1
|
Slimani A, Ait-El-Mokhtar M, Ben-Laouane R, Boutasknit A, Anli M, Abouraicha EF, Oufdou K, Meddich A, Baslam M. Molecular and Systems Biology Approaches for Harnessing the Symbiotic Interaction in Mycorrhizal Symbiosis for Grain and Oil Crop Cultivation. Int J Mol Sci 2024; 25:912. [PMID: 38255984 PMCID: PMC10815302 DOI: 10.3390/ijms25020912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Mycorrhizal symbiosis, the mutually beneficial association between plants and fungi, has gained significant attention in recent years due to its widespread significance in agricultural productivity. Specifically, arbuscular mycorrhizal fungi (AMF) provide a range of benefits to grain and oil crops, including improved nutrient uptake, growth, and resistance to (a)biotic stressors. Harnessing this symbiotic interaction using molecular and systems biology approaches presents promising opportunities for sustainable and economically-viable agricultural practices. Research in this area aims to identify and manipulate specific genes and pathways involved in the symbiotic interaction, leading to improved cereal and oilseed crop yields and nutrient acquisition. This review provides an overview of the research frontier on utilizing molecular and systems biology approaches for harnessing the symbiotic interaction in mycorrhizal symbiosis for grain and oil crop cultivation. Moreover, we address the mechanistic insights and molecular determinants underpinning this exchange. We conclude with an overview of current efforts to harness mycorrhizal diversity to improve cereal and oilseed health through systems biology.
Collapse
Affiliation(s)
- Aiman Slimani
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Mohamed Ait-El-Mokhtar
- Laboratory Biochemistry, Environment & Agri-Food URAC 36, Department of Biology, Faculty of Science and Techniques—Mohammedia, Hassan II University of Casablanca, Mohammedia 28800, Morocco
| | - Raja Ben-Laouane
- Laboratory of Environment and Health, Department of Biology, Faculty of Science and Techniques, Errachidia 52000, Morocco
| | - Abderrahim Boutasknit
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Biology, Multidisciplinary Faculty of Nador, Mohamed First University, Nador 62700, Morocco
| | - Mohamed Anli
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Life, Earth and Environmental Sciences, University of Comoros, Patsy University Center, Moroni 269, Comoros
| | - El Faiza Abouraicha
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Higher Institute of Nursing and Health Techniques (ISPITS), Essaouira 44000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Abdelilah Meddich
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Marouane Baslam
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- GrowSmart, Seoul 03129, Republic of Korea
| |
Collapse
|
2
|
Khelghatibana F, Javan-Nikkhah M, Safaie N, Sobhani A, Shams S, Sari E. A reference transcriptome for walnut anthracnose pathogen, Ophiognomonia leptostyla, guides the discovery of candidate virulence genes. Fungal Genet Biol 2023; 169:103828. [PMID: 37657751 DOI: 10.1016/j.fgb.2023.103828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/13/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Despite the economic losses due to the walnut anthracnose, Ophiognomonia leptostyla is an orphan fungus with respect to genomic resources. In the present study, the transcriptome of O. leptostyla was assembled for the first time. RNA sequencing was conducted for the fungal mycelia grown in a liquid media, and the inoculated leaf samples of walnut with the fungal conidia sampled at 48, 96 and 144 h post inoculation (hpi). The completeness, correctness, and contiguity of the de novo transcriptome assemblies generated with Trinity, Oases, SOAPdenovo-Trans and Bridger were compared to identify a single superior reference assembly. In most of the assessment criteria including N50, Transrate score, number of ORFs with known description in gene bank, the percentage of reads mapped back to the transcript (RMBT), BUSCO score, Swiss-Prot coverage bin and RESM-EVAL score, the Bridger assembly was the superior and thus used as a reference for profiling the O. leptostyla transcriptome in liquid media vs. during walnut infection. The k-means clustering of transcripts resulted in four distinct transcription patterns across the three sampling time points. Most of the detected CAZy transcripts had elevated transcription at 96 hpi that is hypothetically concurrent with the start of intracellular growth. The in-silico analysis revealed 103 candidate effectors of which six were members of Necrosis and Ethylene Inducing Like Protein (NLP) gene family belonging to three distinct k-means clusters. This study provided a complex and temporal pattern of the CAZys and candidate effectors transcription during six days post O. leptostyla inoculation on walnut leaves, introducing a list of candidate virulence genes for validation in future studies.
Collapse
Affiliation(s)
- Fatemeh Khelghatibana
- Department of Plant Pathology, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.
| | - Mohammad Javan-Nikkhah
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Naser Safaie
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Sobhani
- Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| | - Somayeh Shams
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, University of Lorestan, Khorramabad, Iran
| | - Ehsan Sari
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA.
| |
Collapse
|
3
|
Shams S, Ismaili A, Firouzabadi FN, Mumivand H, Sorkheh K. Comparative transcriptome analysis to identify putative genes involved in carvacrol biosynthesis pathway in two species of Satureja, endemic medicinal herbs of Iran. PLoS One 2023; 18:e0281351. [PMID: 37418504 PMCID: PMC10328369 DOI: 10.1371/journal.pone.0281351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/22/2023] [Indexed: 07/09/2023] Open
Abstract
Satureja is rich in phenolic monoterpenoids, mainly carvacrol, that is of interest due to diverse biological activities including antifungal and antibacterial. However, limited information is available regarding the molecular mechanisms underlying carvacrol biosynthesis and its regulation for this wonderful medicinal herb. To identify the putative genes involved in carvacrol and other monoterpene biosynthesis pathway, we generated a reference transcriptome in two endemic Satureja species of Iran, containing different yields (Satureja khuzistanica and Satureja rechingeri). Cross-species differential expression analysis was conducted between two species of Satureja. 210 and 186 transcripts related to terpenoid backbone biosynthesis were identified for S. khuzistanica and S. rechingeri, respectively. 29 differentially expressed genes (DEGs) involved in terpenoid biosynthesis were identified, and these DEGs were significantly enriched in monoterpenoid biosynthesis, diterpenoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, carotenoid biosynthesis and ubiquinone and other terpenoid-quinone biosynthesis pathways. Expression patterns of S. khuzistanica and S. rechingeri transcripts involved in the terpenoid biosynthetic pathway were evaluated. In addition, we identified 19 differentially expressed transcription factors (such as MYC4, bHLH, and ARF18) that may control terpenoid biosynthesis. We confirmed the altered expression levels of DEGs that encode carvacrol biosynthetic enzymes using quantitative real-time PCR (qRT-PCR). This study is the first report on de novo assembly and transcriptome data analysis in Satureja which could be useful for an understanding of the main constituents of Satureja essential oil and future research in this genus.
Collapse
Affiliation(s)
- Somayeh Shams
- Faculty of Agriculture, Department of Plant Production and Genetic Engineering, Lorestan University, Khorramabad, Iran
| | - Ahmad Ismaili
- Faculty of Agriculture, Department of Plant Production and Genetic Engineering, Lorestan University, Khorramabad, Iran
| | - Farhad Nazarian Firouzabadi
- Faculty of Agriculture, Department of Plant Production and Genetic Engineering, Lorestan University, Khorramabad, Iran
| | - Hasan Mumivand
- Faculty of Agriculture, Department of Horticultural Science, Lorestan University, Khorramabad, Iran
| | - Karim Sorkheh
- Faculty of Agriculture, Department of Plant Production and Genetic Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
4
|
Adolfo LM, Rao X, Dixon RA. Identification of Pueraria spp. through DNA barcoding and comparative transcriptomics. BMC PLANT BIOLOGY 2022; 22:10. [PMID: 34979934 PMCID: PMC8722073 DOI: 10.1186/s12870-021-03383-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Kudzu is a term used generically to describe members of the genus Pueraria. Kudzu roots have been used for centuries in traditional Chinese medicine in view of their high levels of beneficial isoflavones including the unique 8-C-glycoside of daidzein, puerarin. In the US, kudzu is seen as a noxious weed causing ecological and economic damage. However, not all kudzu species make puerarin or are equally invasive. Kudzu remains difficult to identify due to its diverse morphology and inconsistent nomenclature. RESULTS We have generated sequences for the internal transcribed spacer 2 (ITS2) and maturase K (matK) regions of Pueraria montana lobata, P. montana montana, and P. phaseoloides, and identified two accessions previously used for differential analysis of puerarin biosynthesis as P. lobata and P. phaseoloides. Additionally, we have generated root transcriptomes for the puerarin-producing P. m. lobata and the non-puerarin producing P. phaseoloides. Within the transcriptomes, microsatellites were identified to aid in species identification as well as population diversity. CONCLUSIONS The barcode sequences generated will aid in fast and efficient identification of the three kudzu species. Additionally, the microsatellites identified from the transcriptomes will aid in genetic analysis. The root transcriptomes also provide a molecular toolkit for comparative gene expression analysis towards elucidation of the biosynthesis of kudzu phytochemicals.
Collapse
Affiliation(s)
- Laci M Adolfo
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA
| | - Xiaolan Rao
- College of Life Sciences, Hubei University, Wuhan, 430068, Hubei Province, China
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA.
| |
Collapse
|
5
|
Shmakov NА. Improving the quality of barley transcriptome de novo assembling by using a hybrid approach for lines with varying spike and stem coloration. Vavilovskii Zhurnal Genet Selektsii 2021; 25:30-38. [PMID: 34901701 PMCID: PMC8627909 DOI: 10.18699/vj21.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 11/19/2022] Open
Abstract
De novo transcriptome assembly is an important stage of RNA-seq data computational analysis. It allows the researchers to obtain the sequences of transcripts presented in the biological sample of interest. The availability of accurate and complete transcriptome sequence of the organism of interest is, in turn, an indispensable condition for further analysis of RNA-seq data. Through years of transcriptomic research, the bioinformatics community has developed a number of assembler programs for transcriptome reconstruction from short reads of RNA-seq libraries. Different assemblers makes it possible to conduct a de novo transcriptome reconstruction and a genome-guided reconstruction. The majority of the assemblers working with RNA-seq data are based on the De Bruijn graph method of sequence reconstruction. However, specif ics of their procedures can vary drastically, as do their results. A number of authors recommend a hybrid approach to transcriptome reconstruction based on combining the results of several assemblers in order to achieve a better transcriptome assembly. The advantage of this approach has been demonstrated in a number of studies, with RNA-seq experiments conducted on the Illumina platform. In this paper, we propose a hybrid approach for creating a transcriptome assembly of the barley Hordeum vulgare isogenic line Bowman and two nearly isogenic lines contrasting in spike pigmentation, based on the results of sequencing on the IonTorrent platform. This approach implements several de novo assemblers: Trinity, Trans-ABySS and rnaSPAdes. Several assembly metrics were examined: the percentage of reference transcripts observed in the assemblies, the percentage of RNA-seq reads involved, and BUSCO scores. It was shown that, based on the summation of these metrics, transcriptome meta-assembly surpasses individual transcriptome assemblies it consists of.
Collapse
Affiliation(s)
- N А Shmakov
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Kurchatov Genomics Center, Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
6
|
Morales-Briones DF, Kadereit G, Tefarikis DT, Moore MJ, Smith SA, Brockington SF, Timoneda A, Yim WC, Cushman JC, Yang Y. Disentangling Sources of Gene Tree Discordance in Phylogenomic Data Sets: Testing Ancient Hybridizations in Amaranthaceae s.l. Syst Biol 2020; 70:219-235. [PMID: 32785686 PMCID: PMC7875436 DOI: 10.1093/sysbio/syaa066] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/01/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022] Open
Abstract
Gene tree discordance in large genomic data sets can be caused by evolutionary processes such as incomplete lineage sorting and hybridization, as well as model violation, and errors in data processing, orthology inference, and gene tree estimation. Species tree methods that identify and accommodate all sources of conflict are not available, but a combination of multiple approaches can help tease apart alternative sources of conflict. Here, using a phylotranscriptomic analysis in combination with reference genomes, we test a hypothesis of ancient hybridization events within the plant family Amaranthaceae s.l. that was previously supported by morphological, ecological, and Sanger-based molecular data. The data set included seven genomes and 88 transcriptomes, 17 generated for this study. We examined gene-tree discordance using coalescent-based species trees and network inference, gene tree discordance analyses, site pattern tests of introgression, topology tests, synteny analyses, and simulations. We found that a combination of processes might have generated the high levels of gene tree discordance in the backbone of Amaranthaceae s.l. Furthermore, we found evidence that three consecutive short internal branches produce anomalous trees contributing to the discordance. Overall, our results suggest that Amaranthaceae s.l. might be a product of an ancient and rapid lineage diversification, and remains, and probably will remain, unresolved. This work highlights the potential problems of identifiability associated with the sources of gene tree discordance including, in particular, phylogenetic network methods. Our results also demonstrate the importance of thoroughly testing for multiple sources of conflict in phylogenomic analyses, especially in the context of ancient, rapid radiations. We provide several recommendations for exploring conflicting signals in such situations. [Amaranthaceae; gene tree discordance; hybridization; incomplete lineage sorting; phylogenomics; species network; species tree; transcriptomics.]
Collapse
Affiliation(s)
- Diego F Morales-Briones
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St. Paul, MN 55108, USA
| | - Gudrun Kadereit
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Delphine T Tefarikis
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Michael J Moore
- Department of Biology, Oberlin College, Science Center K111, 119 Woodland Street, Oberlin, OH 44074-1097, USA
| | - Stephen A Smith
- Department of Ecology & Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA
| | - Samuel F Brockington
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge CB2 3EA, UK
| | - Alfonso Timoneda
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge CB2 3EA, UK
| | - Won C Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89577, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89577, USA
| | - Ya Yang
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St. Paul, MN 55108, USA
| |
Collapse
|
7
|
Transcriptome Analysis of Maternal Gene Transcripts in Unfertilized Eggs of Misgurnus anguillicaudatus and Identification of Immune-Related Maternal Genes. Int J Mol Sci 2020; 21:ijms21113872. [PMID: 32485896 PMCID: PMC7312655 DOI: 10.3390/ijms21113872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
Maternal genes are important in directing early development and determining egg quality in fish. We here report the de novo transcriptome from four tissue libraries of the cyprinid loach, Misgurnus anguillicaudatus, and for the first time identified maternal gene transcripts in unfertilized eggs and suggest their immune system involvement. Expression profiles and functional enrichment revealed a total 24,116 transcripts were expressed as maternal transcripts in unfertilized eggs, which were involved in a wide range of biological functions and pathways. Comparison expression profiles and analysis of tissue specificity revealed that the large numbers of maternal transcripts were stored in unfertilized eggs near the late phase of ovarian maturation and before ovulation. Functional classification showed a total of 279 maternal immune-related transcripts classified with immune system process GO term and immune system KEGG pathway. qPCR analysis showed that transcript levels of identified maternal immune-related candidate genes were dynamically modulated during development and early ontogeny of M. anguillicaudatus. Taken together, this study could not only provide knowledge on the protective roles of maternal immune-related genes during early life stage of M. anguillicaudatus but could also be a valuable transcriptomic/genomic resource for further analysis of maternally provisioned genes in M. anguillicaudatus and other related teleost fishes.
Collapse
|
8
|
Szeliga M, Ciura J, Grzesik M, Tyrka M. Identification of candidate genes involved in steroidal alkaloids biosynthesis in organ-specific transcriptomes of Veratrum nigrum L. Gene 2019; 712:143962. [PMID: 31288057 DOI: 10.1016/j.gene.2019.143962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/10/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
Abstract
Veratrum nigrum is protected plant of Melanthiaceae family, able to synthetize unique steroidal alkaloids important for pharmacy. Transcriptomes from leaves, stems and rhizomes of in vitro maintained V. nigrum plants were sequenced and annotated for genes and markers discovery. Sequencing of samples derived from the different organs resulted in a total of 108,511 contigs with a mean length of 596 bp. Transcripts derived from leaf and stalk were annotated at 28%, and 38% in Nr nucleotide database, respectively. The sequencing revealed 949 unigenes related with lipid metabolism, including 73 transcripts involved in steroids and genus-specific steroid alkaloids biosynthesis. Additionally, 3203 candidate SSRs markers we identified in unigenes with average density of one SSR locus every 6.2 kb sequence. Unraveling of biochemical machinery of the pathway responsible for steroidal alkaloids will open possibility to design and optimize biotechnological process. The transcriptomic data provide valuable resources for biochemical, molecular genetics, comparative transcriptomics, functional genomics, ecological and evolutionary studies of V. nigrum.
Collapse
Affiliation(s)
- Magdalena Szeliga
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-595 Rzeszów, Poland.
| | - Joanna Ciura
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-595 Rzeszów, Poland; Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Michalina Grzesik
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-595 Rzeszów, Poland; Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszów, Ćwiklińskiej 1, 35-601 Rzeszów, Poland
| | - Mirosław Tyrka
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-595 Rzeszów, Poland
| |
Collapse
|
9
|
Pourmazaheri H, Soorni A, Kohnerouz BB, Dehaghi NK, Kalantar E, Omidi M, Naghavi MR. Comparative analysis of the root and leaf transcriptomes in Chelidonium majus L. PLoS One 2019; 14:e0215165. [PMID: 30986259 PMCID: PMC6464174 DOI: 10.1371/journal.pone.0215165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/27/2019] [Indexed: 12/31/2022] Open
Abstract
Chelidonium majus is a traditional medicinal plant, which commonly known as a rich resource for the major benzylisoquinoline alkaloids (BIAs), including morphine, sanguinarine, and berberine. To understand the biosynthesis of C. majus BIAs, we performed de novo transcriptome sequencing of its leaf and root tissues using Illumina technology. Following comprehensive evaluation of de novo transcriptome assemblies produced with five programs including Trinity, Bridger, BinPacker, IDBA-tran, and Velvet/Oases using a series of k-mer sizes (from 25 to 91), BinPacker was found to produce the best assembly using a k-mer of 25. This study reports the results of differential gene expression (DGE), functional annotation, gene ontology (GO) analysis, classification of transcription factor (TF)s, and SSR and miRNA discovery. Our DGE analysis identified 6,028 transcripts that were up-regulated in the leaf, and 4,722 transcripts that were up-regulated in the root. Further investigations showed that most of the genes involved in the BIA biosynthetic pathway are significantly expressed in the root compared to the leaf. GO analysis showed that the predominant GO domain is "cellular component", while TF analysis found bHLH to be the most highly represented TF family. Our study further identified 10 SSRs, out of a total of 39,841, that showed linkage to five unigenes encoding enzymes in the BIA pathway, and 10 conserved miRNAs that were previously not detected in this plant. The comprehensive transcriptome information presented herein provides a foundation for further explorations on study of the molecular mechanisms of BIA synthesis in C. majus.
Collapse
Affiliation(s)
- Helen Pourmazaheri
- Department of Plant Breeding and Biotechnology, College of Agriculture, University of Tabriz, Tabriz, Islamic Republic of Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Islamic Republic of Iran
| | - Aboozar Soorni
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Bahram Baghban Kohnerouz
- Department of Plant Breeding and Biotechnology, College of Agriculture, University of Tabriz, Tabriz, Islamic Republic of Iran
| | - Nafiseh Khosravi Dehaghi
- Department of Pharmacognosy, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Islamic Republic of Iran
| | - Enayatollah Kalantar
- Department of Microbiology and Immunology, Faculty of Medicine, Alborz University of Medical Science, Karaj, Islamic Republic of Iran
| | - Mansoor Omidi
- Agronomy and Plant Breeding Department, Agricultural & Natural Resources College, University of Tehran, Karaj, Islamic Republic of Iran
| | - Mohammad Reza Naghavi
- Agronomy and Plant Breeding Department, Agricultural & Natural Resources College, University of Tehran, Karaj, Islamic Republic of Iran
| |
Collapse
|
10
|
Taheri S, Abdullah TL, Rafii MY, Harikrishna JA, Werbrouck SPO, Teo CH, Sahebi M, Azizi P. De novo assembly of transcriptomes, mining, and development of novel EST-SSR markers in Curcuma alismatifolia (Zingiberaceae family) through Illumina sequencing. Sci Rep 2019; 9:3047. [PMID: 30816255 PMCID: PMC6395698 DOI: 10.1038/s41598-019-39944-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 02/06/2019] [Indexed: 11/24/2022] Open
Abstract
Curcuma alismatifolia widely used as an ornamental plant in Thailand and Cambodia. This species of herbaceous perennial from the Zingiberaceae family, includes cultivars with a wide range of colours and long postharvest life, and is used as an ornamental cut flower, as a potted plant, and in exterior landscapes. For further genetic improvement, however, little genomic information and no specific molecular markers are available. The present study used Illumina sequencing and de novo transcriptome assembly of two C. alismatifolia cvs, 'Chiang Mai Pink' and 'UB Snow 701', to develop simple sequence repeat markers for genetic diversity studies. After de novo assembly, 62,105 unigenes were generated and 48,813 (78.60%) showed significant similarities versus six functional protein databases. In addition, 9,351 expressed sequence tag-simple sequence repeats (EST-SSRs) were identified with a distribution frequency of 12.5% total unigenes. Out of 8,955 designed EST-SSR primers, 150 primers were selected for the development of potential molecular markers. Among these markers, 17 EST-SSR markers presented a moderate level of genetic diversity among three C. alismatifolia cultivars, one hybrid, three Curcuma, and two Zingiber species. Three different genetic groups within these species were revealed using EST-SSR markers, indicating that the markers developed in this study can be effectively applied to the population genetic analysis of Curcuma and Zingiber species. This report describes the first analysis of transcriptome data of an important ornamental ginger cultivars, also provides a valuable resource for gene discovery and marker development in the genus Curcuma.
Collapse
Affiliation(s)
- Sima Taheri
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Centre of Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Thohirah Lee Abdullah
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - M Y Rafii
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jennifer Ann Harikrishna
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Centre of Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Stefaan P O Werbrouck
- Laboratory of Applied Science In Vitro Plant Biotechnology, Department of Plants and Crops, Faculty of Bioscience Engineering, University Ghent, Valentin Vaerwyckweg 1, BE-9000, Gent, Belgium
| | - Chee How Teo
- Centre of Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Parisa Azizi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
11
|
Vergara-Pulgar C, Rothkegel K, González-Agüero M, Pedreschi R, Campos-Vargas R, Defilippi BG, Meneses C. De novo assembly of Persea americana cv. 'Hass' transcriptome during fruit development. BMC Genomics 2019; 20:108. [PMID: 30727956 PMCID: PMC6364401 DOI: 10.1186/s12864-019-5486-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/28/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Avocado (Persea americana Mill.) is a basal angiosperm from the Lauraceae family. This species has a diploid genome with an approximated size of ~ 920 Mbp and produces a climacteric, fleshy and oily fruit. The flowering and fruit set are particularly prolonged processes, lasting between one to three months, generating important differences in physiological ages of the fruit within the same tree. So far there is no detailed genomic information regarding this species, being the cultivar 'Hass' especially important for avocado growers worldwide. With the aim to explore the fruit avocado transcriptome and to identify candidate biomarkers to monitore fruit development, we carried out an RNA-Seq approach during 4 stages of 'Hass' fruit development: 150 days after fruit set (DAFS), 240 DAFS, 300 DAFS (harvest) and 390 DAFS (late-harvest). RESULTS The 'Hass' de novo transcriptome contains 62,203 contigs (x̅=988 bp, N50 = 1050 bp). We found approximately an 85 and 99% of complete ultra-conserved genes in eukaryote and plantae database using BUSCO (Benchmarking Universal Single-Copy Orthologs) and CEGMA (Core Eukaryotic Gene Mapping Approach), respectively. Annotation was performed with BLASTx, resulting in a 58% of annotated contigs (90% of differentially expressed genes were annotated). Differentially expressed genes analysis (DEG; with False Discovery Rate ≤ 0.01) found 8672 genes considering all developmental stages. From this analysis, genes were clustered according to their expression pattern and 1209 genes show correlation with the four developmental stages. CONCLUSIONS Candidate genes are proposed as possible biomarkers for monitoring the development of the 'Hass' avocado fruit associated with lipid metabolism, ethylene signaling pathway, auxin signaling pathway, and components of the cell wall.
Collapse
Affiliation(s)
- Cristian Vergara-Pulgar
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andres Bello, Avenida República 330, 8370035, Santiago, RM, Chile
| | - Karin Rothkegel
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andres Bello, Avenida República 330, 8370035, Santiago, RM, Chile
| | - Mauricio González-Agüero
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, La Pintana, 831314, Santiago, RM, Chile
| | - Romina Pedreschi
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Reinaldo Campos-Vargas
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andres Bello, Avenida República 330, 8370035, Santiago, RM, Chile
| | - Bruno G Defilippi
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, La Pintana, 831314, Santiago, RM, Chile.
| | - Claudio Meneses
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andres Bello, Avenida República 330, 8370035, Santiago, RM, Chile.
- FONDAP Center for Genome Regulation, Santiago, Chile.
| |
Collapse
|
12
|
Sarwar MB, Ahmad Z, Rashid B, Hassan S, Gregersen PL, Leyva MDLO, Nagy I, Asp T, Husnain T. De novo assembly of Agave sisalana transcriptome in response to drought stress provides insight into the tolerance mechanisms. Sci Rep 2019; 9:396. [PMID: 30674899 PMCID: PMC6344536 DOI: 10.1038/s41598-018-35891-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/29/2018] [Indexed: 11/30/2022] Open
Abstract
Agave, monocotyledonous succulent plants, is endemic to arid regions of North America, exhibiting exceptional tolerance to their xeric environments. They employ various strategies to overcome environmental constraints, such as crassulacean acid metabolism, wax depositions, and protective leaf morphology. Genomic resources of Agave species have received little attention irrespective of their cultural, economic and ecological importance, which so far prevented the understanding of the molecular bases underlying their adaptations to the arid environment. In this study, we aimed to elucidate molecular mechanism(s) using transcriptome sequencing of A. sisalana. A de novo approach was applied to assemble paired-end reads. The expression study unveiled 3,095 differentially expressed unigenes between well-irrigated and drought-stressed leaf samples. Gene ontology and KEGG analysis specified a significant number of abiotic stress responsive genes and pathways involved in processes like hormonal responses, antioxidant activity, response to stress stimuli, wax biosynthesis, and ROS metabolism. We also identified transcripts belonging to several families harboring important drought-responsive genes. Our study provides the first insight into the genomic structure of A. sisalana underlying adaptations to drought stress, thus providing diverse genetic resources for drought tolerance breeding research.
Collapse
Affiliation(s)
- Muhammad Bilal Sarwar
- Plant Genomics Lab, Center of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road Thokar Niaz Baig, Lahore, 53700, Pakistan
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, Slagelse, Denmark
| | - Zarnab Ahmad
- Plant Genomics Lab, Center of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road Thokar Niaz Baig, Lahore, 53700, Pakistan
| | - Bushra Rashid
- Plant Genomics Lab, Center of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road Thokar Niaz Baig, Lahore, 53700, Pakistan.
| | - Sameera Hassan
- Plant Genomics Lab, Center of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road Thokar Niaz Baig, Lahore, 53700, Pakistan
| | - Per L Gregersen
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, Slagelse, Denmark
| | - Maria De la O Leyva
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, Slagelse, Denmark
| | - Istvan Nagy
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, Slagelse, Denmark
| | - Torben Asp
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, Slagelse, Denmark
| | - Tayyab Husnain
- Plant Genomics Lab, Center of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road Thokar Niaz Baig, Lahore, 53700, Pakistan
| |
Collapse
|
13
|
Frias-Soler RC, Villarín Pildaín L, Hotz-Wagenblatt A, Kolibius J, Bairlein F, Wink M. De novo annotation of the transcriptome of the Northern Wheatear ( Oenanthe oenanthe). PeerJ 2018; 6:e5860. [PMID: 30498627 PMCID: PMC6251345 DOI: 10.7717/peerj.5860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/02/2018] [Indexed: 11/20/2022] Open
Abstract
We have sequenced a partial transcriptome of the Northern Wheatear (Oenanthe oenanthe), a species with one of the longest migrations on Earth. The transcriptome was constructed de novo using RNA-Seq sequence data from the pooled mRNA of six different tissues: brain, muscle, intestine, liver, adipose tissue and skin. The samples came from nine captive-bred wheatears collected at three different stages of the endogenous autumn migratory period: (1) lean birds prior the onset of migration, (2) during the fattening stage and (3) individuals at their migratory body mass plateau, when they have almost doubled their lean body mass. The sample structure used to build up the transcriptome of the Northern Wheatears concerning tissue composition and time guarantees the future survey of the regulatory genes involved in the development of the migratory phenotype. Through the pre-migratory period, birds accomplish outstanding physical and behavioural changes that involve all organ systems. Nevertheless, the molecular mechanisms through which birds synchronize and control hyperphagia, fattening, restlessness increase, immunity boosting and tuning the muscles for such endurance flight are still largely unknown. The use of RNA-Seq has emerged as a powerful tool to analyse complex traits on a broad scale, and we believe it can help to characterize the migratory phenotype of wheatears at an unprecedented level. The primary challenge to conduct quantitative transcriptomic studies in non-model species is the availability of a reference transcriptome, which we have constructed and described in this paper. The cDNA was sequenced by pyrosequencing using the Genome Sequencer Roche GS FLX System; with single paired-end reads of about 400 bp. We estimate the total number of genes at 15,640, of which 67% could be annotated using Turkey and Zebra Finch genomes, or protein sequence information from SwissProt and NCBI databases. With our study, we have made a first step towards understanding the migratory phenotype regarding gene expression of a species that has become a model to study birds long-distance migrations.
Collapse
Affiliation(s)
- Roberto Carlos Frias-Soler
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Baden Württemberg, Germany.,Institute of Avian Research, Wilhelmshaven, Germany
| | - Lilian Villarín Pildaín
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Baden Württemberg, Germany
| | - Agnes Hotz-Wagenblatt
- Bioinformatics Group, Core Facility Genomics and Proteomics, German Cancer Research Center, Heidelberg University, Heidelberg, Baden Württemberg, Germany
| | - Jonas Kolibius
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Baden Württemberg, Germany
| | | | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Baden Württemberg, Germany
| |
Collapse
|
14
|
Lau MCY, Harris RL, Oh Y, Yi MJ, Behmard A, Onstott TC. Taxonomic and Functional Compositions Impacted by the Quality of Metatranscriptomic Assemblies. Front Microbiol 2018; 9:1235. [PMID: 29973918 PMCID: PMC6019464 DOI: 10.3389/fmicb.2018.01235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/22/2018] [Indexed: 02/03/2023] Open
Abstract
Metatranscriptomics has recently been applied to investigate the active biogeochemical processes and elemental cycles, and in situ responses of microbiomes to environmental stimuli and stress factors. De novo assembly of RNA-Sequencing (RNA-Seq) data can reveal a more detailed description of the metabolic interactions amongst the active microbial communities. However, the quality of the assemblies and the depiction of the metabolic network provided by various de novo assemblers have not yet been thoroughly assessed. In this study, we compared 15 de novo metatranscriptomic assemblies for a fracture fluid sample collected from a borehole located at 1.34 km below land surface in a South African gold mine. These assemblies were constructed from total, non-coding, and coding reads using five de novo transcriptomic assemblers (Trans-ABySS, Trinity, Oases, IDBA-tran, and Rockhopper). They were evaluated based on the number of transcripts, transcript length, range of transcript coverage, continuity, percentage of transcripts with confident annotation assignments, as well as taxonomic and functional diversity patterns. The results showed that these parameters varied considerably among the assemblies, with Trans-ABySS and Trinity generating the best assemblies for non-coding and coding RNA reads, respectively, because the high number of transcripts assembled covered a wide expression range, and captured extensively the taxonomic and metabolic gene diversity, respectively. We concluded that the choice of de novo transcriptomic assemblers impacts substantially the taxonomic and functional compositions. Care should be taken to obtain high-quality assemblies for informing the in situ metabolic landscape.
Collapse
Affiliation(s)
- Maggie C Y Lau
- Department of Geosciences, Princeton University, Princeton, NJ, United States
| | - Rachel L Harris
- Department of Geosciences, Princeton University, Princeton, NJ, United States
| | - Youmi Oh
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, United States
| | - Min Joo Yi
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | - Aida Behmard
- Department of Astrophysical Sciences, Princeton University, Princeton, NJ, United States
| | - Tullis C Onstott
- Department of Geosciences, Princeton University, Princeton, NJ, United States
| |
Collapse
|
15
|
Bolger ME, Arsova B, Usadel B. Plant genome and transcriptome annotations: from misconceptions to simple solutions. Brief Bioinform 2018; 19:437-449. [PMID: 28062412 PMCID: PMC5952960 DOI: 10.1093/bib/bbw135] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/29/2016] [Indexed: 12/14/2022] Open
Abstract
Next-generation sequencing has triggered an explosion of available genomic and transcriptomic resources in the plant sciences. Although genome and transcriptome sequencing has become orders of magnitudes cheaper and more efficient, often the functional annotation process is lagging behind. This might be hampered by the lack of a comprehensive enumeration of simple-to-use tools available to the plant researcher. In this comprehensive review, we present (i) typical ontologies to be used in the plant sciences, (ii) useful databases and resources used for functional annotation, (iii) what to expect from an annotated plant genome, (iv) an automated annotation pipeline and (v) a recipe and reference chart outlining typical steps used to annotate plant genomes/transcriptomes using publicly available resources.
Collapse
Affiliation(s)
- Marie E Bolger
- Forschungszentrum Jülich, Wilhelm Johnen Str, Jülich, Germany
| | - Borjana Arsova
- Forschungszentrum Jülich, Wilhelm Johnen Str, Jülich, Germany
- FRS-FNRS Chargé de Recherches, Functional Genomics and Plant Molecular Imaging Center for Protein Engineering (CIP), Dpt of Life Sciences, University of Liège, Quartier de la Vallée, 1, Chemin de la Vallée, 4 - Bât B22, 4000 LIEGE, Belgium
| | - Björn Usadel
- Forschungszentrum Jülich, Wilhelm Johnen Str, Jülich, Germany
- RWTH Aachen University, Institute for Biology I Botany, BioSC, Worringer Weg 3, Aachen, Germany
| |
Collapse
|
16
|
Das S, Shyamal S, Durica DS. Analysis of Annotation and Differential Expression Methods used in RNA-seq Studies in Crustacean Systems. Integr Comp Biol 2018; 56:1067-1079. [PMID: 27940611 DOI: 10.1093/icb/icw117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In the field of crustacean biology, usage of RNA-seq to study gene expression is rapidly growing. Major advances in sequencing technology have contributed to the ability to examine complex patterns of genome activity in a wide range of organisms that are extensively used for comparative physiology, ecology and evolution, environmental monitoring, and commercial aquaculture. Relative to insect and vertebrate model organisms, however, information on the organization of crustacean genomes is virtually nonexistent, making de novo transcriptome assembly, annotation and quantification problematic and challenging. We present here a summary of the methodologies and software analyses employed in 23 recent publications, which describe de novo transcriptome assembly, annotation, and differential gene expression in a variety of crustacean experimental systems. We focus on establishing a series of best practices that will allow for investigators to produce datasets that are understandable, reproducible, and of general utility for related analyses and cross-study comparisons.
Collapse
Affiliation(s)
- Sunetra Das
- *Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA;
| | | | - David S Durica
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
17
|
Singh J, Kalberer SR, Belamkar V, Assefa T, Nelson MN, Farmer AD, Blackmon WJ, Cannon SB. A transcriptome-SNP-derived linkage map of Apios americana (potato bean) provides insights about genome re-organization and synteny conservation in the phaseoloid legumes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:333-351. [PMID: 29071392 PMCID: PMC5787225 DOI: 10.1007/s00122-017-3004-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
KEY MESSAGE We report a linkage map for Apios americana and describe synteny with selected warm-season legumes. A translocation event in common bean and soybean is confirmed against Apios and Vigna species. Apios (Apios americana; "apios"), a tuberous perennial legume in the Phaseoleae tribe, was widely used as a food by Native Americans. Work in the last 40 years has led to several improved breeding lines. Aspects of the pollination biology (complex floral structure and tripping mechanism) have made controlled crosses difficult, and the previous reports indicated that the plant is likely primarily an outcrosser. We used a pseudo-testcross strategy to construct a genetic map specific to the maternal parent. The map was built using single-nucleotide polymorphism markers identified by comparing the expressed sequences of individuals in the mapping population against a de novo maternal reference transcriptome assembly. The apios map consists of 11 linkage groups and 1121 recombinationally distinct loci, covering ~ 938.6 cM. By sequencing the transcriptomes of all potential pollen parents, we were able to identify the probable pollen donors and to discover new aspects of the pollination biology in apios. No selfing was observed, but multiple pollen parents were seen within individual pods. Comparisons with genome sequences in other species in the Phaseoleae showed extended synteny for most apios linkage groups. This synteny supports the robustness of the map, and also sheds light on the history of the Phaseoleae, as apios is relatively early diverging in this tribe. We detected a translocation event that separates apios and two Vigna species from Phaseolus vulgaris and Glycine max. This apios mapping work provides a general protocol for sequencing-based construction of high-density linkage maps in outcrossing species with heterogeneous pollen parents.
Collapse
Affiliation(s)
- Jugpreet Singh
- ORISE Fellow, Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA 50011 USA
| | - Scott R. Kalberer
- Crop Genome Informatics Laboratory, Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA 50011 USA
| | - Vikas Belamkar
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583 USA
| | - Teshale Assefa
- ORISE Fellow, Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA 50011 USA
| | - Matthew N. Nelson
- Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN UK
| | | | | | - Steven B. Cannon
- Crop Genome Informatics Laboratory, Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA 50011 USA
| |
Collapse
|
18
|
Hussain T, Plunkett B, Ejaz M, Espley RV, Kayser O. Identification of Putative Precursor Genes for the Biosynthesis of Cannabinoid-Like Compound in Radula marginata. FRONTIERS IN PLANT SCIENCE 2018; 9:537. [PMID: 29868043 PMCID: PMC5954354 DOI: 10.3389/fpls.2018.00537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/06/2018] [Indexed: 05/06/2023]
Abstract
The liverwort Radula marginata belongs to the bryophyte division of land plants and is a prospective alternate source of cannabinoid-like compounds. However, mechanistic insights into the molecular pathways directing the synthesis of these cannabinoid-like compounds have been hindered due to the lack of genetic information. This prompted us to do deep sequencing, de novo assembly and annotation of R. marginata transcriptome, which resulted in the identification and validation of the genes for cannabinoid biosynthetic pathway. In total, we have identified 11,421 putative genes encoding 1,554 enzymes from 145 biosynthetic pathways. Interestingly, we have identified all the upstream genes of the central precursor of cannabinoid biosynthesis, cannabigerolic acid (CBGA), including its two first intermediates, stilbene acid (SA) and geranyl diphosphate (GPP). Expression of all these genes was validated using quantitative real-time PCR. We have characterized the protein structure of stilbene synthase (STS), which is considered as a homolog of olivetolic acid in R. marginata. Moreover, the metabolomics approach enabled us to identify CBGA-analogous compounds using electrospray ionization mass spectrometry (ESI-MS/MS) and gas chromatography mass spectrometry (GC-MS). Transcriptomic analysis revealed 1085 transcription factors (TF) from 39 families. Comparative analysis showed that six TF families have been uniquely predicted in R. marginata. In addition, the bioinformatics analysis predicted a large number of simple sequence repeats (SSRs) and non-coding RNAs (ncRNAs). Our results collectively provide mechanistic insights into the putative precursor genes for the biosynthesis of cannabinoid-like compounds and a novel transcriptomic resource for R. marginata. The large-scale transcriptomic resource generated in this study would further serve as a reference transcriptome to explore the Radulaceae family.
Collapse
Affiliation(s)
- Tajammul Hussain
- Department of Technical Biochemistry, TU Dortmund University, Dortmund, Germany
- *Correspondence: Tajammul Hussain
| | - Blue Plunkett
- The New Zealand Institute for Plant & Food Research Limited (PFR), Auckland, New Zealand
| | - Mahwish Ejaz
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Richard V. Espley
- The New Zealand Institute for Plant & Food Research Limited (PFR), Auckland, New Zealand
| | - Oliver Kayser
- Department of Technical Biochemistry, TU Dortmund University, Dortmund, Germany
- Oliver Kayser
| |
Collapse
|
19
|
Kim CS, Winn MD, Sachdeva V, Jordan KE. K-mer clustering algorithm using a MapReduce framework: application to the parallelization of the Inchworm module of Trinity. BMC Bioinformatics 2017; 18:467. [PMID: 29100493 PMCID: PMC5670514 DOI: 10.1186/s12859-017-1881-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/26/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND De novo transcriptome assembly is an important technique for understanding gene expression in non-model organisms. Many de novo assemblers using the de Bruijn graph of a set of the RNA sequences rely on in-memory representation of this graph. However, current methods analyse the complete set of read-derived k-mer sequence at once, resulting in the need for computer hardware with large shared memory. RESULTS We introduce a novel approach that clusters k-mers as the first step. The clusters correspond to small sets of gene products, which can be processed quickly to give candidate transcripts. We implement the clustering step using the MapReduce approach for parallelising the analysis of large datasets, which enables the use of compute clusters. The computational task is distributed across the compute system using the industry-standard MPI protocol, and no specialised hardware is required. Using this approach, we have re-implemented the Inchworm module from the widely used Trinity pipeline, and tested the method in the context of the full Trinity pipeline. Validation tests on a range of real datasets show large reductions in the runtime and per-node memory requirements, when making use of a compute cluster. CONCLUSIONS Our study shows that MapReduce-based clustering has great potential for distributing challenging sequencing problems, without loss of accuracy. Although we have focussed on the Trinity package, we propose that such clustering is a useful initial step for other assembly pipelines.
Collapse
Affiliation(s)
- Chang Sik Kim
- The Hartree Centre and Scientific Computing Department, STFC Daresbury Laboratory, Warrington, WA4 4AD, UK.,Present addresse Cancer Research UK Manchester Institute, The University of Manchester, M20 4BX, Manchester, UK
| | - Martyn D Winn
- The Hartree Centre and Scientific Computing Department, STFC Daresbury Laboratory, Warrington, WA4 4AD, UK.
| | - Vipin Sachdeva
- Computational Science Center, IBM T.J. Watson Research, Cambridge, MA, USA.,Present addresse Silicon Therapeutics, 300 A Street, Boston, MA, USA
| | - Kirk E Jordan
- Computational Science Center, IBM T.J. Watson Research, Cambridge, MA, USA
| |
Collapse
|
20
|
RNA-seq of Rice Yellow Stem Borer Scirpophaga incertulas Reveals Molecular Insights During Four Larval Developmental Stages. G3-GENES GENOMES GENETICS 2017; 7:3031-3045. [PMID: 28717048 PMCID: PMC5592929 DOI: 10.1534/g3.117.043737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The yellow stem borer (YSB), Scirpophaga incertulas, is a prominent pest in rice cultivation causing serious yield losses. The larval stage is an important stage in YSB, responsible for maximum infestation. However, limited knowledge exists on the biology and mechanisms underlying the growth and differentiation of YSB. To understand and identify the genes involved in YSB development and infestation, so as to design pest control strategies, we performed de novo transcriptome analysis at the first, third, fifth, and seventh larval developmental stages employing Illumina Hi-seq. High-quality reads (HQR) of ∼229 Mb were assembled into 24,775 transcripts with an average size of 1485 bp. Genes associated with various metabolic processes, i.e., detoxification mechanism [CYP450, GSTs, and carboxylesterases (CarEs)], RNA interference (RNAi) machinery (Dcr-1, Dcr-2, Ago-1, Ago-2, Sid-1, Sid-2, Sid-3, and Sid-1-related gene), chemoreception (CSPs, GRs, OBPs, and ORs), and regulators [transcription factors (TFs) and hormones] were differentially regulated during the developmental stages. Identification of stage-specific transcripts made it possible to determine the essential processes of larval development. Comparative transcriptome analysis revealed that YSB has not evolved much with respect to the detoxification mechanism, but showed the presence of distinct RNAi machinery. The presence of strong specific visual recognition coupled with chemosensory mechanisms supports the monophagous nature of YSB. Designed expressed sequenced tags-simple-sequence repeats (EST-SSRs) will facilitate accurate estimation of the genetic diversity of YSB. This is the first report on characterization of the YSB transcriptome and the identification of genes involved in key processes, which will help researchers and industry to devise novel pest control strategies. This study also opens up a new avenue to develop next-generation resistant rice using RNAi or genome editing approaches.
Collapse
|
21
|
Transcriptomics analysis of salt stress tolerance in the roots of the mangrove Avicennia officinalis. Sci Rep 2017; 7:10031. [PMID: 28855698 PMCID: PMC5577154 DOI: 10.1038/s41598-017-10730-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022] Open
Abstract
Salinity affects growth and development of plants, but mangroves exhibit exceptional salt tolerance. With direct exposure to salinity, mangrove roots possess specific adaptations to tolerate salt stress. Therefore, studying the early effects of salt on mangrove roots can help us better understand the tolerance mechanisms. Using two-month-old greenhouse-grown seedlings of the mangrove tree Avicennia officinalis subjected to NaCl treatment, we profiled gene expression changes in the roots by RNA-sequencing. Of the 6547 genes that were differentially regulated in response to salt treatment, 1404 and 5213 genes were significantly up- and down-regulated, respectively. By comparative genomics, 93 key salt tolerance-related genes were identified of which 47 were up-regulated. Upon placing all the differentially expressed genes (DEG) in known signaling pathways, it was evident that most of the DEGs involved in ethylene and auxin signaling were up-regulated while those involved in ABA signaling were down-regulated. These results imply that ABA-independent signaling pathways also play a major role in salt tolerance of A. officinalis. Further, ethylene response factors (ERFs) were abundantly expressed upon salt treatment and the Arabidopsis mutant aterf115, a homolog of AoERF114 is characterized. Overall, our results would help in understanding the possible molecular mechanism underlying salt tolerance in plants.
Collapse
|
22
|
De Novo Assembly, Annotation, and Characterization of Root Transcriptomes of Three Caladium Cultivars with a Focus on Necrotrophic Pathogen Resistance/Defense-Related Genes. Int J Mol Sci 2017; 18:ijms18040712. [PMID: 28346370 PMCID: PMC5412298 DOI: 10.3390/ijms18040712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 01/11/2023] Open
Abstract
Roots are vital to plant survival and crop yield, yet few efforts have been made to characterize the expressed genes in the roots of non-model plants (root transcriptomes). This study was conducted to sequence, assemble, annotate, and characterize the root transcriptomes of three caladium cultivars (Caladium × hortulanum) using RNA-Seq. The caladium cultivars used in this study have different levels of resistance to Pythiummyriotylum, the most damaging necrotrophic pathogen to caladium roots. Forty-six to 61 million clean reads were obtained for each caladium root transcriptome. De novo assembly of the reads resulted in approximately 130,000 unigenes. Based on bioinformatic analysis, 71,825 (52.3%) caladium unigenes were annotated for putative functions, 48,417 (67.4%) and 31,417 (72.7%) were assigned to Gene Ontology (GO) and Clusters of Orthologous Groups (COG), respectively, and 46,406 (64.6%) unigenes were assigned to 128 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. A total of 4518 distinct unigenes were observed only in Pythium-resistant "Candidum" roots, of which 98 seemed to be involved in disease resistance and defense responses. In addition, 28,837 simple sequence repeat sites and 44,628 single nucleotide polymorphism sites were identified among the three caladium cultivars. These root transcriptome data will be valuable for further genetic improvement of caladium and related aroids.
Collapse
|
23
|
Babineau M, Mahmood K, Mathiassen SK, Kudsk P, Kristensen M. De novo transcriptome assembly analysis of weed Apera spica-venti from seven tissues and growth stages. BMC Genomics 2017; 18:128. [PMID: 28166737 PMCID: PMC5294808 DOI: 10.1186/s12864-017-3538-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Loose silky bentgrass (Apera spica-venti) is an important weed in Europe with a recent increase in herbicide resistance cases. The lack of genetic information about this noxious weed limits its biological understanding such as growth, reproduction, genetic variation, molecular ecology and metabolic herbicide resistance. This study produced a reference transcriptome for A. spica-venti from different tissues (leaf, root, stem) and various growth stages (seed at phenological stages 05, 07, 08, 09). The de novo assembly was performed on individual and combined dataset followed by functional annotations. Individual transcripts and gene families involved in metabolic based herbicide resistance were identified. RESULTS Eight separate transcriptome assemblies were performed and compared. The combined transcriptome assembly consists of 83,349 contigs with an N50 and average contig length of 762 and 658 bp, respectively. This dataset contains 74,724 transcripts consisting of total 54,846,111 bp. Among them 94% had a homologue to UniProtKB, 73% retrieved a GO mapping, and 50% were functionally annotated. Compared with other grass species, A. spica-venti has 26% proteins in common to Brachypodium distachyon, and 41% to Lolium spp. Glycosyltransferases had the highest number of transcripts in each tissue followed by the cytochrome P450s. The GSTF1 and CYP89A2 transcripts were recovered from the majority of tissues and aligned at a maximum of 66 and 30% to proven herbicide resistant allele from Alopecurus myosuroides and Lolium rigidum, respectively. CONCLUSIONS De novo transcriptome assembly enabled the generation of the first reference transcriptome of A. spica-venti. This can serve as stepping stone for understanding the metabolic herbicide resistance as well as the general biology of this problematic weed. Furthermore, this large-scale sequence data is a valuable scientific resource for comparative transcriptome analysis for Poaceae grasses.
Collapse
Affiliation(s)
- Marielle Babineau
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, 4200 Denmark
| | - Khalid Mahmood
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, 4200 Denmark
| | | | - Per Kudsk
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, 4200 Denmark
| | - Michael Kristensen
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, 4200 Denmark
| |
Collapse
|
24
|
Xu Q, Zhu J, Zhao S, Hou Y, Li F, Tai Y, Wan X, Wei C. Transcriptome Profiling Using Single-Molecule Direct RNA Sequencing Approach for In-depth Understanding of Genes in Secondary Metabolism Pathways of Camellia sinensis. FRONTIERS IN PLANT SCIENCE 2017; 8:1205. [PMID: 28744294 PMCID: PMC5504172 DOI: 10.3389/fpls.2017.01205] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/26/2017] [Indexed: 05/22/2023]
Abstract
Characteristic secondary metabolites, including flavonoids, theanine and caffeine, are important components of Camellia sinensis, and their biosynthesis has attracted widespread interest. Previous studies on the biosynthesis of these major secondary metabolites using next-generation sequencing technologies limited the accurately prediction of full-length (FL) splice isoforms. Herein, we applied single-molecule sequencing to pooled tea plant tissues, to provide a more complete transcriptome of C. sinensis. Moreover, we identified 94 FL transcripts and four alternative splicing events for enzyme-coding genes involved in the biosynthesis of flavonoids, theanine and caffeine. According to the comparison between long-read isoforms and assemble transcripts, we improved the quality and accuracy of genes sequenced by short-read next-generation sequencing technology. The resulting FL transcripts, together with the improved assembled transcripts and identified alternative splicing events, enhance our understanding of genes involved in the biosynthesis of characteristic secondary metabolites in C. sinensis.
Collapse
|
25
|
Kanjana W, Suzuki T, Ishii K, Kozaki T, Iigo M, Yamane K. Transcriptome analysis of seed dormancy after rinsing and chilling in ornamental peaches (Prunus persica (L.) Batsch). BMC Genomics 2016; 17:575. [PMID: 27501791 PMCID: PMC4977653 DOI: 10.1186/s12864-016-2973-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/28/2016] [Indexed: 11/24/2022] Open
Abstract
Background Ornamental peaches cv. ‘Yaguchi’ (Prunus persica (L.) Batsch) can be propagated via seeds. The establishment of efficient seed treatments for early germination and seedling growth is required to shorten nursery and breeding periods. It is important, therefore, to identify potential candidate genes responsible for the effects of rinsing and chilling on seed germination. We hypothesized that longer rinsing combined with chilling of seeds can alter the genes expression in related to dormancy and then raise the germination rate in the peach. To date, most molecular studies in peaches have involved structural genomics, and few transcriptome studies of seed germination have been conducted. In this study, we investigated the function of key seed dormancy-related genes using next-generation sequencing to profile the transcriptomes involved in seed dormancy in peaches. De novo assembly and analysis of the transcriptome identified differentially expressed and unique genes present in this fruit. Results De novo RNA-sequencing of peach was performed using the Illumina Miseq 2000 system. Paired-end sequence from mRNAs generated high quality sequence reads (9,049,964, 10,026,362 and 10,101,918 reads) from ‘Yaguchi’ peach seeds before rinsed (BR) and after rinsed for 2 or 7 days with a chilling period of 4 weeks (termed 2D4W and 7D4W), respectively. The germination rate of 7D4W was significantly higher than that of 2D4W. In total, we obtained 51,366 unique sequences. Differential expression analysis identified 7752, 8469 and 506 differentially expressed genes from BR vs 2D4W, BR vs 7D4W and 2D4W vs 7D4W libraries respectively, filtered based on p-value and an adjusted false discovery rate of less than 0.05. This study identified genes associated with the rinsing and chilling process that included those associated with phytohormones, the stress response and transcription factors. 7D4W treatment downregulated genes involved in ABA synthesis, catabolism and signaling pathways, which eventually suppressed abscisic acid activity and consequently promoted germination and seedling growth. Stress response genes were also downregulated by the 7D4W treatment, suggesting that this treatment released seeds from endodormancy. Transcription factors were upregulated by the BR and 2D4W treatment, suggesting that they play important roles in maintaining seed dormancy. Conclusions This work indicated that longer rinsing combined with chilling affects gene expression and germination rate, and identified potential candidate genes responsible for dormancy progression in seeds of ‘Yaguchi’ peach. The results could be used to develop breeding programs and will aid future functional genomic research in peaches and other fruit trees. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2973-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Worarad Kanjana
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan.,Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Tomohiro Suzuki
- Bioscience Education and Research Center, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Kazuo Ishii
- Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Toshinori Kozaki
- Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Masayuki Iigo
- Bioscience Education and Research Center, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan.,Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Kenji Yamane
- Bioscience Education and Research Center, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan. .,Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan.
| |
Collapse
|
26
|
|
27
|
Comparison of De Novo Transcriptome Assemblers and k-mer Strategies Using the Killifish, Fundulus heteroclitus. PLoS One 2016; 11:e0153104. [PMID: 27054874 PMCID: PMC4824410 DOI: 10.1371/journal.pone.0153104] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 03/23/2016] [Indexed: 11/25/2022] Open
Abstract
Background De novo assembly of non-model organism’s transcriptomes has recently been on the rise in concert with the number of de novo transcriptome assembly software programs. There is a knowledge gap as to what assembler software or k-mer strategy is best for construction of an optimal de novo assembly. Additionally, there is a lack of consensus on which evaluation metrics should be used to assess the quality of de novo transcriptome assemblies. Result Six different assembly strategies were evaluated from four different assemblers. The Trinity assembly was used in its default 25 single k-mer value while Bridger, Oases, and SOAPdenovo-Trans were performed with multiple k-mer strategies. Bridger, Oases, and SOAPdenovo-Trans used a small multiple k-mer (SMK) strategy consisting of the k-mer lengths of 21, 25, 27, 29, 31, and 33. Additionally, Oases and SOAPdenovo-Trans were performed using a large multiple k-mer (LMK) strategy consisting of k-mer lengths of 25, 35, 45, 55, 65, 75, and 85. Eleven metrics were used to evaluate each assembly strategy including three genome related evaluation metrics (contig number, N50 length, Contigs >1 kb, reads) and eight transcriptome evaluation metrics (mapped back to transcripts (RMBT), number of full length transcripts, number of open reading frames, Detonate RSEM-EVAL score, and percent alignment to the southern platyfish, Amazon molly, BUSCO and CEGMA databases). The assembly strategy that performed the best, that is it was within the top three of each evaluation metric, was the Bridger assembly (10 of 11) followed by the Oases SMK assembly (8 of 11), the Oases LMK assembly (6 of 11), the Trinity assembly (4 of 11), the SOAP LMK assembly (4 of 11), and the SOAP SMK assembly (3 of 11). Conclusion This study provides an in-depth multi k-mer strategy investigation concluding that the assembler itself had a greater impact than k-mer size regardless of the strategy employed. Additionally, the comprehensive performance transcriptome evaluation metrics utilized in this study identified the need for choosing metrics centered on user defined research goals. Based on the evaluation metrics performed, the Bridger assembly was able to construct the best assembly of the testis transcriptome in Fundulus heteroclitus.
Collapse
|
28
|
De novo assembly and analysis of midgut transcriptome of Haemaphysalis flava and identification of genes involved in blood digestion, feeding and defending from pathogens. INFECTION GENETICS AND EVOLUTION 2016; 38:62-72. [DOI: 10.1016/j.meegid.2015.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/23/2015] [Accepted: 12/08/2015] [Indexed: 02/07/2023]
|
29
|
Bens M, Sahm A, Groth M, Jahn N, Morhart M, Holtze S, Hildebrandt TB, Platzer M, Szafranski K. FRAMA: from RNA-seq data to annotated mRNA assemblies. BMC Genomics 2016; 17:54. [PMID: 26763976 PMCID: PMC4712544 DOI: 10.1186/s12864-015-2349-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 12/22/2015] [Indexed: 11/25/2022] Open
Abstract
Background Advances in second-generation sequencing of RNA made a near-complete characterization of transcriptomes affordable. However, the reconstruction of full-length mRNAs via de novo RNA-seq assembly is still difficult due to the complexity of eukaryote transcriptomes with highly similar paralogs and multiple alternative splice variants. Here, we present FRAMA, a genome-independent annotation tool for de novo mRNA assemblies that addresses several post-assembly tasks, such as reduction of contig redundancy, ortholog assignment, correction of misassembled transcripts, scaffolding of fragmented transcripts and coding sequence identification. Results We applied FRAMA to assemble and annotate the transcriptome of the naked mole-rat and assess the quality of the obtained compilation of transcripts with the aid of publicy available naked mole-rat gene annotations. Based on a de novo transcriptome assembly (Trinity), FRAMA annotated 21,984 naked mole-rat mRNAs (12,100 full-length CDSs), corresponding to 16,887 genes. The scaffolding of 3488 genes increased the median sequence information 1.27-fold. In total, FRAMA detected and corrected 4774 misassembled genes, which were predominantly caused by fusion of genes. A comparison with three different sources of naked mole-rat transcripts reveals that FRAMA’s gene models are better supported by RNA-seq data than any other transcript set. Further, our results demonstrate the competitiveness of FRAMA to state of the art genome-based transcript reconstruction approaches. Conclusion FRAMA realizes the de novo construction of a low-redundant transcript catalog for eukaryotes, including the extension and refinement of transcripts. Thereby, results delivered by FRAMA provide the basis for comprehensive downstream analyses like gene expression studies or comparative transcriptomics. FRAMA is available at https://github.com/gengit/FRAMA. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2349-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Bens
- Leibniz Institute on Ageing - Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany.
| | - Arne Sahm
- Leibniz Institute on Ageing - Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany.
| | - Marco Groth
- Leibniz Institute on Ageing - Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany.
| | - Niels Jahn
- Leibniz Institute on Ageing - Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany.
| | - Michaela Morhart
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
| | - Susanne Holtze
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
| | - Thomas B Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
| | - Matthias Platzer
- Leibniz Institute on Ageing - Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany.
| | - Karol Szafranski
- Leibniz Institute on Ageing - Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany.
| |
Collapse
|
30
|
Brilhaus D, Bräutigam A, Mettler-Altmann T, Winter K, Weber APM. Reversible Burst of Transcriptional Changes during Induction of Crassulacean Acid Metabolism in Talinum triangulare. PLANT PHYSIOLOGY 2016; 170:102-22. [PMID: 26530316 PMCID: PMC4704576 DOI: 10.1104/pp.15.01076] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/03/2015] [Indexed: 05/14/2023]
Abstract
Drought tolerance is a key factor for agriculture in the 21st century as it is a major determinant of plant survival in natural ecosystems as well as crop productivity. Plants have evolved a range of mechanisms to cope with drought, including a specialized type of photosynthesis termed Crassulacean acid metabolism (CAM). CAM is associated with stomatal closure during the day as atmospheric CO2 is assimilated primarily during the night, thus reducing transpirational water loss. The tropical herbaceous perennial species Talinum triangulare is capable of transitioning, in a facultative, reversible manner, from C3 photosynthesis to weakly expressed CAM in response to drought stress. The transcriptional regulation of this transition has been studied. Combining mRNA-Seq with targeted metabolite measurements, we found highly elevated levels of CAM-cycle enzyme transcripts and their metabolic products in T. triangulare leaves upon water deprivation. The carbohydrate metabolism is rewired to reduce the use of reserves for growth to support the CAM-cycle and the synthesis of compatible solutes. This large-scale expression dataset of drought-induced CAM demonstrates transcriptional regulation of the C3-CAM transition. We identified candidate transcription factors to mediate this photosynthetic plasticity, which may contribute in the future to the design of more drought-tolerant crops via engineered CAM.
Collapse
Affiliation(s)
- Dominik Brilhaus
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany (D.B., A.B., T.M.-A., A.P.M.W.); and Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama (K.W.)
| | - Andrea Bräutigam
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany (D.B., A.B., T.M.-A., A.P.M.W.); and Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama (K.W.)
| | - Tabea Mettler-Altmann
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany (D.B., A.B., T.M.-A., A.P.M.W.); and Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama (K.W.)
| | - Klaus Winter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany (D.B., A.B., T.M.-A., A.P.M.W.); and Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama (K.W.)
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany (D.B., A.B., T.M.-A., A.P.M.W.); and Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama (K.W.)
| |
Collapse
|
31
|
Dong L, Liu H, Zhang J, Yang S, Kong G, Chu JSC, Chen N, Wang D. Single-molecule real-time transcript sequencing facilitates common wheat genome annotation and grain transcriptome research. BMC Genomics 2015; 16:1039. [PMID: 26645802 PMCID: PMC4673716 DOI: 10.1186/s12864-015-2257-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/30/2015] [Indexed: 11/25/2022] Open
Abstract
Background The large and complex hexaploid genome has greatly hindered genomics studies of common wheat (Triticum aestivum, AABBDD). Here, we investigated transcripts in common wheat developing caryopses using the emerging single-molecule real-time (SMRT) sequencing technology PacBio RSII, and assessed the resultant data for improving common wheat genome annotation and grain transcriptome research. Results We obtained 197,709 full-length non-chimeric (FLNC) reads, 74.6 % of which were estimated to carry complete open reading frame. A total of 91,881 high-quality FLNC reads were identified and mapped to 16,188 chromosomal loci, corresponding to 13,162 known genes and 3026 new genes not annotated previously. Although some FLNC reads could not be unambiguously mapped to the current draft genome sequence, many of them are likely useful for studying highly similar homoeologous or paralogous loci or for improving chromosomal contig assembly in further research. The 91,881 high-quality FLNC reads represented 22,768 unique transcripts, 9591 of which were newly discovered. We found 180 transcripts each spanning two or three previously annotated adjacent loci, suggesting that they should be merged to form correct gene models. Finally, our data facilitated the identification of 6030 genes differentially regulated during caryopsis development, and full-length transcripts for 72 transcribed gluten gene members that are important for the end-use quality control of common wheat. Conclusions Our work demonstrated the value of PacBio transcript sequencing for improving common wheat genome annotation through uncovering the loci and full-length transcripts not discovered previously. The resource obtained may aid further structural genomics and grain transcriptome studies of common wheat. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2257-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lingli Dong
- The State Key Laboratory of Plant cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hongfang Liu
- Frasergen, Wuhan East Lake High-tech Zone, Wuhan, 430075, China.
| | - Juncheng Zhang
- The State Key Laboratory of Plant cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Shuangjuan Yang
- The State Key Laboratory of Plant cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guanyi Kong
- Frasergen, Wuhan East Lake High-tech Zone, Wuhan, 430075, China.
| | - Jeffrey S C Chu
- Frasergen, Wuhan East Lake High-tech Zone, Wuhan, 430075, China. .,School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Nansheng Chen
- School of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430075, China. .,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Daowen Wang
- The State Key Laboratory of Plant cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,The Collaborative Innovation Center for Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
32
|
Weber APM. Discovering New Biology through Sequencing of RNA. PLANT PHYSIOLOGY 2015; 169:1524-31. [PMID: 26353759 PMCID: PMC4634082 DOI: 10.1104/pp.15.01081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/09/2015] [Indexed: 05/08/2023]
Abstract
Sequencing of RNA (RNA-Seq) was invented approximately 1 decade ago and has since revolutionized biological research. This update provides a brief historic perspective on the development of RNA-Seq and then focuses on the application of RNA-Seq in qualitative and quantitative analyses of transcriptomes. Particular emphasis is given to aspects of data analysis. Since the wet-lab and data analysis aspects of RNA-Seq are still rapidly evolving and novel applications are continuously reported, a printed review will be rapidly outdated and can only serve to provide some examples and general guidelines for planning and conducting RNA-Seq studies. Hence, selected references to frequently update online resources are given.
Collapse
Affiliation(s)
- Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science, Heinrich-Heine-Universität, D-40231 Duesseldorf, Germany
| |
Collapse
|
33
|
Galeano E, Vasconcelos TS, Vidal M, Mejia-Guerra MK, Carrer H. Large-scale transcriptional profiling of lignified tissues in Tectona grandis. BMC PLANT BIOLOGY 2015; 15:221. [PMID: 26369560 PMCID: PMC4570228 DOI: 10.1186/s12870-015-0599-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 09/02/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND Currently, Tectona grandis is one of the most valuable trees in the world and no transcript dataset related to secondary xylem is available. Considering how important the secondary xylem and sapwood transition from young to mature trees is, little is known about the expression differences between those successional processes and which transcription factors could regulate lignin biosynthesis in this tropical tree. Although MYB transcription factors are one of the largest superfamilies in plants related to secondary metabolism, it has not yet been characterized in teak. These results will open new perspectives for studies of diversity, ecology, breeding and genomic programs aiming to understand deeply the biology of this species. RESULTS We present a widely expressed gene catalog for T. grandis using Illumina technology and the de novo assembly. A total of 462,260 transcripts were obtained, with 1,502 and 931 genes differentially expressed for stem and branch secondary xylem, respectively, during age transition. Analysis of stem and branch secondary xylem indicates substantial similarity in gene ontologies including carbohydrate enzymes, response to stress, protein binding, and allowed us to find transcription factors and heat-shock proteins differentially expressed. TgMYB1 displays a MYB domain and a predicted coiled-coil (CC) domain, while TgMYB2, TgMYB3 and TgMYB4 showed R2R3-MYB domain and grouped with MYBs from several gymnosperms and flowering plants. TgMYB1, TgMYB4 and TgCES presented higher expression in mature secondary xylem, in contrast with TgMYB2, TgHsp1, TgHsp2, TgHsp3, and TgBi whose expression is higher in young lignified tissues. TgMYB3 is expressed at lower level in secondary xylem. CONCLUSIONS Expression patterns of MYB transcription factors and heat-shock proteins in lignified tissues are dissimilar when tree development was evaluated, obtaining more expression of TgMYB1 and TgMYB4 in lignified tissues of 60-year-old trees, and more expression in TgHsp1, TgHsp2, TgHsp3 and TgBi in stem secondary xylem of 12-year-old trees. We are opening a door for further functional characterization by reverse genetics and marker-assisted selection with those genes. Investigation of some of the key regulators of lignin biosynthesis in teak, however, could be a valuable step towards understanding how rigidity of teak wood and extractives content are different from most other woods. The obtained transcriptome data represents new sequences of T. grandis deposited in public databases, representing an unprecedented opportunity to discover several related-genes associated with secondary xylem such as transcription factors and stress-related genes in a tropical tree.
Collapse
Affiliation(s)
- Esteban Galeano
- Laboratório de Biotecnologia Agrícola (CEBTEC), Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, São Paulo, 13418-900, Brazil.
| | - Tarcísio Sales Vasconcelos
- Laboratório de Biotecnologia Agrícola (CEBTEC), Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, São Paulo, 13418-900, Brazil.
| | - Mabel Vidal
- CAPS Computational Biology Laboratory (CCBL), Center for Applied Plant Sciences, Ohio State University, 206 Rightmire Hall, 1060 Carmack Road, Columbus, Ohio, 43210, United States.
| | - Maria Katherine Mejia-Guerra
- CAPS Computational Biology Laboratory (CCBL), Center for Applied Plant Sciences, Ohio State University, 206 Rightmire Hall, 1060 Carmack Road, Columbus, Ohio, 43210, United States.
| | - Helaine Carrer
- Laboratório de Biotecnologia Agrícola (CEBTEC), Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, São Paulo, 13418-900, Brazil.
| |
Collapse
|
34
|
Camargo RDA, Herai RH, Santos LN, Bento FMM, Lima JE, Marques-Souza H, Figueira A. De novo transcriptome assembly and analysis to identify potential gene targets for RNAi-mediated control of the tomato leafminer (Tuta absoluta). BMC Genomics 2015; 16:635. [PMID: 26306628 PMCID: PMC4550053 DOI: 10.1186/s12864-015-1841-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 08/14/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Providing double-stranded RNA (dsRNA) to insects has been proven to silence target genes, and this approach has emerged as a potential method to control agricultural pests by engineering plants to express insect dsRNAs. A critical step of this technology is the screening of effective target genes essential for insect development and/or survival. The tomato leafminer (Tuta absoluta Meyrick) is a major Solanum lycopersicum (tomato) pest that causes significant yield losses and has recently invaded Europe, from where it is spreading at an alarming rate. To explore RNA interference (RNAi) against T. absoluta, sequence information on potential target genes is necessary, but only a few sequences are available in public databases. RESULTS We sequenced six libraries from RNA samples from eggs, adults, and larvae at four stages, obtaining an overall total of around 245 million reads. The assembled T. absoluta transcriptome contained 93,477 contigs with an average size of 1,574 bp, 59.8 % of which presented positive Blast hits, with 19,995 (21.4 %) annotated by gene ontology. From the transcriptome, most of the core genes of the RNAi mechanism of Lepidoptera were identified indicating the potential suitability of T. absoluta for gene silencing. No contigs displayed significant similarity with a RNA-dependent RNA Polymerase. Genes from the juvenile hormone and ecdysteroid biosynthetic pathways were identified, representing potential target genes for systemic silencing. Comparisons of transcript profiles among stages revealed 1,577 genes differentially expressed at earlier larval stages, from which potential gene targets were identified. Five of these genes were evaluated using in vitro transcribed dsRNA absorbed by tomato leaflets, which were fed to 1(st) instar T. absoluta larvae, resulting in significant reduction of larval body weight while exhibiting significant knockdown for three of the genes. CONCLUSIONS The transcriptome we generated represents a valuable genomic resource for screening potential gene targets that affect the development or survival of T. absoluta larvae. Five novel genes that showed greater expression at the 1(st) larval stage were demonstrated to be effective potential RNAi targets by reducing larval weight and can be considered good candidates for use in RNAi-mediated crop protection.
Collapse
Affiliation(s)
- Roberto de A Camargo
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário, 303, CP 96, Piracicaba, SP, 13400-970, Brazil. .,Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo, Av. Pádua Dias, 11, CP 09, Piracicaba, SP, 13418-900, Brazil.
| | - Roberto H Herai
- Department of Pediatrics, Cellular and Molecular Medicine, School of Medicine, University of California San Diego, Torrey Pines Scenic Dr, La Jolla, CA, 92093-0695, USA. .,Graduate Program in Health Science, School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Prado Velho, Curitiba, PR, 80215-901, Brazil.
| | - Luana N Santos
- Instituto de Biologia, Departamento de Histologia e Embriologia, Universidade Estadual de Campinas, R. Charles Darwin, CP 6109, Campinas, SP, 13083-863, Brazil.
| | - Flavia M M Bento
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário, 303, CP 96, Piracicaba, SP, 13400-970, Brazil. .,Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo, Av. Pádua Dias, 11, CP 09, Piracicaba, SP, 13418-900, Brazil.
| | - Joni E Lima
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário, 303, CP 96, Piracicaba, SP, 13400-970, Brazil.
| | - Henrique Marques-Souza
- Instituto de Biologia, Departamento de Histologia e Embriologia, Universidade Estadual de Campinas, R. Charles Darwin, CP 6109, Campinas, SP, 13083-863, Brazil.
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário, 303, CP 96, Piracicaba, SP, 13400-970, Brazil.
| |
Collapse
|
35
|
Abstract
The Tomato Genome Sequencing Project represented a landmark venture in the history of sequencing projects where both Sanger's and next-generation sequencing (NGS) technologies were employed, and a highly accurate and one of the best assembled plant genomes along with a draft of the wild relative, Solanum pimpinellifolium, were released in 2012. However, the functional potential of the major portion of this newly generated resource is still undefined. The very first challenge before scientists working on tomato functional biology is to exploit this high-quality reference sequence for tapping of the wealth of genetic variants for improving agronomic traits in cultivated tomatoes. The sequence data generated recently by 150 Tomato Genome Consortium would further uncover the natural alleles present in different tomato genotypes. Therefore, we found it relevant to have a fresh outlook on tomato functional genomics in the context of application of NGS technologies in its post-genome sequencing phase. Herein, we provide an overview how NGS technologies vis-a-vis available reference sequence have assisted each other for their mutual improvement and how their combined use could further facilitate the development of other 'omics' tools, required to propel the Solanaceae research. Additionally, we highlight the challenges associated with the application of these cutting-edge technologies.
Collapse
|
36
|
He B, Zhao S, Chen Y, Cao Q, Wei C, Cheng X, Zhang Y. Optimal assembly strategies of transcriptome related to ploidies of eukaryotic organisms. BMC Genomics 2015; 16:65. [PMID: 25759274 PMCID: PMC4343054 DOI: 10.1186/s12864-014-1192-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/22/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Several de novo transcriptome assemblers have been developed recently to assemble the short reads generated from the next-generation sequencing platforms and different strategies were employed for assembling transcriptomes of various eukaryotes without genome sequences. Though there are some comparisons among these de novo assembly tools for assembling transcriptomes of different eukaryotic organisms, there is no report about the relationship between assembly strategies and ploidies of the organisms. RESULTS When we de novo assembled transcriptomes of sweet potato (hexaploid), Trametes gallica (a diploid fungus), Oryza meyeriana (a diploid wild rice), five assemblers, including Edena, Oases, Soaptrans, IDBA-tran and Trinity, were used in different strategies (Single-Assembler Single-Parameter, SASP; Single-Assembler Multiple-Parameters, SAMP; Combined De novo Transcriptome Assembly, CDTA, that is multiple assembler multiple parameter). It was found that CDTA strategy has the best performance compared with other two strategies for assembling transcriptome of the hexaploid sweet potato, whereas SAMP strategy with assembler Oases is better than other strategies for assembling transcriptomes of diploid fungus and the wild rice transcriptomes. CONCLUSION Based on the results from ours and others, it is suggested that CDTA strategy is better used for transcriptome assembly of polyploidy organisms and SAMP strategy of Oases is outperformed for those diploid organisms without genome sequences.
Collapse
Affiliation(s)
- Bin He
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, 610064, Chengdu, China.
| | - Shirong Zhao
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, 610064, Chengdu, China.
| | - Yuehong Chen
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, 610064, Chengdu, China.
| | - Qinghua Cao
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, 610064, Chengdu, China.
| | - Changhe Wei
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, 610064, Chengdu, China.
| | - Xiaojie Cheng
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, 610064, Chengdu, China.
| | - Yizheng Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, 610064, Chengdu, China.
| |
Collapse
|
37
|
Gleason LU, Burton RS. RNA-seq reveals regional differences in transcriptome response to heat stress in the marine snailChlorostoma funebralis. Mol Ecol 2015; 24:610-27. [DOI: 10.1111/mec.13047] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 12/09/2014] [Accepted: 12/12/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Lani U. Gleason
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093-0202 USA
| | - Ronald S. Burton
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093-0202 USA
| |
Collapse
|
38
|
Xiao X, Ma J, Sun Y, Yao Y. A method for the further assembly of targeted unigenes in a transcriptome after assembly by Trinity. FRONTIERS IN PLANT SCIENCE 2015; 6:843. [PMID: 26528307 PMCID: PMC4604318 DOI: 10.3389/fpls.2015.00843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/25/2015] [Indexed: 05/17/2023]
Abstract
RNA-sequencing has been widely used to obtain high throughput transcriptome sequences in various species, but the assembly of a full set of complete transcripts is still a significant challenge. Judging by the number of expected transcripts and assembled unigenes in a transcriptome library, we believe that some unigenes could be reassembled. In this study, using the nitrate transporter (NRT) gene family and phosphate transporter (PHT) gene family in Salicornia europaea as examples, we introduced an approach to further assemble unigenes found in transcriptome libraries which had been previously generated by Trinity. To find the unigenes of a particular transcript that contained gaps, we respectively selected 16 NRT candidate unigene pairs and 12 PHT candidate unigene pairs for which the two unigenes had the same annotations, the same expression patterns among various RNA-seq samples, and different positions of the proteins coded as mapped to a reference protein. To fill a gap between the two unigenes, PCR was performed using primers that mapped to the two unigenes and the PCR products were sequenced, which demonstrated that 5 unigene pairs of NRT and 3 unigene pairs of PHT could be reassembled when the gaps were filled using the corresponding PCR product sequences. This fast and simple method will reduce the redundancy of targeted unigenes and allow acquisition of complete coding sequences (CDS).
Collapse
Affiliation(s)
- Xinlong Xiao
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of ScienceUrumqi, China
- University of Chinese Academy of SciencesBeijing, China
| | - Jinbiao Ma
- University of Chinese Academy of SciencesBeijing, China
| | - Yufang Sun
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of ScienceUrumqi, China
- University of Chinese Academy of SciencesBeijing, China
| | - Yinan Yao
- University of Chinese Academy of SciencesBeijing, China
- *Correspondence: Yinan Yao
| |
Collapse
|
39
|
Sulpice R, McKeown PC. Moving toward a comprehensive map of central plant metabolism. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:187-210. [PMID: 25621519 DOI: 10.1146/annurev-arplant-043014-114720] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Decades of intensive study have led to the discovery of the main pathways involved in central metabolism but only some of the pathways and regulatory networks in which they are embedded. In this review, we discuss techniques used to assemble these pathways into a systems biology framework that can enable accurate modeling of the response of central metabolism to changes, including ways to perturb metabolic systems and assemble the resulting data into a meaningful network. Critically, these networks are of such size and complexity that it is possible to derive them only if data from different groups can be comprehensively and meaningfully combined. We conclude that it is essential to establish common standards for the description of experimental conditions and data collection and to store this information in databases to which the whole community can contribute.
Collapse
|
40
|
Guzman F, Kulcheski FR, Turchetto-Zolet AC, Margis R. De novo assembly of Eugenia uniflora L. transcriptome and identification of genes from the terpenoid biosynthesis pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:238-246. [PMID: 25443850 DOI: 10.1016/j.plantsci.2014.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 05/06/2023]
Abstract
Pitanga (Eugenia uniflora L.) is a member of the Myrtaceae family and is of particular interest due to its medicinal properties that are attributed to specialized metabolites with known biological activities. Among these molecules, terpenoids are the most abundant in essential oils that are found in the leaves and represent compounds with potential pharmacological benefits. The terpene diversity observed in Myrtaceae is determined by the activity of different members of the terpene synthase and oxidosqualene cyclase families. Therefore, the aim of this study was to perform a de novo assembly of transcripts from E. uniflora leaves and to annotation to identify the genes potentially involved in the terpenoid biosynthesis pathway and terpene diversity. In total, 72,742 unigenes with a mean length of 1048bp were identified. Of these, 43,631 and 36,289 were annotated with the NCBI non-redundant protein and Swiss-Prot databases, respectively. The gene ontology categorized the sequences into 53 functional groups. A metabolic pathway analysis with KEGG revealed 8,625 unigenes assigned to 141 metabolic pathways and 40 unigenes predicted to be associated with the biosynthesis of terpenoids. Furthermore, we identified four putative full-length terpene synthase genes involved in sesquiterpenes and monoterpenes biosynthesis, and three putative full-length oxidosqualene cyclase genes involved in the triterpenes biosynthesis. The expression of these genes was validated in different E. uniflora tissues.
Collapse
Affiliation(s)
- Frank Guzman
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Franceli Rodrigues Kulcheski
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | | | - Rogerio Margis
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Departamento de Biofisica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
41
|
Jung WY, Lee SS, Kim CW, Kim HS, Min SR, Moon JS, Kwon SY, Jeon JH, Cho HS. RNA-seq analysis and de novo transcriptome assembly of Jerusalem artichoke (Helianthus tuberosus Linne). PLoS One 2014; 9:e111982. [PMID: 25375764 PMCID: PMC4222968 DOI: 10.1371/journal.pone.0111982] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/09/2014] [Indexed: 11/18/2022] Open
Abstract
Jerusalem artichoke (Helianthus tuberosus L.) has long been cultivated as a vegetable and as a source of fructans (inulin) for pharmaceutical applications in diabetes and obesity prevention. However, transcriptomic and genomic data for Jerusalem artichoke remain scarce. In this study, Illumina RNA sequencing (RNA-Seq) was performed on samples from Jerusalem artichoke leaves, roots, stems and two different tuber tissues (early and late tuber development). Data were used for de novo assembly and characterization of the transcriptome. In total 206,215,632 paired-end reads were generated. These were assembled into 66,322 loci with 272,548 transcripts. Loci were annotated by querying against the NCBI non-redundant, Phytozome and UniProt databases, and 40,215 loci were homologous to existing database sequences. Gene Ontology terms were assigned to 19,848 loci, 15,434 loci were matched to 25 Clusters of Eukaryotic Orthologous Groups classifications, and 11,844 loci were classified into 142 Kyoto Encyclopedia of Genes and Genomes pathways. The assembled loci also contained 10,778 potential simple sequence repeats. The newly assembled transcriptome was used to identify loci with tissue-specific differential expression patterns. In total, 670 loci exhibited tissue-specific expression, and a subset of these were confirmed using RT-PCR and qRT-PCR. Gene expression related to inulin biosynthesis in tuber tissue was also investigated. Exsiting genetic and genomic data for H. tuberosus are scarce. The sequence resources developed in this study will enable the analysis of thousands of transcripts and will thus accelerate marker-assisted breeding studies and studies of inulin biosynthesis in Jerusalem artichoke.
Collapse
Affiliation(s)
- Won Yong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Animal Material Engineering, Gyeongnam National University of Science and Technology, Jinju, Korea
| | - Sang Sook Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Chul Wook Kim
- Animal Material Engineering, Gyeongnam National University of Science and Technology, Jinju, Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Sung Ran Min
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jae Sun Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Suk-Yoon Kwon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jae-Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| |
Collapse
|
42
|
Jazayeri SM, Melgarejo-Muñoz LM, Romero HM. RNA-SEQ: A GLANCE AT TECHNOLOGIES AND METHODOLOGIES. ACTA BIOLÓGICA COLOMBIANA 2014. [DOI: 10.15446/abc.v20n2.43639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
43
|
Harrisson KA, Pavlova A, Telonis-Scott M, Sunnucks P. Using genomics to characterize evolutionary potential for conservation of wild populations. Evol Appl 2014; 7:1008-25. [PMID: 25553064 PMCID: PMC4231592 DOI: 10.1111/eva.12149] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 02/10/2014] [Indexed: 12/16/2022] Open
Abstract
Genomics promises exciting advances towards the important conservation goal of maximizing evolutionary potential, notwithstanding associated challenges. Here, we explore some of the complexity of adaptation genetics and discuss the strengths and limitations of genomics as a tool for characterizing evolutionary potential in the context of conservation management. Many traits are polygenic and can be strongly influenced by minor differences in regulatory networks and by epigenetic variation not visible in DNA sequence. Much of this critical complexity is difficult to detect using methods commonly used to identify adaptive variation, and this needs appropriate consideration when planning genomic screens, and when basing management decisions on genomic data. When the genomic basis of adaptation and future threats are well understood, it may be appropriate to focus management on particular adaptive traits. For more typical conservations scenarios, we argue that screening genome-wide variation should be a sensible approach that may provide a generalized measure of evolutionary potential that accounts for the contributions of small-effect loci and cryptic variation and is robust to uncertainty about future change and required adaptive response(s). The best conservation outcomes should be achieved when genomic estimates of evolutionary potential are used within an adaptive management framework.
Collapse
Affiliation(s)
| | - Alexandra Pavlova
- School of Biological Sciences, Monash UniversityMelbourne, Vic., Australia
| | | | - Paul Sunnucks
- School of Biological Sciences, Monash UniversityMelbourne, Vic., Australia
| |
Collapse
|
44
|
Ranjan A, Ichihashi Y, Farhi M, Zumstein K, Townsley B, David-Schwartz R, Sinha NR. De novo assembly and characterization of the transcriptome of the parasitic weed dodder identifies genes associated with plant parasitism. PLANT PHYSIOLOGY 2014; 166:1186-99. [PMID: 24399359 PMCID: PMC4226353 DOI: 10.1104/pp.113.234864] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 01/06/2014] [Indexed: 05/18/2023]
Abstract
Parasitic flowering plants are one of the most destructive agricultural pests and have major impact on crop yields throughout the world. Being dependent on finding a host plant for growth, parasitic plants penetrate their host using specialized organs called haustoria. Haustoria establish vascular connections with the host, which enable the parasite to steal nutrients and water. The underlying molecular and developmental basis of parasitism by plants is largely unknown. In order to investigate the process of parasitism, RNAs from different stages (i.e. seed, seedling, vegetative strand, prehaustoria, haustoria, and flower) were used to de novo assemble and annotate the transcriptome of the obligate plant stem parasite dodder (Cuscuta pentagona). The assembled transcriptome was used to dissect transcriptional dynamics during dodder development and parasitism and identified key gene categories involved in the process of plant parasitism. Host plant infection is accompanied by increased expression of parasite genes underlying transport and transporter categories, response to stress and stimuli, as well as genes encoding enzymes involved in cell wall modifications. By contrast, expression of photosynthetic genes is decreased in the dodder infective stages compared with normal stem. In addition, genes relating to biosynthesis, transport, and response of phytohormones, such as auxin, gibberellins, and strigolactone, were differentially expressed in the dodder infective stages compared with stems and seedlings. This analysis sheds light on the transcriptional changes that accompany plant parasitism and will aid in identifying potential gene targets for use in controlling the infestation of crops by parasitic weeds.
Collapse
Affiliation(s)
- Aashish Ranjan
- Department of Plant Biology, University of California, Davis, California 95616
| | - Yasunori Ichihashi
- Department of Plant Biology, University of California, Davis, California 95616
| | - Moran Farhi
- Department of Plant Biology, University of California, Davis, California 95616
| | - Kristina Zumstein
- Department of Plant Biology, University of California, Davis, California 95616
| | - Brad Townsley
- Department of Plant Biology, University of California, Davis, California 95616
| | | | - Neelima R Sinha
- Department of Plant Biology, University of California, Davis, California 95616
| |
Collapse
|
45
|
Transcriptome sequencing and analysis of leaf tissue of Avicennia marina using the Illumina platform. PLoS One 2014; 9:e108785. [PMID: 25265387 PMCID: PMC4181315 DOI: 10.1371/journal.pone.0108785] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/25/2014] [Indexed: 12/12/2022] Open
Abstract
Avicennia marina is a widely distributed mangrove species that thrives in high-salinity habitats. It plays a significant role in supporting coastal ecosystem and holds unique potential for studying molecular mechanisms underlying ecological adaptation. Despite and sometimes because of its numerous merits, this species is facing increasing pressure of exploitation and deforestation. Both study on adaptation mechanisms and conservation efforts necessitate more genomic resources for A. marina. In this study, we used Illumina sequencing of an A. marina foliar cDNA library to generate a transcriptome dataset for gene and marker discovery. We obtained 40 million high-quality reads and assembled them into 91,125 unigenes with a mean length of 463 bp. These unigenes covered most of the publicly available A. marina Sanger ESTs and greatly extended the repertoire of transcripts for this species. A total of 54,497 and 32,637 unigenes were annotated based on homology to sequences in the NCBI non-redundant and the Swiss-prot protein databases, respectively. Both Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed some transcriptomic signatures of stress adaptation for this halophytic species. We also detected an extraordinary amount of transcripts derived from fungal endophytes and demonstrated the utility of transcriptome sequencing in surveying endophyte diversity without isolating them out of plant tissues. Additionally, we identified 3,423 candidate simple sequence repeats (SSRs) from 3,141 unigenes with a density of one SSR locus every 8.25 kb sequence. Our transcriptomic data will provide valuable resources for ecological, genetic and evolutionary studies in A. marina.
Collapse
|
46
|
Mousavi S, Alisoltani A, Shiran B, Fallahi H, Ebrahimie E, Imani A, Houshmand S. De novo transcriptome assembly and comparative analysis of differentially expressed genes in Prunus dulcis Mill. in response to freezing stress. PLoS One 2014; 9:e104541. [PMID: 25122458 PMCID: PMC4133227 DOI: 10.1371/journal.pone.0104541] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/13/2014] [Indexed: 11/18/2022] Open
Abstract
Almond (Prunus dulcis Mill.), one of the most important nut crops, requires chilling during winter to develop fruiting buds. However, early spring chilling and late spring frost may damage the reproductive tissues leading to reduction in the rate of productivity. Despite the importance of transcriptional changes and regulation, little is known about the almond’s transcriptome under the cold stress conditions. In the current reserch, we used RNA-seq technique to study the response of the reporuductive tissues of almond (anther and ovary) to frost stress. RNA sequencing resulted in more than 20 million reads from anther and ovary tissues of almond, individually. About 40,000 contigs were assembled and annotated denovo in each tissue. Profile of gene expression in ovary showed significant alterations in 5,112 genes, whereas in anther 6,926 genes were affected by freezing stress. Around two thousands of these genes were common altered genes in both ovary and anther libraries. Gene ontology indicated the involvement of differentially expressed (DE) genes, responding to freezing stress, in metabolic and cellular processes. qRT-PCR analysis verified the expression pattern of eight genes randomley selected from the DE genes. In conclusion, the almond gene index assembled in this study and the reported DE genes can provide great insights on responses of almond and other Prunus species to abiotic stresses. The obtained results from current research would add to the limited available information on almond and Rosaceae. Besides, the findings would be very useful for comparative studies as the number of DE genes reported here is much higher than that of any previous reports in this plant.
Collapse
Affiliation(s)
- Sadegh Mousavi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Arghavan Alisoltani
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Behrouz Shiran
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
- Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
- * E-mail:
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Bagh-e-Abrisham Kermanshah, Iran
| | - Esameil Ebrahimie
- Department of Crop Production and Plant Breeding, Faculty of Agriculture, Shiraz University, Shiraz, Iran
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia
| | - Ali Imani
- Department of Horticulture, Seed and Plant Improvement Institute (SPII), Karaj, Iran
| | - Saadollah Houshmand
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
47
|
Eves-van den Akker S, Lilley CJ, Danchin EGJ, Rancurel C, Cock PJA, Urwin PE, Jones JT. The transcriptome of Nacobbus aberrans reveals insights into the evolution of sedentary endoparasitism in plant-parasitic nematodes. Genome Biol Evol 2014; 6:2181-94. [PMID: 25123114 PMCID: PMC4202313 DOI: 10.1093/gbe/evu171] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2014] [Indexed: 11/14/2022] Open
Abstract
Within the phylum Nematoda, plant-parasitism is hypothesized to have arisen independently on at least four occasions. The most economically damaging plant-parasitic nematode species, and consequently the most widely studied, are those that feed as they migrate destructively through host roots causing necrotic lesions (migratory endoparasites) and those that modify host root tissue to create a nutrient sink from which they feed (sedentary endoparasites). The false root-knot nematode Nacobbus aberrans is the only known species to have both migratory endoparasitic and sedentary endoparasitic stages within its life cycle. Moreover, its sedentary stage appears to have characteristics of both the root-knot and the cyst nematodes. We present the first large-scale genetic resource of any false-root knot nematode species. We use RNAseq to describe relative abundance changes in all expressed genes across the life cycle to provide interesting insights into the biology of this nematode as it transitions between modes of parasitism. A multigene phylogenetic analysis of N. aberrans with respect to plant-parasitic nematodes of all groups confirms its proximity to both cyst and root-knot nematodes. We present a transcriptome-wide analysis of both lateral gene transfer events and the effector complement. Comparing parasitism genes of typical root-knot and cyst nematodes to those of N. aberrans has revealed interesting similarities. Importantly, genes that were believed to be either cyst nematode, or root-knot nematode, "specific" have both been identified in N. aberrans. Our results provide insights into the characteristics of a common ancestor and the evolution of sedentary endoparasitism of plants by nematodes.
Collapse
Affiliation(s)
- Sebastian Eves-van den Akker
- Centre for Plant Sciences, University of Leeds, United Kingdom Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Dundee, United Kingdom
| | | | - Etienne G J Danchin
- Centre National de la Recherche Scientifique, INRA Institut National de la Recherche Agronomique, UMR 1355, Université de Nice-Sophia Antipolis, Sophia-Antipolis, France
| | - Corinne Rancurel
- Centre National de la Recherche Scientifique, INRA Institut National de la Recherche Agronomique, UMR 1355, Université de Nice-Sophia Antipolis, Sophia-Antipolis, France
| | - Peter J A Cock
- Information and Computational Sciences Group, Dundee Effector Consortium, James Hutton Institute, Dundee, United Kingdom
| | - Peter E Urwin
- Centre for Plant Sciences, University of Leeds, United Kingdom
| | - John T Jones
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
48
|
Hook SE, Twine NA, Simpson SL, Spadaro DA, Moncuquet P, Wilkins MR. 454 pyrosequencing-based analysis of gene expression profiles in the amphipod Melita plumulosa: transcriptome assembly and toxicant induced changes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 153:73-88. [PMID: 24434169 DOI: 10.1016/j.aquatox.2013.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 11/26/2013] [Accepted: 11/28/2013] [Indexed: 05/20/2023]
Abstract
Next generation sequencing using Roche's 454 pyrosequencing platform can be used to generate genomic information for non-model organisms, although there are bioinformatic challenges associated with these studies. These challenges are compounded by a lack of a standardized protocol to either assemble data or to evaluate the quality of a de novo transcriptome. This study presents an assembly of the control and toxicant responsive transcriptome of Melita plumulosa, an Australian amphipod commonly used in ecotoxicological studies. RNA was harvested from control amphipods, juvenile amphipods, and from amphipods exposed to either metal or diesel contaminated sediments. This RNA was used as the basis for a 454 based transcriptome sequencing effort. Sequencing generated 1.3 million reads from control, juvenile, metal-exposed and diesel-exposed amphipods. Different read filtering and assembly protocols were evaluated to generate an assembly that (i) had an optimal number of contigs; (ii) had long contigs; (iii) contained a suitable representation of conserved genes; and (iv) had long ortholog alignment lengths relative to the length of each contig. A final assembly, generated using fixed-length trimming based on the sequence quality scores, followed by assembly using the MIRA algorithm, produced the best results. The 26,625 contigs generated via this approach were annotated using Blast2GO, and the differential expression between treatments and control was determined by mapping with BWA followed by DESeq. Although the mapping generated low coverage, many differentially expressed contigs, including some with known developmental or toxicological function, were identified. This study demonstrated that 454 pyrosequencing is an effective means of generating reference transcriptome information for organisms, such as the amphipod M. plumulosa, that have no genomic information available in databases or in closely related sequenced species. It also demonstrated how optimization of read filtering protocols and assembly approaches changes the utility of results obtained from next generation sequencing studies, and establishes criteria to determine the quality of a de novo assembly in species lacking a reference genome. This new transcriptomic knowledge provides the genomic foundation for the creation of microarray and qPCR assays, serving as a reference transcriptome in future RNAseq studies, and allowing both the biology and ecotoxicology of this organism to be better understood. This approach will allow genomics-based methodology to be applied to a wider range of environmentally relevant species.
Collapse
Affiliation(s)
- Sharon E Hook
- CSIRO Land and Water, Locked Bag 2007, Kirrawee, NSW 2232, Australia.
| | - Natalie A Twine
- NSW Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Stuart L Simpson
- CSIRO Land and Water, Locked Bag 2007, Kirrawee, NSW 2232, Australia
| | - David A Spadaro
- CSIRO Land and Water, Locked Bag 2007, Kirrawee, NSW 2232, Australia
| | - Philippe Moncuquet
- CSIRO Mathematics, Informatics, and Statistics, Acton, ACT, 2601, Australia
| | - Marc R Wilkins
- NSW Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
49
|
Hook SE, Osborn HL, Gissi F, Moncuquet P, Twine NA, Wilkins MR, Adams MS. RNA-Seq analysis of the toxicant-induced transcriptome of the marine diatom, Ceratoneis closterium. Mar Genomics 2014; 16:45-53. [DOI: 10.1016/j.margen.2013.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/29/2013] [Accepted: 12/18/2013] [Indexed: 01/17/2023]
|
50
|
Bräutigam A, Schliesky S, Külahoglu C, Osborne CP, Weber APM. Towards an integrative model of C4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C4 species. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3579-93. [PMID: 24642845 PMCID: PMC4085959 DOI: 10.1093/jxb/eru100] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
C4 photosynthesis affords higher photosynthetic carbon conversion efficiency than C3 photosynthesis and it therefore represents an attractive target for engineering efforts aiming to improve crop productivity. To this end, blueprints are required that reflect C4 metabolism as closely as possible. Such blueprints have been derived from comparative transcriptome analyses of C3 species with related C4 species belonging to the NAD-malic enzyme (NAD-ME) and NADP-ME subgroups of C4 photosynthesis. However, a comparison between C3 and the phosphoenolpyruvate carboxykinase (PEP-CK) subtype of C4 photosynthesis is still missing. An integrative analysis of all three C4 subtypes has also not been possible to date, since no comparison has been available for closely related C3 and PEP-CK C4 species. To generate the data, the guinea grass Megathyrsus maximus, which represents a PEP-CK species, was analysed in comparison with a closely related C3 sister species, Dichanthelium clandestinum, and with publicly available sets of RNA-Seq data from C4 species belonging to the NAD-ME and NADP-ME subgroups. The data indicate that the core C4 cycle of the PEP-CK grass M. maximus is quite similar to that of NAD-ME species with only a few exceptions, such as the subcellular location of transfer acid production and the degree and pattern of up-regulation of genes encoding C4 enzymes. One additional mitochondrial transporter protein was associated with the core cycle. The broad comparison identified sucrose and starch synthesis, as well as the prevention of leakage of C4 cycle intermediates to other metabolic pathways, as critical components of C4 metabolism. Estimation of intercellular transport fluxes indicated that flux between cells is increased by at least two orders of magnitude in C4 species compared with C3 species. In contrast to NAD-ME and NADP-ME species, the transcription of photosynthetic electron transfer proteins was unchanged in PEP-CK. In summary, the PEP-CK blueprint of M. maximus appears to be simpler than those of NAD-ME and NADP-ME plants.
Collapse
Affiliation(s)
- Andrea Bräutigam
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Simon Schliesky
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Canan Külahoglu
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Colin P Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|