1
|
Zhang C, Li S, Wang Y, Long J, Li X, Ke L, Xu R, Wu Z, Pi Z. Vernalization promotes bolting in sugar beet by inhibiting the transcriptional repressors of BvGI. PLANT MOLECULAR BIOLOGY 2024; 114:67. [PMID: 38836995 DOI: 10.1007/s11103-024-01460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/26/2024] [Indexed: 06/06/2024]
Abstract
Sugar beet (Beta vulgaris L.), a biennial sugar crop, contributes about 16% of the world's sugar production. The transition from vegetative growth, during which sugar accumulated in beet, to reproductive growth, during which sugar exhausted in beet, is determined by vernalization and photoperiod. GIGANTEA (GI) is a key photoperiodic flowering gene that is induced by vernalization in sugar beet. To identify the upstream regulatory factors of BvGI, candidate transcription factors (TF) that were co-expressed with BvGI and could bind to the BvGI promoter were screened based on weighted gene co-expression network analysis (WGCNA) and TF binding site prediction. Subsequently, their transcriptional regulatory role on the BvGI was validated through subcellular localization, dual-luciferase assays and yeast transformation tests. A total of 7,586 differentially expressed genes were identified after vernalization and divided into 18 co-expression modules by WGCNA, of which one (MEcyan) and two (MEdarkorange2 and MEmidnightblue) modules were positively and negatively correlated with the expression of BvGI, respectively. TF binding site predictions using PlantTFDB enabled the screening of BvLHY, BvTCP4 and BvCRF4 as candidate TFs that negatively regulated the expression of BvGI by affecting its transcription. Subcellular localization showed that BvLHY, BvTCP4 and BvCRF4 were localized to the nucleus. The results of dual-luciferase assays and yeast transformation tests showed that the relative luciferase activity and expression of HIS3 was reduced in the BvLHY, BvTCP4 and BvCRF4 transformants, which suggested that the three TFs inhibited the BvGI promoter. In addition, real-time quantitative reverse transcription PCR showed that BvLHY and BvTCP4 exhibited rhythmic expression characteristics similar to that of BvGI, while BvCRF4 did not. Our results revealed that vernalization crosstalked with the photoperiod pathway to initiate bolting in sugar beet by inhibiting the transcriptional repressors of BvGI.
Collapse
Affiliation(s)
- Chunxue Zhang
- Academy of Modern Agriculture and Ecological Environment, Heilongjiang University, 150080, Harbin, China
| | - Shengnan Li
- Academy of Modern Agriculture and Ecological Environment, Heilongjiang University, 150080, Harbin, China
| | - Yuguang Wang
- Academy of Modern Agriculture and Ecological Environment, Heilongjiang University, 150080, Harbin, China
| | - Jiali Long
- College of Life Sciences, Heilongjiang University, 150080, Harbin, China
| | - Xinru Li
- Academy of Modern Agriculture and Ecological Environment, Heilongjiang University, 150080, Harbin, China
| | - Lixun Ke
- Academy of Modern Agriculture and Ecological Environment, Heilongjiang University, 150080, Harbin, China
| | - Rui Xu
- Academy of Modern Agriculture and Ecological Environment, Heilongjiang University, 150080, Harbin, China
| | - Zedong Wu
- Academy of Modern Agriculture and Ecological Environment, Heilongjiang University, 150080, Harbin, China.
| | - Zhi Pi
- Academy of Modern Agriculture and Ecological Environment, Heilongjiang University, 150080, Harbin, China.
| |
Collapse
|
2
|
Gramzow L, Sharma R, Theißen G. Evolutionary Dynamics of FLC-like MADS-Box Genes in Brassicaceae. PLANTS (BASEL, SWITZERLAND) 2023; 12:3281. [PMID: 37765445 PMCID: PMC10536770 DOI: 10.3390/plants12183281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
MADS-box genes encode transcription factors that play important roles in the development and evolution of plants. There are more than a dozen clades of MADS-box genes in angiosperms, of which those with functions in the specification of floral organ identity are especially well-known. From what has been elucidated in the model plant Arabidopsis thaliana, the clade of FLC-like MADS-box genes, comprising FLC-like genes sensu strictu and MAF-like genes, are somewhat special among the MADS-box genes of plants since FLC-like genes, especially MAF-like genes, show unusual evolutionary dynamics, in that they generate clusters of tandemly duplicated genes. Here, we make use of the latest genomic data of Brassicaceae to study this remarkable feature of the FLC-like genes in a phylogenetic context. We have identified all FLC-like genes in the genomes of 29 species of Brassicaceae and reconstructed the phylogeny of these genes employing a Maximum Likelihood method. In addition, we conducted selection analyses using PAML. Our results reveal that there are three major clades of FLC-like genes in Brassicaceae that all evolve under purifying selection but with remarkably different strengths. We confirm that the tandem arrangement of MAF-like genes in the genomes of Brassicaceae resulted in a high rate of duplications and losses. Interestingly, MAF-like genes also seem to be prone to transposition. Considering the role of FLC-like genes sensu lato (s.l.) in the timing of floral transition, we hypothesize that this rapid evolution of the MAF-like genes was a main contributor to the successful adaptation of Brassicaceae to different environments.
Collapse
Affiliation(s)
- Lydia Gramzow
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | | |
Collapse
|
3
|
Voogd C, Brian LA, Wu R, Wang T, Allan AC, Varkonyi-Gasic E. A MADS-box gene with similarity to FLC is induced by cold and correlated with epigenetic changes to control budbreak in kiwifruit. THE NEW PHYTOLOGIST 2022; 233:2111-2126. [PMID: 34907541 DOI: 10.1111/nph.17916] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Temperate perennials require exposure to chilling temperatures to resume growth in the following spring. Growth and dormancy cycles are controlled by complex genetic regulatory networks and are governed by epigenetic mechanisms, but the specific genes and mechanisms remain poorly understood. To understand how seasonal changes and chilling regulate dormancy and growth in the woody perennial vine kiwifruit (Ac, Actinidia chinensis), a transcriptome study of kiwifruit buds in the field and controlled conditions was performed. A MADS-box gene with homology to Arabidopsis FLOWERING LOCUS C (FLC) was identified and characterized. Elevated expression of AcFLC-like (AcFLCL) was detected during bud dormancy and chilling. A long noncoding (lnc) antisense transcript with an expression pattern opposite to AcFLCL and shorter sense noncoding RNAs were identified. Chilling induced an increase in trimethylation of lysine-4 of histone H3 (H3K4me3) in the 5' end of the gene, indicating multiple layers of epigenetic regulation in response to cold. Overexpression of AcFLCL in kiwifruit gave rise to plants with earlier budbreak, whilst gene editing using CRISPR-Cas9 resulted in transgenic lines with substantially delayed budbreak, suggesting a role in activation of growth. These results have implications for the future management and breeding of perennials for resilience to changing climate.
Collapse
Affiliation(s)
- Charlotte Voogd
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Lara A Brian
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Rongmei Wu
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Tianchi Wang
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| |
Collapse
|
4
|
Hirakawa H, Toyoda A, Itoh T, Suzuki Y, Nagano AJ, Sugiyama S, Onodera Y. A spinach genome assembly with remarkable completeness, and its use for rapid identification of candidate genes for agronomic traits. DNA Res 2021; 28:6303609. [PMID: 34142133 PMCID: PMC8231376 DOI: 10.1093/dnares/dsab004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 01/23/2023] Open
Abstract
Spinach (Spinacia oleracea) is grown as a nutritious leafy vegetable worldwide. To accelerate spinach breeding efficiency, a high-quality reference genome sequence with great completeness and continuity is needed as a basic infrastructure. Here, we used long-read and linked-read technologies to construct a de novo spinach genome assembly, designated SOL_r1.1, which was comprised of 287 scaffolds (total size: 935.7 Mb; N50 = 11.3 Mb) with a low proportion of undetermined nucleotides (Ns = 0.34%) and with high gene completeness (BUSCO complete 96.9%). A genome-wide survey of resistance gene analogues identified 695 genes encoding nucleotide-binding site domains, receptor-like protein kinases, receptor-like proteins and transmembrane-coiled coil domains. Based on a high-density double-digest restriction-site associated DNA sequencing-based linkage map, the genome assembly was anchored to six pseudomolecules representing ∼73.5% of the whole genome assembly. In addition, we used SOL_r1.1 to identify quantitative trait loci for bolting timing and fruit/seed shape, which harbour biologically plausible candidate genes, such as homologues of the FLOWERING LOCUS T and EPIDERMAL PATTERNING FACTOR-LIKE genes. The new genome assembly, SOL_r1.1, will serve as a useful resource for identifying loci associated with important agronomic traits and for developing molecular markers for spinach breeding/selection programs.
Collapse
Affiliation(s)
- Hideki Hirakawa
- The Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima 411-8540, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Yutaka Suzuki
- The Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8568, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga 520-2194, Japan
| | - Suguru Sugiyama
- School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yasuyuki Onodera
- The Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
5
|
Maldonado-Taipe N, Patirange DSR, Schmöckel SM, Jung C, Emrani N. Validation of suitable genes for normalization of diurnal gene expression studies in Chenopodium quinoa. PLoS One 2021; 16:e0233821. [PMID: 33705394 PMCID: PMC7951847 DOI: 10.1371/journal.pone.0233821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/18/2021] [Indexed: 11/18/2022] Open
Abstract
Quinoa depicts high nutritional quality and abiotic stress resistance, attracting strong interest in the last years. To unravel the function of candidate genes for agronomically relevant traits, studying their transcriptional activities by RT-qPCR is an important experimental approach. The accuracy of such experiments strongly depends on precise data normalization. To date, validation of potential candidate genes for normalization of diurnal expression studies has not been performed in C. quinoa. We selected eight candidate genes based on transcriptome data and literature survey, including conventionally used reference genes. We used three statistical algorithms (BestKeeper, geNorm and NormFinder) to test their stability and added further validation by a simulation-based strategy. We demonstrated that using different reference genes, including those top ranked by stability, causes significant differences among the resulting diurnal expression patterns. Our results show that isocitrate dehydrogenase enzyme (IDH-A) and polypyrimidine tract-binding protein (PTB) are suitable genes to normalize diurnal expression data of two different quinoa accessions. Moreover, we validated our reference genes by normalizing two known diurnally regulated genes, BTC1 and BBX19. The validated reference genes obtained in this study will improve the accuracy of RT-qPCR data normalization and facilitate gene expression studies in quinoa.
Collapse
Affiliation(s)
| | | | - Sandra M. Schmöckel
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal, Saudi Arabia
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Nazgol Emrani
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
- * E-mail:
| |
Collapse
|
6
|
Golicz AA, Steinfort U, Arya H, Singh MB, Bhalla PL. Analysis of the quinoa genome reveals conservation and divergence of the flowering pathways. Funct Integr Genomics 2020; 20:245-258. [PMID: 31515641 PMCID: PMC7018680 DOI: 10.1007/s10142-019-00711-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/19/2019] [Accepted: 08/14/2019] [Indexed: 01/09/2023]
Abstract
Quinoa (Chenopodium quinoa Willd.) is a grain crop grown in the Andes renowned as a highly nutritious plant exhibiting tolerance to abiotic stress such as drought, cold and high salinity. Quinoa grows across a range of latitudes corresponding to differing day lengths, suggesting regional adaptations of flowering regulation. Improved understanding and subsequent modification of the flowering process, including flowering time, ensuring high yields, is one of the key factors behind expansion of cultivation zones and goals of the crop improvement programs worldwide. However, our understanding of the molecular basis of flower initiation and development in quinoa is limited. Here, we use a computational approach to perform genome-wide identification and analysis of 611 orthologues of the Arabidopsis thaliana flowering genes. Conservation of the genes belonging to the photoperiod, gibberellin and autonomous pathways was observed, while orthologues of the key genes found in the vernalisation pathway (FRI, FLC) were absent from the quinoa genome. Our analysis indicated that on average each Arabidopsis flowering gene has two orthologous copies in quinoa. Several genes including orthologues of MIF1, FT and TSF were identified as homologue-rich genes in quinoa. We also identified 459 quinoa-specific genes uniquely expressed in the flower and/or meristem, with no known orthologues in other species. The genes identified provide a resource and framework for further studies of flowering in quinoa and related species. It will serve as valuable resource for plant biologists, crop physiologists and breeders to facilitate further research and establishment of modern breeding programs for quinoa.
Collapse
Affiliation(s)
- Agnieszka A Golicz
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia.
| | - Ursula Steinfort
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Hina Arya
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Lyu J, Cai Z, Li Y, Suo H, Yi R, Zhang S, Nian H. The Floral Repressor GmFLC-like Is Involved in Regulating Flowering Time Mediated by Low Temperature in Soybean. Int J Mol Sci 2020; 21:E1322. [PMID: 32075331 PMCID: PMC7072909 DOI: 10.3390/ijms21041322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 01/09/2023] Open
Abstract
Soybean is an important crop that is grown worldwide. Flowering time is a critical agricultural trait determining successful reproduction and yields. For plants, light and temperature are important environmental factors that regulate flowering time. Soybean is a typical short-day (SD) plant, and many studies have elucidated the fine-scale mechanisms of how soybean responds to photoperiod. Low temperature can delay the flowering time of soybean, but little is known about the detailed mechanism of how temperature affects soybean flowering. In this study, we isolated GmFLC-like from soybean, which belongs to the FLOWERING LOCUS C clade of the MADS-box family and is intensely expressed in soybean leaves. Heterologous expression of GmFLC-like results in a delayed-flowering phenotype in Arabidopsis. Additional experiments revealed that GmFLC-like is involved in long-term low temperature-triggered late flowering by inhibiting FT gene expression. In addition, yeast one-hybrid, dual-luciferase reporter assay, and electrophoretic mobility shift assay revealed that the GmFLC-like protein could directly repress the expression of FT2a by physically interacting with its promoter region. Taken together, our results revealed that GmFLC-like functions as a floral repressor involved in flowering time during treatments with various low temperature durations. As the only the FLC gene in soybean, GmFLC-like was meaningfully retained in the soybean genome over the course of evolution, and this gene may play an important role in delaying flowering time and providing protective mechanisms against sporadic and extremely low temperatures.
Collapse
Affiliation(s)
- Jing Lyu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (J.L.); (Z.C.); (R.Y.)
| | - Zhandong Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (J.L.); (Z.C.); (R.Y.)
| | - Yonghong Li
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China;
| | - Haicui Suo
- Crop Research Institute, Guangdong Academy of Agriculture, Guangzhou 510642, China;
| | - Rong Yi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (J.L.); (Z.C.); (R.Y.)
- Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Shuai Zhang
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China;
| | - Hai Nian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (J.L.); (Z.C.); (R.Y.)
- Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Xu S, Chong K. Remembering winter through vernalisation. NATURE PLANTS 2018; 4:997-1009. [PMID: 30478363 DOI: 10.1038/s41477-018-0301-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 10/12/2018] [Indexed: 05/10/2023]
Abstract
Vernalisation is the programmed physiological process in which prolonged cold-exposure provides competency to flower in plants; widely found in winter and biennial species, such as Arabidopsis, fruit trees, vegetables and wheat. This phenomenon is regulated by diverse genetic networks, and memory of vernalisation in a life cycle mainly depends on epigenetic mechanisms. However, less is known about how to count winter-dosage for flowering in plants. Here, we compare the vernalisation genetic framework between the dicots Arabidopsis, temperate grasses, wheat, barley and Brachypodium. We discuss vernalisation mechanisms involving crosstalk between phosphorylation and O-GlcNAcylation modification of key proteins, and epigenetic modifications of the key gene VRN1 in wheat. We also highlight the potential evolutionary origins of vernalisation in various species. Current progress toward understanding the regulation of vernalisation requirements provides insight that will inform the design of molecular breeding strategies for winter crops.
Collapse
Affiliation(s)
- Shujuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Höft N, Dally N, Hasler M, Jung C. Haplotype Variation of Flowering Time Genes of Sugar Beet and Its Wild Relatives and the Impact on Life Cycle Regimes. FRONTIERS IN PLANT SCIENCE 2018; 8:2211. [PMID: 29354149 PMCID: PMC5758561 DOI: 10.3389/fpls.2017.02211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/15/2017] [Indexed: 05/24/2023]
Abstract
The species Beta vulgaris encompasses wild and cultivated members with a broad range of phenological development. The annual life cycle is commonly found in sea beets (ssp. maritima) from Mediterranean environments which germinate, bolt, and flower within one season under long day conditions. Biennials such as the cultivated sugar beet (B. vulgaris ssp. vulgaris) as well as sea beets from northern latitudes require prolonged exposure to cold temperature over winter to acquire floral competence. Sugar beet is mainly cultivated for sugar production in Europe and is likely to have originated from sea beet. Flowering time strongly affects seed yield and yield potential and is thus a trait of high agronomic relevance. Besides environmental cues, there are complex genetic networks known to impact life cycle switch in flowering plants. In sugar beet, BTC1, BvBBX19, BvFT1, and BvFT2 are major flowering time regulators. In this study, we phenotyped plants from a diversity Beta panel encompassing cultivated and wild species from different geographical origin. Plants were grown under different day length regimes with and without vernalization. Haplotype analysis of BTC1, BvBBX19, BvFT1, and BvFT2 was performed to identify natural diversity of these genes and their impact on flowering. We found that accessions from northern latitudes flowered significantly later than those from southern latitudes. Some plants did not flower at all, indicating a strong impact of latitude of origin on life cycle. Haplotype analysis revealed a high conservation of the CCT-, REC-, BBX-, and PEBP-domains with regard to SNP occurrence. We identified sequence variation which may impact life cycle adaptation in beet. Our data endorse the importance of BTC1 in the domestication process of cultivated beets and contribute to the understanding of distribution and adaption of Beta species to different life cycle regimes in response to different environments. Moreover, our data provide a resource for haplotypes identified for the major floral regulators in beet.
Collapse
Affiliation(s)
- Nadine Höft
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Nadine Dally
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Mario Hasler
- Lehrfach Variationsstatistik, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
10
|
Bouché F, Woods DP, Amasino RM. Winter Memory throughout the Plant Kingdom: Different Paths to Flowering. PLANT PHYSIOLOGY 2017; 173:27-35. [PMID: 27756819 PMCID: PMC5210730 DOI: 10.1104/pp.16.01322] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/21/2016] [Indexed: 05/18/2023]
Abstract
Molecular mechanisms contribute to the memory of winter in different plant groups.
Collapse
Affiliation(s)
- Frédéric Bouché
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (F.B., D.P.W., R.M.A.); and
- United States Department of Energy Great Lakes Bioenergy Research Center, Madison, Wisconsin 53726 (D.P.W., R.M.A.)
| | - Daniel P Woods
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (F.B., D.P.W., R.M.A.); and
- United States Department of Energy Great Lakes Bioenergy Research Center, Madison, Wisconsin 53726 (D.P.W., R.M.A.)
| | - Richard M Amasino
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (F.B., D.P.W., R.M.A.); and
- United States Department of Energy Great Lakes Bioenergy Research Center, Madison, Wisconsin 53726 (D.P.W., R.M.A.)
| |
Collapse
|
11
|
Tränkner C, Lemnian IM, Emrani N, Pfeiffer N, Tiwari SP, Kopisch-Obuch FJ, Vogt SH, Müller AE, Schilhabel M, Jung C, Grosse I. A Detailed Analysis of the BR1 Locus Suggests a New Mechanism for Bolting after Winter in Sugar Beet ( Beta vulgaris L.). FRONTIERS IN PLANT SCIENCE 2016; 7:1662. [PMID: 27895650 PMCID: PMC5107561 DOI: 10.3389/fpls.2016.01662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/21/2016] [Indexed: 05/29/2023]
Abstract
Sugar beet (Beta vulgaris ssp. vulgaris) is a biennial, sucrose-storing plant, which is mainly cultivated as a spring crop and harvested in the vegetative stage before winter. For increasing beet yield, over-winter cultivation would be advantageous. However, bolting is induced after winter and drastically reduces yield. Thus, post-winter bolting control is essential for winter beet cultivation. To identify genetic factors controlling bolting after winter, a F2 population was previously developed by crossing the sugar beet accessions BETA 1773 with reduced bolting tendency and 93161P with complete bolting after winter. For a mapping-by-sequencing analysis, pools of 26 bolting-resistant and 297 bolting F2 plants were used. Thereby, a single continuous homozygous region of 103 kb was co-localized to the previously published BR1 QTL for post-winter bolting resistance (Pfeiffer et al., 2014). The BR1 locus was narrowed down to 11 candidate genes from which a homolog of the Arabidopsis CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR 73-I (CPSF73-I) was identified as the most promising candidate. A 2 bp deletion within the BETA 1773 allele of BvCPSF73-Ia results in a truncated protein. However, the null allele of BvCPSF73-Ia might partially be compensated by a second BvCPSF73-Ib gene. This gene is located 954 bp upstream of BvCPSF73-Ia and could be responsible for the incomplete penetrance of the post-winter bolting resistance allele of BETA 1773. This result is an important milestone for breeding winter beets with complete bolting resistance after winter.
Collapse
Affiliation(s)
- Conny Tränkner
- Plant Breeding Institute, University of KielKiel, Germany
| | - Ioana M. Lemnian
- Institute of Computer Science, Martin Luther University Halle-WittenbergHalle, Germany
| | - Nazgol Emrani
- Plant Breeding Institute, University of KielKiel, Germany
| | - Nina Pfeiffer
- Plant Breeding Institute, University of KielKiel, Germany
| | | | | | | | | | - Markus Schilhabel
- Institute of Clinical Molecular Biology, University of KielKiel, Germany
| | - Christian Jung
- Plant Breeding Institute, University of KielKiel, Germany
| | - Ivo Grosse
- Institute of Computer Science, Martin Luther University Halle-WittenbergHalle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-JenaLeipzig, Germany
| |
Collapse
|
12
|
Comparative Transcriptomics Indicates a Role for SHORT VEGETATIVE PHASE (SVP) Genes in Mimulus guttatus Vernalization Response. G3-GENES GENOMES GENETICS 2016; 6:1239-49. [PMID: 26921300 PMCID: PMC4856076 DOI: 10.1534/g3.115.026468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The timing of reproduction in response to variable environmental conditions is critical to plant fitness, and is a major driver of taxon differentiation. In the yellow monkey flower, Mimulus guttatus, geographically distinct North American populations vary in their photoperiod and chilling (vernalization) requirements for flowering, suggesting strong local adaptation to their surroundings. Previous analyses revealed quantitative trait loci (QTL) underlying short-day mediated vernalization responsiveness using two annual M. guttatus populations that differed in their vernalization response. To narrow down candidate genes responsible for this variation, and to reveal potential downstream genes, we conducted comparative transcriptomics and quantitative PCR (qPCR) in shoot apices of parental vernalization responsive IM62, and unresponsive LMC24 inbred lines grown under different photoperiods and temperatures. Our study identified several metabolic, hormone signaling, photosynthetic, stress response, and flowering time genes that are differentially expressed between treatments, suggesting a role for their protein products in short-day-mediated vernalization responsiveness. Only a small subset of these genes intersected with candidate genes from the previous QTL study, and, of the main candidates tested with qPCR under nonpermissive conditions, only SHORT VEGETATIVE PHASE (SVP) gene expression met predictions for a population-specific short-day-repressor of flowering that is repressed by cold.
Collapse
|
13
|
Hébrard C, Peterson DG, Willems G, Delaunay A, Jesson B, Lefèbvre M, Barnes S, Maury S. Epigenomics and bolting tolerance in sugar beet genotypes. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:207-25. [PMID: 26463996 PMCID: PMC4682430 DOI: 10.1093/jxb/erv449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In sugar beet (Beta vulgaris altissima), bolting tolerance is an essential agronomic trait reflecting the bolting response of genotypes after vernalization. Genes involved in induction of sugar beet bolting have now been identified, and evidence suggests that epigenetic factors are involved in their control. Indeed, the time course and amplitude of DNA methylation variations in the shoot apical meristem have been shown to be critical in inducing sugar beet bolting, and a few functional targets of DNA methylation during vernalization have been identified. However, molecular mechanisms controlling bolting tolerance levels among genotypes are still poorly understood. Here, gene expression and DNA methylation profiles were compared in shoot apical meristems of three bolting-resistant and three bolting-sensitive genotypes after vernalization. Using Cot fractionation followed by 454 sequencing of the isolated low-copy DNA, 6231 contigs were obtained that were used along with public sugar beet DNA sequences to design custom Agilent microarrays for expression (56k) and methylation (244k) analyses. A total of 169 differentially expressed genes and 111 differentially methylated regions were identified between resistant and sensitive vernalized genotypes. Fourteen sequences were both differentially expressed and differentially methylated, with a negative correlation between their methylation and expression levels. Genes involved in cold perception, phytohormone signalling, and flowering induction were over-represented and collectively represent an integrative gene network from environmental perception to bolting induction. Altogether, the data suggest that the genotype-dependent control of DNA methylation and expression of an integrative gene network participate in bolting tolerance in sugar beet, opening up perspectives for crop improvement.
Collapse
Affiliation(s)
- Claire Hébrard
- Université d'Orléans, Faculté des Sciences, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), UPRES EA 1207, 45067 Orléans, France INRA, USC1328 Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), 45067 Orléans, France SESVanderHave N.V./S.A., Soldatenplein Z2 nr15, Industriepark, B-3300 Tienen, Belgium
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, 2 Research Blvd., Box 9627, Mississippi State, MS 39762, USA
| | - Glenda Willems
- SESVanderHave N.V./S.A., Soldatenplein Z2 nr15, Industriepark, B-3300 Tienen, Belgium
| | - Alain Delaunay
- Université d'Orléans, Faculté des Sciences, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), UPRES EA 1207, 45067 Orléans, France INRA, USC1328 Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), 45067 Orléans, France
| | - Béline Jesson
- IMAXIO/HELIXIO, Biopôle Clermont-Limagne, Saint-Beauzire, F-63360, France
| | - Marc Lefèbvre
- SESVanderHave N.V./S.A., Soldatenplein Z2 nr15, Industriepark, B-3300 Tienen, Belgium
| | - Steve Barnes
- SESVanderHave N.V./S.A., Soldatenplein Z2 nr15, Industriepark, B-3300 Tienen, Belgium
| | - Stéphane Maury
- Université d'Orléans, Faculté des Sciences, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), UPRES EA 1207, 45067 Orléans, France INRA, USC1328 Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), 45067 Orléans, France
| |
Collapse
|
14
|
Blümel M, Dally N, Jung C. Flowering time regulation in crops—what did we learn from Arabidopsis? Curr Opin Biotechnol 2014; 32:121-129. [PMID: 25553537 DOI: 10.1016/j.copbio.2014.11.023] [Citation(s) in RCA: 274] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/28/2014] [Indexed: 02/02/2023]
Abstract
The change from vegetative to reproductive growth is a key developmental switch in flowering plants. In agriculture, flowering is a prerequisite for crop production whenever seeds or fruits are harvested. An intricate network with various (epi-) genetic regulators responding to environmental and endogenous triggers controls the timely onset of flowering. Changes in the expression of a single flowering time (FTi) regulator can suffice to drastically alter FTi. FTi regulation is of utmost importance for genetic improvement of crops. We summarize recent discoveries on FTi regulators in crop species emphasizing crop-specific genes lacking homologs in Arabidopsis thaliana. We highlight pleiotropic effects on agronomically important characters, impact on adaptation to new geographical/climate conditions and future perspectives for crop improvement.
Collapse
Affiliation(s)
- Martina Blümel
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24118 Kiel, Germany
| | - Nadine Dally
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24118 Kiel, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24118 Kiel, Germany.
| |
Collapse
|