1
|
Foletto-Felipe MDP, Abrahão J, Contesoto IDC, Ferro AP, Grizza LHE, Menezes PVMDC, Wagner ALS, Seixas FAV, de Oliveira MAS, Tomazini LF, Constantin RP, Dos Santos WD, Ferrarese-Filho O, Marchiosi R. Inhibition of sulfur assimilation by S-benzyl-L-cysteine: Impacts on growth, photosynthesis, and leaf proteome of maize plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109173. [PMID: 39362125 DOI: 10.1016/j.plaphy.2024.109173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Sulfur is an essential nutrient for various physiological processes, including protein synthesis and enzyme activation. We aimed to evaluate how S-benzyl-L-cysteine (SBC), an inhibitor of the sulfur assimilation pathway, affects maize plants' growth, photosynthesis, and leaf proteomic profile. Thus, maize plants were grown for 14 days in vermiculite supplemented with SBC. Photosynthesis was assessed using light and CO2 response curves and chlorophyll a fluorescence. Leaf proteome analysis was conducted to evaluate photosynthetic protein biosynthesis, and ROS content was quantified to assess oxidative stress. Applying SBC resulted in a significant decrease in the growth of maize plants. The gas exchange analysis revealed that maize plants exhibited a diminished rate of CO2 assimilation attributable to both stomatal and non-stomatal limitations. Furthermore, SBC suppressed the activity of important elements involved in the photosynthetic electron transport chain (including photosystems I and II, cytochrome b6f, and ATP synthase) and enzymes responsible for the Calvin cycle, some of which have sulfur-containing prosthetic groups. Consequently, the diminished electron flow rate resulted in a substantial increase in the levels of ROS within the leaves. Our research highlights the crucial role of SBC in disrupting maize photosynthesis by limiting L-cysteine and assimilated sulfur availability, which are essential for the synthesis of protein and prosthetic groups and photosynthetic processes, emphasizing the potential of OAS-TL as a new herbicide site of action.
Collapse
Affiliation(s)
- Marcela de Paiva Foletto-Felipe
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil; Coordination of Degree in Biological Sciences, Federal Technological University of Paraná, Campus Dois Vizinhos, Paraná, Brazil
| | - Josielle Abrahão
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Ana Paula Ferro
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Luiz Henryque Escher Grizza
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Ana Luiza Santos Wagner
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | | | | | - Larissa Fonseca Tomazini
- Laboratory of Molecular Biology of Prokaryotes, Department of Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | - Rodrigo Polimeni Constantin
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Wanderley Dantas Dos Santos
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Osvaldo Ferrarese-Filho
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Rogério Marchiosi
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
2
|
Srivastava R, Singh N, Kanda T, Yadav S, Yadav S, Atri N. Cyanobacterial Proteomics: Diversity and Dynamics. J Proteome Res 2024; 23:2680-2699. [PMID: 38470568 DOI: 10.1021/acs.jproteome.3c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Cyanobacteria (oxygenic photoautrophs) comprise a diverse group holding significance both environmentally and for biotechnological applications. The utilization of proteomic techniques has significantly influenced investigations concerning cyanobacteria. Application of proteomics allows for large-scale analysis of protein expression and function within cyanobacterial systems. The cyanobacterial proteome exhibits tremendous functional, spatial, and temporal diversity regulated by multiple factors that continuously modify protein abundance, post-translational modifications, interactions, localization, and activity to meet the dynamic needs of these tiny blue greens. Modern mass spectrometry-based proteomics techniques enable system-wide examination of proteome complexity through global identification and high-throughput quantification of proteins. These powerful approaches have revolutionized our understanding of proteome dynamics and promise to provide novel insights into integrated cellular behavior at an unprecedented scale. In this Review, we present modern methods and cutting-edge technologies employed for unraveling the spatiotemporal diversity and dynamics of cyanobacterial proteomics with a specific focus on the methods used to analyze post-translational modifications (PTMs) and examples of dynamic changes in the cyanobacterial proteome investigated by proteomic approaches.
Collapse
Affiliation(s)
| | - Nidhi Singh
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| | - Tripti Kanda
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| | - Sadhana Yadav
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| | - Shivam Yadav
- Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Neelam Atri
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
3
|
Perez-Gil J, Behrendorff J, Douw A, Vickers CE. The methylerythritol phosphate pathway as an oxidative stress sense and response system. Nat Commun 2024; 15:5303. [PMID: 38906898 PMCID: PMC11192765 DOI: 10.1038/s41467-024-49483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/05/2024] [Indexed: 06/23/2024] Open
Abstract
The methylerythritol phosphate (MEP) pathway is responsible for biosynthesis of the precursors of isoprenoid compounds in eubacteria and plastids. It is a metabolic alternative to the well-known mevalonate pathway for isoprenoid production found in archaea and eukaryotes. Recently, a role for the MEP pathway in oxidative stress detection, signalling, and response has been identified. This role is executed in part through the unusual cyclic intermediate, methylerythritol cyclodiphosphate (MEcDP). We postulate that this response is triggered through the oxygen sensitivity of the MEP pathway's terminal iron-sulfur (Fe-S) cluster enzymes. MEcDP is the substrate of IspG, the first Fe-S cluster enzyme in the pathway; it accumulates under oxidative stress conditions and acts as a signalling molecule. It may also act as an antioxidant. Furthermore, evidence is emerging for a broader and highly nuanced role of the MEP pathway in oxidative stress responses, implemented through a complex system of differential regulation and sensitivity at numerous nodes in the pathway. Here, we explore the evidence for such a role (including the contribution of the Fe-S cluster enzymes and different pathway metabolites, especially MEcDP), the evolutionary implications, and the many questions remaining about the behaviour of the MEP pathway in the presence of oxidative stress.
Collapse
Affiliation(s)
- Jordi Perez-Gil
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Environmental and Biological Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - James Behrendorff
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Environmental and Biological Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Andrew Douw
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Claudia E Vickers
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- School of Environmental and Biological Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
- BioBuilt Solutions, Corinda, QLD, 4075, Australia.
| |
Collapse
|
4
|
Wei Y, Zhao D, Wang D. Mesoscience in Hollow Multi-Shelled Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305408. [PMID: 38032116 PMCID: PMC10885658 DOI: 10.1002/advs.202305408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/28/2023] [Indexed: 12/01/2023]
Abstract
The prevalence of mesoscale complexity in materials science underscores the significance of the compromise in competition principle, which gives rise to the emergence of mesoscience. This principle offers valuable insights into understanding the formation process, characteristics, and performance of complex material systems, ultimately guiding the future design of such intricate materials. Hollow multi-shelled structures (HoMS) represent a groundbreaking multifunctional structural system that encompasses several spatial regimes. A plethora of mesoscale cases within HoMS present remarkable opportunities for exploring, understanding, and utilizing mesoscience, varying from the formation process of HoMS, to the mesoscale structural parameters, and finally the distinctive mass/energy transfer behaviors exhibited by HoMS. The compromise in competition between the diffusion and reaction contributes to the successful formation of multi-shells of HoMS, allowing for precise regulation of the structural parameters by dynamically varying the interplay between two dominances. Moreover, the distinct roles played by the shells and cavities within HoMS significantly influence the energy/mass transfer processes with the unique temporal-spatial resolution, providing guidance for customizing the application performance. Hopefully, the empirical and theoretical anatomy of HoMS following mesoscience would fuel new discoveries within this promising and complex multifunctional material system.
Collapse
Affiliation(s)
- Yanze Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Decai Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Strieth D, Kollmen J, Stiefelmaier J, Mehring A, Ulber R. Co-cultures from Plants and Cyanobacteria: A New Way for Production Systems in Agriculture and Bioprocess Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 188:83-117. [PMID: 38286901 DOI: 10.1007/10_2023_247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Due to the global increase in the world population, it is not possible to ensure a sufficient food supply without additional nitrogen input into the soil. About 30-50% of agricultural yields are due to the use of chemical fertilizers in modern times. However, overfertilization threatens biodiversity, such as nitrogen-loving, fast-growing species overgrow others. The production of artificial fertilizers produces nitrogen oxides, which act as greenhouse gases. In addition, overfertilization of fields also releases ammonia, which damages surface waters through acidification and eutrophication. Diazotrophic cyanobacteria, which usually form a natural, stable biofilm, can fix nitrogen from the atmosphere and release it into the environment. Thus, they could provide an alternative to artificial fertilizers. In addition to this, biofilms stabilize soils and thus protect against soil erosion and desiccation. This chapter deals with the potential of cyanobacteria as the use of natural fertilizer is described. Possible partners such as plants and callus cells and the advantages of artificial co-cultivation will be discussed later. In addition, different cultivation systems for studying artificial co-cultures will be presented. Finally, the potential of artificial co-cultures in the agar industry will be discussed.
Collapse
Affiliation(s)
- D Strieth
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany.
| | - J Kollmen
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - J Stiefelmaier
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - A Mehring
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - R Ulber
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
6
|
Shimakawa G. Electron transport in cyanobacterial thylakoid membranes: Are cyanobacteria simple models for photosynthetic organisms? JOURNAL OF EXPERIMENTAL BOTANY 2023:erad118. [PMID: 37025010 DOI: 10.1093/jxb/erad118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Indexed: 06/19/2023]
Abstract
Cyanobacteria are structurally the simplest oxygenic phototrophs, which makes it difficult to understand the regulation of photosynthesis because the photosynthetic and respiratory processes share the same thylakoid membranes and cytosolic space. This review aimed to summarise the molecular mechanisms and in vivo activities of electron transport in cyanobacterial thylakoid membranes based on the latest progress in photosynthesis research in cyanobacteria. Photosynthetic linear electron transport for CO2 assimilation has the dominant electron flux in the thylakoid membranes. The capacity of O2 photoreduction in cyanobacteria is comparable to the photosynthetic CO2 assimilation, which is mediated by flavodiiron proteins. Additionally, cyanobacterial thylakoid membranes harbour the significant electron flux of respiratory electron transport through a homologue of respiratory complex I, which is also recognized as the part of cyclic electron transport chain if it is coupled with photosystem I in the light. Further, O2-independent alternative electron transports through hydrogenase and nitrate reductase function with reduced ferredoxin as the electron donor. Whereas all these electron transports are recently being understood one by one, the complexity as the whole regulatory system remains to be uncovered in near future.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| |
Collapse
|
7
|
Lewis CM, Flory JD, Moore TA, Moore AL, Rittmann BE, Vermaas WFJ, Torres CI, Fromme P. Electrochemically Driven Photosynthetic Electron Transport in Cyanobacteria Lacking Photosystem II. J Am Chem Soc 2022; 144:2933-2942. [PMID: 35157427 DOI: 10.1021/jacs.1c09291] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Light-activated photosystem II (PSII) carries out the critical step of splitting water in photosynthesis. However, PSII is susceptible to light-induced damage. Here, results are presented from a novel microbial electro-photosynthetic system (MEPS) that uses redox mediators in conjunction with an electrode to drive electron transport in live Synechocystis (ΔpsbB) cells lacking PSII. MEPS-generated, light-dependent current increased with light intensity up to 2050 μmol photons m-2 s-1, which yielded a delivery rate of 113 μmol electrons h-1 mg-chl-1 and an average current density of 150 A m-2 s-1 mg-chl-1. P700+ re-reduction kinetics demonstrated that initial rates exceeded wildtype PSII-driven electron delivery. The electron delivery occurs ahead of the cytochrome b6f complex to enable both NADPH and ATP production. This work demonstrates an electrochemical system that can drive photosynthetic electron transport, provides a platform for photosynthetic foundational studies, and has the potential for improving photosynthetic performance at high light intensities.
Collapse
Affiliation(s)
- Christine M Lewis
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,Biodesign Institute Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287, United States.,Biodesign Institute Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| | - Justin D Flory
- Biodesign Institute Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287, United States.,Engineering Center for Negative Carbon Emmisions, at Arizona State University, Tempe, Arizona 85281, United States
| | - Thomas A Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,Julie Ann Wrigley Global Institute of Sustainability and Innovation, Arizona State University, Tempe Arizona 85287, United States
| | - Ana L Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,Julie Ann Wrigley Global Institute of Sustainability and Innovation, Arizona State University, Tempe Arizona 85287, United States
| | - Bruce E Rittmann
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States.,Biodesign Institute Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| | - Wim F J Vermaas
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - César I Torres
- Biodesign Institute Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States.,School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,Biodesign Institute Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
8
|
Sukkasam N, Incharoensakdi A, Monshupanee T. Disruption of Hydrogen Gas Synthesis Enhances the Cellular Levels of NAD(P)H, Glycogen, Poly(3-hydroxybutyrate) and Photosynthetic Pigments Under Specific Nutrient Condition(s) in Cyanobacterium Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2022; 63:135-147. [PMID: 34698867 DOI: 10.1093/pcp/pcab156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
In photoautotrophic Synechocystis sp. PCC 6803, NADPH is generated from photosynthesis and utilized in various metabolism, including the biosynthesis of glyceraldehyde 3-phosphate (the upstream substrate for carbon metabolism), poly(3-hydroxybutyrate) (PHB), photosynthetic pigments, and hydrogen gas (H2). Redirecting NADPH flow from one biosynthesis pathway to another has yet to be studied. Synechocystis's H2 synthesis, one of the pathways consuming NAD(P)H, was disrupted by the inactivation of hoxY and hoxH genes encoding the two catalytic subunits of hydrogenase. Such inactivation with a complete disruption of H2 synthesis led to 1.4-, 1.9-, and 2.1-fold increased cellular NAD(P)H levels when cells were cultured in normal medium (BG11), the medium without nitrate (-N), and the medium without phosphate (-P), respectively. After 49-52 d of cultivation in BG11 (when the nitrogen source in the media was depleted), the cells with disrupted H2 synthesis had 1.3-fold increased glycogen level compared to wild type of 83-85% (w/w dry weight), the highest level reported for cyanobacterial glycogen. The increased glycogen content observed by transmission electron microscopy was correlated with the increased levels of glucose 6-phosphate and glucose 1-phosphate, the two substrates in glycogen synthesis. Disrupted H2 synthesis also enhanced PHB accumulation up to 1.4-fold under -P and 1.6-fold under -N and increased levels of photosynthetic pigments (chlorophyll a, phycocyanin, and allophycocyanin) by 1.3- to 1.5-fold under BG11. Thus, disrupted H2 synthesis increased levels of NAD(P)H, which may be utilized for the biosynthesis of glycogen, PHB, and pigments. This strategy might be applicable for enhancing other biosynthetic pathways that utilize NAD(P)H.
Collapse
Affiliation(s)
- Nannaphat Sukkasam
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aran Incharoensakdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand
| | - Tanakarn Monshupanee
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Yilimulati M, Jin J, Wang X, Wang X, Shevela D, Wu B, Wang K, Zhou L, Jia Y, Pan B, Govindjee G, Zhang S. Regulation of Photosynthesis in Bloom-Forming Cyanobacteria with the Simplest β-Diketone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14173-14184. [PMID: 34590827 DOI: 10.1021/acs.est.1c04683] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Selective inhibition of photosynthesis is a fundamental strategy to solve the global challenge caused by harmful cyanobacterial blooms. However, there is a lack of specificity of the currently used cyanocides, because most of them act on cyanobacteria by generating nontargeted oxidative stress. Here, for the first time, we find that the simplest β-diketone, acetylacetone, is a promising specific cyanocide, which acts on Microcystis aeruginosa through targeted binding on bound iron species in the photosynthetic electron transport chain, rather than by oxidizing the components of the photosynthetic apparatus. The targeted binding approach outperforms the general oxidation mechanism in terms of specificity and eco-safety. Given the essential role of photosynthesis in both natural and artificial systems, this finding not only provides a unique solution for the selective control of cyanobacteria but also sheds new light on the ways to modulate photosynthesis.
Collapse
Affiliation(s)
- Mihebai Yilimulati
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jiyuan Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xin Wang
- School of Life Science, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xiaomeng Wang
- Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187 Umeå, Sweden
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Kai Wang
- Hansha Scientific Instruments Limited, Tai'an 271099, People's Republic of China
| | - Lang Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yunlu Jia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology, and the Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
10
|
Halogen-containing semiconductors: From artificial photosynthesis to unconventional computing. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
11
|
Chang ACG, Chen T, Li N, Duan J. Perspectives on Endosymbiosis in Coralloid Roots: Association of Cycads and Cyanobacteria. Front Microbiol 2019; 10:1888. [PMID: 31474965 PMCID: PMC6702271 DOI: 10.3389/fmicb.2019.01888] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/30/2019] [Indexed: 12/30/2022] Open
Abstract
Past endosymbiotic events allowed photosynthetic organisms to flourish and evolve in terrestrial areas. The precursor of chloroplasts was an ancient photosynthetic cyanobacterium. Presently, cyanobacteria are still capable of establishing successful symbioses in a wide range of hosts. One particular host plant among the gymnosperms is cycads (Order Cycadales) in which a special type of root system, referred to as coralloid roots, develops to house symbiotic cyanobacteria. A number of studies have explained coralloid root formation and cyanobiont invasion but the questions on mechanisms of this host-microbe association remains vague. Most researches focus on diversity of symbionts in coralloid roots but equally important is to explore the underlying mechanisms of cycads-Nostoc symbiosis as well. Besides providing an overview of relevant areas presently known about this association and citing putative genes involved in cycad-cyanobacteria symbioses, this paper aims to identify the limitations that hamper attempts to get to the root of the matter and suggests future research directions that may prove useful.
Collapse
Affiliation(s)
- Aimee Caye G. Chang
- University of Chinese Academy of Sciences, Beijing, China
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, China
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Tao Chen
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, China
| | - Nan Li
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, China
| | - Jun Duan
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
12
|
Tschörtner J, Lai B, Krömer JO. Biophotovoltaics: Green Power Generation From Sunlight and Water. Front Microbiol 2019; 10:866. [PMID: 31114551 PMCID: PMC6503001 DOI: 10.3389/fmicb.2019.00866] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/04/2019] [Indexed: 11/29/2022] Open
Abstract
Biophotovoltaics is a relatively new discipline in microbial fuel cell research. The basic idea is the conversion of light energy into electrical energy using photosynthetic microorganisms. The microbes will use their photosynthetic apparatus and the incoming light to split the water molecule. The generated protons and electrons are harvested using a bioelectrochemical system. The key challenge is the extraction of electrons from the microbial electron transport chains into a solid-state anode. On the cathode, a corresponding electrochemical counter reaction will consume the protons and electrons, e.g., through the oxygen reduction to water, or hydrogen formation. In this review, we are aiming to summarize the current state of the art and point out some limitations. We put a specific emphasis on cyanobacteria, as these microbes are considered future workhorses for photobiotechnology and are currently the most widely applied microbes in biophotovoltaics research. Current progress in biophotovoltaics is limited by very low current outputs of the devices while a lack of comparability and standardization of the experimental set-up hinders a systematic optimization of the systems. Nevertheless, the fundamental questions of redox homeostasis in photoautotrophs and the potential to directly harvest light energy from a highly efficient photosystem, rather than through oxidation of inefficiently produced biomass are highly relevant aspects of biophotovoltaics.
Collapse
Affiliation(s)
| | | | - Jens O. Krömer
- Systems Biotechnology, Department of Solar Materials, Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
13
|
Tirumani S, Gothandam KM, J Rao B. Coordination between photorespiration and carbon concentrating mechanism in Chlamydomonas reinhardtii: transcript and protein changes during light-dark diurnal cycles and mixotrophy conditions. PROTOPLASMA 2019; 256:117-130. [PMID: 29987443 DOI: 10.1007/s00709-018-1283-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Carbon concentrating mechanism (CCM) and photorespiration (PR) are interlinked and co-regulated in Chlamydomonas reinhardtii, but conditions where co-regulation alters are not sufficiently explored. Here, we uncover that PR gene transcripts, like CCM transcripts, are induced even in the dark when both processes are not active. Such diurnal cycles show that transcript levels peak in the middle of 12 h day, decline by early part of 12-h dark followed by their onset again at mid-dark. Interestingly, the onset in the mid-dark phase is sensitive to high CO2, implying that the active carbon sensing mechanism operates even in the dark. The rhythmic alterations of both CCM and PR transcript levels are unlinked to circadian clock: the "free-running state" reveals no discernible rhythmicity in transcript changes. Only continuous light leads to high transcript levels but no detectable transcripts were observed in continuous dark. Asynchronous continuous light cultures, upon shifting to low from high CO2 exhibit only transient induction of PR transcripts/proteins while CCM transcript induction is stable, indicating the loss of co-regulation between PR and CCM gene transcription. Lastly, we also describe that both CCM and PR transcripts/proteins are induced in low CO2 even in mixotrophic cultures, but only in high light, the same being attenuated in high CO2, implying that high light is a mandatory "trigger" for CCM and PR induction in low CO2 mixotrophy. Our study provides comprehensive analyses of conditions where CCM and PR were differently regulated, setting a paradigm for a detailed mechanistic probing of these responses.
Collapse
Affiliation(s)
- S Tirumani
- B-202, Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400005, India
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - K M Gothandam
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Basuthkar J Rao
- B-202, Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400005, India.
- Indian Institute of Science Education and Research, Karkambadi Road, Mangalam (B.O.), Tirupati, AP, 517507, India.
| |
Collapse
|
14
|
Radioprotective role of cyanobacterial phycobilisomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:121-128. [PMID: 30465750 DOI: 10.1016/j.bbabio.2018.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/07/2018] [Accepted: 11/18/2018] [Indexed: 11/20/2022]
Abstract
Cyanobacteria are thought to be responsible for pioneering dioxygen production and the so-called "Great Oxygenation Event" that determined the formation of the ozone layer and the ionosphere restricting ionizing radiation levels reaching our planet, which increased biological diversity but also abolished the necessity of radioprotection. We speculated that ancient protection mechanisms could still be present in cyanobacteria and studied the effect of ionizing radiation and space flight during the Foton-M4 mission on Synechocystis sp. PCC6803. Spectral and functional characteristics of photosynthetic membranes revealed numerous similarities of the effects of α-particles and space flight, which both interrupted excitation energy transfer from phycobilisomes to the photosystems and significantly reduced the concentration of phycobiliproteins. Although photosynthetic activity was severely suppressed, the effect was reversible, and the cells could rapidly recover from the stress. We suggest that the actual existence and the uncoupling of phycobilisomes may play a specific role not only in photo-, but also in radioprotection, which could be crucial for the early evolution of Life on Earth.
Collapse
|
15
|
Ruocco N, Mutalipassi M, Pollio A, Costantini S, Costantini M, Zupo V. First evidence of Halomicronema metazoicum (Cyanobacteria) free-living on Posidonia oceanica leaves. PLoS One 2018; 13:e0204954. [PMID: 30273387 PMCID: PMC6166977 DOI: 10.1371/journal.pone.0204954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/16/2018] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteria contribute to the ecology of various marine environments, also for their symbioses, since some of them are common hosts of sponges and ascidians. They are also emerging as an important source of novel bioactive secondary metabolites in pharmacological (as anticancer drugs) and biotechnological applications. In the present work we isolated a cyanobacteria in a free-living state from leaves of the seagrass Posidonia oceanica leaves. This newly collected strain was then cultivated under two laboratory conditions, and then characterized by combining morphological observation and molecular studies based on 16S rRNA gene sequences analysis. The strain showed 99% pairwise sequence identity with Halomicronema metazoicum ITAC101, never isolated before as a free-living organisms, but firstly described as an endosymbiont of the Mediterranean marine spongae Petrosia ficiformis, under the form of a filamentous strain. Further studies will investigate the actual role of this cyanobacterium in the leaf stratum of P. oceanica leaves, given its demonstrated ability to influence the vitality and the life cycle of other organisms. In fact, its newly demonstrated free-living stage, described in this study, indicate that Phormidium-like cyanobacteria could play important roles in the ecology of benthic and planktonic communities.
Collapse
Affiliation(s)
- Nadia Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, Napoli, Italy
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Pozzuoli, Naples, Italy
| | - Mirko Mutalipassi
- Center of Villa Dohrn Ischia-Benthic Ecology, Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, P.ta S. Pietro, Ischia, Naples, Italy
| | - Antonino Pollio
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, Napoli, Italy
| | - Susan Costantini
- Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - Maria Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
- * E-mail: (VZ); (MC)
| | - Valerio Zupo
- Center of Villa Dohrn Ischia-Benthic Ecology, Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, P.ta S. Pietro, Ischia, Naples, Italy
- * E-mail: (VZ); (MC)
| |
Collapse
|
16
|
Acuña AM, van Alphen P, Branco Dos Santos F, van Grondelle R, Hellingwerf KJ, van Stokkum IHM. Spectrally decomposed dark-to-light transitions in Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2018; 137:307-320. [PMID: 29600442 DOI: 10.1007/s11120-018-0505-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Photosynthetic activity and respiration share the thylakoid membrane in cyanobacteria. We present a series of spectrally resolved fluorescence experiments where whole cells of the cyanobacterium Synechocystis sp. PCC 6803 and mutants thereof underwent a dark-to-light transition after different dark-adaptation (DA) periods. Two mutants were used: (i) a PSI-lacking mutant (ΔPSI) and (ii) M55, a mutant without NAD(P)H dehydrogenase type-1 (NDH-1). For comparison, measurements of the wild-type were also carried out. We recorded spectrally resolved fluorescence traces over several minutes with 100 ms time resolution. The excitation light was at 590 nm so as to specifically excite the phycobilisomes. In ΔPSI, DA time has no influence, and in dichlorophenyl-dimethylurea (DCMU)-treated samples we identify three main fluorescent components: PB-PSII complexes with closed (saturated) RCs, a quenched or open PB-PSII complex, and a PB-PSII 'not fully closed.' For the PSI-containing organisms without DCMU, we conclude that mainly three species contribute to the signal: a PB-PSII-PSI megacomplex with closed PSII RCs and (i) slow PB → PSI energy transfer, or (ii) fast PB → PSI energy transfer and (iii) complexes with open (photochemically quenched) PSII RCs. Furthermore, their time profiles reveal an adaptive response that we identify as a state transition. Our results suggest that deceleration of the PB → PSI energy transfer rate is the molecular mechanism underlying a state 2 to state 1 transition.
Collapse
Affiliation(s)
- Alonso M Acuña
- LaserLaB, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Pascal van Alphen
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Filipe Branco Dos Santos
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Rienk van Grondelle
- LaserLaB, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Klaas J Hellingwerf
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Ivo H M van Stokkum
- LaserLaB, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Moldenhauer M, Sluchanko NN, Tavraz NN, Junghans C, Buhrke D, Willoweit M, Chiappisi L, Schmitt FJ, Vukojević V, Shirshin EA, Ponomarev VY, Paschenko VZ, Gradzielski M, Maksimov EG, Friedrich T. Interaction of the signaling state analog and the apoprotein form of the orange carotenoid protein with the fluorescence recovery protein. PHOTOSYNTHESIS RESEARCH 2018; 135:125-139. [PMID: 28236074 DOI: 10.1007/s11120-017-0346-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/30/2017] [Indexed: 06/06/2023]
Abstract
Photoprotection in cyanobacteria relies on the interplay between the orange carotenoid protein (OCP) and the fluorescence recovery protein (FRP) in a process termed non-photochemical quenching, NPQ. Illumination with blue-green light converts OCP from the basic orange state (OCPO) into the red-shifted, active state (OCPR) that quenches phycobilisome (PBs) fluorescence to avoid excessive energy flow to the photosynthetic reaction centers. Upon binding of FRP, OCPR is converted to OCPO and dissociates from PBs; however, the mode and site of OCPR/FRP interactions remain elusive. Recently, we have introduced the purple OCPW288A mutant as a competent model for the signaling state OCPR (Sluchanko et al., Biochim Biophys Acta 1858:1-11, 2017). Here, we have utilized fluorescence labeling of OCP at its native cysteine residues to generate fluorescent OCP proteins for fluorescence correlation spectroscopy (FCS). Our results show that OCPW288A has a 1.6(±0.4)-fold larger hydrodynamic radius than OCPO, supporting the hypothesis of domain separation upon OCP photoactivation. Whereas the addition of FRP did not change the diffusion behavior of OCPO, a substantial compaction of the OCPW288A mutant and of the OCP apoprotein was observed. These results show that sufficiently stable complexes between FRP and OCPW288A or the OCP apoprotein are formed to be detected by FCS. 1:1 complex formation with a micromolar apparent dissociation constant between OCP apoprotein and FRP was confirmed by size-exclusion chromatography. Beyond the established OCP/FRP interaction underlying NPQ cessation, the OCP apoprotein/FRP interaction suggests a more general role of FRP as a scaffold protein for OCP maturation.
Collapse
Affiliation(s)
- Marcus Moldenhauer
- Institut für Chemie Sekr. PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, 33 Leninsky prospect, building 1, Moscow, Russian Federation, 119071
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1, p. 12, Moscow, Russian Federation, 119992
| | - Neslihan N Tavraz
- Institut für Chemie Sekr. PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Cornelia Junghans
- Institut für Chemie Sekr. PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - David Buhrke
- Institut für Chemie Sekr. PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Mario Willoweit
- Institut für Chemie Sekr. PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Leonardo Chiappisi
- Institut für Chemie Sekr. TC 7, Technische Universität Berlin, Straße des 17. Juni 124, 10623, Berlin, Germany
| | - Franz-Josef Schmitt
- Institut für Chemie Sekr. PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Vladana Vukojević
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, CMM L8:01, 17176, Stockholm, Sweden
| | - Evgeny A Shirshin
- Department of Quantum Electronics, Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow, Russian Federation, 119992
| | - Vladimir Y Ponomarev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1, p. 12, Moscow, Russian Federation, 119992
| | - Vladimir Z Paschenko
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1, p. 12, Moscow, Russian Federation, 119992
| | - Michael Gradzielski
- Institut für Chemie Sekr. TC 7, Technische Universität Berlin, Straße des 17. Juni 124, 10623, Berlin, Germany
| | - Eugene G Maksimov
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1, p. 12, Moscow, Russian Federation, 119992
| | - Thomas Friedrich
- Institut für Chemie Sekr. PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
18
|
Spectrally decomposed dark-to-light transitions in a PSI-deficient mutant of Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:57-68. [DOI: 10.1016/j.bbabio.2017.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/23/2017] [Accepted: 11/09/2017] [Indexed: 11/20/2022]
|
19
|
|
20
|
Strieth D, Ulber R, Muffler K. Application of phototrophic biofilms: from fundamentals to processes. Bioprocess Biosyst Eng 2017; 41:295-312. [PMID: 29198024 DOI: 10.1007/s00449-017-1870-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/24/2017] [Indexed: 01/31/2023]
Abstract
Biotechnological production of valuables by microorganisms is commonly achieved by cultivating the cells as suspended solids in an appropriate liquid medium. However, the main portion of these organisms features a surface-attached growth in their native habitats. The utilization of such biofilms shows significant challenges, e.g. concerning control of pH, nutrient supply, and heat/mass transfer. But the use of biofilms might also enable novel and innovative production processes addressing robustness and strength of the applied biocatalyst, for example if variable conditions might occur in the process or a feedstock (substrate) is changed in its composition. Besides the robustness of a biofilm, the high density of the immobilized biocatalyst facilitates a simple separation of the catalyst and the extracellular product, whereas intracellular target compounds occur in a concentrated form; thus, expenses for downstream processing can be drastically reduced. While phototrophic organisms feature a fabulous spectrum of metabolites ranging from biofuels to biologically active compounds, the low cell density of phototrophic suspension cultures is still limiting their application for production processes. The review is focusing on pro- and eukaryotic microalgae featuring the production of valuable compounds and highlights requirements for their cultivation as phototrophic biofilms, i.e. setup as well as operation of biofilm reactors, and modeling of phototrophic growth.
Collapse
Affiliation(s)
- D Strieth
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - R Ulber
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - K Muffler
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Berlinstr. 109, 55411, Bingen, Germany.
| |
Collapse
|
21
|
Moldenhauer M, Sluchanko NN, Buhrke D, Zlenko DV, Tavraz NN, Schmitt FJ, Hildebrandt P, Maksimov EG, Friedrich T. Assembly of photoactive orange carotenoid protein from its domains unravels a carotenoid shuttle mechanism. PHOTOSYNTHESIS RESEARCH 2017; 133:327-341. [PMID: 28213741 DOI: 10.1007/s11120-017-0353-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/07/2017] [Indexed: 05/15/2023]
Abstract
The photoswitchable orange carotenoid protein (OCP) is indispensable for cyanobacterial photoprotection by quenching phycobilisome fluorescence upon photoconversion from the orange OCPO to the red OCPR form. Cyanobacterial genomes frequently harbor, besides genes for orange carotenoid proteins (OCPs), several genes encoding homologs of OCP's N- or C-terminal domains (NTD, CTD). Unlike the well-studied NTD homologs, called Red Carotenoid Proteins (RCPs), the role of CTD homologs remains elusive. We show how OCP can be reassembled from its functional domains. Expression of Synechocystis OCP-CTD in carotenoid-producing Escherichia coli yielded violet-colored proteins, which, upon mixing with the RCP-apoprotein, produced an orange-like photoswitchable form that further photoconverted into a species that quenches phycobilisome fluorescence and is spectroscopically indistinguishable from RCP, thus demonstrating a unique carotenoid shuttle mechanism. Spontaneous carotenoid transfer also occurs between canthaxanthin-coordinating OCP-CTD and the OCP apoprotein resulting in formation of photoactive OCP. The OCP-CTD itself is a novel, dimeric carotenoid-binding protein, which can coordinate canthaxanthin and zeaxanthin, effectively quenches singlet oxygen and interacts with the Fluorescence Recovery Protein. These findings assign physiological roles to the multitude of CTD homologs in cyanobacteria and explain the evolutionary process of OCP formation.
Collapse
Affiliation(s)
- Marcus Moldenhauer
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, Russian Federation, 119071
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation, 119992
| | - David Buhrke
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Dmitry V Zlenko
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation, 119992
| | - Neslihan N Tavraz
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Franz-Josef Schmitt
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Peter Hildebrandt
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Eugene G Maksimov
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation, 119992.
| | - Thomas Friedrich
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
22
|
Schrantz K, Wyss PP, Ihssen J, Toth R, Bora DK, Vitol EA, Rozhkova EA, Pieles U, Thöny-Meyer L, Braun A. Hematite photoanode co-functionalized with self-assembling melanin and C-phycocyanin for solar water splitting at neutral pH. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.10.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Halan B, Tschörtner J, Schmid A. Generating Electric Current by Bioartificial Photosynthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 167:361-393. [PMID: 29224082 DOI: 10.1007/10_2017_44] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abundant solar energy can be a sustainable source of energy. This chapter highlights recent advancements, challenges, and future scenarios in bioartificial photosynthesis, which is a new subset of bioelectrochemical systems (BESs) and technologies. BES technologies exploit the catalytic interactions between biological moieties and electrodes. At the nexus of BES and photovoltaics, this review focuses on light-harvesting technologies based on bioartificial photosynthesis. Such technologies are promising because electrical energy is generated from sunlight and water without the need for additional organic feedstock. This review focuses on photosynthetic electron generation and transfer and compares the current status of bioartificial photosynthesis with other artificial systems that mimic the chemistry of photosynthetic energy transformation.The fundamental principles and the operation of functional units of bioartificial photosynthesis are addressed. Selected photobioelectrochemical systems employed to obtain light-driven electric currents from photosynthetic organisms are presented. The achievable current output and theoretical maxima are revisited by conceptualizing operational and process window techniques. Factors affecting overall photocurrent efficiency, performance limitations, and scaleup bottlenecks are highlighted in view of enhancing the energy conversion efficiency of photobioelectrochemical systems. To finish, the challenges associated with bioartificial photosynthetic technologies are outlined. Graphical Abstract Operational window for (bio-)artificial photosynthesis. Green circle in the upper right corner: development objective for research and engineering efforts.
Collapse
Affiliation(s)
- Babu Halan
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Jenny Tschörtner
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Andreas Schmid
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany.
| |
Collapse
|
24
|
Acuña AM, Kaňa R, Gwizdala M, Snellenburg JJ, van Alphen P, van Oort B, Kirilovsky D, van Grondelle R, van Stokkum IHM. A method to decompose spectral changes in Synechocystis PCC 6803 during light-induced state transitions. PHOTOSYNTHESIS RESEARCH 2016; 130:237-249. [PMID: 27016082 PMCID: PMC5054063 DOI: 10.1007/s11120-016-0248-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/15/2016] [Indexed: 05/28/2023]
Abstract
Cyanobacteria have developed responses to maintain the balance between the energy absorbed and the energy used in different pigment-protein complexes. One of the relatively rapid (a few minutes) responses is activated when the cells are exposed to high light intensities. This mechanism thermally dissipates excitation energy at the level of the phycobilisome (PB) antenna before it reaches the reaction center. When exposed to low intensities of light that modify the redox state of the plastoquinone pool, the so-called state transitions redistribute energy between photosystem I and II. Experimental techniques to investigate the underlying mechanisms of these responses, such as pulse-amplitude modulated fluorometry, are based on spectrally integrated signals. Previously, a spectrally resolved fluorometry method has been introduced to preserve spectral information. The analysis method introduced in this work allows to interpret SRF data in terms of species-associated spectra of open/closed reaction centers (RCs), (un)quenched PB and state 1 versus state 2. Thus, spectral differences in the time-dependent fluorescence signature of photosynthetic organisms under varying light conditions can be traced and assigned to functional emitting species leading to a number of interpretations of their molecular origins. In particular, we present evidence that state 1 and state 2 correspond to different states of the PB-PSII-PSI megacomplex.
Collapse
Affiliation(s)
- Alonso M Acuña
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081, HV, Amsterdam, The Netherlands
| | - Radek Kaňa
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, Opatovický Mlýn, 379 81, Třeboň, Czech Republic
| | - Michal Gwizdala
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081, HV, Amsterdam, The Netherlands
| | - Joris J Snellenburg
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081, HV, Amsterdam, The Netherlands
| | - Pascal van Alphen
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098, XH, Amsterdam, The Netherlands
| | - Bart van Oort
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081, HV, Amsterdam, The Netherlands
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Rienk van Grondelle
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081, HV, Amsterdam, The Netherlands
| | - Ivo H M van Stokkum
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081, HV, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Heidrich J, Thurotte A, Schneider D. Specific interaction of IM30/Vipp1 with cyanobacterial and chloroplast membranes results in membrane remodeling and eventually in membrane fusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:537-549. [PMID: 27693914 DOI: 10.1016/j.bbamem.2016.09.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022]
Abstract
The photosynthetic light reaction takes place within the thylakoid membrane system in cyanobacteria and chloroplasts. Besides its global importance, the biogenesis, maintenance and dynamics of this membrane system are still a mystery. In the last two decades, strong evidence supported the idea that these processes involve IM30, the inner membrane-associated protein of 30kDa, a protein also known as the vesicle-inducing protein in plastids 1 (Vipp1). Even though we just only begin to understand the precise physiological function of this protein, it is clear that interaction of IM30 with membranes is crucial for biogenesis of thylakoid membranes. Here we summarize and discuss forces guiding IM30-membrane interactions, as the membrane properties as well as the oligomeric state of IM30 appear to affect proper interaction of IM30 with membrane surfaces. Interaction of IM30 with membranes results in an altered membrane structure and can finally trigger fusion of adjacent membranes, when Mg2+ is present. Based on recent results, we finally present a model summarizing individual steps involved in IM30-mediated membrane fusion. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Jennifer Heidrich
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Adrien Thurotte
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Dirk Schneider
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany.
| |
Collapse
|
26
|
Mirkovic T, Ostroumov EE, Anna JM, van Grondelle R, Govindjee, Scholes GD. Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms. Chem Rev 2016; 117:249-293. [PMID: 27428615 DOI: 10.1021/acs.chemrev.6b00002] [Citation(s) in RCA: 615] [Impact Index Per Article: 76.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The process of photosynthesis is initiated by the capture of sunlight by a network of light-absorbing molecules (chromophores), which are also responsible for the subsequent funneling of the excitation energy to the reaction centers. Through evolution, genetic drift, and speciation, photosynthetic organisms have discovered many solutions for light harvesting. In this review, we describe the underlying photophysical principles by which this energy is absorbed, as well as the mechanisms of electronic excitation energy transfer (EET). First, optical properties of the individual pigment chromophores present in light-harvesting antenna complexes are introduced, and then we examine the collective behavior of pigment-pigment and pigment-protein interactions. The description of energy transfer, in particular multichromophoric antenna structures, is shown to vary depending on the spatial and energetic landscape, which dictates the relative coupling strength between constituent pigment molecules. In the latter half of the article, we focus on the light-harvesting complexes of purple bacteria as a model to illustrate the present understanding of the synergetic effects leading to EET optimization of light-harvesting antenna systems while exploring the structure and function of the integral chromophores. We end this review with a brief overview of the energy-transfer dynamics and pathways in the light-harvesting antennas of various photosynthetic organisms.
Collapse
Affiliation(s)
- Tihana Mirkovic
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Evgeny E Ostroumov
- Department of Chemistry, Princeton University , Washington Road, Princeton, New Jersey 08544, United States
| | - Jessica M Anna
- Department of Chemistry, University of Pennsylvania , 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam , De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Govindjee
- Department of Biochemistry, Center of Biophysics & Quantitative Biology, and Department of Plant Biology, University of Illinois at Urbana-Champaign , 265 Morrill Hall, 505 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Gregory D Scholes
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.,Department of Chemistry, Princeton University , Washington Road, Princeton, New Jersey 08544, United States
| |
Collapse
|
27
|
Cardona T. A fresh look at the evolution and diversification of photochemical reaction centers. PHOTOSYNTHESIS RESEARCH 2015; 126:111-34. [PMID: 25512103 PMCID: PMC4582080 DOI: 10.1007/s11120-014-0065-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 12/05/2014] [Indexed: 05/18/2023]
Abstract
In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers.
Collapse
Affiliation(s)
- Tanai Cardona
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| |
Collapse
|
28
|
Gao L, Pei G, Chen L, Zhang W. A global network-based protocol for functional inference of hypothetical proteins in Synechocystis sp. PCC 6803. J Microbiol Methods 2015; 116:44-52. [DOI: 10.1016/j.mimet.2015.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 01/15/2023]
|
29
|
Najafpour MM, Ghobadi MZ, Haghighi B, Tomo T, Carpentier R, Shen JR, Allakhverdiev SI. A nano-sized manganese oxide in a protein matrix as a natural water-oxidizing site. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:3-15. [PMID: 24560883 DOI: 10.1016/j.plaphy.2014.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/26/2014] [Indexed: 06/03/2023]
Abstract
The purpose of this review is to present recent advances in the structural and functional studies of water-oxidizing center of Photosystem II and its surrounding protein matrix in order to synthesize artificial catalysts for production of clean and efficient hydrogen fuel.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran; Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| | - Mohadeseh Zarei Ghobadi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Behzad Haghighi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran; Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Tatsuya Tomo
- Department of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo 162-8601, Japan; PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Robert Carpentier
- Departement de Chimie Biochimie et Physique, Université du Québec à Trois Rivières, C.P. 500, Québec G9A 5H7, Canada
| | - Jian-Ren Shen
- Graduate School of Natural Science and Technology, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Suleyman I Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| |
Collapse
|
30
|
|
31
|
Moroney JV, Jungnick N, Dimario RJ, Longstreth DJ. Photorespiration and carbon concentrating mechanisms: two adaptations to high O2, low CO2 conditions. PHOTOSYNTHESIS RESEARCH 2013; 117:121-31. [PMID: 23771683 DOI: 10.1007/s11120-013-9865-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 05/27/2013] [Indexed: 05/19/2023]
Abstract
This review presents an overview of the two ways that cyanobacteria, algae, and plants have adapted to high O2 and low CO2 concentrations in the environment. First, the process of photorespiration enables photosynthetic organisms to recycle phosphoglycolate formed by the oxygenase reaction catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Second, there are a number of carbon concentrating mechanisms that increase the CO2 concentration around Rubisco which increases the carboxylase reaction enhancing CO2 fixation. This review also presents possibilities for the beneficial modification of these processes with the goal of improving future crop yields.
Collapse
Affiliation(s)
- James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA,
| | | | | | | |
Collapse
|
32
|
Eaton-Rye JJ. Govindjee at 80: more than 50 years of free energy for photosynthesis. PHOTOSYNTHESIS RESEARCH 2013; 116:111-44. [PMID: 24113923 DOI: 10.1007/s11120-013-9921-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 08/26/2013] [Indexed: 05/23/2023]
Abstract
We provide here a glimpse of Govindjee and his pioneering contributions on the two light reactions and the two pigment systems, particularly on the water-plastoquinone oxido-reductase, Photosystem II. His focus has been on excitation energy transfer; primary photochemistry, and the role of bicarbonate in electron and proton transfer. His major tools have been kinetics and spectroscopy (absorption and fluorescence), and he has provided an understanding of both thermoluminescence and delayed light emission in plants and algae. He pioneered the use of lifetime of fluorescence measurements to study the phenomenon of photoprotection in plants and algae. He, however, is both a generalist and a specialist all at the same time. He communicates very effectively his passion for photosynthesis to the novice as well as professionals. He has been a prolific author, outstanding lecturer and an editor par excellence. He is the founder not only of the Historical Corner of Photosynthesis Research, but of the highly valued Series Advances in Photosynthesis and Respiration Including Bioenergy and Related Processes. He reaches out to young people by distributing Z-scheme posters, presenting Awards of books, and through tri-annual articles on "Photosynthesis Web Resources". At home, at the University of Illinois at Urbana-Champaign, he has established student Awards for Excellence in Biological Sciences. On behalf of all his former graduate students and associates, I wish him a Happy 80th birthday. I have included here several tributes to Govindjee by his well-wishers. These write-ups express the high regard the photosynthesis community holds for "Gov" and illuminate the different facets of his life and associations.
Collapse
Affiliation(s)
- Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand,
| |
Collapse
|
33
|
Najafpour MM, Moghaddam AN, Yang YN, Aro EM, Carpentier R, Eaton-Rye JJ, Lee CH, Allakhverdiev SI. Biological water-oxidizing complex: a nano-sized manganese-calcium oxide in a protein environment. PHOTOSYNTHESIS RESEARCH 2012; 114:1-13. [PMID: 22941557 DOI: 10.1007/s11120-012-9778-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/20/2012] [Indexed: 06/01/2023]
Abstract
The resolution of Photosystem II (PS II) crystals has been improved using isolated PS II from the thermophilic cyanobacterium Thermosynechococcus vulcanus. The new 1.9 Å resolution data have provided detailed information on the structure of the water-oxidizing complex (Umena et al. Nature 473: 55-61, 2011). The atomic level structure of the manganese-calcium cluster is important for understanding the mechanism of water oxidation and to design an efficient catalyst for water oxidation in artificial photosynthetic systems. Here, we have briefly reviewed our knowledge of the structure and function of the cluster.
Collapse
|
34
|
Shevela D, Eaton-Rye JJ, Shen JR, Govindjee. Photosystem II and the unique role of bicarbonate: a historical perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1134-51. [PMID: 22521596 DOI: 10.1016/j.bbabio.2012.04.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 12/11/2022]
Abstract
In photosynthesis, cyanobacteria, algae and plants fix carbon dioxide (CO(2)) into carbohydrates; this is necessary to support life on Earth. Over 50 years ago, Otto Heinrich Warburg discovered a unique stimulatory role of CO(2) in the Hill reaction (i.e., O(2) evolution accompanied by reduction of an artificial electron acceptor), which, obviously, does not include any carbon fixation pathway; Warburg used this discovery to support his idea that O(2) in photosynthesis originates in CO(2). During the 1960s, a large number of researchers attempted to decipher this unique phenomenon, with limited success. In the 1970s, Alan Stemler, in Govindjee's lab, perfected methods to get highly reproducible results, and observed, among other things, that the turnover of Photosystem II (PSII) was stimulated by bicarbonate ions (hydrogen carbonate): the effect would be on the donor or the acceptor, or both sides of PSII. In 1975, Thomas Wydrzynski, also in Govindjee's lab, discovered that there was a definite bicarbonate effect on the electron acceptor (the plastoquinone) side of PSII. The most recent 1.9Å crystal structure of PSII, unequivocally shows HCO(3)(-) bound to the non-heme iron that sits in-between the bound primary quinone electron acceptor, Q(A), and the secondary quinone electron acceptor Q(B). In this review, we focus on the historical development of our understanding of this unique bicarbonate effect on the electron acceptor side of PSII, and its mechanism as obtained by biochemical, biophysical and molecular biological approaches in many laboratories around the World. We suggest an atomic level model in which HCO(3)(-)/CO(3)(2-) plays a key role in the protonation of the reduced Q(B). In addition, we make comments on the role of bicarbonate on the donor side of PSII, as has been extensively studied in the labs of Alan Stemler (USA) and Vyacheslav Klimov (Russia). We end this review by discussing the uniqueness of bicarbonate's role in oxygenic photosynthesis and its role in the evolutionary development of O(2)-evolving PSII. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Dmitriy Shevela
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway.
| | | | | | | |
Collapse
|
35
|
Kaňa R, Kotabová E, Komárek O, Sedivá B, Papageorgiou GC, Govindjee, Prášil O. The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1237-47. [PMID: 22402228 DOI: 10.1016/j.bbabio.2012.02.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 02/13/2012] [Accepted: 02/20/2012] [Indexed: 11/17/2022]
Abstract
In dark-adapted plants and algae, chlorophyll a fluorescence induction peaks within 1s after irradiation due to well documented photochemical and non-photochemical processes. Here we show that the much slower fluorescence rise in cyanobacteria (the so-called "S to M rise" in tens of seconds) is due to state 2 to state 1 transition. This has been demonstrated in particular for Synechocystis PCC6803, using its RpaC(-) mutant (locked in state 1) and its wild-type cells kept in hyperosmotic suspension (locked in state 2). In both cases, the inhibition of state changes correlates with the disappearance of the S to M fluorescence rise, confirming its assignment to the state 2 to state 1 transition. The general physiological relevance of the SM rise is supported by its occurrence in several cyanobacterial strains: Synechococcus (PCC 7942, WH 5701) and diazotrophic single cell cyanobacterium (Cyanothece sp. ATCC 51142). We also show here that the SM fluorescence rise, and also the state transition changes are less prominent in filamentous diazotrophic cyanobacterium Nostoc sp. (PCC 7120) and absent in phycobilisome-less cyanobacterium Prochlorococcus marinus PCC 9511. Surprisingly, it is also absent in the phycobiliprotein rod containing Acaryochloris marina (MBIC 11017). All these results show that the S to M fluorescence rise reflects state 2 to state 1 transition in cyanobacteria with phycobilisomes formed by rods and core parts. We show that the pronounced SM fluorescence rise may reflect a protective mechanism for excess energy dissipation in those cyanobacteria (e.g. in Synechococcus PCC 7942) that are less efficient in other protective mechanisms, such as blue light induced non-photochemical quenching. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Radek Kaňa
- Institute of Microbiology, Academy of Sciences, Třeboň, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
36
|
|