1
|
Galan PM, Ivanescu LC, Leti LI, Zamfirache MM, Gorgan DL. Comparative Effects of Water Scarcity on the Growth and Development of Two Common Bean ( Phaseolus vulgaris L.) Genotypes with Different Geographic Origin (Mesoamerica/Andean). PLANTS (BASEL, SWITZERLAND) 2024; 13:2111. [PMID: 39124229 PMCID: PMC11314307 DOI: 10.3390/plants13152111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/27/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
Drought stress is widely recognized as a highly detrimental abiotic stress factor that significantly impacts crop growth, development, and agricultural productivity. In response to external stimuli, plants activate various mechanisms to enhance their resistance or tolerance to abiotic stress. The common bean, a most important legume according to the FAO, serves as a staple food for millions of people worldwide, due to its rich protein, carbohydrate, and fiber content, concurrently, and water scarcity is the main factor limiting common bean production. The process of domestication and on-farm conservation has facilitated the development of genotypes with varying degrees of drought stress resistance. Consequently, using landraces as biological material in research can lead to the identification of variants with superior resistance qualities to abiotic stress factors, which can be effectively integrated into breeding programs. The central scope of this research was to find out if different geographic origins of common bean genotypes can determine distinct responses at various levels. Hence, several analyses were carried out to investigate responses to water scarcity in three common bean genotypes, M-2087 (from the Mesoamerican gene pool), A-1988 (from the Andean gene pool) and Lechinta, known for its high drought stress resistance. Plants were subjected to different water regimes, followed by optical assessment of the anatomical structure of the hypocotyl and epicotyl in each group; furthermore, the morphological, physiological, and biochemical parameters and molecular data (quantification of the relative expression of the thirteen genes) were assessed. The three experimental variants displayed distinct responses when subjected to 12 days of water stress. In general, the Lechinta genotype demonstrated the highest adaptability and drought resistance. The M-2087 landrace, originating from the Mesoamerican geographic basin, showed a lower resistance to water stress, compared to the A-1988 landrace, from the Andean basin. The achieved results can be used to scale up future research about the drought resistance of plants, analyzing more common bean landraces with distinct geographic origins (Mesoamerican/Andean), which can then be used in breeding programs.
Collapse
Affiliation(s)
- Paula-Maria Galan
- Faculty of Biology, Alexandru Ioan Cuza University, 700505 Iasi, Romania; (P.-M.G.); (L.-C.I.); (L.-I.L.); (M.M.Z.)
- Plant Genetic Resources Bank, 720224 Suceava, Romania
| | - Lacramioara-Carmen Ivanescu
- Faculty of Biology, Alexandru Ioan Cuza University, 700505 Iasi, Romania; (P.-M.G.); (L.-C.I.); (L.-I.L.); (M.M.Z.)
| | - Livia-Ioana Leti
- Faculty of Biology, Alexandru Ioan Cuza University, 700505 Iasi, Romania; (P.-M.G.); (L.-C.I.); (L.-I.L.); (M.M.Z.)
- Plant Genetic Resources Bank, 720224 Suceava, Romania
| | - Maria Magdalena Zamfirache
- Faculty of Biology, Alexandru Ioan Cuza University, 700505 Iasi, Romania; (P.-M.G.); (L.-C.I.); (L.-I.L.); (M.M.Z.)
| | - Dragoș-Lucian Gorgan
- Faculty of Biology, Alexandru Ioan Cuza University, 700505 Iasi, Romania; (P.-M.G.); (L.-C.I.); (L.-I.L.); (M.M.Z.)
| |
Collapse
|
2
|
Olgenblum GI, Hutcheson BO, Pielak GJ, Harries D. Protecting Proteins from Desiccation Stress Using Molecular Glasses and Gels. Chem Rev 2024; 124:5668-5694. [PMID: 38635951 PMCID: PMC11082905 DOI: 10.1021/acs.chemrev.3c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 04/20/2024]
Abstract
Faced with desiccation stress, many organisms deploy strategies to maintain the integrity of their cellular components. Amorphous glassy media composed of small molecular solutes or protein gels present general strategies for protecting against drying. We review these strategies and the proposed molecular mechanisms to explain protein protection in a vitreous matrix under conditions of low hydration. We also describe efforts to exploit similar strategies in technological applications for protecting proteins in dry or highly desiccated states. Finally, we outline open questions and possibilities for future explorations.
Collapse
Affiliation(s)
- Gil I. Olgenblum
- Institute
of Chemistry, Fritz Haber Research Center, and The Harvey M. Krueger
Family Center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| | - Brent O. Hutcheson
- Department
of Chemistry, University of North Carolina
at Chapel Hill (UNC-CH), Chapel
Hill, North Carolina 27599, United States
| | - Gary J. Pielak
- Department
of Chemistry, University of North Carolina
at Chapel Hill (UNC-CH), Chapel
Hill, North Carolina 27599, United States
- Department
of Chemistry, Department of Biochemistry & Biophysics, Integrated
Program for Biological & Genome Sciences, Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Daniel Harries
- Institute
of Chemistry, Fritz Haber Research Center, and The Harvey M. Krueger
Family Center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
3
|
Lv A, Su L, Fan N, Wen W, Gao L, Mo X, You X, Zhou P, An Y. The MsDHN1-MsPIP2;1-MsmMYB module orchestrates the trade-off between growth and survival of alfalfa in response to drought stress. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1132-1145. [PMID: 38048288 PMCID: PMC11022793 DOI: 10.1111/pbi.14251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/09/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023]
Abstract
Dehydrins and aquaporins play crucial roles in plant growth and stress responses by acting as protector and controlling water transport across membranes, respectively. MsDHN1 (dehydrin) and MsPIP2;1 (aquaporin) were demonstrated to interact with a membrane-anchored MYB protein, MsmMYB (as mMYB) in plasma membrane under normal condition. MsDHN1, MsPIP2;1 and MsDHN1-MsPIP2;1 positively regulated alfalfa tolerance to water deficiency. Water deficiency caused phosphorylation of MsPIP2;1 at Ser 272, which led to release C terminus of mMYB (mMYBΔ83) from plasma membrane and translocate to nucleus, where C terminus of MsDHN1 interacted with mMYBΔ83, and promoted mMYBΔ83 transcriptional activity in response to water deficiency. Overexpression of mMYB and mMYBΔ83 down-regulated the expression of MsCESA3, but up-regulated MsCESA7 expression by directly binding to their promoters, and resulted in high drought tolerance in transgenic hairy roots. These results indicate that the MsDHN1-MsPIP2;1-MsMYB module serves as a key regulator in alfalfa against drought stress.
Collapse
Affiliation(s)
- Aimin Lv
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina
| | - Liantai Su
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Nana Fan
- College of life scienceYulin UniversityYulinChina
| | - Wuwu Wen
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Li Gao
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xin Mo
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiangkai You
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Peng Zhou
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yuan An
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Urban AgricultureMinistry of AgricultureShanghaiChina
| |
Collapse
|
4
|
Gao Q, Yu R, Ma X, Wuriyanghan H, Yan F. Transcriptome Analysis for Salt-Responsive Genes in Two Different Alfalfa ( Medicago sativa L.) Cultivars and Functional Analysis of MsHPCA1. PLANTS (BASEL, SWITZERLAND) 2024; 13:1073. [PMID: 38674482 PMCID: PMC11054072 DOI: 10.3390/plants13081073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
Alfalfa (Medicago sativa L.) is an important forage legume and soil salinization seriously affects its growth and yield. In a previous study, we identified a salt-tolerant variety 'Gongnong NO.1' and a salt-sensitive variety 'Sibeide'. To unravel the molecular mechanism involved in salt stress, we conducted transcriptomic analysis on these two cultivars grown under 0 and 250 mM NaCl treatments for 0, 12, and 24 h. Totals of 336, and 548 differentially expressed genes (DEGs) in response to NaCl were, respectively, identified in the 'Gongnong NO.1' and 'Sibeide' varieties. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway enrichment analysis showed that the DEGs were classified in carbohydrate metabolism, energy production, transcription factor, and stress-associated pathway. Expression of MsHPCA1, encoding a putative H2O2 receptor, was responsive to both NaCl and H2O2 treatment. MsHPCA1 was localized in cell membrane and overexpression of MsHPCA1 in alfalfa increased salt tolerance and H2O2 content. This study will provide new gene resources for the improvement in salt tolerance in alfalfa and legume crops, which has important theoretical significance and potential application value.
Collapse
Affiliation(s)
- Qican Gao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Q.G.); (R.Y.); (X.M.)
| | - Ruonan Yu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Q.G.); (R.Y.); (X.M.)
- Crop Cultivation and Genetic Improvement Research Center, College of Agricultural, Hulunbuir University, Hulunbuir 021008, China
| | - Xuesong Ma
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Q.G.); (R.Y.); (X.M.)
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Q.G.); (R.Y.); (X.M.)
| | - Fang Yan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Q.G.); (R.Y.); (X.M.)
| |
Collapse
|
5
|
Zaman S, Shen J, Wang S, Song D, Wang H, Ding S, Pang X, Wang M, Wang Y, Ding Z. Effect of Shading on Physiological Attributes and Proteomic Analysis of Tea during Low Temperatures. PLANTS (BASEL, SWITZERLAND) 2023; 13:63. [PMID: 38202371 PMCID: PMC10780538 DOI: 10.3390/plants13010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Shading is an important technique to protect tea plantations under abiotic stresses. In this study, we analyzed the effect of shading (SD60% shade vs. SD0% no-shade) on the physiological attributes and proteomic analysis of tea leaves in November and December during low temperatures. The results revealed that shading protected the tea plants, including their soil plant analysis development (SPAD), photochemical efficiency (Fv/Fm), and nitrogen content (N), in November and December. The proteomics analysis of tea leaves was determined using tandem mass tags (TMT) technology and a total of 7263 proteins were accumulated. Further, statistical analysis and the fold change of significant proteins (FC < 0.67 and FC > 1.5 p < 0.05) revealed 14 DAPs, 11 increased and 3 decreased, in November (nCK_vs_nSD60), 20 DAPs, 7 increased and 13 decreased, in December (dCK_vs_dSD60), and 12 DAPs, 3 increased and 9 decreased, in both November and December (nCK_vs_nSD60). These differentially accumulated proteins (DAPs) were dehydrins (DHNs), late-embryogenesis abundant (LEA), thaumatin-like proteins (TLPs), glutathione S-transferase (GSTs), gibberellin-regulated proteins (GAs), proline-rich proteins (PRPs), cold and drought proteins (CORA-like), and early light-induced protein 1, which were found in the cytoplasm, nucleus, chloroplast, extra cell, and plasma membrane, and functioned in catalytic, cellular, stimulus-response, and metabolic pathways. In conclusion, the proliferation of key proteins was triggered by translation and posttranslational modifications, which might sustain membrane permeability in tea cellular compartments and could be responsible for tea protection under shading during low temperatures. This study aimed to investigate the impact of the conventional breeding technique (shading) and modern molecular technologies (proteomics) on tea plants, for the development and protection of new tea cultivars.
Collapse
Affiliation(s)
- Shah Zaman
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (S.Z.); (J.S.); (S.W.)
- School of Tea and Coffee & School of Bioinformatics and Engineering, Pu’er University, 6 Xueyuan Road, Pu’er 665000, China
- International Joint Laboratory of Digital Protection and Germplasm Innovation and Application of China-Laos Tea Tree Resources in Yunnan Province, Pu’er University, 6 Xueyuan Road, Pu’er 665000, China
| | - Jiazhi Shen
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (S.Z.); (J.S.); (S.W.)
| | - Shuangshuang Wang
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (S.Z.); (J.S.); (S.W.)
| | - Dapeng Song
- Rizhao Tea Research Institute, Rizhao 276800, China; (D.S.); (H.W.); (S.D.); (X.P.); (M.W.)
| | - Hui Wang
- Rizhao Tea Research Institute, Rizhao 276800, China; (D.S.); (H.W.); (S.D.); (X.P.); (M.W.)
| | - Shibo Ding
- Rizhao Tea Research Institute, Rizhao 276800, China; (D.S.); (H.W.); (S.D.); (X.P.); (M.W.)
| | - Xu Pang
- Rizhao Tea Research Institute, Rizhao 276800, China; (D.S.); (H.W.); (S.D.); (X.P.); (M.W.)
| | - Mengqi Wang
- Rizhao Tea Research Institute, Rizhao 276800, China; (D.S.); (H.W.); (S.D.); (X.P.); (M.W.)
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China;
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (S.Z.); (J.S.); (S.W.)
| |
Collapse
|
6
|
Zhang X, Shen Z, Sun X, Chen M, Zhang N. Integrated analysis of transcriptomic and proteomic data reveals novel regulators of soybean ( Glycine max) hypocotyl development. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:1086-1098. [PMID: 37866377 DOI: 10.1071/fp23013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
Hypocotyl elongation directly affects the seedling establishment and soil-breaking after germination. In soybean (Glycine max ), the molecular mechanisms regulating hypocotyl development remain largely elusive. To decipher the regulatory landscape, we conducted proteome and transcriptome analysis of soybean hypocotyl samples at different development stages. Our results showed that during hypocotyl development, many proteins were with extreme high translation efficiency (TE) and may act as regulators. These potential regulators include multiple peroxidases and cell wall reorganisation related enzymes. Peroxidases may produce ROS including H2 O2 . Interestingly, exogenous H2 O2 application promoted hypocotyl elongation, supporting peroxidases as regulators of hypocotyl development. However, a vast variety of proteins were shown to be with dramatically changed TE during hypocotyl development, including multiple phytochromes, plasma membrane intrinsic proteins (PIPs) and aspartic proteases. Their potential roles in hypocotyl development were confirmed by that ectopic expression of GmPHYA1 and GmPIP1-6 in Arabidopsis thaliana affected hypocotyl elongation. In addition, the promoters of these potential regulatory genes contain multiple light/gibberellin/auxin responsive elements, while the expression of some members in hypocotyls was significantly regulated by light and exogenous auxin/gibberellin. Overall, our results revealed multiple novel regulatory factors of soybean hypocotyl elongation. Further research on these regulators may lead to new approvals to improve soybean hypocotyl traits.
Collapse
Affiliation(s)
- Xueliang Zhang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Zhikang Shen
- Sanya Institute, Henan University, Sanya, China; and State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Xiaohu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Min Chen
- Sanya Institute, Henan University, Sanya, China; and State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Naichao Zhang
- School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
7
|
Guo B, Zhang J, Yang C, Dong L, Ye H, Valliyodan B, Nguyen HT, Song L. The Late Embryogenesis Abundant Proteins in Soybean: Identification, Expression Analysis, and the Roles of GmLEA4_19 in Drought Stress. Int J Mol Sci 2023; 24:14834. [PMID: 37834282 PMCID: PMC10573439 DOI: 10.3390/ijms241914834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Late embryogenesis abundant (LEA) proteins play important roles in regulating plant growth and responses to various abiotic stresses. In this research, a genome-wide survey was conducted to recognize the LEA genes in Glycine max. A total of 74 GmLEA was identified and classified into nine subfamilies based on their conserved domains and the phylogenetic analysis. Subcellular localization, the duplication of genes, gene structure, the conserved motif, and the prediction of cis-regulatory elements and tissue expression pattern were then conducted to characterize GmLEAs. The expression profile analysis indicated that the expression of several GmLEAs was a response to drought and salt stress. The co-expression-based gene network analysis suggested that soybean LEA proteins may exert regulatory effects through the metabolic pathways. We further explored GnLEA4_19 function in Arabidopsis and the results suggests that overexpressed GmLEA4_19 in Arabidopsis increased plant height under mild or serious drought stress. Moreover, the overexpressed GmLEA4_19 soybean also showed a drought tolerance phenotype. These results indicated that GmLEA4_19 plays an important role in the tolerance to drought and will contribute to the development of the soybean transgenic with enhanced drought tolerance and better yield. Taken together, this study provided insight for better understanding the biological roles of LEA genes in soybean.
Collapse
Affiliation(s)
- Binhui Guo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (B.G.); (J.Z.); (C.Y.); (L.D.)
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Jianhua Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (B.G.); (J.Z.); (C.Y.); (L.D.)
| | - Chunhong Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (B.G.); (J.Z.); (C.Y.); (L.D.)
| | - Lu Dong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (B.G.); (J.Z.); (C.Y.); (L.D.)
| | - Heng Ye
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA; (H.Y.); (H.T.N.)
| | - Babu Valliyodan
- Department of Agriculture and Environmental Sciences, Lincoln University, Jefferson City, MO 65101, USA;
| | - Henry T. Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA; (H.Y.); (H.T.N.)
| | - Li Song
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (B.G.); (J.Z.); (C.Y.); (L.D.)
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| |
Collapse
|
8
|
Bouzroud S, Henkrar F, Fahr M, Smouni A. Salt stress responses and alleviation strategies in legumes: a review of the current knowledge. 3 Biotech 2023; 13:287. [PMID: 37520340 PMCID: PMC10382465 DOI: 10.1007/s13205-023-03643-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/21/2023] [Indexed: 08/01/2023] Open
Abstract
Salinity is one of the most significant environmental factors limiting legumes development and productivity. Salt stress disturbs all developmental stages of legumes and affects their hormonal regulation, photosynthesis and biological nitrogen fixation, causing nutritional imbalance, plant growth inhibition and yield losses. At the molecular level, salt stress exposure involves large number of factors that are implicated in stress perception, transduction, and regulation of salt responsive genes' expression through the intervention of transcription factors. Along with the complex gene network, epigenetic regulation mediated by non-coding RNAs, and DNA methylation events are also involved in legumes' response to salinity. Different alleviation strategies can increase salt tolerance in legume plants. The most promising ones are Plant Growth Promoting Rhizobia, Arbuscular Mycorrhizal Fungi, seed and plant's priming. Genetic manipulation offers an effective approach for improving salt tolerance. In this review, we present a detailed overview of the adverse effect of salt stress on legumes and their molecular responses. We also provide an overview of various ameliorative strategies that have been implemented to mitigate/overcome the harmful effects of salt stress on legumes.
Collapse
Affiliation(s)
- Sarah Bouzroud
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
| | - Fatima Henkrar
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5R/INAU, 10000 Rabat, Morocco
| | - Mouna Fahr
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5R/INAU, 10000 Rabat, Morocco
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5R/INAU, 10000 Rabat, Morocco
| |
Collapse
|
9
|
Aziz MA, Sabeem M, Kutty MS, Rahman S, Alneyadi MK, Alkaabi AB, Almeqbali ES, Brini F, Vijayan R, Masmoudi K. Enzyme stabilization and thermotolerance function of the intrinsically disordered LEA2 proteins from date palm. Sci Rep 2023; 13:11878. [PMID: 37482543 PMCID: PMC10363547 DOI: 10.1038/s41598-023-38426-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
In date palm, the LEA2 genes are of abundance with sixty-two members that are nearly all ubiquitous. However, their functions and interactions with potential target molecules are largely unexplored. In this study, five date palm LEA2 genes, PdLEA2.2, PdLEA2.3, PdLEA2.4, PdLEA2.6, and PdLEA2.7 were cloned, sequenced, and three of them, PdLEA2.2, PdLEA2.3, and PdLEA2.4 were functionally characterized for their effects on the thermostability of two distinct enzymes, lactate dehydrogenase (LDH) and β-glucosidase (bglG) in vitro. Overall, PdLEA2.3 and PdLEA2.4 were moderately hydrophilic, PdLEA2.7 was slightly hydrophobic, and PdLEA2.2 and PdLEA2.6 were neither. Sequence and structure prediction indicated the presence of a stretch of hydrophobic residues near the N-terminus that could potentially form a transmembrane helix in PdLEA2.2, PdLEA2.4, PdLEA2.6 and PdLEA2.7. In addition to the transmembrane helix, secondary and tertiary structures prediction showed the presence of a disordered region followed by a stacked β-sheet region in all the PdLEA2 proteins. Moreover, three purified recombinant PdLEA2 proteins were produced in vitro, and their presence in the LDH enzymatic reaction enhanced the activity and reduced the aggregate formation of LDH under the heat stress. In the bglG enzymatic assays, PdLEA2 proteins further displayed their capacity to preserve and stabilize the bglG enzymatic activity.
Collapse
Affiliation(s)
- Mughair Abdul Aziz
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - Miloofer Sabeem
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - M Sangeeta Kutty
- Department of Vegetable Science, College of Agriculture, Kerala Agricultural University, Vellanikkara, Thrissur, 680656, India
| | - Shafeeq Rahman
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - Maitha Khalfan Alneyadi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - Alia Binghushoom Alkaabi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - Eiman Saeed Almeqbali
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/ University of Sfax, Sfax, Tunisia
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE.
| |
Collapse
|
10
|
Usman B, Derakhshani B, Jung KH. Recent Molecular Aspects and Integrated Omics Strategies for Understanding the Abiotic Stress Tolerance of Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2019. [PMID: 37653936 PMCID: PMC10221523 DOI: 10.3390/plants12102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 09/02/2023]
Abstract
Rice is an important staple food crop for over half of the world's population. However, abiotic stresses seriously threaten rice yield improvement and sustainable production. Breeding and planting rice varieties with high environmental stress tolerance are the most cost-effective, safe, healthy, and environmentally friendly strategies. In-depth research on the molecular mechanism of rice plants in response to different stresses can provide an important theoretical basis for breeding rice varieties with higher stress resistance. This review presents the molecular mechanisms and the effects of various abiotic stresses on rice growth and development and explains the signal perception mode and transduction pathways. Meanwhile, the regulatory mechanisms of critical transcription factors in regulating gene expression and important downstream factors in coordinating stress tolerance are outlined. Finally, the utilization of omics approaches to retrieve hub genes and an outlook on future research are prospected, focusing on the regulatory mechanisms of multi-signaling network modules and sustainable rice production.
Collapse
Affiliation(s)
- Babar Usman
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
| | - Behnam Derakhshani
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
| | - Ki-Hong Jung
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
- Research Center for Plant Plasticity, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
11
|
Ge N, Jia JS, Yang L, Huang RM, Wang QY, Chen C, Meng ZG, Li LG, Chen JW. Exogenous gibberellic acid shortening after-ripening process and promoting seed germination in a medicinal plant Panax notoginseng. BMC PLANT BIOLOGY 2023; 23:67. [PMID: 36721119 PMCID: PMC9890714 DOI: 10.1186/s12870-023-04084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Panax notoginseng (Burk) F.H. Chen is an essential plant in the family of Araliaceae. Its seeds are classified as a type of morphophysiological dormancy (MPD), and are characterized by recalcitrance during the after-ripening process. However, it is not clear about the molecular mechanism on the after-ripening in recalcitrant seeds. RESULTS In this study, exogenous supply of gibberellic acid (GA3) with different concentrations shortened after-ripening process and promoted the germination of P. notoginseng seeds. Among the identified plant hormone metabolites, exogenous GA3 results in an increased level of endogenous hormone GA3 through permeation. A total of 2971 and 9827 differentially expressed genes (DEGs) were identified in response to 50 mg L-1 GA3 (LG) and 500 mg L-1 GA3 (HG) treatment, respectively, and the plant hormone signal and related metabolic pathways regulated by GA3 was significantly enriched. Weighted gene co-expression network analysis (WGCNA) revealed that GA3 treatment enhances GA biosynthesis and accumulation, while inhibiting the gene expression related to ABA signal transduction. This effect was associated with higher expression of crucial seed embryo development and cell wall loosening genes, Leafy Contyledon1 (LEC1), Late Embryogenesis Abundant (LEA), expansins (EXP) and Pectinesterase (PME). CONCLUSIONS Exogenous GA3 application promotes germination and shorts the after-ripening process of P. notoginseng seeds by increasing GA3 contents through permeation. Furthermore, the altered ratio of GA and ABA contributes to the development of the embryo, breaks the mechanical constraints of the seed coat and promotes the protrusion of the radicle in recalcitrant P. notoginseng seeds. These findings improve our knowledge of the contribution of GA to regulating the dormancy of MPD seeds during the after-ripening process, and provide new theoretical guidance for the application of recalcitrant seeds in agricultural production and storage.
Collapse
Affiliation(s)
- Na Ge
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Jin-Shan Jia
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Ling Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Rong-Mei Huang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Qing-Yan Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Cui Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Zhen-Gui Meng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Long-Geng Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Jun-Wen Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China.
| |
Collapse
|
12
|
Kasianchuk N, Rzymski P, Kaczmarek Ł. The biomedical potential of tardigrade proteins: A review. Biomed Pharmacother 2023; 158:114063. [PMID: 36495665 DOI: 10.1016/j.biopha.2022.114063] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Tardigrades are ubiquitous microinvertebrates exhibiting extreme tolerance to various environmental stressors like low and high temperatures, lack of water, or high radiation. Although exact pathways behind the tardigrade extremotolerance are yet to be elucidated, some molecules involved have been identified. Their evidenced properties may lead to novel opportunities in biomedical and pharmacological development. This review aims to present the general characteristics of tardigrade intrinsically disordered proteins (TDPs: Dsup, CAHS, SAHS, MAHS) and late embryogenesis-abundant proteins (LEA) and provide an updated overview of their features and relevance for potential use in biomedicine and pharmacology. The Dsup reveals a promising action in attenuating oxidative stress, DNA damage, and pyrimidine dimerization, as well as increasing radiotolerance in transfected human cells. Whether Dsup can perform these functions when delivered externally is yet to be understood by in vivo preclinical testing. In turn, CAHS and SAHS demonstrate properties that could benefit the preservation of pharmaceuticals (e.g., vaccines) and biomaterials (e.g., cells). Selected CAHS proteins can also serve as inspiration for designing novel anti-apoptotic agents. The LEA proteins also reveal promising properties to preserve desiccated biomaterials and can act as anti-osmotic agents. In summary, tardigrade molecules reveal several potential biomedical applications advocating further research and development. The challenge of extracting larger amounts of these molecules can be solved with genetic engineering and synthetic biology tools. With new species identified each year and ongoing studies on their extremotolerance, progress in the medical use of tardigrade proteins is expected shortly.
Collapse
Affiliation(s)
- Nadiia Kasianchuk
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland; Faculty of Pharmacy, Bogomolets Nationals Medical University, Kyiv, Ukraine.
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznan, Poland; Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
13
|
Genome-wide study and functional characterization elucidates the potential association of late embryogenesis abundant (LEA) genes with lotus seed development. Int J Biol Macromol 2023; 226:1-13. [PMID: 36481329 DOI: 10.1016/j.ijbiomac.2022.11.301] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Late embryogenesis abundant (LEA) proteins are extremely hydrophilic proteins imperatively associated with plant growth and development, as well as cell protection from abiotic stress. However, the genome-wide characterization of LEA gene family remains limited, especially in aquatic species such as lotus (Nelumbo spp.). Here, 57 putative LEA genes, including 28 NnLEAs and 29 NlLEAs were identified in the N.nucifera and N.lutea genomes, respectively. A total of 27 homologous LEA gene pairs were identified, indicating high degree of sequence homologies between the two Nelumbo species. Secondary structure prediction indicated high prevalence of alpha (α) helix structure among LEA proteins in the LEA_1, LEA_4, and SMP groups. Screening of putative promoter cis-elements revealed that NnLEA genes were involved in diverse biological processes. Most NnLEA genes were predominantly expressed in the late cotyledons and plumules development stages, suggesting their potential vital roles in lotus seed maturation. In addition, genes co-expressed with NnLEAs were involved in ABA signaling, seed maturation, and development processes. Overall, this study provides new insights for the in-depth understanding of the functions of NnLEA proteins in lotus seed development, and could act as a useful reference for the molecular breeding of seeds with prolonged lifespan.
Collapse
|
14
|
Wang G, Su H, Abou-Elwafa SF, Zhang P, Cao L, Fu J, Xie X, Ku L, Wen P, Wang T, Wei L. Functional analysis of a late embryogenesis abundant protein ZmNHL1 in maize under drought stress. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153883. [PMID: 36470036 DOI: 10.1016/j.jplph.2022.153883] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Maize is an important feed and industrial cereal crop and is crucial for global food security. The development of drought-tolerant genotypes is a major aim of breeding programs to fight water scarcity and maintain sustainable maize production. Late embryogenesis abundant (LEA) proteins are a family of proteins related to osmotic regulation that widely exist in organisms. Here, we implemented a previously generated maize transcriptomic dataset to identify a drought-responsive gene designated ZmNHL1. Bioinformatics analysis of ZmNHL1 showed that the protein encoded by ZmNHL1 belongs to the LEA-2 protein family. Tissue specific expression analysis showed that ZmNHL1 is relatively abundant in stems and leaves, highly expressed in tassels and only slightly expressed in roots, pollens and ears. Moreover, the activity of SOD and POD of plants from three 35S::ZmNHL1 transgenic lines under either the induced drought stress conditions (by 20% PEG6000) or the natural water deficit treatment (by water withholding) were higher than that of the WT plants, while the electrolyte leakage of the 35S::ZmNHL1 transgenic plants was lower than that of the WT plants under both drought treatments. Our data further revealed that ZmNHL1 promotes maize tolerance to drought stress in 35S::ZmNHL1 transgenic plants by improving ROS scavenging and maintaining the cell membrane permeability. Overall, our data revealed that ZmNHL1 promotes maize tolerance to drought stress and contributes to provide elite germplasm resources for maize drought tolerance breeding programs.
Collapse
Affiliation(s)
- Guorui Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huihui Su
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | | | - Pengyu Zhang
- Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Liru Cao
- Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Jiaxu Fu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaowen Xie
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lixia Ku
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pengfei Wen
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tongchao Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Li Wei
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
15
|
Zhang Y, Fan N, Wen W, Liu S, Mo X, An Y, Zhou P. Genome-wide identification and analysis of LEA_2 gene family in alfalfa ( Medicago sativa L.) under aluminum stress. FRONTIERS IN PLANT SCIENCE 2022; 13:976160. [PMID: 36518511 PMCID: PMC9742422 DOI: 10.3389/fpls.2022.976160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Late embryonic development abundant proteins (LEAs) are a large family of proteins commonly existing in plants. LEA_2 is the largest subfamily in the LEA, it plays an important role in plant resistance to abiotic stress. In order to explore the characteristics of LEA_2 gene family members in alfalfa (Medicago sativa L.), 155 members of LEA_2 (MsLEA_2) family were identified from alfalfa genome. Bioinformatics analysis was conducted from the aspects of phylogenetic relationship, chromosome distribution, chromosome colinearity, physical and chemical properties, motif composition, exon-intron structure, cis-element and so on. Expression profiles of MsLEA_2 gene were obtained based on Real-time fluorescent quantitative PCR (qRT-PCR) analysis and previous RNA-seq data under aluminum (Al) stress. Bioinformatics results were shown that the MsLEA_2 genes are distributed on all 32 chromosomes. Among them, 85 genes were present in the gene clusters, accounting for 54.83%, and chromosome Chr7.3 carries the largest number of MsLEA_2 (19 LEA_2 genes on Chr7.3). Chr7.3 has a unique structure of MsLEA_2 distribution, which reveals a possible special role of Chr7.3 in ensuring the function of MsLEA_2. Transcriptional structure analysis revealed that the number of exons in each gene varies from 1 to 3, and introns varies from 0 to 2. Cis-element analysis identified that the promoter region of MsLEA_2 is rich in ABRE, MBS, LTR, and MeJARE, indicating MsLEA_2 has stress resistance potential under abiotic stress. RNA-seq data and qRT-PCR analyses showed that most of the MsLEA_2 members were up-regulated when alfalfa exposed to Al stress. This study revealed that phylogenetic relationship and possible function of LEA_ 2 gene in alfalfa, which were helpful for the functional analysis of LEA_ 2 proteins in the future and provided a new theoretical basis for improving Al tolerance of alfalfa.
Collapse
Affiliation(s)
- Yujing Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Nana Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Siyan Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Mo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Hernández-Sánchez IE, Maruri-López I, Martinez-Martinez C, Janis B, Jiménez-Bremont JF, Covarrubias AA, Menze MA, Graether SP, Thalhammer A. LEAfing through literature: late embryogenesis abundant proteins coming of age-achievements and perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6525-6546. [PMID: 35793147 DOI: 10.1093/jxb/erac293] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
To deal with increasingly severe periods of dehydration related to global climate change, it becomes increasingly important to understand the complex strategies many organisms have developed to cope with dehydration and desiccation. While it is undisputed that late embryogenesis abundant (LEA) proteins play a key role in the tolerance of plants and many anhydrobiotic organisms to water limitation, the molecular mechanisms are not well understood. In this review, we summarize current knowledge of the physiological roles of LEA proteins and discuss their potential molecular functions. As these are ultimately linked to conformational changes in the presence of binding partners, post-translational modifications, or water deprivation, we provide a detailed summary of current knowledge on the structure-function relationship of LEA proteins, including their disordered state in solution, coil to helix transitions, self-assembly, and their recently discovered ability to undergo liquid-liquid phase separation. We point out the promising potential of LEA proteins in biotechnological and agronomic applications, and summarize recent advances. We identify the most relevant open questions and discuss major challenges in establishing a solid understanding of how these intriguing molecules accomplish their tasks as cellular sentinels at the limits of surviving water scarcity.
Collapse
Affiliation(s)
- Itzell E Hernández-Sánchez
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Israel Maruri-López
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Coral Martinez-Martinez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Brett Janis
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, 78216, San Luis Potosí, Mexico
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Michael A Menze
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Anja Thalhammer
- Department of Physical Biochemistry, University of Potsdam, D-14476 Potsdam, Germany
| |
Collapse
|
17
|
Zhang YY, Stockmann R, Ng K, Broadbent JA, Stockwell S, Suleria H, Karishma Shaik NE, Unnithan RR, Ajlouni S. Characterization of Fe(III)-binding peptides from pea protein hydrolysates targeting enhanced iron bioavailability. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
18
|
Gómez-Espejo AL, Sansaloni CP, Burgueño J, Toledo FH, Benavides-Mendoza A, Reyes-Valdés MH. Worldwide Selection Footprints for Drought and Heat in Bread Wheat (Triticum aestivum L.). PLANTS 2022; 11:plants11172289. [PMID: 36079671 PMCID: PMC9460392 DOI: 10.3390/plants11172289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Genome–environment Associations (GEA) or Environmental Genome-Wide Association scans (EnvGWAS) have been poorly applied for studying the genomics of adaptive traits in bread wheat landraces (Triticum aestivum L.). We analyzed 990 landraces and seven climatic variables (mean temperature, maximum temperature, precipitation, precipitation seasonality, heat index of mean temperature, heat index of maximum temperature, and drought index) in GEA using the FarmCPU approach with GAPIT. Historical temperature and precipitation values were obtained as monthly averages from 1970 to 2000. Based on 26,064 high-quality SNP loci, landraces were classified into ten subpopulations exhibiting high genetic differentiation. The GEA identified 59 SNPs and nearly 89 protein-encoding genes involved in the response processes to abiotic stress. Genes related to biosynthesis and signaling are mainly mediated by auxins, abscisic acid (ABA), ethylene (ET), salicylic acid (SA), and jasmonates (JA), which are known to operate together in modulation responses to heat stress and drought in plants. In addition, we identified some proteins associated with the response and tolerance to stress by high temperatures, water deficit, and cell wall functions. The results provide candidate regions for selection aimed to improve drought and heat tolerance in bread wheat and provide insights into the genetic mechanisms involved in adaptation to extreme environments.
Collapse
Affiliation(s)
- Ana L. Gómez-Espejo
- Programa de Doctorado en Recursos Fitogenéticos para Zonas Áridas, Universidad Autónoma Agraria Antonio Narro (UAAAN), Saltillo 25315, Mexico or
| | | | - Juan Burgueño
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco 56237, Mexico
| | - Fernando H. Toledo
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco 56237, Mexico
| | - Adalberto Benavides-Mendoza
- Programa de Doctorado en Recursos Fitogenéticos para Zonas Áridas, Universidad Autónoma Agraria Antonio Narro (UAAAN), Saltillo 25315, Mexico or
| | - M. Humberto Reyes-Valdés
- Programa de Doctorado en Recursos Fitogenéticos para Zonas Áridas, Universidad Autónoma Agraria Antonio Narro (UAAAN), Saltillo 25315, Mexico or
- Correspondence:
| |
Collapse
|
19
|
Ramtekey V, Cherukuri S, Kumar S, V. SK, Sheoran S, K. UB, K. BN, Kumar S, Singh AN, Singh HV. Seed Longevity in Legumes: Deeper Insights Into Mechanisms and Molecular Perspectives. FRONTIERS IN PLANT SCIENCE 2022; 13:918206. [PMID: 35968115 PMCID: PMC9364935 DOI: 10.3389/fpls.2022.918206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Sustainable agricultural production largely depends upon the viability and longevity of high-quality seeds during storage. Legumes are considered as rich source of dietary protein that helps to ensure nutritional security, but associated with poor seed longevity that hinders their performance and productivity in farmer's fields. Seed longevity is the key determinant to assure proper seed plant value and crop yield. Thus, maintenance of seed longevity during storage is of prime concern and a pre-requisite for enhancing crop productivity of legumes. Seed longevity is significantly correlated with other seed quality parameters such as germination, vigor, viability and seed coat permeability that affect crop growth and development, consequently distressing crop yield. Therefore, information on genetic basis and regulatory networks associated with seed longevity, as well as molecular dissection of traits linked to longevity could help in developing crop varieties with good storability. Keeping this in view, the present review focuses towards highlighting the molecular basis of seed longevity, with special emphasis on candidate genes and proteins associated with seed longevity and their interplay with other quality parameters. Further, an attempt was made to provide information on 3D structures of various genetic loci (genes/proteins) associated to seed longevity that could facilitate in understanding the interactions taking place within the seed at molecular level. This review compiles and provides information on genetic and genomic approaches for the identification of molecular pathways and key players involved in the maintenance of seed longevity in legumes, in a holistic manner. Finally, a hypothetical fast-forward breeding pipeline has been provided, that could assist the breeders to successfully develop varieties with improved seed longevity in legumes.
Collapse
Affiliation(s)
| | | | - Sunil Kumar
- Indian Agricultural Statistics Research Institute-IASRI, New Delhi, India
| | | | - Seema Sheoran
- ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, India
| | - Udaya Bhaskar K.
- ICAR-Indian Institute of Seed Science, Regional Station, Bengaluru, India
| | - Bhojaraja Naik K.
- ICAR-Indian Institute of Seed Science, Regional Station, Bengaluru, India
| | - Sanjay Kumar
- ICAR-Indian Institute of Seed Science, Mau, India
| | | | | |
Collapse
|
20
|
Huang Z, Zhu P, Zhong X, Qiu J, Xu W, Song L. Transcriptome Analysis of Moso Bamboo ( Phyllostachys edulis) Reveals Candidate Genes Involved in Response to Dehydration and Cold Stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:960302. [PMID: 35928710 PMCID: PMC9343960 DOI: 10.3389/fpls.2022.960302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Bamboo (Bambusoideae) belongs to the grass family (Poaceae) and has been utilized as one of the most important nontimber forest resources in the world. Moso bamboo (Phyllostachys edulis) is a large woody bamboo with high ecological and economic values. Global climate change brings potential challenges to the normal growth of moso bamboo, and hence its production. Despite the release of moso bamboo genome sequence, the knowledge on genome-wide responses to abiotic stress is still limited. In this study, we generated a transcriptome data set with respect to dehydration and cold responses of moso bamboo using RNA-seq technology. The differentially expressed genes (DEGs) under treatments of dehydration and cold stresses were identified. By combining comprehensive gene ontology (GO) analysis, time-series analysis, and co-expression analysis, candidate genes involved in dehydration and cold responses were identified, which encode abscisic acid (ABA)/water deficit stress (WDS)-induced protein, late embryogenesis abundant (LEA) protein, 9-cis-epoxycarotenoid dioxygenase (NCED), anti-oxidation enzymes, transcription factors, etc. Additionally, we used PeLEA14, a dehydration-induced gene encoding an "atypical" LEA protein, as an example to validate the function of the identified stress-related gene in tolerance to abiotic stresses, such as drought and salt. In this study, we provided a valuable genomic resource for future excavation of key genes involved in abiotic stress responses and genetic improvement of moso bamboo to meet the requirement for environmental resilience and sustainable production.
Collapse
|
21
|
Huang R, Xiao D, Wang X, Zhan J, Wang A, He L. Genome-wide identification, evolutionary and expression analyses of LEA gene family in peanut (Arachis hypogaea L.). BMC PLANT BIOLOGY 2022; 22:155. [PMID: 35354373 PMCID: PMC8966313 DOI: 10.1186/s12870-022-03462-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/10/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Late embryogenesis abundant (LEA) proteins are a group of highly hydrophilic glycine-rich proteins, which accumulate in the late stage of seed maturation and are associated with many abiotic stresses. However, few peanut LEA genes had been reported, and the research on the number, location, structure, molecular phylogeny and expression of AhLEAs was very limited. RESULTS In this study, 126 LEA genes were identified in the peanut genome through genome-wide analysis and were further divided into eight groups. Sequence analysis showed that most of the AhLEAs (85.7%) had no or only one intron. LEA genes were randomly distributed on 20 chromosomes. Compared with tandem duplication, segmental duplication played a more critical role in AhLEAs amplication, and 93 segmental duplication AhLEAs and 5 pairs of tandem duplication genes were identified. Synteny analysis showed that some AhLEAs genes come from a common ancestor, and genome rearrangement and translocation occurred among these genomes. Almost all promoters of LEAs contain ABRE, MYB recognition sites, MYC recognition sites, and ERE cis-acting elements, suggesting that the LEA genes were involved in stress response. Gene transcription analyses revealed that most of the LEAs were expressed in the late stages of peanut embryonic development. LEA3 (AH16G06810.1, AH06G03960.1), and Dehydrin (AH07G18700.1, AH17G19710.1) were highly expressed in roots, stems, leaves and flowers. Moreover, 100 AhLEAs were involved in response to drought, low-temperature, or Al stresses. Some LEAs that were regulated by different abiotic stresses were also regulated by hormones including ABA, brassinolide, ethylene and salicylic acid. Interestingly, AhLEAs that were up-regulated by ethylene and salicylic acid showed obvious subfamily preferences. Furthermore, three AhLEA genes, AhLEA1, AhLEA3-1, and AhLEA3-3, which were up-regulated by drought, low-temperature, or Al stresses was proved to enhance cold and Al tolerance in yeast, and AhLEA3-1 enhanced the drought tolerance in yeast. CONCLUSIONS AhLEAs are involved in abiotic stress response, and segmental duplication plays an important role in the evolution and amplification of AhLEAs. The genome-wide identification, classification, evolutionary and transcription analyses of the AhLEA gene family provide a foundation for further exploring the LEA genes' function in response to abiotic stress in peanuts.
Collapse
Affiliation(s)
- RuoLan Huang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Dong Xiao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China.
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, China.
- Key Laboratory of Crop Cultivation and Tillage, Guangxi Colleges and Universities, Nanning, 530004, China.
| | - Xin Wang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jie Zhan
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi Colleges and Universities, Nanning, 530004, China
| | - AiQing Wang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi Colleges and Universities, Nanning, 530004, China
| | - LongFei He
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi Colleges and Universities, Nanning, 530004, China
| |
Collapse
|
22
|
Pantelić A, Stevanović S, Komić SM, Kilibarda N, Vidović M. In Silico Characterisation of the Late Embryogenesis Abundant (LEA) Protein Families and Their Role in Desiccation Tolerance in Ramonda serbica Panc. Int J Mol Sci 2022; 23:3547. [PMID: 35408906 PMCID: PMC8998581 DOI: 10.3390/ijms23073547] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 02/03/2023] Open
Abstract
Ramonda serbica Panc. is an ancient resurrection plant able to survive a long desiccation period and recover metabolic functions upon watering. The accumulation of protective late embryogenesis abundant proteins (LEAPs) is a desiccation tolerance hallmark. To propose their role in R. serbica desiccation tolerance, we structurally characterised LEAPs and evaluated LEA gene expression levels in hydrated and desiccated leaves. By integrating de novo transcriptomics and homologues LEAP domains, 318 R. serbica LEAPs were identified and classified according to their conserved motifs and phylogeny. The in silico analysis revealed that hydrophilic LEA4 proteins exhibited an exceptionally high tendency to form amphipathic α-helices. The most abundant, atypical LEA2 group contained more hydrophobic proteins predicted to fold into the defined globular domains. Within the desiccation-upregulated LEA genes, the majority encoded highly disordered DEH1, LEA1, LEA4.2, and LEA4.3 proteins, while the greatest portion of downregulated genes encoded LEA2.3 and LEA2.5 proteins. While dehydrins might chelate metals and bind DNA under water deficit, other intrinsically disordered LEAPs might participate in forming intracellular proteinaceous condensates or adopt amphipathic α-helical conformation, enabling them to stabilise desiccation-sensitive proteins and membranes. This comprehensive LEAPs structural characterisation is essential to understanding their function and regulation during desiccation aiming at crop drought tolerance improvement.
Collapse
Affiliation(s)
- Ana Pantelić
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (A.P.); (S.S.)
| | - Strahinja Stevanović
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (A.P.); (S.S.)
| | - Sonja Milić Komić
- Department of Life Science, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia;
| | - Nataša Kilibarda
- Department of Pharmacy, Singidunum University, Danijelova 32, 11000 Belgrade, Serbia;
| | - Marija Vidović
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (A.P.); (S.S.)
| |
Collapse
|
23
|
Samtani H, Sharma A, Khurana P. Overexpression of HVA1 Enhances Drought and Heat Stress Tolerance in Triticum aestivum Doubled Haploid Plants. Cells 2022; 11:cells11050912. [PMID: 35269534 PMCID: PMC8909738 DOI: 10.3390/cells11050912] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
Plant responses to multiple environmental stresses include various signaling pathways that allow plant acclimation and survival. Amongst different stresses, drought and heat stress severely affect growth and productivity of wheat. HVA1, a member of the group 3 LEA protein, has been well known to provide protection against drought stress. However, its mechanism of action and its role in other stresses such as heat remain unexplored. In this study, doubled haploid (DH) wheat plants overexpressing the HVA1 gene were analyzed and found to be both drought-and heat stress-tolerant. The transcriptome analysis revealed the upregulation of transcription factors such as DREB and HsfA6 under drought and heat stress, respectively, which contribute toward the tolerance mechanism. Particularly under heat stress conditions, the transgenic plants had a lower oxidative load and showed enhanced yield. The overexpression lines were found to be ABA-sensitive, therefore suggesting the role of HsfA6 in providing heat tolerance via the ABA-mediated pathway. Thus, apart from its known involvement in drought stress, this study highlights the potential role of HVA1 in the heat stress signaling pathway. This can further facilitate the engineering of multiple stress tolerance in crop plants, such as wheat.
Collapse
|
24
|
Li L, Zhou X, Chen Z, Cao Y, Zhao G. The group 3 LEA protein of Artemia franciscana for cryopreservation. Cryobiology 2022; 106:1-12. [DOI: 10.1016/j.cryobiol.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/03/2022]
|
25
|
Ananda GKS, Norton SL, Blomstedt C, Furtado A, Møller BL, Gleadow R, Henry RJ. Transcript profiles of wild and domesticated sorghum under water-stressed conditions and the differential impact on dhurrin metabolism. PLANTA 2022; 255:51. [PMID: 35084593 PMCID: PMC8795013 DOI: 10.1007/s00425-022-03831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
MAIN CONCLUSION Australian native species of sorghum contain negligible amounts of dhurrin in their leaves and the cyanogenesis process is regulated differently under water-stress in comparison to domesticated sorghum species. Cyanogenesis in forage sorghum is a major concern in agriculture as the leaves of domesticated sorghum are potentially toxic to livestock, especially at times of drought which induces increased production of the cyanogenic glucoside dhurrin. The wild sorghum species endemic to Australia have a negligible content of dhurrin in the above ground tissues and thus represent a potential resource for key agricultural traits like low toxicity. In this study we investigated the differential expression of cyanogenesis related genes in the leaf tissue of the domesticated species Sorghum bicolor and the Australian native wild species Sorghum macrospermum grown in glasshouse-controlled water-stress conditions using RNA-Seq analysis to analyse gene expression. The study identified genes, including those in the cyanogenesis pathway, that were differentially regulated in response to water-stress in domesticated and wild sorghum. In the domesticated sorghum, dhurrin content was significantly higher compared to that in the wild sorghum and increased with stress and decreased with age whereas in wild sorghum the dhurrin content remained negligible. The key genes in dhurrin biosynthesis, CYP79A1, CYP71E1 and UGT85B1, were shown to be highly expressed in S. bicolor. DHR and HNL encoding the dhurrinase and α-hydroxynitrilase catalysing bio-activation of dhurrin were also highly expressed in S. bicolor. Analysis of the differences in expression of cyanogenesis related genes between domesticated and wild sorghum species may allow the use of these genetic resources to produce more acyanogenic varieties in the future.
Collapse
Affiliation(s)
- Galaihalage K S Ananda
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Sally L Norton
- Australian Grains Genebank, Agriculture Victoria, Horsham, VIC, Australia
| | - Cecilia Blomstedt
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roslyn Gleadow
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
26
|
Yang Z, Mu Y, Wang Y, He F, Shi L, Fang Z, Zhang J, Zhang Q, Geng G, Zhang S. Characterization of a Novel TtLEA2 Gene From Tritipyrum and Its Transformation in Wheat to Enhance Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:830848. [PMID: 35444677 PMCID: PMC9014267 DOI: 10.3389/fpls.2022.830848] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/11/2022] [Indexed: 05/12/2023]
Abstract
Late embryogenesis-abundant (LEA) proteins are critical in helping plants cope with salt stress. "Y1805" is a salt-tolerant Tritipyrum. We identified a "Y1805"-specific LEA gene that was expressed highly and sensitively under salt stress using transcriptome analysis. The novel group 2 LEA gene (TtLEA2-1) was cloned from "Y1805." TtLEA2-1 contained a 453 bp open reading frame encoding an 151-amino-acid protein that showed maximum sequence identity (77.00%) with Thinopyrum elongatum by phylogenetic analysis. It was mainly found to be expressed highly in the roots by qRT-PCR analysis and was located in the whole cell. Forty-eight candidate proteins believed to interact with TtLEA2-1 were confirmed by yeast two-hybrid analysis. These interacting proteins were mainly enriched in "environmental information processing," "glycan biosynthesis and metabolism," and "carbohydrate metabolism." Protein-protein interaction analysis indicated that the translation-related 40S ribosomal protein SA was the central node. An efficient wheat transformation system has been established. A coleoptile length of 2 cm, an Agrobacteria cell density of 0.55-0.60 OD600, and 15 KPa vacuum pressure were ideal for common wheat transformation, with an efficiency of up to 43.15%. Overexpression of TaLEA2-1 in wheat "1718" led to greater height, stronger roots, and higher catalase activity than in wild type seedlings. TaLEA2-1 conferred enhanced salt tolerance in transgenic wheat and may be a valuable gene for genetic modification in crops.
Collapse
Affiliation(s)
- Zhifen Yang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Yuanhang Mu
- College of Agriculture, Guizhou University, Guiyang, China
| | - Yiqin Wang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Fang He
- College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Subcenter of National Wheat Improvement Center, Guiyang, China
| | - Luxi Shi
- College of Agriculture, Guizhou University, Guiyang, China
| | - Zhongming Fang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Jun Zhang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Qingqin Zhang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Guangdong Geng
- College of Agriculture, Guizhou University, Guiyang, China
- *Correspondence: Guangdong Geng,
| | - Suqin Zhang
- College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Subcenter of National Wheat Improvement Center, Guiyang, China
- Suqin Zhang,
| |
Collapse
|
27
|
Sun Y, Liu L, Sun S, Han W, Irfan M, Zhang X, Zhang L, Chen L. AnDHN, a Dehydrin Protein From Ammopiptanthus nanus, Mitigates the Negative Effects of Drought Stress in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:788938. [PMID: 35003177 PMCID: PMC8739915 DOI: 10.3389/fpls.2021.788938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/30/2021] [Indexed: 06/01/2023]
Abstract
Dehydrins (DHNs) play crucial roles in a broad spectrum of abiotic stresses in model plants. However, the evolutionary role of DHNs has not been explored, and the function of DHN proteins is largely unknown in Ammopiptanthus nanus (A. nanus), an ancient and endangered legume species from the deserts of northwestern China. In this study, we isolated a drought-response gene (c195333_g1_i1) from a drought-induced RNA-seq library of A. nanus. Evolutionary bioinformatics showed that c195333_g1_i1 is an ortholog of Arabidopsis DHN, and we renamed it AnDHN. Moreover, DHN proteins may define a class of proteins that are evolutionarily conserved in all angiosperms that have experienced a contraction during the evolution of legumes. Arabidopsis plants overexpressing AnDHN exhibited morpho-physiological changes, such as an increased germination rate, higher relative water content (RWC), higher proline (PRO) content, increased peroxidase (POD) and catalase (CAT) activities, lower contents of malondialdehyde (MDA), H2O2 and O2 -, and longer root length. Our results showed that the transgenic lines had improved drought resistance with deep root system architecture, excellent water retention, increased osmotic adjustment, and enhanced reactive oxygen species (ROS) scavenging. Furthermore, the transgenic lines also had enhanced salt and cold tolerance. Our findings demonstrate that AnDHN may be a good candidate gene for improving abiotic stress tolerance in crops. Key Message: Using transcriptome analysis in Ammopiptanthus nanus, we isolated a drought-responsive gene, AnDHN, that plays a key role in enhancing abiotic stress tolerance in plants, with strong functional diversification in legumes.
Collapse
Affiliation(s)
- Yibo Sun
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Linghao Liu
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shaokun Sun
- Key Laboratory of Protected Horticulture (Ministry of Education), College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Wangzhen Han
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Muhammad Irfan
- Department of Biotechnology, Faculty of Sciences, University of Sargodha, Sargodha, Pakistan
| | - Xiaojia Zhang
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Li Zhang
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Lijing Chen
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
28
|
Hibshman JD, Goldstein B. LEA motifs promote desiccation tolerance in vivo. BMC Biol 2021; 19:263. [PMID: 34903234 PMCID: PMC8670023 DOI: 10.1186/s12915-021-01176-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cells and organisms typically cannot survive in the absence of water. However, some animals including nematodes, tardigrades, rotifers, and some arthropods are able to survive near-complete desiccation. One class of proteins known to play a role in desiccation tolerance is the late embryogenesis abundant (LEA) proteins. These largely disordered proteins protect plants and animals from desiccation. A multitude of studies have characterized stress-protective capabilities of LEA proteins in vitro and in heterologous systems. However, the extent to which LEA proteins exhibit such functions in vivo, in their native contexts in animals, is unclear. Furthermore, little is known about the distribution of LEA proteins in multicellular organisms or tissue-specific requirements in conferring stress protection. Here, we used the nematode C. elegans as a model to study the endogenous function of an LEA protein in an animal. RESULTS We created a null mutant of C. elegans LEA-1, as well as endogenous fluorescent reporters of the protein. LEA-1 mutant animals formed defective dauer larvae at high temperature. We confirmed that C. elegans lacking LEA-1 are sensitive to desiccation. LEA-1 mutants were also sensitive to heat and osmotic stress and were prone to protein aggregation. During desiccation, LEA-1 expression increased and became more widespread throughout the body. LEA-1 was required at high levels in body wall muscle for animals to survive desiccation and osmotic stress, but expression in body wall muscle alone was not sufficient for stress resistance, indicating a likely requirement in multiple tissues. We identified minimal motifs within C. elegans LEA-1 that were sufficient to increase desiccation survival of E. coli. To test whether such motifs are central to LEA-1's in vivo functions, we then replaced the sequence of lea-1 with these minimal motifs and found that C. elegans dauer larvae formed normally and survived osmotic stress and mild desiccation at the same levels as worms with the full-length protein. CONCLUSIONS Our results provide insights into the endogenous functions and expression dynamics of an LEA protein in a multicellular animal. The results show that LEA-1 buffers animals from a broad range of stresses. Our identification of LEA motifs that can function in both bacteria and in a multicellular organism in vivo suggests the possibility of engineering LEA-1-derived peptides for optimized desiccation protection.
Collapse
Affiliation(s)
- Jonathan D Hibshman
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA.
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
29
|
Ge N, Yang K, Yang L, Meng ZG, Li LG, Chen JW. iTRAQ and RNA-seq analyses provide an insight into mechanisms of recalcitrance in a medicinal plant Panax notoginseng seeds during the after-ripening process. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 49:68-88. [PMID: 34822750 DOI: 10.1071/fp21197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Panax notoginseng (Burk) F.H. Chen is an important economic and medicinal plant from the family of Araliaceae, and its seed is characterised by the recalcitrance and after-ripening process. However, the molecular mechanism on the dehydration sensitivity is not clear in recalcitrant seeds. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) and RNA-seq were used to analyse the proteomic and transcriptomic changes in seeds of P. notoginseng in days after-ripening (DAR). A total of 454 differentially expressed proteins (DEPs) and 12000 differentially expressed genes (DEGs) were obtained. The activity of enzymes related to antioxidant system were significantly increased, and the late embryogenesis abundant (LEA) protein family and most members of glutathione metabolism enzymes have been downregulated during the after-ripening process. The lack or inadequate accumulation of LEA proteins in the embryo and the low activity of antioxidant defense in glutathione metabolism might be the key factors leading to the dehydration sensitivity in recalcitrant seeds of P. notoginseng. In addition, the increased activity of elycolysis (EMP), citric acid cycle (TCA) and pentose phosphate pathway (PPP) pathways might be one of important signals to complete the after-ripening process. Overall, our study might provide a new insight into the molecular mechanism on dehydration sensitivity of recalcitrant seeds.
Collapse
Affiliation(s)
- Na Ge
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China
| | - Kai Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China
| | - Ling Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China
| | - Zhen-Gui Meng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China
| | - Long-Geng Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China
| | - Jun-Wen Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China
| |
Collapse
|
30
|
Murai Y, Yagi-Utsumi M, Fujiwara M, Tanaka S, Tomita M, Kato K, Arakawa K. Multiomics study of a heterotardigrade, Echinisicus testudo, suggests the possibility of convergent evolution of abundant heat-soluble proteins in Tardigrada. BMC Genomics 2021; 22:813. [PMID: 34763673 PMCID: PMC8582207 DOI: 10.1186/s12864-021-08131-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background Many limno-terrestrial tardigrades can enter an ametabolic state, known as anhydrobiosis, upon desiccation, in which the animals can withstand extreme environments. Through genomics studies, molecular components of anhydrobiosis are beginning to be elucidated, such as the expansion of oxidative stress response genes, loss of stress signaling pathways, and gain of tardigrade-specific heat-soluble protein families designated CAHS and SAHS. However, to date, studies have predominantly investigated the class Eutardigrada, and molecular mechanisms in the remaining class, Heterotardigrada, still remains elusive. To address this gap in the research, we report a multiomics study of the heterotardigrade Echiniscus testudo, one of the most desiccation-tolerant species which is not yet culturable in laboratory conditions. Results In order to elucidate the molecular basis of anhydrobiosis in E. testudo, we employed a multi-omics strategy encompassing genome sequencing, differential transcriptomics, and proteomics. Using ultra-low input library sequencing protocol from a single specimen, we sequenced and assembled the 153.7 Mbp genome annotated using RNA-Seq data. None of the previously identified tardigrade-specific abundant heat-soluble genes was conserved, while the loss and expansion of existing pathways were partly shared. Furthermore, we identified two families novel abundant heat-soluble proteins, which we named E. testudo Abundant Heat Soluble (EtAHS), that are predicted to contain large stretches of disordered regions. Likewise the AHS families in eutardigrada, EtAHS shows structural changes from random coil to alphahelix as the water content was decreased in vitro. These characteristics of EtAHS proteins are analogous to those of CAHS in eutardigrades, while there is no conservation at the sequence level. Conclusions Our results suggest that Heterotardigrada have partly shared but distinct anhydrobiosis machinery compared with Eutardigrada, possibly due to convergent evolution within Tardigrada. (276/350). Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08131-x.
Collapse
Affiliation(s)
- Yumi Murai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.,Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Masayuki Fujiwara
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
| | - Sae Tanaka
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.,Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan. .,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan. .,Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan. .,Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan.
| |
Collapse
|
31
|
Abdul Aziz M, Sabeem M, Mullath SK, Brini F, Masmoudi K. Plant Group II LEA Proteins: Intrinsically Disordered Structure for Multiple Functions in Response to Environmental Stresses. Biomolecules 2021; 11:1662. [PMID: 34827660 PMCID: PMC8615533 DOI: 10.3390/biom11111662] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
In response to various environmental stresses, plants have evolved a wide range of defense mechanisms, resulting in the overexpression of a series of stress-responsive genes. Among them, there is certain set of genes that encode for intrinsically disordered proteins (IDPs) that repair and protect the plants from damage caused by environmental stresses. Group II LEA (late embryogenesis abundant) proteins compose the most abundant and characterized group of IDPs; they accumulate in the late stages of seed development and are expressed in response to dehydration, salinity, low temperature, or abscisic acid (ABA) treatment. The physiological and biochemical characterization of group II LEA proteins has been carried out in a number of investigations because of their vital roles in protecting the integrity of biomolecules by preventing the crystallization of cellular components prior to multiple stresses. This review describes the distribution, structural architecture, and genomic diversification of group II LEA proteins, with some recent investigations on their regulation and molecular expression under various abiotic stresses. Novel aspects of group II LEA proteins in Phoenix dactylifera and in orthodox seeds are also presented. Genome-wide association studies (GWAS) indicated a ubiquitous distribution and expression of group II LEA genes in different plant cells. In vitro experimental evidence from biochemical assays has suggested that group II LEA proteins perform heterogenous functions in response to extreme stresses. Various investigations have indicated the participation of group II LEA proteins in the plant stress tolerance mechanism, spotlighting the molecular aspects of group II LEA genes and their potential role in biotechnological strategies to increase plants' survival in adverse environments.
Collapse
Affiliation(s)
- Mughair Abdul Aziz
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (M.A.A.); (M.S.)
| | - Miloofer Sabeem
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (M.A.A.); (M.S.)
| | - Sangeeta Kutty Mullath
- Department of Vegetable Science, College of Agriculture, Kerala Agricultural University, Thrissur 680656, India;
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P 1177, Sfax 3018, Tunisia;
| | - Khaled Masmoudi
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (M.A.A.); (M.S.)
| |
Collapse
|
32
|
Malovichko YV, Shikov AE, Nizhnikov AA, Antonets KS. Temporal Control of Seed Development in Dicots: Molecular Bases, Ecological Impact and Possible Evolutionary Ramifications. Int J Mol Sci 2021; 22:ijms22179252. [PMID: 34502157 PMCID: PMC8430901 DOI: 10.3390/ijms22179252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
In flowering plants, seeds serve as organs of both propagation and dispersal. The developing seed passes through several consecutive stages, following a conserved general outline. The overall time needed for a seed to develop, however, may vary both within and between plant species, and these temporal developmental properties remain poorly understood. In the present paper, we summarize the existing data for seed development alterations in dicot plants. For genetic mutations, the reported cases were grouped in respect of the key processes distorted in the mutant specimens. Similar phenotypes arising from the environmental influence, either biotic or abiotic, were also considered. Based on these data, we suggest several general trends of timing alterations and how respective mechanisms might add to the ecological plasticity of the families considered. We also propose that the developmental timing alterations may be perceived as an evolutionary substrate for heterochronic events. Given the current lack of plausible models describing timing control in plant seeds, the presented suggestions might provide certain insights for future studies in this field.
Collapse
Affiliation(s)
- Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
33
|
ROS-Scavenging Enzymes as an Antioxidant Response to High Concentration of Anthracene in the Liverwort Marchantia polymorpha L. PLANTS 2021; 10:plants10071478. [PMID: 34371683 PMCID: PMC8309224 DOI: 10.3390/plants10071478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022]
Abstract
Marchantia polymorpha L. responds to environmental changes using a myriad set of physiological responses, some unique to the lineage related to the lack of a vascular- and root-system. This study investigates the physiological response of M. polymorpha to high doses of anthracene analysing the antioxidant enzymes and their relationship with the photosynthetic processes, as well as their transcriptomic response. We found an anthracene dose-dependent response reducing plant biomass and associated to an alteration of the ultrastructure of a 23.6% of chloroplasts. Despite a reduction in total thallus-chlorophyll of 31.6% of Chl a and 38.4% of Chl b, this was not accompanied by a significant change in the net photosynthesis rate and maximum quantum efficiency (Fv/Fm). However, we found an increase in the activity of main ROS-detoxifying enzymes of 34.09% of peroxidase and 692% of ascorbate peroxidase, supported at transcriptional level with the upregulation of ROS-related detoxifying responses. Finally, we found that M. polymorpha tolerated anthracene-stress under the lowest concentration used and can suffer physiological alterations under higher concentrations tested related to the accumulation of anthracene within plant tissues. Our results show that M. polymorpha under PAH stress condition activated two complementary physiological responses including the activation of antioxidant mechanisms and the accumulation of the pollutant within plant tissues to mitigate the damage to the photosynthetic apparatus.
Collapse
|
34
|
Genome-Wide Analysis of the Late Embryogenesis Abundant (LEA) and Abscisic Acid-, Stress-, and Ripening-Induced (ASR) Gene Superfamily from Canavalia rosea and Their Roles in Salinity/Alkaline and Drought Tolerance. Int J Mol Sci 2021; 22:ijms22094554. [PMID: 33925342 PMCID: PMC8123667 DOI: 10.3390/ijms22094554] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/23/2022] Open
Abstract
Canavalia rosea (bay bean), distributing in coastal areas or islands in tropical and subtropical regions, is an extremophile halophyte with good adaptability to seawater and drought. Late embryogenesis abundant (LEA) proteins typically accumulate in response to various abiotic stresses, including dehydration, salinity, high temperature, and cold, or during the late stage of seed development. Abscisic acid-, stress-, and ripening-induced (ASR) genes are stress and developmentally regulated plant-specific genes. In this study, we reported the first comprehensive survey of the LEA and ASR gene superfamily in C. rosea. A total of 84 CrLEAs and three CrASRs were identified in C. rosea and classified into nine groups. All CrLEAs and CrASRs harbored the conserved motif for their family proteins. Our results revealed that the CrLEA genes were widely distributed in different chromosomes, and all of the CrLEA/CrASR genes showed wide expression features in different tissues in C. rosea plants. Additionally, we introduced 10 genes from different groups into yeast to assess the functions of the CrLEAs/CrASRs. These results contribute to our understanding of LEA/ASR genes from halophytes and provide robust candidate genes for functional investigations in plant species adapted to extreme environments.
Collapse
|
35
|
Wangorsch A, Kulkarni A, Jamin A, Spiric J, Bräcker J, Brockmeyer J, Mahler V, Blanca‐López N, Ferrer M, Blanca M, Torres M, Gomez P, Bartra J, García‐Moral A, Goikoetxea MJ, Vieths S, Toda M, Zoccatelli G, Scheurer S. Identification and Characterization of IgE‐Reactive Proteins and a New Allergen (Cic a 1.01) from Chickpea (
Cicer arietinum
). Mol Nutr Food Res 2020; 64:e2000560. [DOI: 10.1002/mnfr.202000560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/04/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Andrea Wangorsch
- Division Allergology and Section Molecular Allergology Paul‐Ehrlich‐Institut Paul‐Ehrlich‐Str. 2 63225 Langen Germany
| | - Anuja Kulkarni
- Division Allergology and Section Molecular Allergology Paul‐Ehrlich‐Institut Paul‐Ehrlich‐Str. 2 63225 Langen Germany
- Amity University Mumbai India
| | - Annette Jamin
- Division Allergology and Section Molecular Allergology Paul‐Ehrlich‐Institut Paul‐Ehrlich‐Str. 2 63225 Langen Germany
| | - Jelena Spiric
- Division Allergology and Section Molecular Allergology Paul‐Ehrlich‐Institut Paul‐Ehrlich‐Str. 2 63225 Langen Germany
| | - Julia Bräcker
- Analytical Food Chemistry University of Stuttgart Allmandring 5B 70569 Stuttgart Germany
| | - Jens Brockmeyer
- Analytical Food Chemistry University of Stuttgart Allmandring 5B 70569 Stuttgart Germany
| | - Vera Mahler
- Division Allergology and Section Molecular Allergology Paul‐Ehrlich‐Institut Paul‐Ehrlich‐Str. 2 63225 Langen Germany
| | | | - Marta Ferrer
- Department of Allergy, IdiSNA (Instituto de Investigación Sanitaria de Navarra) Clinica Universidad de Navarra Pio XII Pamplona 3631008 Spain
| | - Miguel Blanca
- Allergy Service Hospital Infanta Leonor Gran Via del Este 80 Madrid 28031 Spain
- Jefe de Servicio de Alergología Hospital Civil Plaza del Hospital Civil s/n, Pabellon 5, sotano Málaga 29009 Spain
| | - Maria Torres
- Jefe de Servicio de Alergología Hospital Civil Plaza del Hospital Civil s/n, Pabellon 5, sotano Málaga 29009 Spain
| | - Paqui Gomez
- Jefe de Servicio de Alergología Hospital Civil Plaza del Hospital Civil s/n, Pabellon 5, sotano Málaga 29009 Spain
| | - Joan Bartra
- Allergy Unit, Pneumology Department Clinic Hospital Sant Antoni Maria Claret, 167 Barcelona Catalunya 08025 Spain
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) University of Barcelona Carrer del Rosselló, 149 Barcelona 08036 Spain
| | - Alba García‐Moral
- Allergy Unit, Pneumology Department Clinic Hospital Sant Antoni Maria Claret, 167 Barcelona Catalunya 08025 Spain
| | - María J. Goikoetxea
- Department of Allergy, IdiSNA (Instituto de Investigación Sanitaria de Navarra) Clinica Universidad de Navarra Pio XII Pamplona 3631008 Spain
| | - Stefan Vieths
- Division Allergology and Section Molecular Allergology Paul‐Ehrlich‐Institut Paul‐Ehrlich‐Str. 2 63225 Langen Germany
| | - Masako Toda
- Division Allergology and Section Molecular Allergology Paul‐Ehrlich‐Institut Paul‐Ehrlich‐Str. 2 63225 Langen Germany
- Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science Tohoku University Aramaki 468‐1, Aoba‐ku Sendai‐city 980‐8572 Japan
| | - Gianni Zoccatelli
- Department of Biotechnology University of Verona Strada le Grazie 15 Verona 37134 Italy
| | - Stephan Scheurer
- Division Allergology and Section Molecular Allergology Paul‐Ehrlich‐Institut Paul‐Ehrlich‐Str. 2 63225 Langen Germany
| |
Collapse
|
36
|
Chen L, Sun Y, Liu Y, Zou Y, Huang J, Zheng Y, Liu G. The N-Terminal Region of Soybean PM1 Protein Protects Liposomes during Freeze-Thaw. Int J Mol Sci 2020; 21:E5552. [PMID: 32756462 PMCID: PMC7432130 DOI: 10.3390/ijms21155552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 11/16/2022] Open
Abstract
Late embryogenesis abundant (LEA) group 1 (LEA_1) proteins are intrinsically disordered proteins (IDPs) that play important roles in protecting plants from abiotic stress. Their protective function, at a molecular level, has not yet been fully elucidated, but several studies suggest their involvement in membrane stabilization under stress conditions. In this paper, the soybean LEA_1 protein PM1 and its truncated forms (PM1-N: N-terminal half; PM1-C: C-terminal half) were tested for the ability to protect liposomes against damage induced by freeze-thaw stress. Turbidity measurement and light microscopy showed that full-length PM1 and PM1-N, but not PM1-C, can prevent freeze-thaw-induced aggregation of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) liposomes and native thylakoid membranes, isolated from spinach leaves (Spinacia oleracea). Particle size distribution analysis by dynamic light scattering (DLS) further confirmed that PM1 and PM1-N can prevent liposome aggregation during freeze-thaw. Furthermore, PM1 or PM1-N could significantly inhibit membrane fusion of liposomes, but not reduce the leakage of their contents following freezing stress. The results of proteolytic digestion and circular dichroism experiments suggest that PM1 and PM1-N proteins bind mainly on the surface of the POPC liposome. We propose that, through its N-terminal region, PM1 functions as a membrane-stabilizing protein during abiotic stress, and might inhibit membrane fusion and aggregation of vesicles or other endomembrane structures within the plant cell.
Collapse
Affiliation(s)
- Liyi Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (L.C.); (Y.S.); (Y.L.); (J.H.); (Y.Z.)
| | - Yajun Sun
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (L.C.); (Y.S.); (Y.L.); (J.H.); (Y.Z.)
| | - Yun Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (L.C.); (Y.S.); (Y.L.); (J.H.); (Y.Z.)
| | - Yongdong Zou
- The Instrumental Analysis Center of Shenzhen University (Lihu Campus), Shenzhen University, Shenzhen 518060, China;
| | - Jianzi Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (L.C.); (Y.S.); (Y.L.); (J.H.); (Y.Z.)
| | - Yizhi Zheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (L.C.); (Y.S.); (Y.L.); (J.H.); (Y.Z.)
| | - Guobao Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (L.C.); (Y.S.); (Y.L.); (J.H.); (Y.Z.)
| |
Collapse
|
37
|
Ranjbar Sistani N, Desalegn G, Kaul HP, Wienkoop S. Seed Metabolism and Pathogen Resistance Enhancement in Pisum sativum During Colonization of Arbuscular Mycorrhizal Fungi: An Integrative Metabolomics-Proteomics Approach. FRONTIERS IN PLANT SCIENCE 2020; 11:872. [PMID: 32612631 PMCID: PMC7309134 DOI: 10.3389/fpls.2020.00872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Pulses are one of the most important categories of food plants, and Pea (Pisum sativum L.) as a member of pulses is considered a key crop for food and feed and sustainable agriculture. Integrative multi-omics and microsymbiont impact studies on the plant's immune system are important steps toward more productive and tolerant food plants and thus will help to find solutions against food poverty. Didymella pinodes is a main fungal pathogen of pea plants. Arbuscular mycorrhizal fungi (AMF) promote plant growth and alleviate various stresses. However, it remained unclear as to how the AMF effect on seed metabolism and how this influences resistance against the pathogen. This study assesses the AMF impacts on yield components and seed quality upon D. pinodes infection on two different P. sativum cultivars, susceptible versus tolerant, grown in pots through phenotypic and seed molecular analyses. We found that AMF symbiosis affects the majority of all tested yield components as well as a reduction of disease severity in both cultivars. Seeds of mycorrhizal pea plants showed strong responses of secondary metabolites with nutritional, medicinal, and pharmaceutical attributes, also involved in pathogen response. This is further supported by proteomic data, functionally determining those primary and secondary metabolic pathways, involved in pathogen response and induced upon AMF-colonization. The data also revealed cultivar specific effects of AMF symbiosis that increase understanding of genotype related differences. Additionally, a suite of proteins and secondary metabolites are presented, induced in seeds of P. sativum upon AMF-colonization and pathogen attack, and possibly involved in induced systemic resistance against D. pinodes, useful for modern breeding strategies implementing microsymbionts toward increased pathogen resistance.
Collapse
Affiliation(s)
- Nima Ranjbar Sistani
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Getinet Desalegn
- Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Hans-Peter Kaul
- Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Kijak H, Ratajczak E. What Do We Know About the Genetic Basis of Seed Desiccation Tolerance and Longevity? Int J Mol Sci 2020; 21:E3612. [PMID: 32443842 PMCID: PMC7279459 DOI: 10.3390/ijms21103612] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 01/02/2023] Open
Abstract
Long-term seed storage is important for protecting both economic interests and biodiversity. The extraordinary properties of seeds allow us to store them in the right conditions for years. However, not all types of seeds are resilient, and some do not tolerate extreme desiccation or low temperature. Seeds can be divided into three categories: (1) orthodox seeds, which tolerate water losses of up to 7% of their water content and can be stored at low temperature; (2) recalcitrant seeds, which require a humidity of 27%; and (3) intermediate seeds, which lose their viability relatively quickly compared to orthodox seeds. In this article, we discuss the genetic bases for desiccation tolerance and longevity in seeds and the differences in gene expression profiles between the mentioned types of seeds.
Collapse
Affiliation(s)
- Hanna Kijak
- Institute of Dendrology, Polish Academy of Sciences, 62-035 Kórnik, Poland;
| | | |
Collapse
|
39
|
Knox-Brown P, Rindfleisch T, Günther A, Balow K, Bremer A, Walther D, Miettinen MS, Hincha DK, Thalhammer A. Similar Yet Different-Structural and Functional Diversity among Arabidopsis thaliana LEA_4 Proteins. Int J Mol Sci 2020; 21:E2794. [PMID: 32316452 PMCID: PMC7215670 DOI: 10.3390/ijms21082794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/28/2022] Open
Abstract
The importance of intrinsically disordered late embryogenesis abundant (LEA) proteins in the tolerance to abiotic stresses involving cellular dehydration is undisputed. While structural transitions of LEA proteins in response to changes in water availability are commonly observed and several molecular functions have been suggested, a systematic, comprehensive and comparative study of possible underlying sequence-structure-function relationships is still lacking. We performed molecular dynamics (MD) simulations as well as spectroscopic and light scattering experiments to characterize six members of two distinct, lowly homologous clades of LEA_4 family proteins from Arabidopsis thaliana. We compared structural and functional characteristics to elucidate to what degree structure and function are encoded in LEA protein sequences and complemented these findings with physicochemical properties identified in a systematic bioinformatics study of the entire Arabidopsis thaliana LEA_4 family. Our results demonstrate that although the six experimentally characterized LEA_4 proteins have similar structural and functional characteristics, differences concerning their folding propensity and membrane stabilization capacity during a freeze/thaw cycle are obvious. These differences cannot be easily attributed to sequence conservation, simple physicochemical characteristics or the abundance of sequence motifs. Moreover, the folding propensity does not appear to be correlated with membrane stabilization capacity. Therefore, the refinement of LEA_4 structural and functional properties is likely encoded in specific patterns of their physicochemical characteristics.
Collapse
Affiliation(s)
- Patrick Knox-Brown
- Physical Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24–25, D-14476 Potsdam, Germany; (P.K.-B.); (T.R.)
| | - Tobias Rindfleisch
- Physical Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24–25, D-14476 Potsdam, Germany; (P.K.-B.); (T.R.)
| | - Anne Günther
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany; (A.G.); (K.B.); (A.B.); (D.W.); (D.K.H.)
| | - Kim Balow
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany; (A.G.); (K.B.); (A.B.); (D.W.); (D.K.H.)
| | - Anne Bremer
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany; (A.G.); (K.B.); (A.B.); (D.W.); (D.K.H.)
- Department for Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Dirk Walther
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany; (A.G.); (K.B.); (A.B.); (D.W.); (D.K.H.)
| | - Markus S. Miettinen
- Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476 Potsdam, Germany;
| | - Dirk K. Hincha
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany; (A.G.); (K.B.); (A.B.); (D.W.); (D.K.H.)
| | - Anja Thalhammer
- Physical Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24–25, D-14476 Potsdam, Germany; (P.K.-B.); (T.R.)
| |
Collapse
|
40
|
Xu M, Tong Q, Wang Y, Wang Z, Xu G, Elias GK, Li S, Liang Z. Transcriptomic Analysis of the Grapevine LEA Gene Family in Response to Osmotic and Cold Stress Reveals a Key Role for VamDHN3. PLANT & CELL PHYSIOLOGY 2020; 61:775-786. [PMID: 31967299 DOI: 10.1093/pcp/pcaa004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/09/2020] [Indexed: 05/14/2023]
Abstract
Late embryogenesis abundant (LEA) proteins comprise a large family that plays important roles in the regulation of abiotic stress, however, no in-depth analysis of LEA genes has been performed in grapevine to date. In this study, we analyzed a total of 52 putative LEA genes in grapevine at the genomic and transcriptomic level, compiled expression profiles of four selected (V. amurensis) VamLEA genes under cold and osmotic stresses, and studied the potential function of the V. amurensis DEHYDRIN3 (VamDHN3) gene in grapevine callus. The 52 LEA proteins were classified into seven phylogenetic groups. RNA-seq and quantitative real-time PCR results demonstrated that a total of 16 and 23 VamLEA genes were upregulated under cold and osmotic stresses, respectively. In addition, overexpression of VamDHN3 enhanced the stability of the cell membrane in grapevine callus, suggesting that VamDHN3 is involved in osmotic regulation. These results provide fundamental knowledge for the further analysis of the biological roles of grapevine LEA genes in adaption to abiotic stress.
Collapse
Affiliation(s)
- Meilong Xu
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of the Seedling Bioengineering, Yinchuan 750004, China
| | - Qian Tong
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zemin Wang
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guangzhao Xu
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Gathunga Kirabi Elias
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
41
|
Li Q, Qin Y, Hu X, Li G, Ding H, Xiong X, Wang W. Transcriptome analysis uncovers the gene expression profile of salt-stressed potato (Solanum tuberosum L.). Sci Rep 2020; 10:5411. [PMID: 32214109 PMCID: PMC7096413 DOI: 10.1038/s41598-020-62057-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
Potato (Solanum tuberosum L.) is an important staple food worldwide. However, its growth has been heavily suppressed by salt stress. The molecular mechanisms of salt tolerance in potato remain unclear. It has been shown that the tetraploid potato Longshu No. 5 is a salt-tolerant genotype. Therefore, in this study we conducted research to identify salt stress response genes in Longshu No. 5 using a NaCl treatment and time-course RNA sequencing. The total number of differentially expressed genes (DEGs) in response to salt stress was 5508. Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, it was found that DEGs were significantly enriched in the categories of nucleic acid binding, transporter activity, ion or molecule transport, ion binding, kinase activity and oxidative phosphorylation. Particularly, the significant differential expression of encoding ion transport signaling genes suggests that this signaling pathway plays a vital role in salt stress response in potato. Finally, the DEGs in the salt response pathway were verified by Quantitative real-time PCR (qRT-PCR). These results provide valuable information on the salt tolerance of molecular mechanisms in potatoes, and establish a basis for breeding salt-tolerant cultivars.
Collapse
Affiliation(s)
- Qing Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Root and Tuber Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
- College of Horticulture, Hunan Agricultural University/Hunan Provincial Engineering Research Center for Potatoes/Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China
| | - Yuzhi Qin
- College of Horticulture, Hunan Agricultural University/Hunan Provincial Engineering Research Center for Potatoes/Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China
| | - Xinxi Hu
- College of Horticulture, Hunan Agricultural University/Hunan Provincial Engineering Research Center for Potatoes/Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China
| | - Guangcun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Root and Tuber Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Hongying Ding
- College of Horticulture, Hunan Agricultural University/Hunan Provincial Engineering Research Center for Potatoes/Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China
| | - Xingyao Xiong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Root and Tuber Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
- College of Horticulture, Hunan Agricultural University/Hunan Provincial Engineering Research Center for Potatoes/Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China.
| | - Wanxing Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Root and Tuber Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
42
|
A Short Peptide Designed from Late Embryogenesis Abundant Protein Enhances Acid Tolerance in Escherichia coli. Appl Biochem Biotechnol 2020; 191:164-176. [PMID: 32096062 DOI: 10.1007/s12010-020-03262-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/13/2020] [Indexed: 01/09/2023]
Abstract
Unsuitable pH is a major limiting factor for all organisms, and a low pH can lead to organism death. Late embryogenesis abundant (LEA) peptides confer tolerance to abiotic stresses including salinity, drought, high and low temperature, and ultraviolet radiation same as the LEA proteins from which they originate. In this study, LEA peptides derived from group 3 LEA proteins of Polypedilum vanderplanki were used to enhance low pH tolerance. Recombinant Escherichia coli BL21 (DE3) cells expressing the five designed LEA peptides were grown at pH 4, 3, and 2. The transformants showed higher growth capacity at low pH as compared to control cells. These results indicate that LEA peptide could prevent E. coli cell death under low pH conditions.
Collapse
|
43
|
LEA Gene Expression Assessment in Advanced Mutant Rice Genotypes under Drought Stress. Int J Genomics 2020; 2019:8406036. [PMID: 32083115 PMCID: PMC7012254 DOI: 10.1155/2019/8406036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/30/2019] [Accepted: 12/10/2019] [Indexed: 11/17/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are primarily found in plants stem, roots, and other organs and play significant roles in tolerance to several abiotic stresses. Plants synthesize a discrete set of LEA proteins in response to drought stress. In this study, the expression patterns of LEA genes were investigated in two advanced mutant rice genotypes subjected to the drought stress condition and different physiological traits including photosynthetic rate, leaf chlorophyll content, and photosystem II (PSII) photochemical efficiency (Fv/Fm) which were analyzed to confirm their drought tolerance. Five LEA genes (OsLEA1, OsLEA2, OsLEA3, OsLEA4, and OsLEA5) were used in the evaluation of rice genotypes and were significantly upregulated by more than 4-fold for MR219-4 and MR219-9. The upregulated genes by these two varieties showed high similarity with the drought-tolerant check variety, Aeron1. This indicates that these advanced mutant genotypes have better tolerance to drought stress. The changes in the expression level of LEA genes among the selected rice genotypes under drought stress were further confirmed. Hence, LEA genes could be served as a potential tool for drought tolerance determination in rice. MR219-4 and MR219-9 were found to be promising in breeding for drought tolerance as they offer better physiological adaptation to drought stress.
Collapse
|
44
|
Das A, Nigam D, Junaid A, Tribhuvan KU, Kumar K, Durgesh K, Singh NK, Gaikwad K. Expressivity of the key genes associated with seed and pod development is highly regulated via lncRNAs and miRNAs in Pigeonpea. Sci Rep 2019; 9:18191. [PMID: 31796783 PMCID: PMC6890743 DOI: 10.1038/s41598-019-54340-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Non-coding RNA’s like miRNA, lncRNA, have gained immense importance as a significant regulatory factor in different physiological and developmental processes in plants. In an effort to understand the molecular role of these regulatory agents, in the present study, 3019 lncRNAs and 227 miRNAs were identified from different seed and pod developmental stages in Pigeonpea, a major grain legume of Southeast Asia and Africa. Target analysis revealed that 3768 mRNAs, including 83 TFs were targeted by lncRNAs; whereas 3060 mRNA, including 154 TFs, were targeted by miRNAs. The targeted transcription factors majorly belong to WRKY, MYB, bHLH, etc. families; whereas the targeted genes were associated with the embryo, seed, and flower development. Total 302 lncRNAs interact with miRNAs and formed endogenous target mimics (eTMs) which leads to sequestering of the miRNAs present in the cell. Expression analysis showed that notably, Cc_lncRNA-2830 expression is up-regulated and sequestrates miR160h in pod leading to higher expression of the miR160h target gene, Auxin responsive factor-18. A similar pattern was observed for SPIKE, Auxin signaling F-box-2, Bidirectional sugar transporter, and Starch synthetase-2 eTMs. All the identified target mRNAs code for transcription factor and genes are involved in the processes like cell division, plant growth and development, starch synthesis, sugar transportation and accumulation of storage proteins which are essential for seed and pod development. On a combinatorial basis, our study provides a lncRNA and miRNA based regulatory insight into the genes governing seed and pod development in Pigeonpea.
Collapse
Affiliation(s)
- Antara Das
- ICAR- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Deepti Nigam
- ICAR- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Alim Junaid
- ICAR- National Research Centre on Plant Biotechnology, New Delhi, India
| | | | - Kuldeep Kumar
- ICAR- National Research Centre on Plant Biotechnology, New Delhi, India
| | | | - N K Singh
- ICAR- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Kishor Gaikwad
- ICAR- National Research Centre on Plant Biotechnology, New Delhi, India.
| |
Collapse
|
45
|
Irrigation-Induced Changes in Chemical Composition and Quality of Seeds of Yellow Lupine ( Lupinus luteus L.). Int J Mol Sci 2019; 20:ijms20225521. [PMID: 31698683 PMCID: PMC6888426 DOI: 10.3390/ijms20225521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 11/17/2022] Open
Abstract
The quality and amount of yellow lupine yield depend on water availability. Water scarcity negatively affects germination, flowering, and pod formation, and thus introduction of an artificial irrigation system is needed. The aim of this study was to evaluate the influence of irrigation on the quality of yellow lupine seeds. Raining was applied with a semi-solid device with sprinklers during periods of greatest water demand. It was shown that watered plants produced seeds of lesser quality, having smaller size and weight. To find out why seeds of irrigated plants were of poor quality, interdisciplinary research at the cellular level was carried out. DNA cytophotometry evidenced the presence of nuclei with lower polyploidy in the apical zone of mature seeds. This may lead to formation of smaller cells and reduce depositing of storage materials. The electrophoretic and Fourier transform infrared spectroscopic analyses revealed differences in protein and cuticular wax profiles, while scanning electron microscopy and energy dispersive spectroscopy revealed, among various chemical elements, decreased calcium content in one of seed zones (near plumule). Seeds from irrigated plants showed slightly higher germination dynamics but growth rate of seedlings was slightly lower. The studies showed that irrigation of lupine affected seed features and their chemical composition, an ability to germination and seedlings growth.
Collapse
|
46
|
Kumar R, Pandey MK, Roychoudhry S, Nayyar H, Kepinski S, Varshney RK. Peg Biology: Deciphering the Molecular Regulations Involved During Peanut Peg Development. FRONTIERS IN PLANT SCIENCE 2019; 10:1289. [PMID: 31681383 PMCID: PMC6813228 DOI: 10.3389/fpls.2019.01289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/17/2019] [Indexed: 05/07/2023]
Abstract
Peanut or groundnut is one of the most important legume crops with high protein and oil content. The high nutritional qualities of peanut and its multiple usage have made it an indispensable component of our daily life, in both confectionary and therapeutic food industries. Given the socio-economic significance of peanut, understanding its developmental biology is important in providing a molecular framework to support breeding activities. In peanut, the formation and directional growth of a specialized reproductive organ called a peg, or gynophore, is especially relevant in genetic improvement. Several studies have indicated that peanut yield can be improved by improving reproductive traits including peg development. Therefore, we aim to identify unifying principles for the genetic control, underpinning molecular and physiological basis of peg development for devising appropriate strategy for peg improvement. This review discusses the current understanding of the molecular aspects of peanut peg development citing several studies explaining the key mechanisms. Deciphering and integrating recent transcriptomic, proteomic, and miRNA-regulomic studies provide a new perspective for understanding the regulatory events of peg development that participate in pod formation and thus control yield.
Collapse
Affiliation(s)
- Rakesh Kumar
- Center of Excellence in Genomics and Systems Biology, International Crops Research, Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Manish K. Pandey
- Center of Excellence in Genomics and Systems Biology, International Crops Research, Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| | - Stefan Kepinski
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Rajeev K. Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research, Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
47
|
Jin X, Cao D, Wang Z, Ma L, Tian K, Liu Y, Gong Z, Zhu X, Jiang C, Li Y. Genome-wide identification and expression analyses of the LEA protein gene family in tea plant reveal their involvement in seed development and abiotic stress responses. Sci Rep 2019; 9:14123. [PMID: 31575979 PMCID: PMC6773783 DOI: 10.1038/s41598-019-50645-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/16/2019] [Indexed: 11/18/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are widely known to be present in higher plants and are believed to play important functional roles in embryonic development and abiotic stress responses. However, there is a current lack of systematic analyses on the LEA protein gene family in tea plant. In this study, a total of 48 LEA genes were identified using Hidden Markov Model profiles in C. sinensis, and were classified into seven distinct groups based on their conserved domains and phylogenetic relationships. Genes in the CsLEA_2 group were found to be the most abundant. Gene expression analyses revealed that all the identified CsLEA genes were expressed in at least one tissue, and most had higher expression levels in the root or seed relative to other tested tissues. Nearly all the CsLEA genes were found to be involved in seed development, and thirty-nine might play an important role in tea seed maturation concurrent with dehydration. However, only sixteen CsLEA genes were involved in seed desiccation, and furthermore, most were suppressed. Additionally, forty-six CsLEA genes could be induced by at least one of the tested stress treatments, and they were especially sensitive to high temperature stress. Furthermore, it was found that eleven CsLEA genes were involved in tea plant in response to all tested abiotic stresses. Overall, this study provides new insights into the formation of CsLEA gene family members and improves our understanding on the potential roles of these genes in normal development processes and abiotic stress responses in tea plant, particularly during seed development and desiccation. These results are beneficial for future functional studies of CsLEA genes that will help preserve the recalcitrant tea seeds for a long time and genetically improve tea plant.
Collapse
Affiliation(s)
- Xiaofang Jin
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.,State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Dan Cao
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Zhongjie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Linlong Ma
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Kunhong Tian
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yanli Liu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Ziming Gong
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Xiangxiang Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Changjun Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
48
|
UV-B priming of Oryza sativa var. Kanchana seedlings augments its antioxidative potential and gene expression of stress-response proteins under various abiotic stresses. 3 Biotech 2019; 9:375. [PMID: 31588399 DOI: 10.1007/s13205-019-1903-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/17/2019] [Indexed: 01/12/2023] Open
Abstract
Priming is one of the mechanisms for the induction of the antioxidant defense system and various stress-responsive proteins which help plants to survive under various abiotic stresses. Based on the observation that the rice seedlings primed with UV-B (low dose of UV-B irradiation-6 kJm-2) induced the acclimation against NaCl, PEG and UV-B stresses, it was of interest to see the augmentation of antioxidative potential and stress-responsive proteins accumulation in rice seedlings due to UV-B priming under these stresses. Various stresses result in production of ROS, which cause membrane degradation resulting in the accumulation of malondialdehyde. These negative impacts were observed exceedingly in rice seedlings from non-primed PEG stress (NP+P) condition than UV-B and NaCl stresses. The production of non-enzymatic antioxidants, activity/mRNA-level expressions of enzymatic antioxidants and stress-responsive proteins were effectively augmented in UV-B-primed rice seedlings subjected to NaCl stress (P+N) condition followed by UV-B stress (P+U) and PEG stress (P+P). The activation of stress-responsive proteins (HSP and LEA) in rice due to the UV-B priming of rice seedlings is being reported for the first time. The results revealed that the UV-B seedling priming was alleviating the effect of NaCl, PEG, and UV-B stresses in rice seedlings. The positive impacts of UV-B seedling priming were more prominent in rice seedlings subjected to NaCl stress, indicating the cross tolerance imparted by UV-B priming.
Collapse
|
49
|
Bhattacharya S, Dhar S, Banerjee A, Ray S. Structural, functional, and evolutionary analysis of late embryogenesis abundant proteins (LEA) in Triticum aestivum: A detailed molecular level biochemistry using in silico approach. Comput Biol Chem 2019; 82:9-24. [DOI: 10.1016/j.compbiolchem.2019.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 10/26/2022]
|
50
|
Genome-wide identification of and functional insights into the late embryogenesis abundant (LEA) gene family in bread wheat (Triticum aestivum). Sci Rep 2019; 9:13375. [PMID: 31527624 PMCID: PMC6746774 DOI: 10.1038/s41598-019-49759-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are involved in the responses and adaptation of plants to various abiotic stresses, including dehydration, salinity, high temperature, and cold. Here, we report the first comprehensive survey of the LEA gene family in “Chinese Spring” wheat (Triticum aestivum). A total of 179 TaLEA genes were identified in T. aestivum and classified into eight groups. All TaLEA genes harbored the LEA conserved motif and had few introns. TaLEA genes belonging to the same group exhibited similar gene structures and chromosomal locations. Our results revealed that most TaLEA genes contained abscisic acid (ABA)-responsive elements (ABREs) and various cis-acting elements associated with the stress response in the promoter region and were induced under ABA and abiotic stress treatments. In addition, 8 genes representing each group were introduced into E. coli and yeast to investigate the protective function of TaLEAs under heat and salt stress. TaLEAs enhanced the tolerance of E. coli and yeast to salt and heat, indicating that these proteins have protective functions in host cells under stress conditions. These results increase our understanding of LEA genes and provide robust candidate genes for future functional investigations aimed at improving the stress tolerance of wheat.
Collapse
|