by hepatocytes. The most widely investigated method is the disruption of PCSK9/LDL receptor (LDLR) interaction by fully-humanized monoclonal antibodies (mAbs), evolocumab and alirocumab, which have been approved for the therapy of hypercholesterolemia and atherosclerotic cardiovascular disease (CVD). Besides, a small interfering RNA called inclisiran, which specifically suppresses PCSK9 expression in hepatocytes, is as effective as mAbs but with administration twice a year. Because of the high costs of such therapeutic approaches, several other PCSK9-I have been surveyed, including peptide-based anti-PCSK9 vaccines and small oral anti-PCSK9 molecules, which are under investigation in preclinical and phase I clinical studies. Interestingly, anti-PCSK9 vaccination has been found to serve as a more widely feasible and more cost-effective therapeutic tool over mAb PCSK9-I for managing hypercholesterolemia. The present review will discuss LDL-lowering and cardioprotective effects of PCSK9-I, mainly immunotherapy-based inhibitors including mAbs and vaccines, in preclinical and clinical studies.
Collapse
Affiliation(s)
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, 06129. Italy
| | - Suowen Xu
- Department of Endocrinology, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei. China
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad. Iran
| |
Collapse
|
40
|
Hu H, Chen R, Hu Y, Wang J, Lin S, Chen X. The LDLR c.501C>A is a disease-causing variant in familial hypercholesterolemia. Lipids Health Dis 2021; 20:101. [PMID: 34511120 PMCID: PMC8436568 DOI: 10.1186/s12944-021-01536-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/31/2021] [Indexed: 12/23/2022] Open
Abstract
Background As an autosomal dominant disorder, familial hypercholesterolemia (FH) is mainly attributed to disease-causing variants in the low-density lipoprotein receptor (LDLR) gene. The aim of this study was to explore the molecular mechanism of LDLR c.501C>A variant in FH and assess the efficacy of proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitor treatment for FH patients. Methods The whole-exome sequencing was performed on two families to identify disease-causing variants, which were verified by Sanger sequencing. The function of LDLR variant was further explored in HEK293 cells by Western Blot and confocal microscopy. Besides, the therapeutic effects of PCSK9 inhibitor treatment for two probands were assessed for 3 months. Results All members of the two families with the LDLR c.501C>A variant showed high levels of LDLC. The relationship between the clinical phenotype and LDLR variants was confirmed in the current study. Both in silico and in vitro analyses showed that LDLR c.501C>A variant decreased LDLR expression and LDL uptake. PCSK9 inhibitor treatment lowered the lipid level in proband 1 by 24.91%. However, the treatment was ineffective for proband 2. A follow-up study revealed that the PCSK9 inhibitor treatment had low ability of lipid-lowering effect in the patients. Conclusions LDLR c.501C>A variant might be pathogenic for FH. The PCSK9 inhibitor therapy is not a highly effective option for treatment of FH patients with LDLR c.501C>A variant. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01536-3.
Collapse
Affiliation(s)
- Haochang Hu
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Ruoyu Chen
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yingchu Hu
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Jian Wang
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Shaoyi Lin
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China. .,Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang, China.
| | - Xiaomin Chen
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China. .,Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
41
|
Kamaruddin NN, Hajri NA, Andriani Y, Abdul Manan AF, Tengku Muhammad TS, Mohamad H. Acanthaster planci Inhibits PCSK9 and Lowers Cholesterol Levels in Rats. Molecules 2021; 26:5094. [PMID: 34443682 PMCID: PMC8398678 DOI: 10.3390/molecules26165094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is the main cause of cardiovascular diseases which in turn, lead to the highest number of mortalities globally. This pathophysiological condition is developed due to a constant elevated level of plasma cholesterols. Statin is currently the widely used treatment in reducing the level of cholesterols, however, it may cause adverse side effects. Therefore, there is an urgent need to search for new alternative treatment. PCSK9 is an enzyme responsible in directing LDL-receptor (LDL-R)/LDL-cholesterols (LDL-C) complex to lysosomal degradation, preventing the receptor from recycling back to the surface of liver cells. Therefore, PCSK9 offers a potential target to search for small molecule inhibitors which inhibit the function of this enzyme. In this study, a marine invertebrate Acanthaster planci, was used to investigate its potential in inhibiting PCSK9 and lowering the levels of cholesterols. Cytotoxicity activity of A. planci on human liver HepG2 cells was carried out using the MTS assay. It was found that methanolic extract and fractions did not exhibit cytotoxicity effect on HepG2 cell line with IC50 values of more than 30 µg/mL. A compound deoxythymidine also did not exert any cytotoxicity activity with IC50 value of more than 4 µg/mL. Transient transfection and luciferase assay were conducted to determine the effects of A. planci on the transcriptional activity of PCSK9 promoter. Methanolic extract and Fraction 2 (EF2) produced the lowest reduction in PCSK9 promoter activity to 70 and 20% of control at 12.5 and 6.25 μg/mL, respectively. In addition, deoxythymidine also decreased PCSK9 promoter activity to the lowest level of 60% control at 3.13 μM. An in vivo study using Sprague Dawley rats demonstrated that 50 and 100 mg/kg of A. planci methanolic extract reduced the total cholesterols and LDL-C levels to almost similar levels of untreated controls. The level of serum glutamate oxalate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) showed that the administration of the extract did not produce any toxicity effect and cause any damage to rat liver. The results strongly indicate that A. planci produced a significant inhibitory activity on PCSK9 gene expression in HepG2 cells which may be responsible for inducing the uptake of cholesterols by liver, thus, reducing the circulating levels of total cholesterols and LDL-C. Interestingly, A. planci also did show any adverse hepato-cytotoxicity and toxic effects on liver. Thus, this study strongly suggests that A. planci has a vast potential to be further developed as a new class of therapeutic agent in lowering the blood cholesterols and reducing the progression of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | - Tengku Sifzizul Tengku Muhammad
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia; (N.N.K.); (N.A.H.); (Y.A.); (A.F.A.M.)
| | - Habsah Mohamad
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia; (N.N.K.); (N.A.H.); (Y.A.); (A.F.A.M.)
| |
Collapse
|
42
|
Hattori M, Kohno T. Regulation of Reelin functions by specific proteolytic processing in the brain. J Biochem 2021; 169:511-516. [PMID: 33566063 DOI: 10.1093/jb/mvab015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 01/23/2021] [Indexed: 12/25/2022] Open
Abstract
The secreted glycoprotein Reelin plays important roles in both brain development and function. During development, Reelin regulates neuronal migration and dendrite development. In the mature brain, the glycoprotein is involved in synaptogenesis and synaptic plasticity. It has been suggested that Reelin loss or decreased function contributes to the onset and/or deterioration of neuropsychiatric diseases, including schizophrenia and Alzheimer's disease. While the molecular mechanisms underpinning Reelin function remain unclear, recent studies have suggested that the specific proteolytic cleavage of Reelin may play central roles in the embryonic and postnatal brain. In this review, we focus on Reelin proteolytic processing and review its potential physiological roles.
Collapse
Affiliation(s)
- Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan
| |
Collapse
|
43
|
Rodriguez-Gil JL, Baxter LL, Watkins-Chow DE, Johnson NL, Davidson CD, Carlson SR, Incao AA, Wallom KL, Farhat NY, Platt FM, Dale RK, Porter FD, Pavan WJ. Transcriptome of HPβCD-treated Niemann-pick disease type C1 cells highlights GPNMB as a biomarker for therapeutics. Hum Mol Genet 2021; 30:2456-2468. [PMID: 34296265 DOI: 10.1093/hmg/ddab194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2021] [Accepted: 06/29/2021] [Indexed: 11/12/2022] Open
Abstract
The rare, fatal neurodegenerative disorder Niemann-Pick disease type C1 (NPC1) arises from lysosomal accumulation of unesterified cholesterol and glycosphingolipids. These subcellular pathologies lead to phenotypes of hepatosplenomegaly, neurological degeneration and premature death. The timing and severity of NPC1 clinical presentation is extremely heterogeneous. This study analyzed RNA-Seq data from 42 NPC1 patient-derived, primary fibroblast cell lines to determine transcriptional changes induced by treatment with 2-hydroxypropyl-β-cyclodextrin (HPβCD), a compound currently under investigation in clinical trials. A total of 485 HPβCD-responsive genes were identified. Pathway enrichment analysis of these genes showed significant involvement in cholesterol and lipid biosynthesis. Furthermore, immunohistochemistry of the cerebellum as well as measurements of serum from Npc1m1N null mice treated with HPβCD and adeno-associated virus (AAV) gene therapy suggests that one of the identified genes, GPNMB, may serve as a useful biomarker of treatment response in NPC1 disease. Overall, this large NPC1 patient-derived dataset provides a comprehensive foundation for understanding the genomic response to HPβCD treatment.
Collapse
Affiliation(s)
- Jorge L Rodriguez-Gil
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health.,Medical Scientist Training Program, University of Wisconsin-Madison School of Medicine and Public Health
| | - Laura L Baxter
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Dawn E Watkins-Chow
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Nicholas L Johnson
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Cristin D Davidson
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Steven R Carlson
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Arturo A Incao
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | | | | | - Nicole Y Farhat
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | | | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - William J Pavan
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| |
Collapse
|
44
|
van Solingen C, Oldebeken SR, Salerno AG, Wanschel ACBA, Moore KJ. High-Throughput Screening Identifies MicroRNAs Regulating Human PCSK9 and Hepatic Low-Density Lipoprotein Receptor Expression. Front Cardiovasc Med 2021; 8:667298. [PMID: 34322524 PMCID: PMC8310920 DOI: 10.3389/fcvm.2021.667298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022] Open
Abstract
Investigations into the regulatory mechanisms controlling cholesterol homeostasis have proven fruitful in identifying low-density lipoprotein (LDL)-lowering therapies to reduce the risk of atherosclerotic cardiovascular disease. A major advance was the discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9), a secreted protein that binds the LDL receptor (LDLR) on the cell surface and internalizes it for degradation, thereby blunting its ability to take up circulating LDL. The discovery that loss-of-function mutations in PCSK9 lead to lower plasma levels of LDL cholesterol and protection from cardiovascular disease led to the therapeutic development of PCSK9 inhibitors at an unprecedented pace. However, there remain many gaps in our understanding of PCSK9 regulation and biology, including its posttranscriptional control by microRNAs. Using a high-throughput region(3′-UTR) of human microRNA library screen, we identified microRNAs targeting the 3′ untranslated region of human PCSK9. The top 35 hits were confirmed by large-format PCSK9 3′-UTR luciferase assays, and 10 microRNAs were then selected for further validation in hepatic cells, including effects on PCSK9 secretion and LDLR cell surface expression. These studies identified seven novel microRNAs that reduce PCSK9 expression, including miR-221-5p, miR-342-5p, miR-363-5p, miR-609, miR-765, and miR-3165. Interestingly, several of these microRNAs were also found to target other genes involved in LDLR regulation and potently upregulate LDLR cell surface expression in hepatic cells. Together, these data enhance our understanding of post-transcriptional regulators of PCSK9 and their potential for therapeutic manipulation of hepatic LDLR expression.
Collapse
Affiliation(s)
- Coen van Solingen
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Cardiovascular Research Center, New York University School of Medicine, New York, NY, United States
| | - Scott R Oldebeken
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Cardiovascular Research Center, New York University School of Medicine, New York, NY, United States
| | - Alessandro G Salerno
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Cardiovascular Research Center, New York University School of Medicine, New York, NY, United States
| | - Amarylis C B A Wanschel
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Cardiovascular Research Center, New York University School of Medicine, New York, NY, United States
| | - Kathryn J Moore
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Cardiovascular Research Center, New York University School of Medicine, New York, NY, United States.,Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
45
|
PCSK9: A Multi-Faceted Protein That Is Involved in Cardiovascular Biology. Biomedicines 2021; 9:biomedicines9070793. [PMID: 34356856 PMCID: PMC8301306 DOI: 10.3390/biomedicines9070793] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022] Open
Abstract
Pro-protein convertase subtilisin/kexin type 9 (PCSK9) is secreted mostly by hepatocytes and to a lesser extent by the intestine, pancreas, kidney, adipose tissue, and vascular cells. PCSK9 has been known to interact with the low-density lipoprotein receptor (LDLR) and chaperones the receptor to its degradation. In this manner, targeting PCSK9 is a novel attractive approach to reduce hyperlipidaemia and the risk for cardiovascular diseases. Recently, it has been recognised that the effects of PCSK9 in relation to cardiovascular complications are not only LDLR related, but that various LDLR-independent pathways and processes are also influenced. In this review, the various LDLR dependent and especially independent effects of PCSK9 on the cardiovascular system are discussed, followed by an overview of related PCSK9-polymorphisms and currently available and future therapeutic approaches to manipulate PCSK9 expression.
Collapse
|
46
|
Ruotsalainen AK, Mäkinen P, Ylä-Herttuala S. Novel RNAi-Based Therapies for Atherosclerosis. Curr Atheroscler Rep 2021; 23:45. [PMID: 34146172 PMCID: PMC8214045 DOI: 10.1007/s11883-021-00938-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Atherosclerosis, defined by inflammation and accumulation of cholesterol, extracellular matrix, and cell debris into the arteries is a common factor behind cardiovascular diseases (CVD), such as coronary artery disease, peripheral artery disease, and stroke. In this review, we discuss and describe novel RNA interference (RNAi)-based therapies in clinical trials and on the market. RECENT FINDINGS The first RNAi-based therapies have entered clinical use for the control of atherosclerosis risk factors, i.e., blood cholesterol levels. The most advanced treatment is silencing of proprotein convertase subtilisin/kexin type 9 (PCSK9) with a drug called inclisiran, which has been approved for the treatment of hypercholesterolemia in late 2020, and results in a robust decrease in plasma cholesterol levels. As the new RNAi therapies for atherosclerosis are now entering markets, the usefulness of these therapies will be further evaluated in larger patient cohorts. Thus, it remains to be seen how fast, effectively and eminently these new drugs consolidate their niche within the cardiovascular disease drug palette.
Collapse
Affiliation(s)
- Anna-Kaisa Ruotsalainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
- Kuopio Center for Gene and Cell Therapy, FIN-70210 Kuopio, Finland
| | - Petri Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, P.O. Box 1777, FIN-70211 Kuopio, Finland
| |
Collapse
|
47
|
Grimm J, Peschel G, Müller M, Schacherer D, Wiest R, Weigand K, Buechler C. Rapid Decline of Serum Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) in Non-Cirrhotic Patients with Chronic Hepatitis C Infection Receiving Direct-Acting Antiviral Therapy. J Clin Med 2021; 10:1621. [PMID: 33920491 PMCID: PMC8069657 DOI: 10.3390/jcm10081621] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Direct-acting antivirals (DAAs) efficiently eradicate the hepatitis C virus (HCV). Low-density lipoprotein (LDL) levels increase rapidly upon DAA treatment. Proprotein convertase subtilisin/kexin 9 (PCSK9) induces degradation of the hepatic LDL receptor and thereby elevates serum LDL. The aim of this study was to determine serum PCSK9 concentrations during and after DAA therapy to identify associations with LDL levels. Serum PCSK9 was increased in 82 chronic HCV-infected patients compared to 55 patients not infected with HCV. Serum PCSK9 was low in HCV patients with liver cirrhosis, but patients with HCV-induced liver cirrhosis still exhibited higher serum PCSK9 than patients with non-viral liver cirrhosis. Serum PCSK9 correlated with measures of liver injury and inflammation in cirrhotic HCV patients. In patients without liver cirrhosis, a positive association of serum PCSK9 with viral load existed. Serum PCSK9 was not different between viral genotypes. Serum PCSK9 did not correlate with LDL levels in HCV patients irrespective of cirrhotic status. Serum PCSK9 was reduced, and LDL was increased at four weeks after DAA therapy start in non-cirrhotic HCV patients. Serum PCSK9 and LDL did not change upon DAA treatment in the cirrhotic group. The rapid decline of PCSK9 after the start of DAA therapy in conjunction with raised LDL levels in non-cirrhotic HCV patients shows that these changes are not functionally related.
Collapse
Affiliation(s)
- Jonathan Grimm
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (J.G.); (G.P.); (M.M.); (D.S.); (K.W.)
| | - Georg Peschel
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (J.G.); (G.P.); (M.M.); (D.S.); (K.W.)
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (J.G.); (G.P.); (M.M.); (D.S.); (K.W.)
| | - Doris Schacherer
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (J.G.); (G.P.); (M.M.); (D.S.); (K.W.)
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, University Inselspital, 3010 Bern, Switzerland;
| | - Kilian Weigand
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (J.G.); (G.P.); (M.M.); (D.S.); (K.W.)
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (J.G.); (G.P.); (M.M.); (D.S.); (K.W.)
| |
Collapse
|