1
|
Shao L, Zhang B, Song Y, Lyu Z, Zhang W, Yang W, Fu J, Li J, Shi J. Mucosal Hub Bacteria as Potential Targets for Improving High-Fat Diet-Related Intestinal Barrier Injury. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:3652740. [PMID: 39634324 PMCID: PMC11617042 DOI: 10.1155/cjid/3652740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
Background: Intestinal barrier injury contributes to multiple diseases such as obesity and diabetes, whereas no treatment options are available. Methods: Due to close interactions between mucosal microbiome and intestinal barrier, we evaluated the potential of mucosal bacteria in providing targets for high-fat diet (HFD)-related intestinal barrier injury. Whole-genome metagenomics was used to evaluate mucosal microbiome, while intestinal barrier injury was estimated using serum LPS, FITC-dextran intensity, and ZO-1 protein. Results: We found that HFD induced significant fat accumulation in epididymal tissue at weeks 4 and 12, while ALT, LDL, and TC increased at week 12. Intestinal barrier injury was confirmed by elevated serum LPS at both weeks, upregulated FITC-dextran intensity, and decreased ZO-1 protein at week 12. Fourteen species such as Phocaeicola vulgatus differed in HFD-fed mice. The co-occurrence network of mucosal microbiome shifted from scale-free graph in controls to nearly random graph in HFD-fed mice. Besides, 10 hub bacteria especially Bacteroides ovatus decreased drastically in both mucosal and fecal samples of HFD-fed mice, correlated with intestinal permeability, ALT, and KEGG pathways such as "Mitochondrial biogenesis" and "metabolism". Moreover, Bacteroides ovatus has been confirmed to improve intestinal barrier function in a recent study. Conclusion: Mucosal hub bacteria can provide potential targets for improving HFD-related intestinal barrier function.
Collapse
Affiliation(s)
- Li Shao
- School of Clinical Medicine, Hangzhou Normal University, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Binbin Zhang
- School of Clinical Medicine, Hangzhou Normal University, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yu Song
- Department of Hepatology, 2nd Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Zhe Lyu
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Weishi Zhang
- Department of Otolaryngology, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu, China
| | - Wenjun Yang
- School of Clinical Medicine, Hangzhou Normal University, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China
| | - Jinlong Fu
- School of Clinical Medicine, Hangzhou Normal University, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- Department of Gastroenterology and Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang, China
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Junping Shi
- School of Clinical Medicine, Hangzhou Normal University, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China
- Department of Hepatology, 2nd Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| |
Collapse
|
2
|
Yu R, Hafeez R, Ibrahim M, Alonazi WB, Li B. The complex interplay between autism spectrum disorder and gut microbiota in children: A comprehensive review. Behav Brain Res 2024; 473:115177. [PMID: 39098397 DOI: 10.1016/j.bbr.2024.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Autism spectrum disorder (ASD) is characterized by defects in social communication and interaction along with restricted interests and/or repetitive behavior. Children with ASD often also experience gastrointestinal (GI) problems in fact incidence of GI problems in ASD is estimated up to 80 percent. Intestinal microbiota, which is a collection of trillions of microorganisms both beneficial and potentially harmful bacteria living inside the gut, has been considered one of the key elements of gut disorders. The goal of this review is to explore potential link between gut microbiota and ASD in children, based on the recently available data. This review discusses recent advances in this rapidly expanding area of neurodevelopmental disorders, which focuses on what is known about the changes in composition of gut bacteria in children with ASD, exploration of possible mechanisms via which gut microbiota might influence the brain and thus lead to appearance of ASD symptoms, as well as potential treatments that involve modulation of gut flora to improve symptoms in children with ASD, i.e., probiotics, postbiotics or changes in the diet. Of course, it's important to keep in mind inherent difficulties in proving of existence of causal relationships between gut bacteria and ASD. There are significant gaps in understanding of the mechanism of gut-brain axis and the mechanisms that underlie ASD. Standardized approaches for research in this area are needed. This review would provide an overview of this exciting emerging field of research.
Collapse
Affiliation(s)
- Rongrong Yu
- College of Education, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Rahila Hafeez
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Ibrahim
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wadi B Alonazi
- Health Administration Department, College of Business Administration, King Saud University, Riyadh, Saudi Arabia
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Heinken A, El Kouche S, Guéant-Rodriguez RM, Guéant JL. Towards personalized genome-scale modeling of inborn errors of metabolism for systems medicine applications. Metabolism 2024; 150:155738. [PMID: 37981189 DOI: 10.1016/j.metabol.2023.155738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Inborn errors of metabolism (IEMs) are a group of more than 1000 inherited diseases that are individually rare but have a cumulative global prevalence of 50 per 100,000 births. Recently, it has been recognized that like common diseases, patients with rare diseases can greatly vary in the manifestation and severity of symptoms. Here, we review omics-driven approaches that enable an integrated, holistic view of metabolic phenotypes in IEM patients. We focus on applications of Constraint-based Reconstruction and Analysis (COBRA), a widely used mechanistic systems biology approach, to model the effects of inherited diseases. Moreover, we review evidence that the gut microbiome is also altered in rare diseases. Finally, we outline an approach using personalized metabolic models of IEM patients for the prediction of biomarkers and tailored therapeutic or dietary interventions. Such applications could pave the way towards personalized medicine not just for common, but also for rare diseases.
Collapse
Affiliation(s)
- Almut Heinken
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France.
| | - Sandra El Kouche
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
| | - Rosa-Maria Guéant-Rodriguez
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France; National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, Nancy F-54000, France
| | - Jean-Louis Guéant
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France; National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, Nancy F-54000, France
| |
Collapse
|
4
|
de la Rubia Ortí JE, Moneti C, Serrano-Ballesteros P, Castellano G, Bayona-Babiloni R, Carriquí-Suárez AB, Motos-Muñoz M, Proaño B, Benlloch M. Liposomal Epigallocatechin-3-Gallate for the Treatment of Intestinal Dysbiosis in Children with Autism Spectrum Disorder: A Comprehensive Review. Nutrients 2023; 15:3265. [PMID: 37513683 PMCID: PMC10383799 DOI: 10.3390/nu15143265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is characterized by varying degrees of difficulty in social interaction and communication. These deficits are often associated with gastrointestinal symptoms, indicating alterations in both intestinal microbiota composition and metabolic activities. The intestinal microbiota influences the function and development of the nervous system. In individuals with ASD, there is an increase in bacterial genera such as Clostridium, as well as species involved in the synthesis of branched-chain amino acids (BCAA) like Prevotella copri. Conversely, decreased amounts of Akkermansia muciniphila and Bifidobacterium spp. are observed. Epigallocatechin-3-gallate (EGCG) is one of the polyphenols with the greatest beneficial activity on microbial growth, and its consumption is associated with reduced psychological distress. Therefore, the objective of this review is to analyze how EGCG and its metabolites can improve the microbial dysbiosis present in ASD and its impact on the pathology. The analysis reveals that EGCG inhibits the growth of pathogenic bacteria like Clostridium perfringens and Clostridium difficile. Moreover, it increases the abundance of Bifidobacterium spp. and Akkermansia spp. As a result, EGCG demonstrates efficacy in increasing the production of metabolites involved in maintaining epithelial integrity and improving brain function. This identifies EGCG as highly promising for complementary treatment in ASD.
Collapse
Affiliation(s)
| | - Costanza Moneti
- Doctoral School, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | | | - Gloria Castellano
- Centro de Investigación Traslacional San Alberto Magno (CITSAM), Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Raquel Bayona-Babiloni
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Ana Belén Carriquí-Suárez
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - María Motos-Muñoz
- Department of Personality Psychology, Treatment and Methodology, Catholic University of Valencia San Vicente Mártir, 46100 Valencia, Spain
- Child Neurorehabilitation Unit, Manises Hospital, 46940 Valencia, Spain
| | - Belén Proaño
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - María Benlloch
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
5
|
Plaza-Diaz J, Radar AM, Baig AT, Leyba MF, Costabel MM, Zavala-Crichton JP, Sanchez-Martinez J, MacKenzie AE, Solis-Urra P. Physical Activity, Gut Microbiota, and Genetic Background for Children and Adolescents with Autism Spectrum Disorder. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1834. [PMID: 36553278 PMCID: PMC9777368 DOI: 10.3390/children9121834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
It is estimated that one in 100 children worldwide has been diagnosed with autism spectrum disorder (ASD). Children with ASD frequently suffer from gut dysbiosis and gastrointestinal issues, findings which possibly play a role in the pathogenesis and/or severity of their condition. Physical activity may have a positive effect on the composition of the intestinal microbiota of healthy adults. However, the effect of exercise both on the gastrointestinal problems and intestinal microbiota (and thus possibly on ASD) itself in affected children is unknown. In terms of understanding the physiopathology and manifestations of ASD, analysis of the gut-brain axis holds some promise. Here, we discuss the physiopathology of ASD in terms of genetics and microbiota composition, and how physical activity may be a promising non-pharmaceutical approach to improve ASD-related symptoms.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Ana Mei Radar
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Aiman Tariq Baig
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Marcos Federico Leyba
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Maria Macarena Costabel
- Children’s Hospital of Eastern Ontario, Division of Urology, Department of Surgery, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | | | - Javier Sanchez-Martinez
- Escuela de Kinesiología, Facultad de Salud, Universidad Santo Tomás, Viña del Mar 2520298, Chile
| | - Alex E. MacKenzie
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Patricio Solis-Urra
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2531015, Chile
- PROFITH “PROmoting FITness and Health through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
- Servicio de Medicina Nuclear, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| |
Collapse
|
6
|
Dahiya D, Nigam PS. Clinical Potential of Microbial Strains, Used in Fermentation for Probiotic Food, Beverages and in Synbiotic Supplements, as Psychobiotics for Cognitive Treatment through Gut-Brain Signaling. Microorganisms 2022; 10:1687. [PMID: 36144289 PMCID: PMC9505539 DOI: 10.3390/microorganisms10091687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/14/2022] Open
Abstract
Pure and viable strains of microorganisms identified and characterized as probiotic strains are used in the fermentation process to prepare probiotic food and beverages. These products are sources of nutrition and help in the maintenance of gut microflora. The intake of food products prepared with the use of probiotic microorganisms and containing their metabolites and whole microbial cells can be considered as a natural formulation of synbiotic products with prebiotic substrates and culture. Other than through the intake of fermented food and beverages, probiotic microorganisms can be taken through a supplement, which is a complementary form prepared by combining separate sources of prebiotic substrates and specific probiotic cultures. Whether a fermented solid food or beverage, both the components in the product are in a synergistic relationship and contribute to several health benefits at a lower cost. The aim of this article is to review the relevant literature and present the outcomes of recent studies which have been conducted to explore the clinical potential of probiotic strains and their effect on psychological conditions. Studies have shown the relationship between gut microbiota and the brain, and their interaction through signaling. The studies have concluded that the gut-brain axis can be manipulated with the intake of probiotic foods or synbiotic supplements containing specific probiotic strains accompanied with their complementary prebiotics for the enhanced sustainability of healthy GIT microflora.
Collapse
Affiliation(s)
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
7
|
Probiotics, Prebiotics, Synbiotics, and Fermented Foods as Potential Biotics in Nutrition Improving Health via Microbiome-Gut-Brain Axis. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070303] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biological, social, and psychological practices greatly affect the dietary intake of people; as a result, health-related complexities occur. Functional food and supplements have become popular due to their nutraceutical benefits, which make different choices of fermented food and beverages available to people. This review describes the characteristics of probiotics, prebiotics, post- and paraprobiotics, and their role in nutrition and in the sustainability of health. Currently, several synbiotic supplements have attracted consumers in the nutraceutical market to offer a number of health benefits, which are complementary mixtures of selected characterized probiotic cultures and prebiotic substrates. Traditional fermented foods consumed in different cultures are different than probiotics and symbiotic preparations, though these could be considered potential biotics in nutrition. Fermented foods are part of a staple diet in several countries and are cost-effective due to their preparation using seasonal raw materials available from local agriculture practices. Intake of all biotics discussed in this article is intended to improve the population of beneficial microbiota in the gut, which has proved important for the microbiome–gut–brain axis, influencing the activity of vagus nerve.
Collapse
|
8
|
Alfawaz HA, El-Ansary A, Al-Ayadhi L, Bhat RS, Hassan WM. Protective Effects of Bee Pollen on Multiple Propionic Acid-Induced Biochemical Autistic Features in a Rat Model. Metabolites 2022; 12:metabo12070571. [PMID: 35888695 PMCID: PMC9323335 DOI: 10.3390/metabo12070571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental disorders that clinically presented as impaired social interaction, repetitive behaviors, and weakened communication. The use of bee pollen as a supplement rich in amino acids amino acids, vitamins, lipids, and countless bioactive substances may lead to the relief of oxidative stress, neuroinflammation, glutamate excitotoxicity, and impaired neurochemistry as etiological mechanisms autism. Thirty young male Western albino rats were randomly divided as: Group I-control; Group II, in which autism was induced by the oral administration of 250 mg propionic acid/kg body weight/day for three days followed by orally administered saline until the end of experiment and Group III, the bee pollen-treated group, in which the rats were treated with 250 mg/kg body weight of bee pollen for four weeks before autism was induced as described for Group II. Markers related to oxidative stress, apoptosis, inflammation, glutamate excitotoxicity, and neurochemistry were measured in the brain tissue. Our results indicated that while glutathione serotonin, dopamine, gamma-aminobutyric acid (GABA), GABA/Glutamate ratio, and vitamin C were significantly reduced in propionic acid-treated group (p < 0.05), glutamate, IFN-γ, IL-1A, IL-6, caspase-3, and lipid peroxide levels were significantly elevated (p < 0.05). Bee pollen supplementation demonstrates protective potency presented as amelioration of most of the measured variables with significance range between (p < 0.05)−(p < 0.001).
Collapse
Affiliation(s)
- Hanan A. Alfawaz
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Afaf El-Ansary
- Central Research Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, Riyadh 11495, Saudi Arabia
- Correspondence: ; Tel.: +966-508462529; Fax: +966-11-4682184
| | - Laila Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh 11461, Saudi Arabia;
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Sciences, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Wail M. Hassan
- Department of Biomedical Sciences, School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA;
| |
Collapse
|