1
|
Gyllingberg L, Tian Y, Sumpter DJT. A minimal model of cognition based on oscillatory and current-based reinforcement processes. J R Soc Interface 2025; 22:rsif20240402. [PMID: 39837485 DOI: 10.1098/rsif.2024.0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/18/2024] [Accepted: 11/06/2024] [Indexed: 01/23/2025] Open
Abstract
Building mathematical models of brains is difficult because of the sheer complexity of the problem. One potential starting point is basal cognition, which gives an abstract representation of a range of organisms without central nervous systems, including fungi, slime moulds and bacteria. We propose one such model, demonstrating how a combination of oscillatory and current-based reinforcement processes can be used to couple resources in an efficient manner, mimicking the way these organisms function. A key ingredient in our model, not found in previous basal cognition models, is that we explicitly model oscillations in the number of particles (i.e. the nutrients, chemical signals or similar, which make up the biological system) and the flow of these particles within the modelled organisms. Using this approach, our model builds efficient solutions, provided the environmental oscillations are sufficiently out of phase. We further demonstrate that amplitude differences can promote efficient solutions and that the system is robust to frequency differences. In the context of these findings, we discuss connections between our model and basal cognition in biological systems and slime moulds, in particular, how oscillations might contribute to self-organized problem-solving by these organisms.
Collapse
Affiliation(s)
- Linnéa Gyllingberg
- Department of Mathematics, University of California, Los Angeles, CA, USA
- Department of Mathematics, Uppsala University, Uppsala, Sweden
| | - Yu Tian
- Nordita, Stockholm University and KTH Royal Institute of Technology, Stockholm, Sweden
| | - David J T Sumpter
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
de Toledo GRA, Reissig GN, Senko LGS, Pereira DR, da Silva AF, Souza GM. Common bean under different water availability reveals classifiable stimuli-specific signatures in plant electrome. PLANT SIGNALING & BEHAVIOR 2024; 19:2333144. [PMID: 38545860 PMCID: PMC10984121 DOI: 10.1080/15592324.2024.2333144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/30/2024] [Indexed: 04/04/2024]
Abstract
Plant electrophysiology has unveiled the involvement of electrical signals in the physiology and behavior of plants. Spontaneously generated bioelectric activity can be altered in response to changes in environmental conditions, suggesting that a plant's electrome may possess a distinct signature associated with various stimuli. Analyzing electrical signals, particularly the electrome, in conjunction with Machine Learning (ML) techniques has emerged as a promising approach to classify characteristic electrical signals corresponding to each stimulus. This study aimed to characterize the electrome of common bean (Phaseolus vulgaris L.) cv. BRS-Expedito, subjected to different water availabilities, seeking patterns linked to these stimuli. For this purpose, bean plants in the vegetative stage were subjected to the following treatments: (I) distilled water; (II) half-strength Hoagland's nutrient solution; (III) -2 MPa PEG solution; and (IV) -2 MPa NaCl solution. Electrical signals were recorded within a Faraday's cage using the MP36 electronic system for data acquisition. Concurrently, plant water status was assessed by monitoring leaf turgor variation. Leaf temperature was additionally measured. Various analyses were conducted on the electrical time series data, including arithmetic average of voltage variation, skewness, kurtosis, Probability Density Function (PDF), autocorrelation, Power Spectral Density (PSD), Approximate Entropy (ApEn), Fast Fourier Transform (FFT), and Multiscale Approximate Entropy (ApEn(s)). Statistical analyses were performed on leaf temperature, voltage variation, skewness, kurtosis, PDF µ exponent, autocorrelation, PSD β exponent, and approximate entropy data. Machine Learning analyses were applied to identify classifiable patterns in the electrical time series. Characterization of the electrome of BRS-Expedito beans revealed stimulus-dependent profiles, even when alterations in water availability stimuli were similar in terms of quality and intensity. Additionally, it was observed that the bean electrome exhibits high levels of complexity, which are altered by different stimuli, with more intense and aversive stimuli leading to drastic reductions in complexity levels. Notably, one of the significant findings was the 100% accuracy of Small Vector Machine in detecting salt stress using electrome data. Furthermore, the study highlighted alterations in the plant electrome under low water potential before observable leaf turgor changes. This work demonstrates the potential use of the electrome as a physiological indicator of the water status in bean plants.
Collapse
Affiliation(s)
- Gabriel R. A. de Toledo
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, Brazil
| | - Gabriela N. Reissig
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, Brazil
| | - Luiz G. S. Senko
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, Brazil
| | | | - Arlan F. da Silva
- Department of Physics, Federal University of Pelotas, Pelotas, Brazil
| | - Gustavo M. Souza
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
3
|
Simonetti V, Ravazzolo L, Ruperti B, Quaggiotti S, Castiello U. A system for the study of roots 3D kinematics in hydroponic culture: a study on the oscillatory features of root tip. PLANT METHODS 2024; 20:50. [PMID: 38561757 PMCID: PMC10983651 DOI: 10.1186/s13007-024-01178-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND The root of a plant is a fundamental organ for the multisensory perception of the environment. Investigating root growth dynamics as a mean of their interaction with the environment is of key importance for improving knowledge in plant behaviour, plant biology and agriculture. To date, it is difficult to study roots movements from a dynamic perspective given that available technologies for root imaging focus mostly on static characterizations, lacking temporal and three-dimensional (3D) spatial information. This paper describes a new system based on time-lapse for the 3D reconstruction and analysis of roots growing in hydroponics. RESULTS The system is based on infrared stereo-cameras acquiring time-lapse images of the roots for 3D reconstruction. The acquisition protocol guarantees the root growth in complete dark while the upper part of the plant grows in normal light conditions. The system extracts the 3D trajectory of the root tip and a set of descriptive features in both the temporal and frequency domains. The system has been used on Zea mays L. (B73) during the first week of growth and shows good inter-reliability between operators with an Intra Class Correlation Coefficient (ICC) > 0.9 for all features extracted. It also showed measurement accuracy with a median difference of < 1 mm between computed and manually measured root length. CONCLUSIONS The system and the protocol presented in this study enable accurate 3D analysis of primary root growth in hydroponics. It can serve as a valuable tool for analysing real-time root responses to environmental stimuli thus improving knowledge on the processes contributing to roots physiological and phenotypic plasticity.
Collapse
Affiliation(s)
| | - Laura Ravazzolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Italy
| | - Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Italy
| | - Silvia Quaggiotti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Italy
| | - Umberto Castiello
- Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Hanson A. On being a Hydra with, and without, a nervous system: what do neurons add? Anim Cogn 2023; 26:1799-1816. [PMID: 37540280 PMCID: PMC10770230 DOI: 10.1007/s10071-023-01816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/05/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
The small freshwater cnidarian Hydra has been the subject of scientific inquiry for over 300 years due to its remarkable regenerative capacities and apparent immortality. More recently, Hydra has been recognized as an excellent model system within neuroscience because of its small size, transparency, and simple nervous system, which allow high-resolution imaging of its entire nerve net while behaving. In less than a decade, studies of Hydra's nervous system have yielded insights into the activity of neural circuits in vivo unobtainable in most other animals. In addition to these unique attributes, there is yet another lesser-known feature of Hydra that makes it even more intriguing: it does not require its neural hardware to live. The extraordinary ability to survive the removal and replacement of its entire nervous system makes Hydra uniquely suited to address the question of what neurons add to an extant organism. Here, I will review what early work on nerve-free Hydra reveals about the potential role of the nervous system in these animals and point towards future directions for this work.
Collapse
Affiliation(s)
- Alison Hanson
- Department of Biological Sciences, Neurotechnology Center, Columbia University, New York, NY, USA.
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Pang L, Kobayashi A, Atsumi Y, Miyazawa Y, Fujii N, Dietrich D, Bennett MJ, Takahashi H. MIZU-KUSSEI1 (MIZ1) and GNOM/MIZ2 control not only positive hydrotropism but also phototropism in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5026-5038. [PMID: 37220914 DOI: 10.1093/jxb/erad193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 05/25/2023]
Abstract
In response to unilateral blue light illumination, roots of some plant species such as Arabidopsis thaliana exhibit negative phototropism (bending away from light), which is important for light avoidance in nature. MIZU-KUSSEI1 (MIZ1) and GNOM/MIZ2 are essential for positive hydrotropism (i.e. in the presence of a moisture gradient, root bending towards greater water availability). Intriguingly, mutations in these genes also cause a substantial reduction in phototropism. Here, we examined whether the same tissue-specific sites of expression required for MIZ1- and GNOM/MIZ2-regulated hydrotropism in Arabidopsis roots are also required for phototropism. The attenuated phototropic response of miz1 roots was completely restored when a functional MIZ1-green fluorescent protein (GFP) fusion was expressed in the cortex of the root elongation zone but not in other tissues such as root cap, meristem, epidermis, or endodermis. The hydrotropic defect and reduced phototropism of miz2 roots were restored by GNOM/MIZ2 expression in either the epidermis, cortex, or stele, but not in the root cap or endodermis. Thus, the sites in root tissues that are involved in the regulation of MIZ1- and GNOM/MIZ2-dependent hydrotropism also regulate phototropism. These results suggest that MIZ1- and GNOM/MIZ2-mediated pathways are, at least in part, shared by hydrotropic and phototropic responses in Arabidopsis roots.
Collapse
Affiliation(s)
- Lei Pang
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Akie Kobayashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yuka Atsumi
- Graduate School of Science and Engineering, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Yutaka Miyazawa
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Nobuharu Fujii
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Daniela Dietrich
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Research Center for Space Agriculture and Horticulture, Graduate School of Horticulture, Chiba University, 648 Matsudo, Chiba 271-8510, Japan
| |
Collapse
|
6
|
Tao L, Zhu H, Huang Q, Xiao X, Luo Y, Wang H, Li Y, Li X, Liu J, Jásik J, Chen Y, Shabala S, Baluška F, Shi W, Shi L, Yu M. PIN2/3/4 auxin carriers mediate root growth inhibition under conditions of boron deprivation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1357-1376. [PMID: 37235684 DOI: 10.1111/tpj.16324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/09/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
The mechanistic basis by which boron (B) deprivation inhibits root growth via the mediation of root apical auxin transport and distribution remains elusive. This study showed that B deprivation repressed root growth of wild-type Arabidopsis seedlings, which was related to higher auxin accumulation (observed with DII-VENUS and DR5-GFP lines) in B-deprived roots. Boron deprivation elevated the auxin content in the root apex, coinciding with upregulation of the expression levels of auxin biosynthesis-related genes (TAA1, YUC3, YUC9, and NIT1) in shoots, but not in root apices. Phenotyping experiments using auxin transport-related mutants revealed that the PIN2/3/4 carriers are involved in root growth inhibition caused by B deprivation. B deprivation not only upregulated the transcriptional levels of PIN2/3/4, but also restrained the endocytosis of PIN2/3/4 carriers (observed with PIN-Dendra2 lines), resulting in elevated protein levels of PIN2/3/4 in the plasma membrane. Overall, these results suggest that B deprivation not only enhances auxin biosynthesis in shoots by elevating the expression levels of auxin biosynthesis-related genes but also promotes the polar auxin transport from shoots to roots by upregulating the gene expression levels of PIN2/3/4, as well as restraining the endocytosis of PIN2/3/4 carriers, ultimately resulting in auxin accumulation in root apices and root growth inhibition.
Collapse
Affiliation(s)
- Lin Tao
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, 528000, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hu Zhu
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Qiuyu Huang
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Xiaoyi Xiao
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Ying Luo
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Hui Wang
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Yalin Li
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Xuewen Li
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Jiayou Liu
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Ján Jásik
- Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Yinglong Chen
- School of Agriculture and Environment & Institute of Agriculture, University of Western Australia, Perth, 6009, Australia
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, 528000, China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, 7001, Australia
- School of Biological Sciences, University of Western Australia, Perth, 6009, Australia
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115, Bonn, Germany
| | - Weiming Shi
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, 528000, China
- Institute of Soil Science Chinese Academy of Sciences, State Key Laboratory of Soil and Sustainable Agriculture, Nanjing, 210018, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Yu
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, 528000, China
- Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
7
|
Lamport DTA. The Growth Oscillator and Plant Stomata: An Open and Shut Case. PLANTS (BASEL, SWITZERLAND) 2023; 12:2531. [PMID: 37447091 DOI: 10.3390/plants12132531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/12/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Since Darwin's "Power of Movement in Plants" the precise mechanism of oscillatory plant growth remains elusive. Hence the search continues for the hypothetical growth oscillator that regulates a huge range of growth phenomena ranging from circumnutation to pollen tube tip growth and stomatal movements. Oscillators are essentially simple devices with few components. A universal growth oscillator with only four major components became apparent recently with the discovery of a missing component, notably arabinogalactan glycoproteins (AGPs) that store dynamic Ca2+ at the cell surface. Demonstrably, auxin-activated proton pumps, AGPs, Ca2+ channels, and auxin efflux "PIN" proteins, embedded in the plasma membrane, combine to generate cytosolic Ca2+ oscillations that ultimately regulate oscillatory growth: Hechtian adhesion of the plasma membrane to the cell wall and auxin-activated proton pumps trigger the release of dynamic Ca2+ stored in periplasmic AGP monolayers. These four major components represent a molecular PINball machine a strong visual metaphor that also recognises auxin efflux "PIN" proteins as an essential component. Proton "pinballs" dissociate Ca2+ ions bound by paired glucuronic acid residues of AGP glycomodules, hence reassessing the role of proton pumps. It shifts the prevalent paradigm away from the recalcitrant "acid growth" theory that proposes direct action on cell wall properties, with an alternative explanation that connects proton pumps to Ca2+ signalling with dynamic Ca2+ storage by AGPs, auxin transport by auxin-efflux PIN proteins and Ca2+ channels. The extensive Ca2+ signalling literature of plants ignores arabinogalactan proteins (AGPs). Such scepticism leads us to reconsider the validity of the universal growth oscillator proposed here with some exceptions that involve marine plants and perhaps the most complex stress test, stomatal regulation.
Collapse
|
8
|
Tao L, Xiao X, Huang Q, Zhu H, Feng Y, Li Y, Li X, Guo Z, Liu J, Wu F, Pirayesh N, Mahmud S, Shen RF, Shabala S, Baluška F, Shi L, Yu M. Boron supply restores aluminum-blocked auxin transport by the modulation of PIN2 trafficking in the root apical transition zone. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:176-192. [PMID: 36721978 DOI: 10.1111/tpj.16129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The supply of boron (B) alleviates the toxic effects of aluminum (Al) on root growth; however, the mechanistic basis of this process remains elusive. This study filled this knowledge gap, demonstrating that boron modifies auxin distribution and transport in Al-exposed Arabidopsis roots. In B-deprived roots, treatment with Al induced an increase in auxin content in the root apical meristem zone (MZ) and transition zone (TZ), whereas in the elongation zone (EZ) the auxin content was decreased beyond the level required for adequate growth. These distribution patterns are explained by the fact that basipetal auxin transport from the TZ to the EZ was disrupted by Al-inhibited PIN-FORMED 2 (PIN2) endocytosis. Experiments involving the modulation of protein biosynthesis by cycloheximide (CHX) and transcriptional regulation by cordycepin (COR) demonstrated that the Al-induced increase of PIN2 membrane proteins was dependent upon the inhibition of PIN2 endocytosis, rather than on the transcriptional regulation of the PIN2 gene. Experiments reporting on the profiling of Al3+ and PIN2 proteins revealed that the inhibition of endocytosis of PIN2 proteins was the result of Al-induced limitation of the fluidity of the plasma membrane. The supply of B mediated the turnover of PIN2 endosomes conjugated with indole-3-acetic acid (IAA), and thus restored the Al-induced inhibition of IAA transport through the TZ to the EZ. Overall, the reported results demonstrate that boron supply mediates PIN2 endosome-based auxin transport to alleviate Al toxicity in plant roots.
Collapse
Affiliation(s)
- Lin Tao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoyi Xiao
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Qiuyu Huang
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Hu Zhu
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Yingming Feng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yalin Li
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Xuewen Li
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Zhishan Guo
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Jiayou Liu
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Feihua Wu
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Niloufar Pirayesh
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115, Bonn, Germany
| | - Sakil Mahmud
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115, Bonn, Germany
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China
| | - Sergey Shabala
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, 7001, Australia
- School of Biological Sciences, University of Western Australia, Perth, 6009, Australia
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115, Bonn, Germany
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Yu
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| |
Collapse
|
9
|
Sharma I, Kashyap S, Agarwala N. Biotic stress-induced changes in root exudation confer plant stress tolerance by altering rhizospheric microbial community. FRONTIERS IN PLANT SCIENCE 2023; 14:1132824. [PMID: 36968415 PMCID: PMC10036841 DOI: 10.3389/fpls.2023.1132824] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Every organism on the earth maintains some kind of interaction with its neighbours. As plants are sessile, they sense the varied above-ground and below-ground environmental stimuli and decipher these dialogues to the below-ground microbes and neighbouring plants via root exudates as chemical signals resulting in the modulation of the rhizospheric microbial community. The composition of root exudates depends upon the host genotype, environmental cues, and interaction of plants with other biotic factors. Crosstalk of plants with biotic agents such as herbivores, microbes, and neighbouring plants can change host plant root exudate composition, which may permit either positive or negative interactions to generate a battlefield in the rhizosphere. Compatible microbes utilize the plant carbon sources as their organic nutrients and show robust co-evolutionary changes in changing circumstances. In this review, we have mainly focused on the different biotic factors responsible for the synthesis of alternative root exudate composition leading to the modulation of rhizosphere microbiota. Understanding the stress-induced root exudate composition and resulting change in microbial community can help us to devise strategies in engineering plant microbiomes to enhance plant adaptive capabilities in a stressful environment.
Collapse
|
10
|
Thomas MA, Cooper RL. Building bridges: mycelium-mediated plant-plant electrophysiological communication. PLANT SIGNALING & BEHAVIOR 2022; 17:2129291. [PMID: 36384396 PMCID: PMC9673936 DOI: 10.1080/15592324.2022.2129291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Whether through root secretions or by emitting volatile organic compounds, plant communication has been well-documented. While electrical activity has been documented in plants and mycorrhizal bodies on the individual and ramet, electrical propagation as a means of communication between plants has been hypothesized but understudied. This study aimed to test the hypothesis that plants can communicate with one another electrically via conductively isolated mycelial pathways. We created a bio-electric circuit linking two plants using a mycelial network grown from a blend of mycorrhizal fungi which was directly inoculated onto potato dextrose agar, or onto the host plants placed on the agar. The mycelium that grew was forced to cross, or "bridge," an air gap between the two islands of agar - thus forming the isolated conductive pathway between plants. Using this plant-fungal biocircuit we assessed electrical propagation between Pisum sativum and Cucumis sativus. We found that electrical signals were reliably conducted across the mycelial bridges from one plant to another upon the induction of a wound response. Our findings provide evidence that mechanical input can be communicated between plant species and opens the door to testing how this information can affect plant and fungal physiology.
Collapse
|
11
|
Yamashita F, Baluška F. Algal Ocelloids and Plant Ocelli. PLANTS (BASEL, SWITZERLAND) 2022; 12:61. [PMID: 36616190 PMCID: PMC9824129 DOI: 10.3390/plants12010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Vision is essential for most organisms, and it is highly variable across kingdoms and domains of life. The most known and understood form is animal and human vision based on eyes. Besides the wide diversity of animal eyes, some animals such as cuttlefish and cephalopods enjoy so-called dermal or skin vision. The most simple and ancient organ of vision is the cell itself and this rudimentary vision evolved in cyanobacteria. More complex are so-called ocelloids of dinoflagellates which are composed of endocellular organelles, acting as lens- and cornea/retina-like components. Although plants have almost never been included into the recent discussions on organismal vision, their plant-specific ocelli had already been proposed by Gottlieb Haberlandt already in 1905. Here, we discuss plant ocelli and their roles in plant-specific vision, both in the shoots and roots of plants. In contrast to leaf epidermis ocelli, which are distributed throughout leaf surface, the root apex ocelli are located at the root apex transition zone and serve the light-guided root navigation. We propose that the plant ocelli evolved from the algal ocelloids, are part of complex plant sensory systems and guide cognition-based plant behavior.
Collapse
|
12
|
García-Gómez ML, Reyes-Hernández BJ, Sahoo DP, Napsucialy-Mendivil S, Quintana-Armas AX, Pedroza-García JA, Shishkova S, Torres-Martínez HH, Pacheco-Escobedo MA, Dubrovsky JG. A mutation in THREONINE SYNTHASE 1 uncouples proliferation and transition domains of the root apical meristem: experimental evidence and in silico proposed mechanism. Development 2022; 149:278438. [PMID: 36278862 PMCID: PMC9796171 DOI: 10.1242/dev.200899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
A continuum from stem to transit-amplifying to a differentiated cell state is a common theme in multicellular organisms. In the plant root apical meristem (RAM), transit-amplifying cells are organized into two domains: cells from the proliferation domain (PD) are displaced to the transition domain (TD), suggesting that both domains are necessarily coupled. Here, we show that in the Arabidopsis thaliana mto2-2 mutant, in which threonine (Thr) synthesis is affected, the RAM lacks the PD. Through a combination of cell length profile analysis, mathematical modeling and molecular markers, we establish that the PD and TD can be uncoupled. Remarkably, although the RAM of mto2-2 is represented solely by the TD, the known factors of RAM maintenance and auxin signaling are expressed in the mutant. Mathematical modeling predicts that the stem cell niche depends on Thr metabolism and that, when disturbed, the normal continuum of cell states becomes aborted.
Collapse
Affiliation(s)
- Monica L. García-Gómez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Blanca J. Reyes-Hernández
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Debee P. Sahoo
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Selene Napsucialy-Mendivil
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Aranza X. Quintana-Armas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - José A. Pedroza-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Svetlana Shishkova
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Héctor H. Torres-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Mario A. Pacheco-Escobedo
- Facultad de Ciencias de la Salud, Universidad Tecnológica de México – UNITEC MÉXICO – Campus Atizapán, Av. Calacoaya 7, Atizapán de Zaragoza, Estado de México, 52970, Mexico
| | - Joseph G. Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico,Author for correspondence ()
| |
Collapse
|
13
|
Parise AG, de Toledo GRA, Oliveira TFDC, Souza GM, Castiello U, Gagliano M, Marder M. Do plants pay attention? A possible phenomenological-empirical approach. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 173:11-23. [PMID: 35636584 DOI: 10.1016/j.pbiomolbio.2022.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Attention is the important ability of flexibly controlling limited cognitive resources. It ensures that organisms engage with the activities and stimuli that are relevant to their survival. Despite the cognitive capabilities of plants and their complex behavioural repertoire, the study of attention in plants has been largely neglected. In this article, we advance the hypothesis that plants are endowed with the ability of attaining attentive states. We depart from a transdisciplinary basis of philosophy, psychology, physics and plant ecophysiology to propose a framework that seeks to explain how plant attention might operate and how it could be studied empirically. In particular, the phenomenological approach seems particularly important to explain plant attention theoretically, and plant electrophysiology seems particularly suited to study it empirically. We propose the use of electrophysiological techniques as a viable way for studying it, and we revisit previous work to support our hypothesis. We conclude this essay with some remarks on future directions for the study of plant attention and its implications to botany.
Collapse
Affiliation(s)
- André Geremia Parise
- Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil.
| | - Gabriel Ricardo Aguilera de Toledo
- Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Thiago Francisco de Carvalho Oliveira
- Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Gustavo Maia Souza
- Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Umberto Castiello
- Neuroscience of Movement Laboratory (NEMO), Department of General Psychology, University of Padova, Padova, Italy
| | - Monica Gagliano
- Biological Intelligence Laboratory (BI Lab), School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Michael Marder
- Ikerbasque: Basque Foundation for Science & Department of Philosophy, University of the Basque Country (UPV/EHU), Spain
| |
Collapse
|
14
|
Brody DC. Open quantum dynamics for plant motions. Sci Rep 2022; 12:3042. [PMID: 35197530 PMCID: PMC8866431 DOI: 10.1038/s41598-022-07102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/11/2022] [Indexed: 12/02/2022] Open
Abstract
Stochastic Schrödinger equations that govern the dynamics of open quantum systems are given by the equations for signal processing. In particular, the Brownian motion that drives the wave function of the system does not represent noise, but provides purely the arrival of new information. Thus the wave function is guided by the optimal signal detection about the conditions of the environments under noisy observations. This behaviour is similar to biological systems that detect environmental cues, process this information, and adapt to them optimally by minimising uncertainties about the conditions of their environments. It is postulated that information-processing capability is a fundamental law of nature, and hence that models describing open quantum systems can equally be applied to biological systems to model their dynamics. For illustration, simple stochastic models are considered to capture heliotropic and gravitropic motions of plants. The advantage of such dynamical models is that they allow for the quantification of information processed by the plants. By considering the consequence of information erasure, it is argued that biological systems can process environmental signals relatively close to the Landauer limit of computation, and that loss of information must lie at the heart of ageing in biological systems.
Collapse
Affiliation(s)
- Dorje C Brody
- Department of Mathematics, University of Surrey, Guildford, GU2 7XH, UK. .,St Petersburg National Research University of Information Technologies, Mechanics and Optics, St Petersburg, Russia, 197101.
| |
Collapse
|
15
|
Liu J, Shi B, Zhang M, Liu G, Ding Z, Tian H. Transition Zone1 Negatively Regulates Arabidopsis Aluminum Resistance Through Interaction With Aconitases. FRONTIERS IN PLANT SCIENCE 2022; 12:827797. [PMID: 35154218 PMCID: PMC8829429 DOI: 10.3389/fpls.2021.827797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The soluble form of aluminum (Al) is a major constraint to crop production in acidic soils. The Al exclusion correlated with the Al-induced organic acid is considered as an important mechanism of Al resistance. The regulation of organic acid exudation in response to Al stress mediated by the root organic acid transporters has been extensively studied. However, how plants respond to Al stress through the regulation of organic acid homeostasis is not well understood. In this study, we identified the functionally unknown Transition zone1 (TZ1) as an Al-inducible gene in the root transition zone, the most sensitive region to Al stress, in Arabidopsis. tz1 mutants showed enhanced Al resistance and displayed greatly reduced root growth inhibition. Furthermore, TZ1 was found to interact with the aconitases (ACOs) which can catalyze the conversion from citrate, one of the most important organic acids, into isocitrate. Consistently, in tz1 mutants, the citric acid content was highly increased. Collectively, this study provides evidence to show that TZ1 negatively regulates root growth response to Al stress through interacting with ACOs and regulating citric acid homeostasis.
Collapse
Affiliation(s)
- Jiajia Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, China
| | - Benhui Shi
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, China
| | - Mengxin Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, China
| | - Guangchao Liu
- Key Lab of Plant Biotechnology in Universities of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, China
| | - Huiyu Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
16
|
Desvoyes B, Echevarría C, Gutierrez C. A perspective on cell proliferation kinetics in the root apical meristem. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6708-6715. [PMID: 34159378 PMCID: PMC8513163 DOI: 10.1093/jxb/erab303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Organogenesis in plants is primarily postembryonic and relies on a strict balance between cell division and cell expansion. The root is a particularly well-suited model to study cell proliferation in detail since the two processes are spatially and temporally separated for all the different tissues. In addition, the root is amenable to detailed microscopic analysis to identify cells progressing through the cell cycle. While it is clear that cell proliferation activity is restricted to the root apical meristem (RAM), understanding cell proliferation kinetics and identifying its parameters have required much effort over many years. Here, we review the main concepts, experimental settings, and findings aimed at obtaining a detailed knowledge of how cells proliferate within the RAM. The combination of novel tools, experimental strategies, and mathematical models has contributed to our current view of cell proliferation in the RAM. We also discuss several lines of research that need to be explored in the future.
Collapse
Affiliation(s)
- Bénédicte Desvoyes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Clara Echevarría
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
17
|
Miguel-Tomé S, Llinás RR. Broadening the definition of a nervous system to better understand the evolution of plants and animals. PLANT SIGNALING & BEHAVIOR 2021; 16:1927562. [PMID: 34120565 PMCID: PMC8331040 DOI: 10.1080/15592324.2021.1927562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 05/10/2023]
Abstract
Most textbook definitions recognize only animals as having nervous systems. However, for the past couple decades, botanists have been meticulously studying long-distance signaling systems in plants, and some researchers have stated that plants have a simple nervous system. Thus, an academic conflict has emerged between those who defend and those who deny the existence of a nervous system in plants. This article analyses that debate, and we propose an alternative to answering yes or no: broadening the definition of a nervous system to include plants. We claim that a definition broader than the current one, which is based only on a phylogenetic viewpoint, would be helpful in obtaining a deeper understanding of how evolution has driven the features of signal generation, transmission and processing in multicellular beings. Also, we propose two possible definitions and exemplify how broader a definition allows for new viewpoints on the evolution of plants, animals and the nervous system.
Collapse
Affiliation(s)
- Sergio Miguel-Tomé
- Grupo De Investigación En Minería De Datos (Mida), Universidad De Salamanca, Salamanca, Spain
| | - Rodolfo R. Llinás
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA
| |
Collapse
|
18
|
Robinson DG, Draguhn A. Plants have neither synapses nor a nervous system. JOURNAL OF PLANT PHYSIOLOGY 2021; 263:153467. [PMID: 34247030 DOI: 10.1016/j.jplph.2021.153467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
The alleged existence of so-called synapses or equivalent structures in plants provided the basis for the concept of Plant Neurobiology (Baluska et al., 2005; Brenner et al., 2006). More recently, supporters of this controversial theory have even speculated that the phloem acts as a kind of nerve system serving long distance electrical signaling (Mediano et al., 2021; Baluska and Mancuso, 2021). In this review we have critically examined the literature cited by these authors and arrive at a completely different conclusion. Plants do not have any structures resembling animal synapses (neither chemical nor electrical). While they certainly do have complex cell contacts and signaling mechanisms, none of these structures provides a basis for neuronal-like synaptic transmission. Likewise, the phloem is undoubtedly a conduit for the propagation of electrical signaling, but the characteristics of this process are in no way comparable to the events underlying information processing in neuronal networks. This has obvious implications in regard to far-going speculations into the realms of cognition, sentience and consciousness.
Collapse
Affiliation(s)
- David G Robinson
- Centre for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany.
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
19
|
Cazalis R, Cottam R. An approach to the plant body: Assessing concrete and abstract aspects. Biosystems 2021; 207:104461. [PMID: 34166731 DOI: 10.1016/j.biosystems.2021.104461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/29/2021] [Accepted: 06/16/2021] [Indexed: 01/24/2023]
Abstract
The paper aims at proposing a representation of plants as individuals. The first section selects the population of plants to which this study is addressed. The second section describes the effective architecture of plants as modular systems with fixed and mobile elements, in other words, plants and their extensions. The third section presents how plants integrate the fixed and mobile modules into functional units through three areas of particular relevance to plant growth and development: nutrition, defence and pollination. Based on the tangible elements introduced in the previous sections, the fourth section presents the main issue of the proposal which is not apparent at first glance, namely, the local-global relationship in plants' architecture that determines their individuality as organisms. Finally, in the conclusion, we issue the challenge of developing a collective presentation of plants which satisfies their complementary dimension.
Collapse
Affiliation(s)
- Roland Cazalis
- Dept. of 'Sciences, Philosophies, Societies', ESPHIN, NAXYS, University of Namur, Namur, Belgium
| | - Ron Cottam
- The Living Systems Project, Department of Electronics and Informatics, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
20
|
Xu S, Wang Q, Liu Y, Liu Z, Zhao R, Sheng X. Latrunculin B facilitates gravitropic curvature of Arabidopsis root by inhibiting cell elongation, especially the cells in the lower flanks of the transition and elongation zones. PLANT SIGNALING & BEHAVIOR 2021; 16:1876348. [PMID: 33576719 PMCID: PMC7971231 DOI: 10.1080/15592324.2021.1876348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 05/29/2023]
Abstract
Gravitropism plays a critical role in the growth and development of plants. Previous reports proposed that the disruption of the actin cytoskeleton resulted in enhanced gravitropism; however, the mechanism underlying these phenomena is still unclear. In the present study, real-time observation on the effect of Latrunculin B (Lat B), a depolymerizing agent of microfilament cytoskeleton, on gravitropism of the primary root of Arabidopsis was undertaken using a vertical stage microscope. The results indicated that Lat B treatment prevented the growth of root, and the growth rates of upper and lower flanks of the horizontally placed root were asymmetrically inhibited. The growth of the lower flank was influenced by Lat B more seriously, resulting in an increased differential growth rate between the upper and lower flanks of the root. Further analysis indicated that Lat B affected cell growth mainly in the transition and elongation zones. Briefly, the current data revealed that Lat B treatment inhibited cell elongation, especially the cells in the lower flanks of the transition and elongation zones, which finally manifested as the facilitation of gravitropic curvature of the primary root.
Collapse
Affiliation(s)
- Shi Xu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Qianqian Wang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yue Liu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zonghao Liu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ruoxin Zhao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xianyong Sheng
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
21
|
Hanson A. Spontaneous electrical low-frequency oscillations: a possible role in Hydra and all living systems. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190763. [PMID: 33487108 PMCID: PMC7934974 DOI: 10.1098/rstb.2019.0763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
As one of the first model systems in biology, the basal metazoan Hydra has been revealing fundamental features of living systems since it was first discovered by Antonie van Leeuwenhoek in the early eighteenth century. While it has become well-established within cell and developmental biology, this tiny freshwater polyp is only now being re-introduced to modern neuroscience where it has already produced a curious finding: the presence of low-frequency spontaneous neural oscillations at the same frequency as those found in the default mode network in the human brain. Surprisingly, increasing evidence suggests such spontaneous electrical low-frequency oscillations (SELFOs) are found across the wide diversity of life on Earth, from bacteria to humans. This paper reviews the evidence for SELFOs in diverse phyla, beginning with the importance of their discovery in Hydra, and hypothesizes a potential role as electrical organism organizers, which supports a growing literature on the role of bioelectricity as a 'template' for developmental memory in organism regeneration. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
Collapse
Affiliation(s)
- Alison Hanson
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY, USA
| |
Collapse
|
22
|
Baluška F, Miller WB, Reber AS. Biomolecular Basis of Cellular Consciousness via Subcellular Nanobrains. Int J Mol Sci 2021; 22:ijms22052545. [PMID: 33802617 PMCID: PMC7961929 DOI: 10.3390/ijms22052545] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cells emerged at the very beginning of life on Earth and, in fact, are coterminous with life. They are enclosed within an excitable plasma membrane, which defines the outside and inside domains via their specific biophysical properties. Unicellular organisms, such as diverse protists and algae, still live a cellular life. However, fungi, plants, and animals evolved a multicellular existence. Recently, we have developed the cellular basis of consciousness (CBC) model, which proposes that all biological awareness, sentience and consciousness are grounded in general cell biology. Here we discuss the biomolecular structures and processes that allow for and maintain this cellular consciousness from an evolutionary perspective.
Collapse
Affiliation(s)
- František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, 53115 Bonn, Germany
- Correspondence:
| | | | - Arthur S. Reber
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
23
|
Baluška F, Yokawa K. Anaesthetics and plants: from sensory systems to cognition-based adaptive behaviour. PROTOPLASMA 2021; 258:449-454. [PMID: 33462719 PMCID: PMC7907011 DOI: 10.1007/s00709-020-01594-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/25/2020] [Indexed: 05/02/2023]
Abstract
Plants are not only sensitive to exogenous anaesthetics, but they also produce multitudes of endogenous substances, especially when stressed, that often have anaesthetic and anelgesic properties when applied to both humans and animals. Moreover, plants rely on neurotransmitters and their receptors for cell-cell communication and integration in a similar fashion to the use of neural systems in animals and humans. Plants also use their plant-specific sensory systems and neurotransmitter-based communication, including long-distance action potentials, to manage stress via cognition-like plant-specific behaviour and adaptation.
Collapse
Affiliation(s)
| | - Ken Yokawa
- Faculty of Engineering, Kitami Institute of Technology, Hokkaido, 090-8597, Japan.
| |
Collapse
|
24
|
Baluška F, Mancuso S. Individuality, self and sociality of vascular plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190760. [PMID: 33550947 DOI: 10.1098/rstb.2019.0760] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vascular plants are integrated into coherent bodies via plant-specific synaptic adhesion domains, action potentials (APs) and other means of long-distance signalling running throughout the plant bodies. Plant-specific synapses and APs are proposed to allow plants to generate their self identities having unique ways of sensing and acting as agents with their own goals guiding their future activities. Plants move their organs with a purpose and with obvious awareness of their surroundings and require APs to perform and control these movements. Self-identities allow vascular plants to act as individuals enjoying sociality via their self/non-self-recognition and kin recognition. Flowering plants emerge as cognitive and intelligent organisms when the major strategy is to attract and control their animal pollinators as well as seed dispersers by providing them with food enriched with nutritive and manipulative/addictive compounds. Their goal in interactions with animals is manipulation for reproduction, dispersal and defence. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
| | - Stefano Mancuso
- Department of Agrifood Production and Environmental Sciences, University of Florence, Florence, Italy
| |
Collapse
|
25
|
Nakayama Y. Corynebacterium glutamicum Mechanosensing: From Osmoregulation to L-Glutamate Secretion for the Avian Microbiota-Gut-Brain Axis. Microorganisms 2021; 9:201. [PMID: 33478007 PMCID: PMC7835871 DOI: 10.3390/microorganisms9010201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/18/2022] Open
Abstract
After the discovery of Corynebacterium glutamicum from avian feces-contaminated soil, its enigmatic L-glutamate secretion by corynebacterial MscCG-type mechanosensitive channels has been utilized for industrial monosodium glutamate production. Bacterial mechanosensitive channels are activated directly by increased membrane tension upon hypoosmotic downshock; thus; the physiological significance of the corynebacterial L-glutamate secretion has been considered as adjusting turgor pressure by releasing cytoplasmic solutes. In this review, we present information that corynebacterial mechanosensitive channels have been evolutionally specialized as carriers to secrete L-glutamate into the surrounding environment in their habitats rather than osmotic safety valves. The lipid modulation activation of MscCG channels in L-glutamate production can be explained by the "Force-From-Lipids" and "Force-From-Tethers" mechanosensing paradigms and differs significantly from mechanical activation upon hypoosmotic shock. The review also provides information on the search for evidence that C. glutamicum was originally a gut bacterium in the avian host with the aim of understanding the physiological roles of corynebacterial mechanosensing. C. glutamicum is able to secrete L-glutamate by mechanosensitive channels in the gut microbiota and help the host brain function via the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Yoshitaka Nakayama
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; ; Tel.: +61-2-9295-8744
- St Vincent’s Clinical School, Faculty of Medicine, The University of New South Wales, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
26
|
Zluhan-Martínez E, López-Ruíz BA, García-Gómez ML, García-Ponce B, de la Paz Sánchez M, Álvarez-Buylla ER, Garay-Arroyo A. Integrative Roles of Phytohormones on Cell Proliferation, Elongation and Differentiation in the Arabidopsis thaliana Primary Root. FRONTIERS IN PLANT SCIENCE 2021; 12:659155. [PMID: 33981325 PMCID: PMC8107238 DOI: 10.3389/fpls.2021.659155] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/24/2021] [Indexed: 05/17/2023]
Abstract
The growth of multicellular organisms relies on cell proliferation, elongation and differentiation that are tightly regulated throughout development by internal and external stimuli. The plasticity of a growth response largely depends on the capacity of the organism to adjust the ratio between cell proliferation and cell differentiation. The primary root of Arabidopsis thaliana offers many advantages toward understanding growth homeostasis as root cells are continuously produced and move from cell proliferation to elongation and differentiation that are processes spatially separated and could be studied along the longitudinal axis. Hormones fine tune plant growth responses and a huge amount of information has been recently generated on the role of these compounds in Arabidopsis primary root development. In this review, we summarized the participation of nine hormones in the regulation of the different zones and domains of the Arabidopsis primary root. In some cases, we found synergism between hormones that function either positively or negatively in proliferation, elongation or differentiation. Intriguingly, there are other cases where the interaction between hormones exhibits unexpected results. Future analysis on the molecular mechanisms underlying crosstalk hormone action in specific zones and domains will unravel their coordination over PR development.
Collapse
Affiliation(s)
- Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Brenda Anabel López-Ruíz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mónica L. García-Gómez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- *Correspondence: Adriana Garay-Arroyo,
| |
Collapse
|
27
|
Du MT, Zhu GL, Chen HZ, Han R. Actin filaments altered distribution in wheat (Triticum aestivum) "Bending Root" to respond to enhanced Ultraviolet-B radiation. BRAZ J BIOL 2020; 81:684-691. [PMID: 32935819 DOI: 10.1590/1519-6984.229774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/28/2020] [Indexed: 11/22/2022] Open
Abstract
Plants adjust their shoot growth to acclimate to changing environmental factors, such as to enhanced Ultraviolet-B (UV-B) radiation. However, people have ignored that plant roots can also respond to UV-B light. Here, we find the morphology curled wheat roots under UV-B radiation, that we call, "bending roots." The curly region is the transition zone of the root after observed at the cellular level. After exposed to enhanced UV-B radiation for 2 d (10.08 KJ/m2/d), cell size decreased and actin filaments gathered in wheat roots. We also find that H2O2 production increased and that content of the indole-3-acetic acid (IAA) increased remarkably. The pharmacological experiment revealed that actin filaments gathered and polymerized into bundles in the wheat root cells after irrigated H2O2 and IAA. These results indicated that actin filaments changed their distribution and formed the "bending root," which was related to H2O2 production and increase in IAA. Overall, actin filaments in wheat root cells could be a subcellular target of UV-B radiation, and its disruption determines root morphology.
Collapse
Affiliation(s)
- M T Du
- Shanxi Normal University, Higher Education Key Laboratory of Plant Molecular and Environment Stress Response, Linfen, Shanxi, China
| | - G L Zhu
- Ministry of Education of China, Yangzhou University, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
| | - H Z Chen
- Shanxi Normal University, Higher Education Key Laboratory of Plant Molecular and Environment Stress Response, Linfen, Shanxi, China
| | - R Han
- Shanxi Normal University, Higher Education Key Laboratory of Plant Molecular and Environment Stress Response, Linfen, Shanxi, China
| |
Collapse
|
28
|
Cognition in some surprising places. Biochem Biophys Res Commun 2020; 564:150-157. [PMID: 32950231 DOI: 10.1016/j.bbrc.2020.08.115] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
The most widely accepted view in the biopsychological sciences is that the cognitive functions that are diagnostic of mental operations, sentience or, more commonly, consciousness emerged fairly late in evolution, most likely in the Cambrian period. Our position dovetails with James's below - subjectivity, feeling, consciousness has a much longer evolutionary history, one that goes back to the first appearance of life. The Cellular Basis of Consciousness (CBC) model is founded on the presumption that sentience and life are coterminous; that all organisms, based on inherent cellular activities via processes that take place in excitable membranes of their cells, are sentient, have subjective experiences and feelings. These, in turn, guide the context-relevant behaviors essential for their survival in often hostile environments in constant flux. The CBC framework is reductionistic, mechanistic, and calls for bottom-up research programs into the evolutionary origin of biological consciousness.
Collapse
|
29
|
Arieti RS, Staiger CJ. Auxin-induced actin cytoskeleton rearrangements require AUX1. THE NEW PHYTOLOGIST 2020; 226:441-459. [PMID: 31859367 PMCID: PMC7154765 DOI: 10.1111/nph.16382] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/10/2019] [Indexed: 05/06/2023]
Abstract
The actin cytoskeleton is required for cell expansion and implicated in cellular responses to the phytohormone auxin. However, the mechanisms that coordinate auxin signaling, cytoskeletal remodeling and cell expansion are poorly understood. Previous studies examined long-term actin cytoskeleton responses to auxin, but plants respond to auxin within minutes. Before this work, an extracellular auxin receptor - rather than the auxin transporter AUXIN RESISTANT 1 (AUX1) - was considered to precede auxin-induced cytoskeleton reorganization. In order to correlate actin array organization and dynamics with degree of cell expansion, quantitative imaging tools established baseline actin organization and illuminated individual filament behaviors in root epidermal cells under control conditions and after indole-3-acetic acid (IAA) application. We evaluated aux1 mutant actin organization responses to IAA and the membrane-permeable auxin 1-naphthylacetic acid (NAA). Cell length predicted actin organization and dynamics in control roots; short-term IAA treatments stimulated denser and more parallel, longitudinal arrays by inducing filament unbundling within minutes. Although AUX1 is necessary for full actin rearrangements in response to auxin, cytoplasmic auxin (i.e. NAA) stimulated a lesser response. Actin filaments became more 'organized' after IAA stopped elongation, refuting the hypothesis that 'more organized' actin arrays universally correlate with rapid growth. Short-term actin cytoskeleton response to auxin requires AUX1 and/or cytoplasmic auxin.
Collapse
Affiliation(s)
- Ruthie S. Arieti
- Department of Biological SciencesPurdue UniversityWest LafayetteIN47907‐2064USA
- Purdue University Interdisciplinary Life Sciences Graduate Program (PULSe)Purdue UniversityWest LafayetteIN47907USA
- Center for Plant BiologyPurdue UniversityWest LafayetteIN47907USA
| | - Christopher J. Staiger
- Department of Biological SciencesPurdue UniversityWest LafayetteIN47907‐2064USA
- Center for Plant BiologyPurdue UniversityWest LafayetteIN47907USA
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN47907USA
| |
Collapse
|
30
|
Zang L, Morère-Le Paven MC, Clochard T, Porcher A, Satour P, Mojović M, Vidović M, Limami AM, Montrichard F. Nitrate inhibits primary root growth by reducing accumulation of reactive oxygen species in the root tip in Medicago truncatula. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:363-373. [PMID: 31786508 DOI: 10.1016/j.plaphy.2019.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/17/2019] [Accepted: 11/05/2019] [Indexed: 05/05/2023]
Abstract
In Medicago truncatula, nitrate, acting as a signal perceived by NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER FAMILY 6.8 (MtNPF6.8), inhibits primary root growth through a reduction of root cell elongation. Since reactive oxygen species (ROS) produced and converted in root tip (O2•- → H2O2 → •OH) have been reported to control cell elongation, the impact of nitrate on the distribution of these ROS in the primary root of M. truncatula was analyzed. We found that nitrate reduced the content of O2•-, H2O2 and •OH in the root tip of three wild type genotypes sensitive to nitrate (R108, DZA, A17), inhibition of root growth and O2•- accumulation being highly correlated. Nitrate also modified the capacity of R108 root tip to produce or remove ROS. The ROS content decrease observed in R108 in response to nitrate is linked to changes in peroxidase activity (EC1.11.1.7) with an increase in peroxidative activity that scavenge H2O2 and a decrease in hydroxylic activity that converts H2O2 into •OH. These changes impair the accumulation of H2O2 and then the accumulation of •OH, the species responsible for cell wall loosening and cell elongation. Accordingly, nitrate inhibitory effect was abolished by externally added H2O2 or mimicked by KI, an H2O2 scavenger. In contrast, nitrate has no effect on ROS production or removal capacities in npf6.8-2, a knockdown line insensitive to nitrate, affected in the nitrate transporter MtNPF6.8 (in R108 background) by RNAi. Altogether, our data show that ROS are mediators acting downstream of MtNPF6.8 in the nitrate signaling pathway.
Collapse
Affiliation(s)
- Lili Zang
- Institut de Recherche en Horticulture et Semences (IRHS), INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV - 42, rue Georges Morel, 49071, Beaucouzé cedex, France
| | - Marie-Christine Morère-Le Paven
- Institut de Recherche en Horticulture et Semences (IRHS), INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV - 42, rue Georges Morel, 49071, Beaucouzé cedex, France
| | - Thibault Clochard
- Institut de Recherche en Horticulture et Semences (IRHS), INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV - 42, rue Georges Morel, 49071, Beaucouzé cedex, France
| | - Alexis Porcher
- Institut de Recherche en Horticulture et Semences (IRHS), INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV - 42, rue Georges Morel, 49071, Beaucouzé cedex, France
| | - Pascale Satour
- Institut de Recherche en Horticulture et Semences (IRHS), INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV - 42, rue Georges Morel, 49071, Beaucouzé cedex, France
| | - Miloš Mojović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158, Belgrade 118, Serbia
| | - Marija Vidović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030, Belgrade, Serbia
| | - Anis M Limami
- Institut de Recherche en Horticulture et Semences (IRHS), INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV - 42, rue Georges Morel, 49071, Beaucouzé cedex, France
| | - Françoise Montrichard
- Institut de Recherche en Horticulture et Semences (IRHS), INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV - 42, rue Georges Morel, 49071, Beaucouzé cedex, France.
| |
Collapse
|
31
|
Yang S, Li H, Bhatti S, Zhou S, Yang Y, Fish T, Thannhauser TW. The Al-induced proteomes of epidermal and outer cortical cells in root apex of cherry tomato ‘LA 2710’. J Proteomics 2020; 211:103560. [DOI: 10.1016/j.jprot.2019.103560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
|
32
|
Sims M. Minimal perception: Responding to the challenges of perceptual constancy and veridicality with plants. PHILOSOPHICAL PSYCHOLOGY 2019. [DOI: 10.1080/09515089.2019.1646898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Matthew Sims
- Philosophy, Psychology, and Language Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
33
|
Abstract
A substrate does not have to be solid to compute. It is possible to make a computer purely from a liquid. I demonstrate this using a variety of experimental prototypes where a liquid carries signals, actuates mechanical computing devices and hosts chemical reactions. We show hydraulic mathematical machines that compute functions based on mass transfer analogies. I discuss several prototypes of computing devices that employ fluid flows and jets. They are fluid mappers, where the fluid flow explores a geometrically constrained space to find an optimal way around, e.g. the shortest path in a maze, and fluid logic devices where fluid jet streams interact at the junctions of inlets and results of the computation are represented by fluid jets at selected outlets. Fluid mappers and fluidic logic devices compute continuously valued functions albeit discretized. There is also an opportunity to do discrete operation directly by representing information by droplets and liquid marbles (droplets coated by hydrophobic powder). There, computation is implemented at the sites, in time and space, where droplets collide one with another. The liquid computers mentioned above use liquid as signal carrier or actuator: the exact nature of the liquid is not that important. What is inside the liquid becomes crucial when reaction-diffusion liquid-phase computing devices come into play: there, the liquid hosts families of chemical species that interact with each other in a massive-parallel fashion. I shall illustrate a range of computational tasks, including computational geometry, implementable by excitation wave fronts in nonlinear active chemical medium. The overview will enable scientists and engineers to understand how vast is the variety of liquid computers and will inspire them to design their own experimental laboratory prototypes. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.
Collapse
Affiliation(s)
- Andrew Adamatzky
- Unconventional Computing Lab, Department of Computer Science and Creative Technologies, University of the West of England, Bristol, UK
| |
Collapse
|
34
|
Krzesłowska M, Timmers ACJ, Mleczek M, Niedzielski P, Rabęda I, Woźny A, Goliński P. Alterations of root architecture and cell wall modifications in Tilia cordata Miller (Linden) growing on mining sludge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:247-259. [PMID: 30798026 DOI: 10.1016/j.envpol.2019.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Trees are considered good candidates for phytoremediation of soils contaminated with trace elements (TE), e.g. mine tailings. Using two year-old Tilia cordata plants, we demonstrated the nature and the scale of root architecture, especially root apices, as an indicator of mining sludge toxicity and plant capability to cope with these stress conditions. The novelty of our research is the analysis of the root response to substrate with extremely high concentrations of numerous toxic TE, and the 3D illustration of the disorders in root apex architecture using a clarity technique for confocal microscopy. The analysis demonstrates (1) a marked reduction in the size of the root apex zones (2) the occurrence of vascular tissues abnormally close to the root apex (3) collapse of the internal tissues in many root apices. Simultaneously, at the cellular level we observed some signs of a defensive response - such as a common increase of cell wall (CW) thickness and the formation of local CW thickenings - that enlarge the CW capacity for TE sequestration. However, we also detected harmful effects. Among others, a massive deposition of TE in the middle lamella which caused major damage - probably one of the reasons why the inner tissues of the root apex often collapsed - and the formation of incomplete CWs resulting in the occurrence of extremely large cells. Moreover, many cells of the root apex exhibited degenerated protoplasts. All these alterations indicate the harsh conditions for lime growth and survival and simultaneously, the manifestation of a defensive response. The obtained results allowed us to conclude that analysis of the nature and scale of structural alterations in roots can be useful indicators of plant ability to cope with stress conditions, e.g. in prospect of using the examined plants for reclamation of soils contaminated with TE.
Collapse
Affiliation(s)
- Magdalena Krzesłowska
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland.
| | - Antonius C J Timmers
- Central Microscopy, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Mirosław Mleczek
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Przemysław Niedzielski
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614, Poznań, Poland
| | - Irena Rabęda
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Adam Woźny
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Piotr Goliński
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland
| |
Collapse
|
35
|
Debono MW, Souza GM. Plants as electromic plastic interfaces: A mesological approach. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 146:123-133. [PMID: 30826433 DOI: 10.1016/j.pbiomolbio.2019.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/21/2019] [Accepted: 02/21/2019] [Indexed: 11/15/2022]
Abstract
In this manuscript, we propose that plants are eco-plastic and electromic interfaces that can drive emergent intelligent behaviours from synchronized electrical networks. Behind the semantic and anthropocentric problems related by many authors to the extensive use of the terms cognition, intelligence or even 'consciousness' for plants, we suggest a more pragmatic perspective, considering the vegetal world to be a complex biosystemic entity that is able to co-build the world or a form of the world or of significant reality via a set of reciprocal, emerging and confluent interactions. Speaking of adaptive sensory modalities involving perceptual binding or a global state of receptivity nonlinearly leading to cognitive functions, learning capabilities and intelligent behaviours of plants seem to be the more realistic and operational model to describe how plants perceive and treat environmental data. In this study, we strongly suggest that the electrome, which mainly involves constant spontaneous emission of low voltage potentials, is an early marker and a unifying factor of whole plant reactivity in a constantly changing environment and is therefore the key to understanding the cognitive nature of plants. This dynamic coupling enables plants to be knowledge-accumulating systems that are used by evolution to progress and survive, while mesological plasticity is a unique means for plants to interact as subjects with their milieu (umwelt) or natural habitat and to co-signify a possible world.
Collapse
|
36
|
Baluška F, Reber A. Sentience and Consciousness in Single Cells: How the First Minds Emerged in Unicellular Species. Bioessays 2019; 41:e1800229. [PMID: 30714631 DOI: 10.1002/bies.201800229] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/06/2018] [Indexed: 12/13/2022]
Abstract
A reductionistic, bottom-up, cellular-based concept of the origins of sentience and consciousness has been put forward. Because all life is based on cells, any evolutionary theory of the emergence of sentience and consciousness must be grounded in mechanisms that take place in prokaryotes, the simplest unicellular species. It has been posited that subjective awareness is a fundamental property of cellular life. It emerges as an inherent feature of, and contemporaneously with, the very first life-forms. All other varieties of mentation are the result of evolutionary mechanisms based on this singular event. Therefore, all forms of sentience and consciousness evolve from this original instantiation in prokaryotes. It has also been identified that three cellular structures and mechanisms that likely play critical roles here are excitable membranes, oscillating cytoskeletal polymers, and structurally flexible proteins. Finally, basic biophysical principles are proposed to guide those processes that underly the emergence of supracellular sentience from cellular sentience in multicellular organisms.
Collapse
Affiliation(s)
- František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, 53115 Bonn, Germany
| | - Arthur Reber
- Department of Psychology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
37
|
Baluška F, Mancuso S. Actin Cytoskeleton and Action Potentials: Forgotten Connections. THE CYTOSKELETON 2019. [DOI: 10.1007/978-3-030-33528-1_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Muthert LWF, Izzo LG, van Zanten M, Aronne G. Root Tropisms: Investigations on Earth and in Space to Unravel Plant Growth Direction. FRONTIERS IN PLANT SCIENCE 2019; 10:1807. [PMID: 32153599 PMCID: PMC7047216 DOI: 10.3389/fpls.2019.01807] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/24/2019] [Indexed: 05/12/2023]
Abstract
Root tropisms are important responses of plants, allowing them to adapt their growth direction. Research on plant tropisms is indispensable for future space programs that envisage plant-based life support systems for long-term missions and planet colonization. Root tropisms encompass responses toward or away from different environmental stimuli, with an underexplored level of mechanistic divergence. Research into signaling events that coordinate tropistic responses is complicated by the consistent coincidence of various environmental stimuli, often interacting via shared signaling mechanisms. On Earth the major determinant of root growth direction is the gravitational vector, acting through gravitropism and overruling most other tropistic responses to environmental stimuli. Critical advancements in the understanding of root tropisms have been achieved nullifying the gravitropic dominance with experiments performed in the microgravity environment. In this review, we summarize current knowledge on root tropisms to different environmental stimuli. We highlight that the term tropism must be used with care, because it can be easily confused with a change in root growth direction due to asymmetrical damage to the root, as can occur in apparent chemotropism, electrotropism, and magnetotropism. Clearly, the use of Arabidopsis thaliana as a model for tropism research contributed much to our understanding of the underlying regulatory processes and signaling events. However, pronounced differences in tropisms exist among species, and we argue that these should be further investigated to get a more comprehensive view of the signaling pathways and sensors. Finally, we point out that the Cholodny-Went theory of asymmetric auxin distribution remains to be the central and unifying tropistic mechanism after 100 years. Nevertheless, it becomes increasingly clear that the theory is not applicable to all root tropistic responses, and we propose further research to unravel commonalities and differences in the molecular and physiological processes orchestrating root tropisms.
Collapse
Affiliation(s)
| | - Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- *Correspondence: Luigi Gennaro Izzo,
| | - Martijn van Zanten
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | - Giovanna Aronne
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
39
|
Canarini A, Kaiser C, Merchant A, Richter A, Wanek W. Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli. FRONTIERS IN PLANT SCIENCE 2019; 10:157. [PMID: 30881364 PMCID: PMC6407669 DOI: 10.3389/fpls.2019.00157] [Citation(s) in RCA: 306] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/29/2019] [Indexed: 05/19/2023]
Abstract
Root exudation is an important process determining plant interactions with the soil environment. Many studies have linked this process to soil nutrient mobilization. Yet, it remains unresolved how exudation is controlled and how exactly and under what circumstances plants benefit from exudation. The majority of root exudates including primary metabolites (sugars, amino acids, and organic acids) are believed to be passively lost from the root and used by rhizosphere-dwelling microbes. In this review, we synthetize recent advances in ecology and plant biology to explain and propose mechanisms by which root exudation of primary metabolites is controlled, and what role their exudation plays in plant nutrient acquisition strategies. Specifically, we propose a novel conceptual framework for root exudates. This framework is built upon two main concepts: (1) root exudation of primary metabolites is driven by diffusion, with plants and microbes both modulating concentration gradients and therefore diffusion rates to soil depending on their nutritional status; (2) exuded metabolite concentrations can be sensed at the root tip and signals are translated to modify root architecture. The flux of primary metabolites through root exudation is mostly located at the root tip, where the lack of cell differentiation favors diffusion of metabolites to the soil. We show examples of how the root tip senses concentration changes of exuded metabolites and translates that into signals to modify root growth. Plants can modify the concentration of metabolites either by controlling source/sink processes or by expressing and regulating efflux carriers, therefore challenging the idea of root exudation as a purely unregulated passive process. Through root exudate flux, plants can locally enhance concentrations of many common metabolites, which can serve as sensors and integrators of the plant nutritional status and of the nutrient availability in the surrounding environment. Plant-associated micro-organisms also constitute a strong sink for plant carbon, thereby increasing concentration gradients of metabolites and affecting root exudation. Understanding the mechanisms of and the effects that environmental stimuli have on the magnitude and type of root exudation will ultimately improve our knowledge of processes determining soil CO2 emissions, ecosystem functioning, and how to improve the sustainability of agricultural production.
Collapse
Affiliation(s)
- Alberto Canarini
- Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry Meets Microbiology’, University of Vienna, Vienna, Austria
- *Correspondence: Alberto Canarini,
| | - Christina Kaiser
- Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry Meets Microbiology’, University of Vienna, Vienna, Austria
| | - Andrew Merchant
- Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
| | - Andreas Richter
- Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry Meets Microbiology’, University of Vienna, Vienna, Austria
| | - Wolfgang Wanek
- Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry Meets Microbiology’, University of Vienna, Vienna, Austria
| |
Collapse
|
40
|
Kováč J, Lux A, Vaculík M. Formation of a subero-lignified apical deposit in root tip of radish (Raphanus sativus) as a response to copper stress. ANNALS OF BOTANY 2018; 122:823-831. [PMID: 29444204 PMCID: PMC6215032 DOI: 10.1093/aob/mcy013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS Heavy metals induce changes in root metabolism and physiology, which can lead to a complex remodelling of the root system. The final morphological responses of radish (Raphanus sativus) roots exposed to toxic concentrations of the heavy metal (Cu) include root growth inhibition, differentiation of xylem vessels close to the root tip, enhanced suberin lamellae deposition and enhanced lateral root production. Recently, we have found that such changes in root morphology and anatomy are coupled to the formation of a subero-lignified apical deposit (SLAD) very close to the root tip. METHODS To clarify the details of the formation of a SLAD in the root tip, we conducted experiments with radish roots exposed to a high Cu concentration (60 µm). Histochemical analysis of lignin and suberin as well as analysis of spatial-temporal characteristics of SLAD formation were performed by bright-field, fluorescence and confocal microscopy. KEY RESULTS This unique structure, not longer than 100 µm, consists of modified cell walls of the central cylinder that are encircled by a short cylinder of prematurely suberized endodermal cells. A SLAD starts to form, in both primary and lateral roots, after cessation of root elongation, and it is coupled with xylem differentiation and root branching close to the root apex. We noticed that deposition of phenolic substances into a SLAD, mainly suberin in the endodermis, is spatially separated from suberization or lignification in basally located endodermis. CONCLUSIONS Although the main reason for formation of a SLAD is elusive, we suggest that it is a part of stress-induced responses which relate to decreased root growth or permeability in heavy metal stress.
Collapse
Affiliation(s)
- Ján Kováč
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
41
|
Yokawa K, Kagenishi T, Pavlovič A, Gall S, Weiland M, Mancuso S, Baluška F. Anaesthetics stop diverse plant organ movements, affect endocytic vesicle recycling and ROS homeostasis, and block action potentials in Venus flytraps. ANNALS OF BOTANY 2018; 122:747-756. [PMID: 29236942 PMCID: PMC6215046 DOI: 10.1093/aob/mcx155] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/18/2017] [Indexed: 05/09/2023]
Abstract
Background and Aims Anaesthesia for medical purposes was introduced in the 19th century. However, the physiological mode of anaesthetic drug actions on the nervous system remains unclear. One of the remaining questions is how these different compounds, with no structural similarities and even chemically inert elements such as the noble gas xenon, act as anaesthetic agents inducing loss of consciousness. The main goal here was to determine if anaesthetics affect the same or similar processes in plants as in animals and humans. Methods A single-lens reflex camera was used to follow organ movements in plants before, during and after recovery from exposure to diverse anaesthetics. Confocal microscopy was used to analyse endocytic vesicle trafficking. Electrical signals were recorded using a surface AgCl electrode. Key Results Mimosa leaves, pea tendrils, Venus flytraps and sundew traps all lost both their autonomous and touch-induced movements after exposure to anaesthetics. In Venus flytrap, this was shown to be due to the loss of action potentials under diethyl ether anaesthesia. The same concentration of diethyl ether immobilized pea tendrils. Anaesthetics also impeded seed germination and chlorophyll accumulation in cress seedlings. Endocytic vesicle recycling and reactive oxygen species (ROS) balance, as observed in intact Arabidopsis root apex cells, were also affected by all anaesthetics tested. Conclusions Plants are sensitive to several anaesthetics that have no structural similarities. As in animals and humans, anaesthetics used at appropriate concentrations block action potentials and immobilize organs via effects on action potentials, endocytic vesicle recycling and ROS homeostasis. Plants emerge as ideal model objects to study general questions related to anaesthesia, as well as to serve as a suitable test system for human anaesthesia.
Collapse
Affiliation(s)
- K Yokawa
- IZMB, University of Bonn, Bonn, Germany
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - T Kagenishi
- IZMB, University of Bonn, Bonn, Germany
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - A Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czech Republic
| | - S Gall
- IZMB, University of Bonn, Bonn, Germany
| | - M Weiland
- IZMB, University of Bonn, Bonn, Germany
- Department of Plant, Soil and Environmental Science & LINV, University of Florence, Sesto Fiorentino, Italy
| | - S Mancuso
- Department of Plant, Soil and Environmental Science & LINV, University of Florence, Sesto Fiorentino, Italy
| | - F Baluška
- IZMB, University of Bonn, Bonn, Germany
| |
Collapse
|
42
|
Baluška F, Miller, Jr WB. Senomic view of the cell: Senome versus Genome. Commun Integr Biol 2018; 11:1-9. [PMID: 30214674 PMCID: PMC6132427 DOI: 10.1080/19420889.2018.1489184] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/11/2018] [Indexed: 12/25/2022] Open
Abstract
In the legacy of Thomas Henry Huxley, and his 'epigenetic' philosophy of biology, cells are proposed to represent a trinity of three memory-storing media: Senome, Epigenome, and Genome that together comprise a cell-wide informational architecture. Our current preferential focus on the Genome needs to be complemented by a similar focus on the Epigenome and a here proposed Senome, representing the sum of all the sensory experiences of the cognitive cell and its sensing apparatus. Only then will biology be in a position to embrace the whole complexity of the eukaryotic cell, understanding its true nature which allows the communicative assembly of cells in the form of sentient multicellular organisms.
Collapse
|
43
|
Koldenkova VP, Hatsugai N. How do Plants Keep their Functional Integrity? PLANT SIGNALING & BEHAVIOR 2018; 13:e1464853. [PMID: 29727257 PMCID: PMC6149517 DOI: 10.1080/15592324.2018.1464853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Unlike animals, plants possess a non-strict and sometimes very fuzzy morphology. Mutual proportions of plant parts can vary to a much greater extent than in animals, changing according to the environmental conditions and the plant needs of nutrients, water and light. Despite the existence of this fundamental difference between plants and animals, it passes almost non-reflected in most studies on plants. In this review we make a preliminary attempt to gather together the mechanisms by which plants preserve their integrity, not loosing at the same time the physiological (and morphological) flexibility which allows them adapting to the different environments they can populate.
Collapse
Affiliation(s)
- Vadim Pérez Koldenkova
- Laboratorio Nacional de Microscopía Avanzada, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc, 330, Col. Doctores, Del. Cuauhtémoc. 06720, México D.F., Mexico
| | - Noriyuki Hatsugai
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota St Paul, MN, USA
| |
Collapse
|
44
|
Li X, Li Y, Mai J, Tao L, Qu M, Liu J, Shen R, Xu G, Feng Y, Xiao H, Wu L, Shi L, Guo S, Liang J, Zhu Y, He Y, Baluška F, Shabala S, Yu M. Boron Alleviates Aluminum Toxicity by Promoting Root Alkalization in Transition Zone via Polar Auxin Transport. PLANT PHYSIOLOGY 2018; 177:1254-1266. [PMID: 29784768 PMCID: PMC6053005 DOI: 10.1104/pp.18.00188] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/10/2018] [Indexed: 05/11/2023]
Abstract
Boron (B) alleviates aluminum (Al) toxicity in higher plants; however, the underlying mechanisms behind this phenomenon remain unknown. Here, we used bromocresol green pH indicator, noninvasive microtest, and microelectrode ion flux estimation techniques to demonstrate that B promotes root surface pH gradients in pea (Pisum sativum) roots, leading to alkalization in the root transition zone and acidification in the elongation zone, while Al inhibits these pH gradients. B significantly decreased Al accumulation in the transition zone (∼1.0-2.5 mm from the apex) of lateral roots, thereby alleviating Al-induced inhibition of root elongation. Net indole acetic acid (IAA) efflux detected by an IAA-sensitive platinum microelectrode showed that polar auxin transport, which peaked in the root transition zone, was inhibited by Al toxicity, while it was partially recovered by B. Electrophysiological experiments using the Arabidopsis (Arabidopsis thaliana) auxin transporter mutants (auxin resistant1-7; pin-formed2 [pin2]) and the specific polar auxin transporter inhibitor1-naphthylphthalamic acid showed that PIN2-based polar auxin transport is involved in root surface alkalization in the transition zone. Our results suggest that B promotes polar auxin transport driven by the auxin efflux transporter PIN2 and leads to the downstream regulation of the plasma membrane-H+-ATPase, resulting in elevated root surface pH, which is essential to decrease Al accumulation in this Al-targeted apical root zone. These findings provide a mechanistic explanation for the role of exogenous B in alleviation of Al accumulation and toxicity in plants.
Collapse
Affiliation(s)
- Xuewen Li
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Yalin Li
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Jingwen Mai
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Lin Tao
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Mei Qu
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Jiayou Liu
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Guilian Xu
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Yingming Feng
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Hongdong Xiao
- School of Food Science and Engineering, Foshan University, Foshan 528000, China
| | - Lishu Wu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Lei Shi
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Shaoxue Guo
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Jian Liang
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Yiyong Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongming He
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | - Sergey Shabala
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7001, Australia
| | - Min Yu
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| |
Collapse
|
45
|
Kong X, Liu G, Liu J, Ding Z. The Root Transition Zone: A Hot Spot for Signal Crosstalk. TRENDS IN PLANT SCIENCE 2018; 23:403-409. [PMID: 29500073 DOI: 10.1016/j.tplants.2018.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/28/2018] [Accepted: 02/02/2018] [Indexed: 05/25/2023]
Abstract
The root transition zone (TZ), located between the apical meristem and basal elongation region, has a unique role in root growth and development. The root TZ is not only the active site for hormone crosstalk, but also the perception site for various environmental cues, such as aluminum (Al) stress and low phosphate (Pi) stress. We propose that the root TZ is a hot spot for the integration of diverse inputs from endogenous (hormonal) and exogenous (sensorial) stimuli to control root growth.
Collapse
Affiliation(s)
- Xiangpei Kong
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, 250100, Shandong, China; These authors contributed equally to this work.
| | - Guangchao Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, 250100, Shandong, China; These authors contributed equally to this work
| | - Jiajia Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, 250100, Shandong, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, 250100, Shandong, China.
| |
Collapse
|
46
|
Abstract
Ethylene is a gaseous hormone that controls plant life throughout development. Being a simple hydrophobic molecule, it can freely enter cells; therefore, the cell type specificity of its action is challenging. By means of tissue-specific expression of two negative regulators of the signaling cascade, we selectively disrupted the ethylene signal in different cell types without affecting its biosynthesis. We demonstrate that ethylene restricts plant growth by dampening the effect of auxins in the outermost cell layer. We further show that this epidermis-specific signaling has an impact on the growth of neighboring cells, suggesting that the master controller of cell expansion resides in the epidermis, where it senses the environment and, subsequently drives growth, of the inner tissues. The gaseous hormone ethylene plays a key role in plant growth and development, and it is a major regulator of stress responses. It inhibits vegetative growth by restricting cell elongation, mainly through cross-talk with auxins. However, it remains unknown whether ethylene controls growth throughout all plant tissues or whether its signaling is confined to specific cell types. We employed a targeted expression approach to map the tissue site(s) of ethylene growth regulation. The ubiquitin E3 ligase complex containing Skp1, Cullin1, and the F-box protein EBF1 or EBF2 (SCFEBF1/2) target the degradation of EIN3, the master transcription factor in ethylene signaling. We coupled EBF1 and EBF2 to a number of cell type-specific promoters. Using phenotypic assays for ethylene response and mutant complementation, we revealed that the epidermis is the main site of ethylene action controlling plant growth in both roots and shoots. Suppression of ethylene signaling in the epidermis of the constitutive ethylene signaling mutant ctr1-1 was sufficient to rescue the mutant phenotype, pointing to the epidermis as a key cell type required for ethylene-mediated growth inhibition.
Collapse
|
47
|
Baluška F, Mancuso S. Plant Cognition and Behavior: From Environmental Awareness to Synaptic Circuits Navigating Root Apices. MEMORY AND LEARNING IN PLANTS 2018. [DOI: 10.1007/978-3-319-75596-0_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Szechyńska-Hebda M, Lewandowska M, Karpiński S. Electrical Signaling, Photosynthesis and Systemic Acquired Acclimation. Front Physiol 2017; 8:684. [PMID: 28959209 PMCID: PMC5603676 DOI: 10.3389/fphys.2017.00684] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/25/2017] [Indexed: 12/20/2022] Open
Abstract
Electrical signaling in higher plants is required for the appropriate intracellular and intercellular communication, stress responses, growth and development. In this review, we have focus on recent findings regarding the electrical signaling, as a major regulator of the systemic acquired acclimation (SAA) and the systemic acquired resistance (SAR). The electric signaling on its own cannot confer the required specificity of information to trigger SAA and SAR, therefore, we have also discussed a number of other mechanisms and signaling systems that can operate in combination with electric signaling. We have emphasized the interrelation between ionic mechanism of electrical activity and regulation of photosynthesis, which is intrinsic to a proper induction of SAA and SAR. In a special way, we have summarized the role of non-photochemical quenching and its regulator PsbS. Further, redox status of the cell, calcium and hydraulic waves, hormonal circuits and stomatal aperture regulation have been considered as components of the signaling. Finally, a model of light-dependent mechanisms of electrical signaling propagation has been presented together with the systemic regulation of light-responsive genes encoding both, ion channels and proteins involved in regulation of their activity. Due to space limitations, we have not addressed many other important aspects of hormonal and ROS signaling, which were presented in a number of recent excellent reviews.
Collapse
Affiliation(s)
- Magdalena Szechyńska-Hebda
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life SciencesWarsaw, Poland
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of SciencesKrakow, Poland
| | - Maria Lewandowska
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life SciencesWarsaw, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life SciencesWarsaw, Poland
| |
Collapse
|
49
|
Mettbach U, Strnad M, Mancuso S, Baluška F. Immunogold-EM analysis reveal brefeldin a-sensitive clusters of auxin in Arabidopsis root apex cells. Commun Integr Biol 2017; 10:e1327105. [PMID: 28702129 PMCID: PMC5501221 DOI: 10.1080/19420889.2017.1327105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/13/2017] [Accepted: 04/29/2017] [Indexed: 11/05/2022] Open
Abstract
Immunogold electron microscopy (EM) study of Arabidopsis root apices analyzed using specific IAA antibody and high-pressure freeze fixation technique allowed, for the first time, vizualization of subcellular localization of IAA in cells assembled intactly within plant tissues. Our quantitative analysis reveals that there is considerable portion of IAA gold particles that clusters within vesicles and membraneous compartments in all root apex cells. There are clear tissue-specific and developmental differences of clustered IAA in root apices. These findings have significant consequences for our understanding of this small molecule which is controlling plant growth, development and behavior.
Collapse
Affiliation(s)
| | - M. Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Palacký University, Olomouc, Czech Republic
| | - S. Mancuso
- Department of Plant, Soil and Environmental Science & LINV, University of Florence, Sesto Fiorentino, Italy
| | | |
Collapse
|
50
|
Laskowski M, Ten Tusscher KH. Periodic Lateral Root Priming: What Makes It Tick? THE PLANT CELL 2017; 29:432-444. [PMID: 28223442 PMCID: PMC5385950 DOI: 10.1105/tpc.16.00638] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 05/02/2023]
Abstract
Conditioning small groups of root pericycle cells for future lateral root formation has a major impact on overall plant root architecture. This priming of lateral roots occurs rhythmically, involving temporal oscillations in auxin response in the root tip. During growth, this process generates a spatial pattern of prebranch sites, an early stage in lateral root formation characterized by a stably maintained high auxin response. To date, the molecular mechanism behind this rhythmicity has remained elusive. Some data implicate a cell-autonomous oscillation in gene expression, while others strongly support the importance of tissue-level modulations in auxin fluxes. Here, we summarize the experimental data on periodic lateral root priming. We present a theoretical framework that distinguishes between a priming signal and its subsequent memorization and show how major roles for auxin fluxes and gene expression naturally emerge from this framework. We then discuss three mechanisms that could potentially induce oscillations of auxin response: cell-autonomous oscillations, Turing-type patterning, and tissue-level oscillations in auxin fluxes, along with specific properties of lateral root priming that may be used to discern which type of mechanism is most likely to drive lateral root patterning. We conclude with suggestions for future experiments and modeling studies.
Collapse
Affiliation(s)
| | - Kirsten H Ten Tusscher
- Theoretical Biology Group, Faculty of Science, Utrecht University, 3584CH Utrecht, The Netherlands
| |
Collapse
|