1
|
Ishimoto T, Kosumi H, Natsuga K, Yamaguchi Y. Nail growth arrest under low body temperature during hibernation. J Physiol Sci 2025; 74:27. [PMID: 39842997 PMCID: PMC11055321 DOI: 10.1186/s12576-024-00919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/06/2024] [Indexed: 04/29/2024]
Abstract
Growth and differentiation are reduced or stopped during hibernation, an energy conserving strategy in harsh seasons by lowered metabolism and body temperature. However, few studies evaluated this in a same individual using a non-invasive method. In this study, we applied a non-invasive tracking method of the nail growth throughout the hibernation period in the same hibernating animals, the Syrian hamster (Mesocricetus auratus). We found that nail growth was markedly suppressed during the hibernation period but rapidly recovered by the exit from the hibernation period. Our data suggest that nail growth was arrested during deep torpor, a hypometabolic and hypothermic state, but recovered during periodic arousal, a euthermic phase. Consistent with this, nail stem cells located in the nail matrix did not exit the cell cycle in the deep torpor. Thus, hibernation stops nail growth in a body temperature-dependent manner.
Collapse
Affiliation(s)
- Taiga Ishimoto
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan; Department of Neuroscience for Metabolic Control, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Hideyuki Kosumi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Yoshifumi Yamaguchi
- Hibernation Metabolism, Physiology and Development Group, Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan; Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan; Inamori Research Institute for Science Fellowship (InaRIS), Kyoto, Japan.
| |
Collapse
|
2
|
Ingelson-Filpula WA, Kübber-Heiss A, Painer J, Stalder G, Hadj-Moussa H, Bertile F, Habold C, Giroud S, Storey KB. The role of microRNA in the regulation of hepatic metabolism and energy-expensive processes in the hibernating dormouse. Cryobiology 2025; 118:105191. [PMID: 39732156 DOI: 10.1016/j.cryobiol.2024.105191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
The garden dormouse (Eliomys quercinus) is a fat-storing mammal that undergoes annual periods of hibernation to mitigate the effects of food scarcity, low ambient temperatures, and reduced photoperiod that characterize winter. Like other hibernating species, this animal suppresses its metabolic rate by downregulating nonessential genes and processes in order to prolong available energy stores and limit waste accumulation throughout the season. MicroRNAs (miRNAs) are short, single-stranded, noncoding RNAs that bind to mRNA and mediate post-transcriptional suppression, making miRNA ideal for modulating widespread changes in gene expression, including global downregulation typified by metabolic rate depression. Using next-generation sequencing, we analyzed an RNA-seq dataset to determine which miRNAs are differentially regulated during hibernation in the dormouse liver. We found that the expression of 19 miRNAs was altered during hibernation; however, only one major miRNA (miR-34a-5p) remained significantly downregulated after correcting for false discovery rate. Gene Ontology, KEGG Pathway Analysis, and DIANA-miRPath predicted that energy metabolism, nuclear-related functions such as histone binding, chromatin- and chromosomal binding, and the cell cycle are processes that may be differentially regulated during hibernation due to miRNA regulation. Taken together, our data suggest that miRNA influence appears to be strongly directed toward suppressing energy-intensive processes in the nucleus hence contributing to extend the animal's endogenous fuel reserves for the duration of hibernation.
Collapse
Affiliation(s)
- W Aline Ingelson-Filpula
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| | - Anna Kübber-Heiss
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Johanna Painer
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Gabrielle Stalder
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Hanane Hadj-Moussa
- The Babraham Institute, Babraham Hall House, Babraham, Cambridge, CB22 3AT, United Kingdom
| | - Fabrice Bertile
- University of Strasbourg, CNRS, IPHC, UMR, 7178, Laboratoire de Spectrométrie de Masse Bio-Organique, Strasbourg, France
| | - Caroline Habold
- University of Strasbourg, CNRS, IPHC, UMR, 7178, Ecology, Physiology & Ethology Department, Strasbourg, France
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria.
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|
3
|
Raval K, Jamshidi N, Seyran B, Salwinski L, Pillai R, Yang L, Ma F, Pellegrini M, Shin J, Yang X, Tudzarova S. Dysfunctional β-cell longevity in diabetes relies on energy conservation and positive epistasis. Life Sci Alliance 2024; 7:e202402743. [PMID: 39313296 PMCID: PMC11420665 DOI: 10.26508/lsa.202402743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Long-lived PFKFB3-expressing β-cells are dysfunctional partly because of prevailing glycolysis that compromises metabolic coupling of insulin secretion. Their accumulation in type 2 diabetes (T2D) appears to be related to the loss of apoptotic competency of cell fitness competition that maintains islet function by favoring constant selection of healthy "winner" cells. To investigate how PFKFB3 can disguise the competitive traits of dysfunctional "loser" β-cells, we analyzed the overlap between human β-cells with bona fide "loser signature" across diabetes pathologies using the HPAP scRNA-seq and spatial transcriptomics of PFKFB3-positive β-cells from nPOD T2D pancreata. The overlapping transcriptional profile of "loser" β-cells was represented by down-regulated ribosomal biosynthesis and genes encoding for mitochondrial respiration. PFKFB3-positive "loser" β-cells had the reduced expression of HLA class I and II genes. Gene-gene interaction analysis revealed that PFKFB3 rs1983890 can interact with the anti-apoptotic gene MAIP1 implicating positive epistasis as a mechanism for prolonged survival of "loser" β-cells in T2D. Inhibition of PFKFB3 resulted in the clearance of dysfunctional "loser" β-cells leading to restored glucose tolerance in the mouse model of T2D.
Collapse
Affiliation(s)
- Kavit Raval
- Hillblom Islet Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Neema Jamshidi
- Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Berfin Seyran
- Hillblom Islet Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Lukasz Salwinski
- Molecular Cell and Developmental Biology, College of Life Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Raju Pillai
- Department of Pathology, City-of-Hope, Duarte, CA, USA
| | - Lixin Yang
- Department of Pathology, City-of-Hope, Duarte, CA, USA
| | - Feiyang Ma
- Molecular Cell and Developmental Biology, College of Life Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Molecular Cell and Developmental Biology, College of Life Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Juliana Shin
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Xia Yang
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Slavica Tudzarova
- Hillblom Islet Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Sandy LK, Fanson KV, Griffiths SR, Robert KA, Palme R, Dimovski AM. Non-invasive monitoring of adrenocortical activity in the Gould's wattled bat (Chalinolobus gouldii). Gen Comp Endocrinol 2024; 359:114619. [PMID: 39368757 DOI: 10.1016/j.ygcen.2024.114619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Although bats are the second most species-rich mammalian order, very little is known about their endocrine physiology. Glucocorticoids (GCs) are commonly associated with the stress response, but also modulate vital physiological functions which help animals adapt to their environment. Understanding normal patterns of adrenocortical activity can provide valuable insights into a species' fitness. Non-invasive hormone monitoring via faecal samples provides an integrated measure of adrenocortical activity while minimising stress on the animal but must be properly validated to ensure reliable results. The goal of this study was to validate an enzyme immunoassay for monitoring faecal glucocorticoid metabolites (FGMs) in a common Australian insectivorous bat species, the Gould's wattled bat (Chalinolobus gouldii). We compared the performance of five assays for monitoring changes in FGMs following capture and transfer of C.gouldii from the wild to captivity. Four of the five assays detected a significant increase in FGMs following capture, but the magnitude of the increase and consistency across individuals differed considerably. We selected the UVM-69a assay as the best performing assay to then describe normative patterns of adrenocortical activity in the species. Males had higher FGM levels than females, and juveniles had higher FGM levels than adults. Individuals with poorer body condition had higher FGM levels. We also demonstrate seasonal patterns of FGMs with higher levels in March and April corresponding with reproductive up-regulation and lower levels in May and November. Our study is the first of its kind to examine adrenocortical activity in an Australian insectivorous bat and provides a valuable tool for studying this species. Understanding adrenal function in common species such as C.gouldii can shed light on the physiological mechanisms facilitating survival and success in changing environments.
Collapse
Affiliation(s)
- Lauren K Sandy
- School of Agriculture, Biomedicine & Environment, La Trobe University, Melbourne 3086, Australia
| | - Kerry V Fanson
- School of Agriculture, Biomedicine & Environment, La Trobe University, Melbourne 3086, Australia
| | - Stephen R Griffiths
- School of Agriculture, Biomedicine & Environment, La Trobe University, Melbourne 3086, Australia; Research Centre for Future Landscapes, La Trobe University, Melbourne 3086, Australia
| | - Kylie A Robert
- School of Agriculture, Biomedicine & Environment, La Trobe University, Melbourne 3086, Australia; Research Centre for Future Landscapes, La Trobe University, Melbourne 3086, Australia
| | - Rupert Palme
- Department of Bio Sciences and Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Alicia M Dimovski
- School of Agriculture, Biomedicine & Environment, La Trobe University, Melbourne 3086, Australia; Research Centre for Future Landscapes, La Trobe University, Melbourne 3086, Australia.
| |
Collapse
|
5
|
Stryjek R, Parsons MH, Bebas P. Insights into tail-belting by wild mice encourages fresh perspectives on physiological mechanisms that safeguard mammal tissues from freezing. Sci Rep 2024; 14:28933. [PMID: 39578524 PMCID: PMC11584707 DOI: 10.1038/s41598-024-79594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
We investigated tail-belting (TB), the newly-discovered freeze avoidance behavior among wild rodents. When temperatures dropped to -6 °C, wild mice (Apodemus agrarius and Apodemus flavicollis) were observed curling their tails inward and positioning it on the back. A literature search suggested TB had never been documented, presumably because rodents, especially in the laboratory, are seldomly assayed under cold stress. Due to the infrequent occurrence of the behavior, we used infrared and thermal cameras to confirm observations. We also collected tail-skin samples to investigate whether any physiological mechanisms might co-occur with TB. If such mechanisms were found, they could inform wider debate involving freeze protection among mammals, and could potentially lead to understanding mammal susceptibility or resilience to sudden temperature changes such as those associated with climate change. Lastly, we scored behaviors by bank voles (Myodes glareolus) which unexpectedly visited chambers. Across four winters, we observed TB in both Apodemus species during subzero conditions, but bank voles never performed the behavior. We also confirmed that TB occurs as an adaptive reflex which warms the tail. From tissue samples, we found that free amino acids, peptides, and glycoproteins were significantly higher during cold-stress. Thus, TB may have been accompanied by the expression of cold-protective proteins which ostensibly enable the peripheral body parts of mammals to survive temperatures well below 0 °C. These findings should inspire new dialogue regarding the role of lipids in tissues of peripheral organs in mammals. By extension, our findings may lead to the discovery of a putative cryoprotection mechanism among mammals.
Collapse
Affiliation(s)
- Rafal Stryjek
- Institute of Psychology, Polish Academy of Sciences, Jaracza 1, 00-378, Warsaw, Poland.
| | - Michael H Parsons
- Department of Biological Sciences, Fordham University, 441 East Fordham Road, Bronx, NY, USA
- Centre for Urban Ecological Solutions, LLC Spring, Houston, TX, USA
| | - Piotr Bebas
- Department of Animal Physiology, Faculty of Biology, Institute of Experimental Zoology, University of Warsaw, 1 Miecznikowa Str, 02-096, Warsaw, Poland.
| |
Collapse
|
6
|
Salucci S, Hitrec T, Piscitiello E, Occhinegro A, Alberti L, Taddei L, Burattini S, Luppi M, Tupone D, Amici R, Faenza I, Cerri M. Multiorgan ultrastructural changes in rats induced in synthetic torpor. Front Physiol 2024; 15:1451644. [PMID: 39628940 PMCID: PMC11611833 DOI: 10.3389/fphys.2024.1451644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024] Open
Abstract
Torpor is a state used by several mammals to survive harsh winters and avoid predation, characterized by a drastic reduction in metabolic rate followed by a decrease in body temperature, heart rate, and many physiological variables. During torpor, all organs and systems must adapt to the new low-energy expenditure conditions to preserve physiological homeostasis. These adaptations may be exploited in a translational perspective in several fields. Recently, many features of torpor were shown to be mimicked in non-hibernators by the inhibition of neurons within the brainstem region of the Raphe Pallidus. The physiological resemblance of this artificial state, called synthetic torpor, with natural torpor has so far been described only in physiological terms, but no data have been shown regarding the induced morphological changes. Here, we show the first description of the ultrastructural changes in the liver, kidney, lung, skeletal muscle, and testis induced by a 6-hours inhibition of Raphe Pallidus neurons in a non-hibernating species, the rat.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Timna Hitrec
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Emiliana Piscitiello
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Alessandra Occhinegro
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Luca Alberti
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Ludovico Taddei
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Sabrina Burattini
- Department of Biomolecular Sciences, Carlo Bo Urbino University, Urbino, Italy
| | - Marco Luppi
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Domenico Tupone
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Roberto Amici
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Irene Faenza
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Matteo Cerri
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Fregin B, Hossain MF, Biedenweg D, Friedrichs V, Balkema-Buschmann A, Bokelmann M, Lehnert K, Mokbel D, Aland S, Scholz CC, Lehmann P, Otto O, Kerth G. Thermomechanical properties of bat and human red blood cells-Implications for hibernation. Proc Natl Acad Sci U S A 2024; 121:e2405169121. [PMID: 39401351 PMCID: PMC11513926 DOI: 10.1073/pnas.2405169121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/27/2024] [Indexed: 10/30/2024] Open
Abstract
Hibernation is a widespread and highly efficient mechanism to save energy in mammals. However, one major challenge of hibernation is maintaining blood circulation at low body temperatures, which strongly depends on the viscoelastic properties of red blood cells (RBCs). Here, we examined at physiologically relevant timescales the thermomechanical properties of hundreds of thousands of individual RBCs from the hibernating common noctule bat (Nyctalus noctula), the nonhibernating Egyptian fruit bat (Rousettus aegyptiacus), and humans (Homo sapiens). We exposed RBCs to temperatures encountered during normothermia and hibernation and found a significant increase in elasticity and viscosity with decreasing temperatures. Our data demonstrate that temperature adjustment of RBCs is mainly driven by membrane properties and not the cytosol while viscous dissipation in the membrane of both bat species exceeds the one in humans by a factor of 15. Finally, our results show that RBCs from both bat species reveal a transition to a more viscous-like state when temperature decreases. This process on a minute timescale has an effect size that is comparable with fluctuations in RBC viscoelasticity over the course of the year, implying that environmental factors, such as diets, have a lower impact on the capability of RBCs to respond to different temperatures than general physical properties of the cell membrane. In summary, our findings suggest membrane viscoelasticity as a promising target for identifying mechanisms that could be manipulated to ensure blood circulation at low body temperatures in humans, which may be one first step toward safe synthetic torpor in medicine and space flight.
Collapse
Affiliation(s)
- Bob Fregin
- Institute of Physics, University of Greifswald, Greifswald17489, Germany
- German Center for Cardiovascular Research, Partner Site Greifswald, Greifswald17489, Germany
| | - Mohammed Faruq Hossain
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald17489, Germany
| | - Doreen Biedenweg
- Institute of Physics, University of Greifswald, Greifswald17489, Germany
| | | | | | - Marcel Bokelmann
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems17493, Germany
| | - Kristin Lehnert
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald17475, Germany
| | - Dominic Mokbel
- Institute of Numerical Mathematics and Optimisation, Technical University Bergakademie Freiberg, Freiberg09599, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
| | - Sebastian Aland
- Institute of Numerical Mathematics and Optimisation, Technical University Bergakademie Freiberg, Freiberg09599, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
| | - Carsten C. Scholz
- Institute of Physiology, University Medicine Greifswald, Greifswald17489, Germany
| | - Philipp Lehmann
- Animal Physiology, Zoological Institute and Museum, University of Greifswald, Greifswald17489, Germany
| | - Oliver Otto
- Institute of Physics, University of Greifswald, Greifswald17489, Germany
- German Center for Cardiovascular Research, Partner Site Greifswald, Greifswald17489, Germany
| | - Gerald Kerth
- Applied Zoology and Nature Conservation, Zoological Institute and Museum, University of Greifswald, Greifswald17489, Germany
| |
Collapse
|
8
|
Quintero‐Galvis JF, Saenz‐Agudelo P, D'Elía G, Nespolo RF. Local adaptation of Dromiciops marsupials (Microbiotheriidae) from southern South America: Implications for species management facing climate change. Ecol Evol 2024; 14:e70355. [PMID: 39371267 PMCID: PMC11450259 DOI: 10.1002/ece3.70355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
The two species of the microbiotheriid marsupial genus Dromiciops (Dromiciops bozinovici: "Panchos's monito del monte" and Dromiciops gliroides: "monito del monte") exhibit a marked latitudinal genetic differentiation. Nevertheless, it is unclear whether this differentiation results from neutral processes or can be explained, to some extent, by local adaptation to different environmental conditions. Here, we used an SNP panel gathered by Rad-seq and searched for footprints of local adaptation (putative loci under selection) by exploring genetic associations with environmental variables in the two species of Dromiciops in Chilean and Argentinean populations. We applied three methods for detecting outlier SNPs and two genotype-environment associations approaches to quantify associations between allelic frequencies and environmental variables. Both species display strong genetic structure. D. bozinovici exhibited three distinct genetic groups, marking the first report of such structuring in this species using SNPs. In contrast, D. gliroides displayed four genetic clusters, consistent with previous studies. Both species exhibited an association of their genetic structure with environmental variables. D. bozinovici exhibited significant associations of allelic frequencies with elevation, precipitation during the warmest periods, and seasonality in the thermal regime. For D. gliroides, genetic variation appeared to be associated with more variables than D. bozinovici, including precipitation and temperature-related variables, isothermality, and elevation. All the outlier SNPs were mapped to the D. gliroides reference genome to explore if they fell within functionally known genes. These results represent a necessary first step toward identifying the genome regions that harbor genes associated with climate adaptations in Dromiciops. Notably, we identified genes involved in various functions, including carbohydrate synthesis (ALG8), muscle and neuronal regulation (MEF2D), and stress responses (PTGES3). Ultimately, this study contributes valuable insights that can inform targeted conservation strategies aimed at preserving the genetic diversity of Dromiciops in the face of environmental challenges.
Collapse
Affiliation(s)
- Julian F. Quintero‐Galvis
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Millennium Nucleus of Patagonian Limit of Life (LiLi)ValdiviaChile
| | - Pablo Saenz‐Agudelo
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Millenium Nucleus for Ecology and Conservation of Temperate Mesophotic Reefs (NUTME)Las CrucesChile
| | - Guillermo D'Elía
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Colección de MamíferosUniversidad Austral de ChileValdiviaChile
| | - Roberto F. Nespolo
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Millennium Nucleus of Patagonian Limit of Life (LiLi)ValdiviaChile
- Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias BiológicasUniversidad Católica de ChileSantiagoChile
- Millennium Institute for Integrative Biology (iBio)SantiagoChile
| |
Collapse
|
9
|
Cliffe RN, Ewart HE, Scantlebury DM, Kennedy S, Avey-Arroyo J, Mindich D, Wilson RP. Sloth metabolism may make survival untenable under climate change scenarios. PeerJ 2024; 12:e18168. [PMID: 39351373 PMCID: PMC11441404 DOI: 10.7717/peerj.18168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Although climate change is predicted to have a substantial effect on the energetic requirements of organisms, the longer-term implications are often unclear. Sloths are limited by the rate at which they can acquire energy and are unable to regulate core body temperature (Tb) to the extent seen in most mammals. Therefore, the metabolic impacts of climate change on sloths are expected to be profound. Here we use indirect calorimetry to measure the oxygen consumption (VO2) and Tb of highland and lowland two-fingered sloths (Choloepus hoffmanni) when exposed to a range of different ambient temperatures (Ta) (18 °C -34 °C), and additionally record changes in Tb and posture over several days in response to natural fluctuations in Ta. We use the resultant data to predict the impact of future climate change on the metabolic rate and Tb of the different sloth populations. The metabolic responses of sloths originating from the two sites differed at high Ta's, with lowland sloths invoking metabolic depression as temperatures rose above their apparent 'thermally-active zone' (TAZ), whereas highland sloths showed increased RMR. Based on climate change estimates for the year 2100, we predict that high-altitude sloths are likely to experience a substantial increase in metabolic rate which, due to their intrinsic energy processing limitations and restricted geographical plasticity, may make their survival untenable in a warming climate.
Collapse
Affiliation(s)
- Rebecca N Cliffe
- The Sloth Conservation Foundation, Hayfield, Derbyshire, United Kingdom
- Swansea Lab for Animal Movement, Biosciences, College of Science, Swansea University, Swansea, Wales, United Kingdom
| | - Heather E Ewart
- The Sloth Conservation Foundation, Hayfield, Derbyshire, United Kingdom
- School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - David M Scantlebury
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Sarah Kennedy
- The Sloth Conservation Foundation, Hayfield, Derbyshire, United Kingdom
| | | | | | - Rory P Wilson
- Swansea Lab for Animal Movement, Biosciences, College of Science, Swansea University, Swansea, Wales, United Kingdom
| |
Collapse
|
10
|
Ferris E, Gonzalez Murcia JD, Cristina Rodriguez A, Steinwand S, Stacher Hörndli C, Traenkner D, Maldonado-Catala PJ, Gregg C. Genomic Convergence in Hibernating Mammals Elucidates the Genetics of Metabolic Regulation in the Hypothalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600891. [PMID: 38979381 PMCID: PMC11230405 DOI: 10.1101/2024.06.26.600891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Elucidating the genetic basis of mammalian metabolism could help define mechanisms central to health and disease. Here, we define conserved cis-regulatory elements (CREs) and programs for mammalian metabolic control. We delineate gene expression and chromatin responses in the mouse hypothalamus for 7 steps of the Fed-to-Fasted-to-Refed (FFR) response process. Comparative genomics of hibernating versus non-hibernating lineages then illuminates cis-elements showing convergent changes in hibernators. Hibernators accumulated loss-of-function effects for specific CREs regulating hypothalamic FFR responses. Multi-omics approaches pinpoint key CREs, genes, regulatory programs, and cell types in the divergence of hibernating and homeothermic lineages. The refeeding period after extended fasting is revealed as one critical period of chromatin remodeling with convergent genomic changes. This genetic framework is a step toward harnessing hibernator adaptations in medicine.
Collapse
Affiliation(s)
- Elliott Ferris
- Departments of Neurobiology, University of Utah; Salt Lake City, 84105, USA
| | | | | | - Susan Steinwand
- Departments of Neurobiology, University of Utah; Salt Lake City, 84105, USA
| | | | - Dimitri Traenkner
- Departments of Neurobiology, University of Utah; Salt Lake City, 84105, USA
| | - Pablo J Maldonado-Catala
- Departments of Neurobiology, University of Utah; Salt Lake City, 84105, USA
- Biomedical Informatics, University of Utah; Salt Lake City, 84105, USA
| | - Christopher Gregg
- Departments of Neurobiology, University of Utah; Salt Lake City, 84105, USA
- Human Genetics, University of Utah; Salt Lake City, 84105, USA
| |
Collapse
|
11
|
Steinwand S, Stacher Hörndli C, Ferris E, Emery J, Gonzalez Murcia JD, Cristina Rodriguez A, Leydsman TC, Chaix A, Thomas A, Davey C, Gregg C. Conserved Noncoding Cis-Elements Associated with Hibernation Modulate Metabolic and Behavioral Adaptations in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600851. [PMID: 38979203 PMCID: PMC11230392 DOI: 10.1101/2024.06.26.600851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Our study elucidates functional roles for conserved cis-elements associated with the evolution of mammalian hibernation. Genomic analyses found topologically associated domains (TADs) that disproportionately accumulated convergent genomic changes in hibernators, including the TAD for the Fat Mass & Obesity (Fto) locus. Some hibernation-linked cis-elements in this TAD form regulatory contacts with multiple neighboring genes. Knockout mice for these cis-elements exhibit Fto, Irx3, and Irx5 gene expression changes, impacting hundreds of genes downstream. Profiles of pre-torpor, torpor, and post-torpor phenotypes found distinct roles for each cis-element in metabolic control, while a high caloric diet uncovered different obesogenic effects. One cis-element promoting a lean phenotype influences foraging behaviors throughout life, affecting specific behavioral sequences. Thus, convergent evolution in hibernators pinpoints functional genetic mechanisms of mammalian metabolic control.
Collapse
Affiliation(s)
- Susan Steinwand
- Department of Neurobiology, University of Utah; Salt Lake City, 84105, USA
| | | | - Elliott Ferris
- Department of Neurobiology, University of Utah; Salt Lake City, 84105, USA
| | - Jared Emery
- Department of Neurobiology, University of Utah; Salt Lake City, 84105, USA
| | | | | | - Tyler C. Leydsman
- Department of Neurobiology, University of Utah; Salt Lake City, 84105, USA
| | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah; Salt Lake City, 84105, USA
| | - Alun Thomas
- Division of Epidemiology, University of Utah; Salt Lake City, 84105, USA
- Study Design and Biostatistics Center, University of Utah; Salt Lake City, 84105, USA
| | - Crystal Davey
- Mutation Generation & Detection Core Facility, University of Utah; Salt Lake City, 84105, USA
| | - Christopher Gregg
- Department of Neurobiology, University of Utah; Salt Lake City, 84105, USA
- Department of Human Genetics, University of Utah; Salt Lake City, 84105, USA
| |
Collapse
|
12
|
Giroud S, Yamaguchi Y, Terrien J, Henning RH. Editorial: Torpor and hibernation: metabolic and physiological paradigms. Front Physiol 2024; 15:1441872. [PMID: 38957214 PMCID: PMC11217508 DOI: 10.3389/fphys.2024.1441872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Affiliation(s)
- Sylvain Giroud
- Energetics Lab, Department of Biology, Northern Michigan University, Marquette, MI, United States
| | - Yoshifumi Yamaguchi
- Hibernation Metabolism, Physiology, and Development Group, Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Jeremy Terrien
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7179, Brunoy, France
| | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
13
|
Nespolo RF, Quintero-Galvis JF, Fontúrbel FE, Cubillos FA, Vianna J, Moreno-Meynard P, Rezende EL, Bozinovic F. Climate change and population persistence in a hibernating marsupial. Proc Biol Sci 2024; 291:20240266. [PMID: 38920109 DOI: 10.1098/rspb.2024.0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
Climate change has physiological consequences on organisms, ecosystems and human societies, surpassing the pace of organismal adaptation. Hibernating mammals are particularly vulnerable as winter survival is determined by short-term physiological changes triggered by temperature. In these animals, winter temperatures cannot surpass a certain threshold, above which hibernators arouse from torpor, increasing several fold their energy needs when food is unavailable. Here, we parameterized a numerical model predicting energy consumption in heterothermic species and modelled winter survival at different climate change scenarios. As a model species, we used the arboreal marsupial monito del monte (genus Dromiciops), which is recognized as one of the few South American hibernators. We modelled four climate change scenarios (from optimistic to pessimistic) based on IPCC projections, predicting that northern and coastal populations (Dromiciops bozinovici) will decline because the minimum number of cold days needed to survive the winter will not be attained. These populations are also the most affected by habitat fragmentation and changes in land use. Conversely, Andean and other highland populations, in cooler environments, are predicted to persist and thrive. Given the widespread presence of hibernating mammals around the world, models based on simple physiological parameters, such as this one, are becoming essential for predicting species responses to warming in the short term.
Collapse
Affiliation(s)
- Roberto F Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile , Valdivia, Chile
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
- Center of Applied Ecology and Sustainability (CAPES) , Santiago, Chile
| | - Julian F Quintero-Galvis
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile , Valdivia, Chile
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
| | - Francisco E Fontúrbel
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso , Valparaíso, Chile
| | - Francisco A Cubillos
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
- Departamento de Biología y Química, Universidad de Santiago de Chile , Santiago, Chile
- Millennium Institute for Integrative Biology (iBio) , Santiago, Chile
| | - Juliana Vianna
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas , Santiago, Chile
- Departamento de Ecosistemas y Medio Ambiente, Millennium Institute Center for Genome Regulation (CRG), Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Paulo Moreno-Meynard
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
- Centro de Investigación en Ecosistemas de la Patagonia CIEP , Coyhaique, Chile
| | - Enrico L Rezende
- Center of Applied Ecology and Sustainability (CAPES) , Santiago, Chile
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas , Santiago, Chile
| | - Francisco Bozinovic
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
- Center of Applied Ecology and Sustainability (CAPES) , Santiago, Chile
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas , Santiago, Chile
| |
Collapse
|
14
|
Lewis CTA, Melhedegaard EG, Ognjanovic MM, Olsen MS, Laitila J, Seaborne RAE, Gronset M, Zhang C, Iwamoto H, Hessel AL, Kuehn MN, Merino C, Amigo N, Frobert O, Giroud S, Staples JF, Goropashnaya AV, Fedorov VB, Barnes B, Toien O, Drew K, Sprenger RJ, Ochala J. Remodeling of skeletal muscle myosin metabolic states in hibernating mammals. eLife 2024; 13:RP94616. [PMID: 38752835 PMCID: PMC11098559 DOI: 10.7554/elife.94616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77-107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.
Collapse
Affiliation(s)
| | | | - Marija M Ognjanovic
- Department of Biomedical Sciences, University of CopenhagenCopenhagenDenmark
| | - Mathilde S Olsen
- Department of Biomedical Sciences, University of CopenhagenCopenhagenDenmark
| | - Jenni Laitila
- Department of Biomedical Sciences, University of CopenhagenCopenhagenDenmark
| | - Robert AE Seaborne
- Department of Biomedical Sciences, University of CopenhagenCopenhagenDenmark
- Centre for Human and Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King’s College LondonLondonUnited Kingdom
| | - Magnus Gronset
- Department of Cellular and Molecular Medicine, University of CopenhagenCopenhagenDenmark
| | - Changxin Zhang
- Department of Computational Medicine and Bioinformatics, University of MichiganAnn ArborUnited States
| | - Hiroyuki Iwamoto
- Spring-8, Japan Synchrotron Radiation Research InstituteHyogoJapan
| | - Anthony L Hessel
- Institute of Physiology II, University of MuensterMuensterGermany
- Accelerated Muscle Biotechnologies ConsultantsBostonUnited States
| | - Michel N Kuehn
- Institute of Physiology II, University of MuensterMuensterGermany
- Accelerated Muscle Biotechnologies ConsultantsBostonUnited States
| | | | | | - Ole Frobert
- Department of Clinical Medicine, Faculty of Health, Aarhus UniversityAarhusDenmark
- Faculty of Health, Department of Cardiology, Örebro UniversityÖrebroSweden
| | - Sylvain Giroud
- Energetics Lab, Department of Biology, Northern Michigan UniversityMarquetteUnited States
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine ViennaViennaAustria
| | - James F Staples
- Department of Biology, University of Western OntarioLondonCanada
| | - Anna V Goropashnaya
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska FairbanksFairbanksUnited States
| | - Vadim B Fedorov
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska FairbanksFairbanksUnited States
| | - Brian Barnes
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska FairbanksFairbanksUnited States
| | - Oivind Toien
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska FairbanksFairbanksUnited States
| | - Kelly Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska FairbanksFairbanksUnited States
| | - Ryan J Sprenger
- Department of Zoology, University of British ColumbiaVancouverCanada
| | - Julien Ochala
- Department of Biomedical Sciences, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
15
|
Sone M, Yamaguchi Y. Cold resistance of mammalian hibernators ∼ a matter of ferroptosis? Front Physiol 2024; 15:1377986. [PMID: 38725569 PMCID: PMC11079186 DOI: 10.3389/fphys.2024.1377986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Most mammals adapt thermal physiology around 37°C and large deviations from their range, as observed in severe hypothermia and hyperthermia, resulting in organ dysfunction and individual death. A prominent exception is mammalian hibernation. Mammalian hibernators resist the long-term duration of severe low body temperature that is lethal to non-hibernators, including humans and mice. This cold resistance is supported, at least in part, by intrinsic cellular properties, since primary or immortalized cells from several hibernator species can survive longer than those from non-hibernators when cultured at cold temperatures. Recent studies have suggested that cold-induced cell death fulfills the hallmarks of ferroptosis, a type of necrotic cell death that accompanies extensive lipid peroxidation by iron-ion-mediated reactions. In this review, we summarize the current knowledge of cold resistance of mammalian hibernators at the cellular and molecular levels to organ and systemic levels and discuss key pathways that confer cold resistance in mammals.
Collapse
Affiliation(s)
- Masamitsu Sone
- Hibernation Metabolism, Physiology and Development Group, Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Yoshifumi Yamaguchi
- Hibernation Metabolism, Physiology and Development Group, Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
16
|
Blanco MB, Smith DL, Greene LK, Yoder AD, Ehmke EE, Lin J, Klopfer PH. Telomere dynamics during hibernation in a tropical primate. J Comp Physiol B 2024; 194:213-219. [PMID: 38466418 DOI: 10.1007/s00360-024-01541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 03/13/2024]
Abstract
Hibernation is a widespread metabolic strategy among mammals for surviving periods of food scarcity. During hibernation, animals naturally alternate between metabolically depressed torpor bouts and energetically expensive arousals without ill effects. As a result, hibernators are promising models for investigating mechanisms that buffer against cellular stress, including telomere protection and restoration. In non-hibernators, telomeres, the protective structural ends of chromosomes, shorten with age and metabolic stress. In temperate hibernators, however, telomere shortening and elongation can occur in response to changing environmental conditions and associated metabolic state. We investigate telomere dynamics in a tropical hibernating primate, the fat-tailed dwarf lemur (Cheirogaleus medius). In captivity, these lemurs can hibernate when maintained under cold temperatures (11-15 °C) with limited food provisioning. We study telomere dynamics in eight fat-tailed dwarf lemurs at the Duke Lemur Center, USA, from samples collected before, during, and after the hibernation season and assayed via qPCR. Contrary to our predictions, we found that telomeres were maintained or even lengthened during hibernation, but shortened immediately thereafter. During hibernation, telomere lengthening was negatively correlated with time in euthermia. Although preliminary in scope, our findings suggest that there may be a preemptive, compensatory mechanism to maintain telomere integrity in dwarf lemurs during hibernation. Nevertheless, telomere shortening immediately afterward may broadly result in similar outcomes across seasons. Future studies could profitably investigate the mechanisms that offset telomere shortening within and outside of the hibernation season and whether those mechanisms are modulated by energy surplus or crises.
Collapse
Affiliation(s)
- M B Blanco
- Duke Lemur Center, Durham, NC, 27705, USA.
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| | - D L Smith
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94143, USA
| | - L K Greene
- Duke Lemur Center, Durham, NC, 27705, USA
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - A D Yoder
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - E E Ehmke
- Duke Lemur Center, Durham, NC, 27705, USA
| | - J Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94143, USA
| | - P H Klopfer
- Department of Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
17
|
Lewis CTA, Melhedegaard EG, Ognjanovic MM, Olsen MS, Laitila J, Seaborne RAE, Gronset MN, Zhang C, Iwamoto H, Hessel AL, Kuehn MN, Merino C, Amigo N, Frobert O, Giroud S, Staples JF, Goropashnaya AV, Fedorov VB, Barnes BM, Toien O, Drew KL, Sprenger RJ, Ochala J. Remodelling of Skeletal Muscle Myosin Metabolic States in Hibernating Mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.14.566992. [PMID: 38014200 PMCID: PMC10680686 DOI: 10.1101/2023.11.14.566992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20°C). Upon repeating loaded Mant-ATP chase experiments at 8°C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77-107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.
Collapse
|
18
|
Haugg E, Borner J, Stalder G, Kübber‐Heiss A, Giroud S, Herwig A. Comparative transcriptomics of the garden dormouse hypothalamus during hibernation. FEBS Open Bio 2024; 14:241-257. [PMID: 37925593 PMCID: PMC10839406 DOI: 10.1002/2211-5463.13731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023] Open
Abstract
Torpor or heterothermy is an energy-saving mechanism used by endotherms to overcome harsh environmental conditions. During winter, the garden dormouse (Eliomys quercinus) hibernates with multiday torpor bouts and body temperatures of a few degrees Celsius, interrupted by brief euthermic phases. This study investigates gene expression within the hypothalamus, the key brain area controlling energy balance, adding information on differential gene expression potentially relevant to orchestrate torpor. A de novo assembled transcriptome of the hypothalamus was generated from garden dormice hibernating under constant darkness without food and water at 5 °C. Samples were collected during early torpor, late torpor, and interbout arousal. During early torpor, 765 genes were differentially expressed as compared with interbout arousal. Twenty-seven pathways were over-represented, including pathways related to hemostasis, extracellular matrix organization, and signaling of small molecules. Only 82 genes were found to be differentially expressed between early and late torpor, and no pathways were over-represented. During late torpor, 924 genes were differentially expressed relative to interbout arousal. Despite the high number of differentially expressed genes, only 10 pathways were over-represented. Of these, eight were also observed to be over-represented when comparing early torpor and interbout arousal. Our results are largely consistent with previous findings in other heterotherms. The addition of a transcriptome of a novel species may help to identify species-specific and overarching torpor mechanisms through future species comparisons.
Collapse
Affiliation(s)
- Elena Haugg
- Institute of NeurobiologyUlm UniversityGermany
| | - Janus Borner
- Sackler Institute for Comparative GenomicsAmerican Museum of Natural HistoryNew YorkNYUSA
| | - Gabrielle Stalder
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife EcologyUniversity of Veterinary MedicineViennaAustria
| | - Anna Kübber‐Heiss
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife EcologyUniversity of Veterinary MedicineViennaAustria
| | - Sylvain Giroud
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife EcologyUniversity of Veterinary MedicineViennaAustria
- Energetics Lab, Department of BiologyNorthern Michigan UniversityMarquetteMIUSA
| | | |
Collapse
|
19
|
Liu C, Yu H, Li Z, Chen S, Li X, Chen X, Chen B. The future of artificial hibernation medicine: protection of nerves and organs after spinal cord injury. Neural Regen Res 2024; 19:22-28. [PMID: 37488839 PMCID: PMC10479867 DOI: 10.4103/1673-5374.375305] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/05/2023] [Accepted: 04/17/2023] [Indexed: 07/26/2023] Open
Abstract
Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries. At present, no effective clinical treatment exists. As one of the artificial hibernation techniques, mild hypothermia has preliminarily confirmed its clinical effect on spinal cord injury. However, its technical defects and barriers, along with serious clinical side effects, restrict its clinical application for spinal cord injury. Artificial hibernation is a future-oriented disruptive technology for human life support. It involves endogenous hibernation inducers and hibernation-related central neuromodulation that activate particular neurons, reduce the central constant temperature setting point, disrupt the normal constant body temperature, make the body "adapt" to the external cold environment, and reduce the physiological resistance to cold stimulation. Thus, studying the artificial hibernation mechanism may help develop new treatment strategies more suitable for clinical use than the cooling method of mild hypothermia technology. This review introduces artificial hibernation technologies, including mild hypothermia technology, hibernation inducers, and hibernation-related central neuromodulation technology. It summarizes the relevant research on hypothermia and hibernation for organ and nerve protection. These studies show that artificial hibernation technologies have therapeutic significance on nerve injury after spinal cord injury through inflammatory inhibition, immunosuppression, oxidative defense, and possible central protection. It also promotes the repair and protection of respiratory and digestive, cardiovascular, locomotor, urinary, and endocrine systems. This review provides new insights for the clinical treatment of nerve and multiple organ protection after spinal cord injury thanks to artificial hibernation. At present, artificial hibernation technology is not mature, and research faces various challenges. Nevertheless, the effort is worthwhile for the future development of medicine.
Collapse
Affiliation(s)
- Caiyun Liu
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research Center of Experimental Acupucture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haixin Yu
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research Center of Experimental Acupucture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhengchao Li
- Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, China
| | - Shulian Chen
- Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, China
| | - Xiaoyin Li
- Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, China
| | - Xuyi Chen
- Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, China
| | - Bo Chen
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research Center of Experimental Acupucture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Binhai New Area Hospital of TCM, Tianjin, China
- Fourth Teaching Hospital of Tianjin University of TCM, Tianjin, China
| |
Collapse
|
20
|
de Veij Mestdagh CF, Smit AB, Henning RH, van Kesteren RE. Mitochondrial Targeting against Alzheimer's Disease: Lessons from Hibernation. Cells 2023; 13:12. [PMID: 38201215 PMCID: PMC10778235 DOI: 10.3390/cells13010012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide and yet remains without effective therapy. Amongst the many proposed causes of AD, the mitochondrial cascade hypothesis is gaining attention. Accumulating evidence shows that mitochondrial dysfunction is a driving force behind synaptic dysfunction and cognitive decline in AD patients. However, therapies targeting the mitochondria in AD have proven unsuccessful so far, and out-of-the-box options, such as hibernation-derived mitochondrial mechanisms, may provide valuable new insights. Hibernators uniquely and rapidly alternate between suppression and re-activation of the mitochondria while maintaining a sufficient energy supply and without acquiring ROS damage. Here, we briefly give an overview of mitochondrial dysfunction in AD, how it affects synaptic function, and why mitochondrial targeting in AD has remained unsuccessful so far. We then discuss mitochondria in hibernation and daily torpor in mice, covering current advancements in hibernation-derived mitochondrial targeting strategies. We conclude with new ideas on how hibernation-derived dual mitochondrial targeting of both the ATP and ROS pathways may boost mitochondrial health and induce local synaptic protein translation to increase synaptic function and plasticity. Further exploration of these mechanisms may provide more effective treatment options for AD in the future.
Collapse
Affiliation(s)
- Christina F. de Veij Mestdagh
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.B.S.); (R.E.v.K.)
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
- Alzheimer Center Amsterdam, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.B.S.); (R.E.v.K.)
| | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Ronald E. van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.B.S.); (R.E.v.K.)
| |
Collapse
|
21
|
Wacker CB, Geiser F. The Rate of Cooling during Torpor Entry Drives Torpor Patterns in a Small Marsupial. Physiol Biochem Zool 2023; 96:393-404. [PMID: 38237188 DOI: 10.1086/727975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
AbstractTo maximize energy savings, entry into torpor should involve a fast reduction of metabolic rate and body temperature (Tb); that is, animals should thermoconform. However, animals often defend against the decrease in Tb via a temporary increase in thermoregulatory heat production, slowing the cooling process. We investigated how thermoregulating or thermoconforming during torpor entry affects temporal and thermoenergetic aspects in relation to body mass and age in juvenile and adult fat-tailed dunnarts (Sminthopsis crassicaudata; Marsupialia: Dasyuridae). During torpor entry, juvenile thermoconformers cooled twice as fast as and used less energy during cooling than juvenile thermoregulators. While both juvenile and adult thermoconformers had a lower minimum Tb, a lower torpor metabolic rate, and longer torpor bouts than thermoregulators, these differences were more pronounced in the juveniles. Rewarming from torpor took approximately twice as long for juvenile thermoconformers, and the costs of rewarming were greater. To determine the difference in average daily metabolic rate between thermoconformers and thermoregulators independent of body mass, we compared juveniles of a similar size (∼13 g) and similarly sized adults (∼17 g). The average daily metabolic rate was 7% (juveniles) and 17% (adults) less in thermoconformers than in thermoregulators, even though thermoconformers were active for longer. Our data suggest that thermoconforming during torpor entry provides an energetic advantage for both juvenile and adult dunnarts and may aid growth for juveniles. While thermoregulation during torpor entry is more costly, it still saves energy, and the higher Tb permits greater alertness and mobility and reduces the energetic cost of endogenous rewarming.
Collapse
|
22
|
Power ML, Ransome RD, Riquier S, Romaine L, Jones G, Teeling EC. Hibernation telomere dynamics in a shifting climate: insights from wild greater horseshoe bats. Proc Biol Sci 2023; 290:20231589. [PMID: 37817598 PMCID: PMC10565397 DOI: 10.1098/rspb.2023.1589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/10/2023] [Indexed: 10/12/2023] Open
Abstract
Hibernation is linked with various hypotheses to explain the extended lifespan of hibernating mammals compared with their non-hibernating counterparts. Studies on telomeres, markers of ageing and somatic maintenance, suggest telomere shortening slows during hibernation, and lengthening may reflect self-maintenance with favourable conditions. Bats in temperate zones adjust body temperatures during winter torpor to conserve energy and exploit mild conditions for foraging. Climate change may impact the hibernation cycle of bats, but more research is needed regarding the role of telomeres in understanding their response to a changing climate. Here, relative telomere length (rTL) was measured in the long-lived greater horseshoe bat Rhinolophus ferrumequinum (n = 223 individuals) over three winters, considering climatic conditions. Cross-sectional analyses revealed between-individual variation in rTL with a strong year effect, likely linked to varying weather conditions and foraging success. Additionally, within-individual increases of rTL occurred in 51% of consecutive measurements, with evidence of increasing telomerase expression during hibernation in this species. These findings highlight the beneficial effects of hibernation on telomeres and potential consequences of changing climatic conditions for long-lived temperate bats. Understanding the interplay between hibernation, telomeres, and climate can provide insights into the adaptive capacity and survival of bat populations facing environmental challenges.
Collapse
Affiliation(s)
- Megan L Power
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Roger D Ransome
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Sébastien Riquier
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Luke Romaine
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Gareth Jones
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Emma C Teeling
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| |
Collapse
|
23
|
Abarzúa T, Camus I, Ortiz F, Ñunque A, Cubillos FA, Sabat P, Nespolo RF. Modeling heterothermic fitness landscapes in a marsupial hibernator using changes in body composition. Oecologia 2023; 203:79-93. [PMID: 37798536 PMCID: PMC10615951 DOI: 10.1007/s00442-023-05452-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/16/2023] [Indexed: 10/07/2023]
Abstract
Hibernation is an adaptive strategy that allows animals to enter a hypometabolic state, conserving energy and enhancing their fitness by surviving harsh environmental conditions. However, addressing the adaptive value of hibernation, at the individual level and in natural populations, has been challenging. Here, we applied a non-invasive technique, body composition analysis by quantitative magnetic resonance (qMR), to calculate energy savings by hibernation in a population of hibernating marsupials (Dromiciops gliroides). Using outdoor enclosures installed in a temperate rainforest, and measuring qMR periodically, we determined the amount of fat and lean mass consumed during a whole hibernation cycle. With this information, we estimated the daily energy expenditure of hibernation (DEEH) at the individual level and related to previous fat accumulation. Using model selection approaches and phenotypic selection analysis, we calculated linear (directional, β), quadratic (stabilizing or disruptive, γ) and correlational (ρ) coefficients for DEEH and fat accumulation. We found significant, negative directional selection for DEEH (βDEEH = - 0.58 ± 0.09), a positive value for fat accumulation (βFAT = 0.34 ± 0.07), and positive correlational selection between both traits (ρDEEH × FAT = 0.24 ± 0.07). Then, individuals maximizing previous fat accumulation and minimizing DEEH were promoted by selection, which is visualized by a bi-variate selection surface estimated by generalized additive models. At the comparative level, results fall within the isometric allometry known for hibernation metabolic rate in mammals. Thus, by a combination of a non-invasive technique for body composition analysis and semi-natural enclosures, we were characterized the heterothermic fitness landscape in a semi-natural population of hibernators.
Collapse
Affiliation(s)
- Tamara Abarzúa
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Isidora Camus
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Felipe Ortiz
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Abel Ñunque
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
- Millenium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| | - Francisco A Cubillos
- Departamento de Biología y Química, Universidad de Santiago de Chile, Santiago, Chile
- Millenium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Pablo Sabat
- Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Center for Applied Ecology and Sustainability (CAPES), Departamento de Ecología Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto F Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile.
- Millenium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile.
- Center for Applied Ecology and Sustainability (CAPES), Departamento de Ecología Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
24
|
Blanco MB, Greene LK, Ellsaesser LN, Williams CV, Ostrowski CA, Davison MM, Welser K, Klopfer PH. Seasonal variation in glucose and insulin is modulated by food and temperature conditions in a hibernating primate. Front Physiol 2023; 14:1251042. [PMID: 37745231 PMCID: PMC10512831 DOI: 10.3389/fphys.2023.1251042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Feast-fast cycles allow animals to live in seasonal environments by promoting fat storage when food is plentiful and lipolysis when food is scarce. Fat-storing hibernators have mastered this cycle over a circannual schedule, by undergoing extreme fattening to stockpile fuel for the ensuing hibernation season. Insulin is intrinsic to carbohydrate and lipid metabolism and is central to regulating feast-fast cycles in mammalian hibernators. Here, we examine glucose and insulin dynamics across the feast-fast cycle in fat-tailed dwarf lemurs, the only obligate hibernator among primates. Unlike cold-adapted hibernators, dwarf lemurs inhabit tropical forests in Madagascar and hibernate under various temperature conditions. Using the captive colony at the Duke Lemur Center, we determined fasting glucose and insulin, and glucose tolerance, in dwarf lemurs across seasons. During the lean season, we maintained dwarf lemurs under stable warm, stable cold, or fluctuating ambient temperatures that variably included food provisioning or deprivation. Overall, we find that dwarf lemurs can show signatures of reversible, lean-season insulin resistance. During the fattening season prior to hibernation, dwarf lemurs had low glucose, insulin, and HOMA-IR despite consuming high-sugar diets. In the active season after hibernation, glucose, insulin, HOMA-IR, and glucose tolerance all increased, highlighting the metabolic processes at play during periods of weight gain versus weight loss. During the lean season, glucose remained low, but insulin and HOMA-IR increased, particularly in animals kept under warm conditions with daily food. Moreover, these lemurs had the greatest glucose intolerance in our study and had average HOMA-IR values consistent with insulin resistance (5.49), while those without food under cold (1.95) or fluctuating (1.17) temperatures did not. Remarkably low insulin in dwarf lemurs under fluctuating temperatures raises new questions about lipid metabolism when animals can passively warm and cool rather than undergo sporadic arousals. Our results underscore that seasonal changes in insulin and glucose tolerance are likely hallmarks of hibernating mammals. Because dwarf lemurs can hibernate under a range of conditions in captivity, they are an emerging model for primate metabolic flexibility with implications for human health.
Collapse
Affiliation(s)
- Marina B. Blanco
- Duke Lemur Center, Durham, NC, United States
- Department of Biology, Duke University, Durham, NC, United States
| | - Lydia K. Greene
- Duke Lemur Center, Durham, NC, United States
- Department of Biology, Duke University, Durham, NC, United States
| | | | | | | | | | - Kay Welser
- Duke Lemur Center, Durham, NC, United States
| | - Peter H. Klopfer
- Department of Biology, Duke University, Durham, NC, United States
| |
Collapse
|
25
|
Strandvik B, Qureshi AR, Painer J, Backman-Johansson C, Engvall M, Fröbert O, Kindberg J, Stenvinkel P, Giroud S. Elevated plasma phospholipid n-3 docosapentaenoic acid concentrations during hibernation. PLoS One 2023; 18:e0285782. [PMID: 37294822 PMCID: PMC10256182 DOI: 10.1371/journal.pone.0285782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/28/2023] [Indexed: 06/11/2023] Open
Abstract
Factors for initiating hibernation are unknown, but the condition shares some metabolic similarities with consciousness/sleep, which has been associated with n-3 fatty acids in humans. We investigated plasma phospholipid fatty acid profiles during hibernation and summer in free-ranging brown bears (Ursus arctos) and in captive garden dormice (Eliomys quercinus) contrasting in their hibernation patterns. The dormice received three different dietary fatty acid concentrations of linoleic acid (LA) (19%, 36% and 53%), with correspondingly decreased alpha-linolenic acid (ALA) (32%, 17% and 1.4%). Saturated and monounsaturated fatty acids showed small differences between summer and hibernation in both species. The dormice diet influenced n-6 fatty acids and eicosapentaenoic acid (EPA) concentrations in plasma phospholipids. Consistent differences between summer and hibernation in bears and dormice were decreased ALA and EPA and marked increase of n-3 docosapentaenoic acid and a minor increase of docosahexaenoic acid in parallel with several hundred percent increase of the activity index of elongase ELOVL2 transforming C20-22 fatty acids. The highest LA supply was unexpectantly associated with the highest transformation of the n-3 fatty acids. Similar fatty acid patterns in two contrasting hibernating species indicates a link to the hibernation phenotype and requires further studies in relation to consciousness and metabolism.
Collapse
Affiliation(s)
- Birgitta Strandvik
- Department of Biosciences and Nutrition, Karolinska Institutet NEO, Stockholm, Sweden
| | | | - Johanna Painer
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | | | - Martin Engvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ole Fröbert
- Department of Cardiology, Faculty of Health, Örebro University, Örebro, Sweden
- Department of Clinical Medicine, Aarhus University Health, Aarhus, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark
- StenoDiabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jonas Kindberg
- Department of Wildlife, Fish and Environmental Studies, University of Agricultural Sciences, Umeå, Sweden
- Norwegian Institute for Nature Research, Trondheim, Norway
| | - Peter Stenvinkel
- Division of Renal Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
26
|
Ma WX, Yuan PC, Zhang H, Kong LX, Lazarus M, Qu WM, Wang YQ, Huang ZL. Adenosine and P1 receptors: Key targets in the regulation of sleep, torpor, and hibernation. Front Pharmacol 2023; 14:1098976. [PMID: 36969831 PMCID: PMC10036772 DOI: 10.3389/fphar.2023.1098976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Graphical AbstractAdenosine mediates sleep, torpor and hibernation through P1 receptors. Recent reasearch has shown that P1 receptors play a vital role in the regulation of sleep-wake, torpor and hibernation-like states. In this review, we focus on the roles and neurobiological mechanisms of the CNS adenosine and P1 receptors in these three states. Among them, A1 and A2A receptors are key targets for sleep-wake regulation, A1Rs and A3Rs are very important for torpor induction, and activation of A1Rs is sufficient for hibernation-like state.
Collapse
Affiliation(s)
- Wei-Xiang Ma
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ping-Chuan Yuan
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Hui Zhang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Ling-Xi Kong
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Wei-Min Qu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Wei-Min Qu, ; Yi-Qun Wang, ; Zhi-Li Huang,
| | - Yi-Qun Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Wei-Min Qu, ; Yi-Qun Wang, ; Zhi-Li Huang,
| | - Zhi-Li Huang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Wei-Min Qu, ; Yi-Qun Wang, ; Zhi-Li Huang,
| |
Collapse
|
27
|
de Wit L, Hamberg MR, Ross AM, Goris M, Lie FF, Ruf T, Giroud S, Henning RH, Hut RA. Temperature Effects on DNA Damage during Hibernation. Physiol Biochem Zool 2023; 96:144-152. [PMID: 36921268 DOI: 10.1086/722904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractDuring multiday torpor, deep-hibernating mammals maintain a hypometabolic state where heart rate and ventilation are reduced to 2%-4% of euthermic rates. It is hypothesized that this ischemia-like condition may cause DNA damage through reactive oxygen species production. The reason for intermittent rewarming (arousal) during hibernation might be to repair the accumulated DNA damage. Because increasing ambient temperatures (Ta's) shortens torpor bout duration, we hypothesize that hibernating at higher Ta's will result in a faster accumulation of genomic DNA damage. To test this, we kept 39 male and female garden dormice at a Ta of either 5°C or 10°C and obtained tissue at 1, 4, and 8 d in torpor to assess DNA damage and recruitment of DNA repair markers in splenocytes. DNA damage in splenocytes measured by comet assay was significantly higher in almost all torpor groups than in summer euthermic groups. Damage accumulates in the first days of torpor at T a = 5 ° C (between days 1 and 4) but not at T a = 10 ° C . At the higher Ta, DNA damage is high at 24 h in torpor, indicating either a faster buildup of DNA damage at higher Ta's or an incomplete repair during arousals in dormice. At 5°C, recruitment of the DNA repair protein 53BP1 paralleled the increase in DNA damage over time during torpor. In contrast, after 1 d in torpor at 10°C, DNA damage levels were high, but 53BP1 was not recruited to the nuclear DNA yet. The data suggest a potential mismatch in the DNA damage/repair dynamics during torpor at higher Ta's.
Collapse
|
28
|
Abstract
AbstractThe idea of putting astronauts into a hibernation-like state during interplanetary spaceflights has sparked new interest in the evolutionary roots of hibernation and torpor. In this context, it should be noted that mammalian fetuses and neonates respond to the environmental challenges in the perinatal period with a number of physiological mechanisms that bear striking similarity to hibernation and torpor. These include three main points: first, prenatal deviation from the overall metabolic size relationship, which adapts the fetus to the low-oxygen conditions in the womb and corresponds to the metabolic reduction during hibernation and estivation; second, intranatal diving bradycardia in response to shortened O2 supply during birth, comparable to the decrease in heart rate preceding the drop in body temperature upon entry into torpor; and third, postnatal onset of nonshivering thermogenesis in the brown adipose tissue, along with the increase in basal metabolic rate up to the level expected from body size, such as during arousal from hibernation. The appearance of hibernation-like adaptations in the perinatal period suggests that, conversely, hibernation and torpor may be composed of mechanisms shared by all mammals around birth. This hypothesis sheds new light on the origins of hibernation and supports its potential accessibility to nonhibernating species, including humans.
Collapse
|
29
|
Pannkuk EL, Dorville NASY, Bansal S, Bansal S, Dzal YA, Fletcher QE, Norquay KJO, Fornace AJ, Willis CKR. White-Nose Syndrome Disrupts the Splenic Lipidome of Little Brown Bats ( Myotis lucifugus) at Early Disease Stages. J Proteome Res 2023; 22:182-192. [PMID: 36479878 PMCID: PMC9929917 DOI: 10.1021/acs.jproteome.2c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
White-nose syndrome (WNS)-positive little brown bats (Myotis lucifugus) may exhibit immune responses including increased cytokine and pro-inflammatory mediator gene levels. Bioactive lipid mediators (oxylipins) formed by enzymatic oxidation of polyunsaturated fatty acids can contribute to these immune responses, but have not been investigated in WNS pathophysiology. Nonenzymatic conversion of polyunsaturated fatty acids can also occur due to reactive oxygen species, however, these enantiomeric isomers will lack the same signaling properties. In this study, we performed a series of targeted lipidomic approaches on laboratory Pseudogymnoascus destructans-inoculated bats to assess changes in their splenic lipidome, including the formation of lipid mediators at early stages of WNS. Hepatic lipids previously identified were also resolved to a higher structural detail. We compared WNS-susceptible M. lucifugus to a WNS-resistant species, the big brown bat (Eptesicus fuscus). Altered splenic lipid levels were only observed in M. lucifugus. Differences in splenic free fatty acids included both omega-3 and omega-6 compounds. Increased levels of an enantiomeric monohydroxy DHA mixture were found, suggesting nonenzymatic formation. Changes in previously identified hepatic lipids were confined to omega-3 constituents. Together, these results suggest that increased oxidative stress, but not an inflammatory response, is occurring in bats at early stages of WNS that precedes fat depletion. These data have been submitted to metabolomics workbench and assigned a study number ST002304.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, United States of America,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, United States of America,Center for Metabolomic Studies, Georgetown University, Washington, DC 20057, United States of America,Corresponding Authors: Evan L. Pannkuk, PhD, Georgetown University, 3970 Reservoir Road, NW, New Research Building, Room E504, Washington, DC, USA, 20057, , Phone: (202) 687-5650, Craig K.R. Willis, PhD, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, R3B 2E9, Canada, , Phone: (204) 786-9433
| | - Nicole A. S.-Y. Dorville
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Shivani Bansal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, United States of America
| | - Sunil Bansal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, United States of America
| | - Yvonne A. Dzal
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, BC V5A 1S6, Canada
| | - Quinn E. Fletcher
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Kaleigh J. O. Norquay
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Albert J. Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, United States of America,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, United States of America,Center for Metabolomic Studies, Georgetown University, Washington, DC 20057, United States of America
| | - Craig K. R. Willis
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada,Corresponding Authors: Evan L. Pannkuk, PhD, Georgetown University, 3970 Reservoir Road, NW, New Research Building, Room E504, Washington, DC, USA, 20057, , Phone: (202) 687-5650, Craig K.R. Willis, PhD, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, R3B 2E9, Canada, , Phone: (204) 786-9433
| |
Collapse
|
30
|
Ilyina TN, Baishnikova IV. Retinol and α-Tocopherol Content in the Liver and Skeletal Muscle of Bats (Chiroptera) during Hibernation and Summer Activity. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Imig JD. Frontiers in metabolic physiology grand challenges. Front Physiol 2022; 13:879617. [PMID: 36035475 PMCID: PMC9399398 DOI: 10.3389/fphys.2022.879617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
|
32
|
Antonova EP, Belkin VV, Ilyukha VA, Khizhkin EA, Kalinina SN. Seasonal Changes in Body Mass and Activity of Digestive Enzymes in Eptesicus nilssonii (Mammalia: Chiroptera: Vespertilionidae) during Hibernation. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s002209302204010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Nespolo RF, Mejias C, Bozinovic F. Why bears hibernate? Redefining the scaling energetics of hibernation. Proc Biol Sci 2022; 289:20220456. [PMID: 35473385 PMCID: PMC9043729 DOI: 10.1098/rspb.2022.0456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hibernation is a natural state of suspended animation that many mammals experience and has been interpreted as an adaptive strategy for saving energy. However, the actual amount of savings that hibernation represents, and particularly its dependence on body mass (the 'scaling') has not been calculated properly. Here, we estimated the scaling of daily energy expenditure of hibernation (DEEH), covering a range of five orders of magnitude in mass. We found that DEEH scales isometrically with mass, which means that a gram of hibernating bat has a similar metabolism to that of a gram of bear, 20 000 times larger. Given that metabolic rate of active animals scales allometrically, the point where these scaling curves intersect with DEEH represents the mass where energy savings by hibernation are zero. For BMR, these zero savings are attained for a relatively small bear (approx. 75 kg). Calculated on a per cell basis, the cellular metabolic power of hibernation was estimated to be 1.3 × 10-12 ± 2.6 × 10-13 W cell-1, which is lower than the minimum metabolism of isolated mammalian cells. This supports the idea of the existence of a minimum metabolism that permits cells to survive under a combination of cold and hypoxia.
Collapse
Affiliation(s)
- Roberto F Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile.,Millenium Nucleus of Patagonian Limit of Life (LiLi) and Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Center for Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Mejias
- Magister en Ecología Aplicada, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,Millenium Nucleus of Patagonian Limit of Life (LiLi) and Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Francisco Bozinovic
- Center for Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
34
|
Mejías C, Navedo J, Sabat P, Franco LM, Bozinovic F, Nespolo RF. Body Composition and Energy Savings by Hibernation: Lessons from the South American Marsupial Dromiciops gliroides. Physiol Biochem Zool 2022; 95:239-250. [DOI: 10.1086/719932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Doty AC, Wilson AD, Forse LB, Risch TS. Biomarker Metabolites Discriminate between Physiological States of Field, Cave and White-nose Syndrome Diseased Bats. SENSORS 2022; 22:s22031031. [PMID: 35161777 PMCID: PMC8840073 DOI: 10.3390/s22031031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Analysis of volatile organic compound (VOC) emissions using electronic-nose (e-nose) devices has shown promise for early detection of white-nose syndrome (WNS) in bats. Tricolored bats, Perimyotis subflavus, from three separate sampling groups defined by environmental conditions, levels of physical activity, and WNS-disease status were captured temporarily for collection of VOC emissions to determine relationships between these combinations of factors and physiological states, Pseudogymnoascus destructans (Pd)-infection status, and metabolic conditions. Physiologically active (non-torpid) healthy individuals were captured outside of caves in Arkansas and Louisiana. In addition, healthy and WNS-diseased torpid bats were sampled within caves in Arkansas. Whole-body VOC emissions from bats were collected using portable air-collection and sampling-chamber devices in tandem. Electronic aroma-detection data using three-dimensional Principal Component Analysis provided strong evidence that the three groups of bats had significantly different e-nose aroma signatures, indicative of different VOC profiles. This was confirmed by differences in peak numbers, peak areas, and tentative chemical identities indicated by chromatograms from dual-column GC-analyses. The numbers and quantities of VOCs present in whole-body emissions from physiologically active healthy field bats were significantly greater than those of torpid healthy and diseased cave bats. Specific VOCs were identified as chemical biomarkers of healthy and diseased states, environmental conditions (outside and inside of caves), and levels of physiological activity. These results suggest that GC/E-nose dual-technologies based on VOC-detection and analyses of physiological states, provide noninvasive alternative means for early assessments of Pd-infection, WNS-disease status, and other physiological states.
Collapse
Affiliation(s)
- Anna C. Doty
- Department of Biology, California State University Bakersfield, Bakersfield, CA 93311, USA
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72467, USA;
- Correspondence: ; Tel.: +1-661-654-6836
| | - A. Dan Wilson
- Pathology Department, Southern Hardwoods Laboratory, Center for Forest Genetics & Ecosystems Biology, Southern Research Station, USDA Forest Service, 432 Stoneville Road, Stoneville, MS 38776, USA; (A.D.W.); (L.B.F.)
| | - Lisa B. Forse
- Pathology Department, Southern Hardwoods Laboratory, Center for Forest Genetics & Ecosystems Biology, Southern Research Station, USDA Forest Service, 432 Stoneville Road, Stoneville, MS 38776, USA; (A.D.W.); (L.B.F.)
| | - Thomas S. Risch
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72467, USA;
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467, USA
| |
Collapse
|
36
|
Yang X, Liu X, Song F, Wei H, Gao F, Zhang H, Han Y, Weng Q, Yuan Z. Seasonal expressions of GPR41 and GPR43 in the colon of the wild ground squirrels ( Spermophilus dauricus). Eur J Histochem 2022; 66. [PMID: 35057584 PMCID: PMC8847768 DOI: 10.4081/ejh.2022.3351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/02/2022] [Indexed: 11/22/2022] Open
Abstract
G-protein-coupled receptor 41 (GPR41) and G-protein-coupled receptor 43 (GPR43) are important short-chain fatty acids (SCFAs) receptors. Previous studies indicated that GPR41 and GPR43 are involved in the secretion of gastrointestinal peptides, and glucose and lipid metabolism, and are closely related to obesity and type II diabetes, and other diseases. The purpose of the study was to explore the relationship between the GPR41 and GPR43 and seasonal breeding, and provide new prospects for further exploring the nutritional needs of breeding. We identified the localization and expression levels of GPR41 and GPR43 in the colon of the wild ground squirrels (Spermophilus dauricus) both in the breeding season and non-breeding season. The histological results revealed that the lumen diameter of the colon had obvious seasonal changes, and the diameter of the colonic lumen in the non-breeding season was larger than that in the breeding season. Immunohistochemical staining suggested GPR41 and GPR43 have expressed in the simple layer columnar epithelium. In addition, compared with the breeding season, the mRNA and protein expression levels of GPR41 and GPR43 in the colon were higher during the non-breeding season. In general, these results indicated GPR41 and GPR43 might play a certain role in regulating seasonal breeding.
Collapse
|
37
|
Fontúrbel FE, Nespolo RF, Amico GC, Watson DM. Climate change can disrupt ecological interactions in mysterious ways: Using ecological generalists to forecast community-wide effects. CLIMATE CHANGE ECOLOGY 2021. [DOI: 10.1016/j.ecochg.2021.100044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
38
|
MicroRNA Cues from Nature: A Roadmap to Decipher and Combat Challenges in Human Health and Disease? Cells 2021; 10:cells10123374. [PMID: 34943882 PMCID: PMC8699674 DOI: 10.3390/cells10123374] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are small non-coding RNA (18–24 nt long) that fine-tune gene expression at the post-transcriptional level. With the advent of “multi-omics” analysis and sequencing approaches, they have now been implicated in every facet of basic molecular networks, including metabolism, homeostasis, and cell survival to aid cellular machinery in adapting to changing environmental cues. Many animals must endure harsh environmental conditions in nature, including cold/freezing temperatures, oxygen limitation (anoxia/hypoxia), and food or water scarcity, often requiring them to revamp their metabolic organization, frequently on a seasonal or life stage basis. MicroRNAs are important regulatory molecules in such processes, just as they are now well-known to be involved in many human responses to stress or disease. The present review outlines the role of miRNAs in natural animal models of environmental stress and adaptation including torpor/hibernation, anoxia/hypoxia tolerance, and freeze tolerance. We also discuss putative medical applications of advances in miRNA biology including organ preservation for transplant, inflammation, ageing, metabolic disorders (e.g., obesity), mitochondrial dysfunction (mitoMirs) as well as specialized miRNA subgroups respective to low temperature (CryomiRs) and low oxygen (OxymiRs). The review also covers differential regulation of conserved and novel miRNAs involved at cell, tissue, and stress specific levels across multiple species and their roles in survival. Ultimately, the species-specific comparison and conserved miRNA responses seen in evolutionarily disparate animal species can help us to understand the complex miRNA network involved in regulating and reorganizing metabolism to achieve diverse outcomes, not just in nature, but in human health and disease.
Collapse
|
39
|
Giroud S, Chery I, Arrivé M, Prost M, Zumsteg J, Heintz D, Evans AL, Gauquelin-Koch G, Arnemo JM, Swenson JE, Lefai E, Bertile F, Simon C, Blanc S. Hibernating brown bears are protected against atherogenic dyslipidemia. Sci Rep 2021; 11:18723. [PMID: 34548543 PMCID: PMC8455566 DOI: 10.1038/s41598-021-98085-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
To investigate mechanisms by which hibernators avoid atherogenic hyperlipidemia during hibernation, we assessed lipoprotein and cholesterol metabolisms of free-ranging Scandinavian brown bears (Ursus arctos). In winter- and summer-captured bears, we measured lipoprotein sizes and sub-classes, triglyceride-related plasma-enzyme activities, and muscle lipid composition along with plasma-levels of antioxidant capacities and inflammatory markers. Although hibernating bears increased nearly all lipid levels, a 36%-higher cholesteryl-ester transfer-protein activity allowed to stabilize lipid composition of high-density lipoproteins (HDL). Levels of inflammatory metabolites, i.e., 7-ketocholesterol and 11ß-prostaglandin F2α, declined in winter and correlated inversely with cardioprotective HDL2b-proportions and HDL-sizes that increased during hibernation. Lower muscle-cholesterol concentrations and lecithin-cholesterol acyltransferase activity in winter suggest that hibernating bears tightly controlled peripheral-cholesterol synthesis and/or release. Finally, greater plasma-antioxidant capacities prevented excessive lipid-specific oxidative damages in plasma and muscles of hibernating bears. Hence, the brown bear manages large lipid fluxes during hibernation, without developing adverse atherogenic effects that occur in humans and non-hibernators.
Collapse
Affiliation(s)
- Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Savoyenstraße 1, 1160, Vienna, Austria.
| | - Isabelle Chery
- University of Strasbourg, 4 rue Blaise Pascal, 67081, Strasbourg, France
- CNRS, UMR7178, Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du Loess, 67087, Strasbourg, France
| | - Mathilde Arrivé
- University of Strasbourg, 4 rue Blaise Pascal, 67081, Strasbourg, France
- CNRS, UMR7178, Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du Loess, 67087, Strasbourg, France
| | | | - Julie Zumsteg
- Plant Imaging & Mass Spectrometry (PIMS), Institute of Plant Molecular Biology, CNRS, University of Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Dimitri Heintz
- Plant Imaging & Mass Spectrometry (PIMS), Institute of Plant Molecular Biology, CNRS, University of Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Alina L Evans
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, 2480, Koppang, Norway
| | | | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, 2480, Koppang, Norway
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Jon E Swenson
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, PO Box 5003, 1432, Ås, Norway
| | - Etienne Lefai
- University of Auvergne, INRAE, UNH UMR1019, 63122, Saint-Genès Champanelle, France
| | - Fabrice Bertile
- University of Strasbourg, 4 rue Blaise Pascal, 67081, Strasbourg, France
- CNRS, UMR7178, Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du Loess, 67087, Strasbourg, France
| | - Chantal Simon
- CARMEN, INSERM U1060/University of Lyon / INRA U1235, Oullins, France
| | - Stéphane Blanc
- University of Strasbourg, 4 rue Blaise Pascal, 67081, Strasbourg, France
- CNRS, UMR7178, Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du Loess, 67087, Strasbourg, France
| |
Collapse
|
40
|
Abstract
Hibernation is a powerful response of a number of mammalian species to reduce energy during the cold winter season, when food is scarce. Mammalian hibernators survive winter by spending most of the time in a state of torpor, where basal metabolic rate is strongly suppressed and body temperature comes closer to ambient temperature. These torpor bouts are regularly interrupted by short arousals, where metabolic rate and body temperature spontaneously return to normal levels. The mechanisms underlying these changes, and in particular the strong metabolic suppression of torpor, have long remained elusive. As summarized in this Commentary, increasing evidence points to a potential key role for hydrogen sulfide (H2S) in the suppression of mitochondrial respiration during torpor. The idea that H2S could be involved in hibernation originated in some early studies, where exogenous H2S gas was found to induce a torpor-like state in mice, and despite some controversy, the idea persisted. H2S is a widespread signaling molecule capable of inhibiting mitochondrial respiration in vitro and studies found significant in vivo changes in endogenous H2S metabolites associated with hibernation or torpor. Along with increased expression of H2S-synthesizing enzymes during torpor, H2S degradation catalyzed by the mitochondrial sulfide:quinone oxidoreductase (SQR) appears to have a key role in controlling H2S availability for inhibiting respiration. Specifically, in thirteen-lined squirrels, SQR is highly expressed and inhibited in torpor, possibly by acetylation, thereby limiting H2S oxidation and causing inhibition of respiration. H2S may also control other aspects associated with hibernation, such as synthesis of antioxidant enzymes and of SQR itself.
Collapse
Affiliation(s)
| | - Angela Fago
- Department of Biology, Aarhus University, Aarhus C 8000, Denmark
| |
Collapse
|
41
|
Nespolo RF, Mejías C, Espinoza A, Quintero-Galvis J, Rezende EL, Fontúrbel FE, Bozinovic F. Heterothermy as the Norm, Homeothermy as the Exception: Variable Torpor Patterns in the South American Marsupial Monito del Monte ( Dromiciops gliroides). Front Physiol 2021; 12:682394. [PMID: 34322034 PMCID: PMC8311349 DOI: 10.3389/fphys.2021.682394] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/11/2021] [Indexed: 12/30/2022] Open
Abstract
Hibernation (i.e., multiday torpor) is considered an adaptive strategy of mammals to face seasonal environmental challenges such as food, cold, and/or water shortage. It has been considered functionally different from daily torpor, a physiological strategy to cope with unpredictable environments. However, recent studies have shown large variability in patterns of hibernation and daily torpor ("heterothermic responses"), especially in species from tropical and subtropical regions. The arboreal marsupial "monito del monte" (Dromiciops gliroides) is the last living representative of the order Microbiotheria and is known to express both short torpor episodes and also multiday torpor depending on environmental conditions. However, only limited laboratory experiments have documented these patterns in D. gliroides. Here, we combined laboratory and field experiments to characterize the heterothermic responses in this marsupial at extreme temperatures. We used intraperitoneal data loggers and simultaneous measurement of ambient and body temperatures (T A and T B, respectively) for analyzing variations in the thermal differential, in active and torpid animals. We also explored how this differential was affected by environmental variables (T A, natural photoperiod changes, food availability, and body mass changes), using mixed-effects generalized linear models. Our results suggest that: (1) individuals express short bouts of torpor, independently of T A and even during the reproductive period; (2) seasonal torpor also occurs in D. gliroides, with a maximum bout duration of 5 days and a mean defended T B of 3.6 ± 0.9°C (one individual controlled T B at 0.09°C, at sub-freezing T A); (3) the best model explaining torpor occurrence (Akaike information criteria weight = 0.59) discarded all predictor variables except for photoperiod and a photoperiod by food interaction. Altogether, these results confirm that this marsupial expresses a dynamic form of torpor that progresses from short torpor to hibernation as daylength shortens. These data add to a growing body of evidence characterizing tropical and sub-tropical heterothermy as a form of opportunistic torpor, expressed as daily or seasonal torpor depending on environmental conditions.
Collapse
Affiliation(s)
- Roberto F. Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecología Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Carlos Mejías
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Angelo Espinoza
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Julián Quintero-Galvis
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Enrico L. Rezende
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecología Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Francisco Bozinovic
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecología Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
42
|
Hepatic resistance to cold ferroptosis in a mammalian hibernator Syrian hamster depends on effective storage of diet-derived α-tocopherol. Commun Biol 2021; 4:796. [PMID: 34172811 PMCID: PMC8233303 DOI: 10.1038/s42003-021-02297-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Mammalian hibernators endure severe and prolonged hypothermia that is lethal to non-hibernators, including humans and mice. The mechanisms responsible for the cold resistance remain poorly understood. Here, we found that hepatocytes from a mammalian hibernator, the Syrian hamster, exhibited remarkable resistance to prolonged cold culture, whereas murine hepatocytes underwent cold-induced cell death that fulfills the hallmarks of ferroptosis such as necrotic morphology, lipid peroxidation and prevention by an iron chelator. Unexpectedly, hepatocytes from Syrian hamsters exerted resistance to cold- and drug-induced ferroptosis in a diet-dependent manner, with the aid of their superior ability to retain dietary α-tocopherol (αT), a vitamin E analog, in the liver and blood compared with those of mice. The liver phospholipid composition is less susceptible to peroxidation in Syrian hamsters than in mice. Altogether, the cold resistance of the hibernator’s liver is established by the ability to utilize αT effectively to prevent lipid peroxidation and ferroptosis. Daisuke Anegawa et al. investigated the mechanisms responsible for cold resistance in the Syrian hamster’s hepatocytes, which exhibited remarkable resistance to prolonged cold culture. Their results suggest that hepatocytes exhibit diet-dependent resistance to cold, which is linked to the retention of α-tocopherol in the liver.
Collapse
|
43
|
Cerri M, Hitrec T, Luppi M, Amici R. Be cool to be far: Exploiting hibernation for space exploration. Neurosci Biobehav Rev 2021; 128:218-232. [PMID: 34144115 DOI: 10.1016/j.neubiorev.2021.03.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 01/08/2023]
Abstract
In mammals, torpor/hibernation is a state that is characterized by an active reduction in metabolic rate followed by a progressive decrease in body temperature. Torpor was successfully mimicked in non-hibernators by inhibiting the activity of neurons within the brainstem region of the Raphe Pallidus, or by activating the adenosine A1 receptors in the brain. This state, called synthetic torpor, may be exploited for many medical applications, and for space exploration, providing many benefits for biological adaptation to the space environment, among which an enhanced protection from cosmic rays. As regards the use of synthetic torpor in space, to fully evaluate the degree of physiological advantage provided by this state, it is strongly advisable to move from Earth-based experiments to 'in the field' tests, possibly on board the International Space Station.
Collapse
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum -University of Bologna, Piazza di Porta S.Donato, 2 40126, Bologna, Italy.
| | - Timna Hitrec
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum -University of Bologna, Piazza di Porta S.Donato, 2 40126, Bologna, Italy.
| | - Marco Luppi
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum -University of Bologna, Piazza di Porta S.Donato, 2 40126, Bologna, Italy.
| | - Roberto Amici
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum -University of Bologna, Piazza di Porta S.Donato, 2 40126, Bologna, Italy.
| |
Collapse
|
44
|
Jensen BS, Pardue S, Duffy B, Kevil CG, Staples JF, Fago A. Suppression of mitochondrial respiration by hydrogen sulfide in hibernating 13-lined ground squirrels. Free Radic Biol Med 2021; 169:181-186. [PMID: 33887435 PMCID: PMC8809085 DOI: 10.1016/j.freeradbiomed.2021.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 12/30/2022]
Abstract
Hibernating mammals may suppress their basal metabolic rate during torpor by up to 95% to reduce energy expenditure during winter, but the underlying mechanisms remain poorly understood. Here we show that hydrogen sulfide (H2S), a ubiquitous signaling molecule, is a powerful inhibitor of respiration of liver mitochondria isolated from torpid 13-lined ground squirrels, but has a weak effect on mitochondria isolated during summer and hibernation arousals, where metabolic rate is normal. Consistent with these in vitro effects, we find strong seasonal variations of in vivo levels of H2S in plasma and increases of H2S levels in the liver of squirrels during torpor compared to levels during arousal and summer. The in vivo changes of liver H2S levels correspond with low activity of the mitochondrial H2S oxidizing enzyme sulfide:quinone oxidoreductase (SQR) during torpor. Taken together, these results suggest that during torpor, H2S accumulates in the liver due to a low SQR activity and contributes to inhibition of mitochondrial respiration, while during arousals and summer these effects are reversed, H2S is degraded by active SQR and mitochondrial respiration rates increase. This study provides novel insights into mechanisms underlying mammalian hibernation, pointing to SQR as a key enzyme involved in the control of mitochondrial function.
Collapse
Affiliation(s)
- Birgitte S Jensen
- Department of Biology, Aarhus University, Aarhus C, 8000, Denmark; Department of Biology, University of Western Ontario, London, ON N6A 5B8, Canada
| | - Sibile Pardue
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Brynne Duffy
- Department of Biology, University of Western Ontario, London, ON N6A 5B8, Canada
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - James F Staples
- Department of Biology, University of Western Ontario, London, ON N6A 5B8, Canada
| | - Angela Fago
- Department of Biology, Aarhus University, Aarhus C, 8000, Denmark.
| |
Collapse
|
45
|
Wu CW, Storey KB. mTOR Signaling in Metabolic Stress Adaptation. Biomolecules 2021; 11:biom11050681. [PMID: 34062764 PMCID: PMC8147357 DOI: 10.3390/biom11050681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a central regulator of cellular homeostasis that integrates environmental and nutrient signals to control cell growth and survival. Over the past two decades, extensive studies of mTOR have implicated the importance of this protein complex in regulating a broad range of metabolic functions, as well as its role in the progression of various human diseases. Recently, mTOR has emerged as a key signaling molecule in regulating animal entry into a hypometabolic state as a survival strategy in response to environmental stress. Here, we review current knowledge of the role that mTOR plays in contributing to natural hypometabolic states such as hibernation, estivation, hypoxia/anoxia tolerance, and dauer diapause. Studies across a diverse range of animal species reveal that mTOR exhibits unique regulatory patterns in an environmental stressor-dependent manner. We discuss how key signaling proteins within the mTOR signaling pathways are regulated in different animal models of stress, and describe how each of these regulations uniquely contribute to promoting animal survival in a hypometabolic state.
Collapse
Affiliation(s)
- Cheng-Wei Wu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, 52 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
- Correspondence:
| | - Kenneth B. Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada;
| |
Collapse
|
46
|
Huber N, Vetter S, Stalder G, Gerritsmann H, Giroud S. Dynamic Function and Composition Shift in Circulating Innate Immune Cells in Hibernating Garden Dormice. Front Physiol 2021; 12:620614. [PMID: 33746769 PMCID: PMC7970003 DOI: 10.3389/fphys.2021.620614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/09/2021] [Indexed: 11/17/2022] Open
Abstract
Hibernation is characterized by successive torpor bouts during which metabolic rate is down-regulated to 2-4% of euthermic levels along with core body temperatures (T b ) ranging between 0 and 10°C. One characteristic of the torpid state, which is periodically interrupted by a few hours of euthermic phases or arousals during hibernation, resides in an overall impairment of the immune system. The most striking change during torpor is the reduction of circulating white blood cells up to 90%, while their numbers rise to near summer euthermic level upon rewarming. However, potential changes in responsiveness and function of neutrophil granulocytes, accounting for the primary cellular innate immune defense, are unknown. Here we present the first data on shifts in oxidative burst capacity, i.e., the ability to produce reactive oxygen species (ROS), of neutrophils during hibernation. Using a chemiluminescence assay, we measured real-time ROS production in whole blood of hibernating garden dormice (Eliomys quercinus) in early or late torpor, and upon arousals. Accounting for changes in neutrophil numbers along the torpor-arousal cycle, we found significant differences, between torpid and euthermic states, in the neutrophil oxidative burst capacity (NOC), with shallow cell responses during torpor and a highly significant increase by up to 30-fold during arousals. Further, we observed a significant reduction of NOC from aroused animals with euthermic T b of 36.95 ± 0.37°C, when tested at 6°C, whereas no change occurred in NOC from torpid individuals reaching constant T b of 4.67 ± 0.42°C, when measured at 35°C. This dynamic indicates that the reduction in NOC during torpor may be temperature-compensated. These results linked to the understanding of immune function during the torpor-arousal cycle might have clinical relevance in the context of therapeutic hypothermia and reperfusion injury.
Collapse
Affiliation(s)
- Nikolaus Huber
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sebastian Vetter
- Institute of Animal Welfare Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gabrielle Stalder
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hanno Gerritsmann
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
47
|
Bertile F, Habold C, Le Maho Y, Giroud S. Body Protein Sparing in Hibernators: A Source for Biomedical Innovation. Front Physiol 2021; 12:634953. [PMID: 33679446 PMCID: PMC7930392 DOI: 10.3389/fphys.2021.634953] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Proteins are not only the major structural components of living cells but also ensure essential physiological functions within the organism. Any change in protein abundance and/or structure is at risk for the proper body functioning and/or survival of organisms. Death following starvation is attributed to a loss of about half of total body proteins, and body protein loss induced by muscle disuse is responsible for major metabolic disorders in immobilized patients, and sedentary or elderly people. Basic knowledge of the molecular and cellular mechanisms that control proteostasis is continuously growing. Yet, finding and developing efficient treatments to limit body/muscle protein loss in humans remain a medical challenge, physical exercise and nutritional programs managing to only partially compensate for it. This is notably a major challenge for the treatment of obesity, where therapies should promote fat loss while preserving body proteins. In this context, hibernating species preserve their lean body mass, including muscles, despite total physical inactivity and low energy consumption during torpor, a state of drastic reduction in metabolic rate associated with a more or less pronounced hypothermia. The present review introduces metabolic, physiological, and behavioral adaptations, e.g., energetics, body temperature, and nutrition, of the torpor or hibernation phenotype from small to large mammals. Hibernating strategies could be linked to allometry aspects, the need for periodic rewarming from torpor, and/or the ability of animals to fast for more or less time, thus determining the capacity of individuals to save proteins. Both fat- and food-storing hibernators rely mostly on their body fat reserves during the torpid state, while minimizing body protein utilization. A number of them may also replenish lost proteins during arousals by consuming food. The review takes stock of the physiological, molecular, and cellular mechanisms that promote body protein and muscle sparing during the inactive state of hibernation. Finally, the review outlines how the detailed understanding of these mechanisms at play in various hibernators is expected to provide innovative solutions to fight human muscle atrophy, to better help the management of obese patients, or to improve the ex vivo preservation of organs.
Collapse
Affiliation(s)
- Fabrice Bertile
- University of Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Spectrométrie de Masse Bio-Organique, Strasbourg, France
| | - Caroline Habold
- University of Strasbourg, CNRS, IPHC UMR 7178, Ecology, Physiology & Ethology Department, Strasbourg, France
| | - Yvon Le Maho
- University of Strasbourg, CNRS, IPHC UMR 7178, Ecology, Physiology & Ethology Department, Strasbourg, France
- Centre Scientifique de Monaco, Monaco, Monaco
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|