1
|
Xie J, Cao B, Xu K. Uncovering the dominant role of root lignin accumulation in silicon-induced resistance to drought in tomato. Int J Biol Macromol 2024; 259:129075. [PMID: 38161004 DOI: 10.1016/j.ijbiomac.2023.129075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/04/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The role of lignin accumulation in silicon-induced resistance has not been fully elucidated. Based on the finding that the root cell wall is protected by silicon, this study explored the role of lignin accumulation in silicon-induced drought resistance in tomato. The decreased silicon concentration of the root confirmed the dominant role of lignin accumulation in silicon-induced drought resistance. The lignin monomer content in the root was enhanced by silicon, and was accompanied by the enhancement of drought resistance. Histochemical and transcriptional analyses of lignin showed that lignin accumulation was promoted by silicon under drought stress. In addition, in the root zone, silicon-induced lignin accumulation increased as the distance from the root tip increased under drought stress. Surprisingly, the Dwarf gene was upregulated by silicon in the roots. Micro Tom Dwarf gene mutation and Micro Tom-d + Dwarf gene functional complementation were further used to confirm that Dwarf regulates the spatial accuracy of SHR expression in the root. Therefore, root lignin accumulation plays a dominant role in silicon-induced drought resistance in tomato and the regulation of spatial accuracy of root lignification by silicon under drought stress is through the BR pathway, thereby avoiding the inhibition of root growth caused by root lignification.
Collapse
Affiliation(s)
- Jiaqi Xie
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, China
| | - Bili Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, China.
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
2
|
Melash AA, Bogale AA, Bytyqi B, Nyandi MS, Ábrahám ÉB. Nutrient management: as a panacea to improve the caryopsis quality and yield potential of durum wheat ( Triticum turgidum L.) under the changing climatic conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1232675. [PMID: 37701803 PMCID: PMC10493400 DOI: 10.3389/fpls.2023.1232675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/27/2023] [Indexed: 09/14/2023]
Abstract
The increasing human population and the changing climate, which have given rise to frequent drought spells, pose a serious threat to global food security, while identification of high-yielding drought-tolerant genotypes coupled with nutrient management remains a proficient approach to cope with these challenges. An increase in seasonal temperature, recurring drought stress, and elevated atmospheric CO2 are alarmingly affecting durum wheat production, productivity, grain quality, and the human systems it supports. An increase in atmospheric carbon dioxide can improve wheat grain yield in a certain amount, but the right amount of nutrients, water, and other required conditions should be met to realize this benefit. Nutrients including nitrogen, silicon, and sulfur supply could alleviate the adverse effects of abiotic stress by enhancing antioxidant defense and improving nitrogen assimilation, although the effects on plant tolerance to drought stress varied with nitrogen ionic forms. The application of sewage sludge to durum wheat also positively impacts its drought stress tolerance by triggering high accumulation of osmoregulators, improving water retention capacity in the soil, and promoting root growth. These beneficial effect of nutrients contribute to durum wheat ability to withstand and recover from abiotic stress conditions, ultimately enhance its productivity and resilience. While these nutrients can provide benefits when applied in appropriate amounts, their excessive use can lead to adverse environmental consequences. Advanced technologies such as precision nutrient management, unmanned aerial vehicle-based spraying, and anaerobic digestion play significant roles in reducing the negative effects associated with nutrients like sewage sludge, zinc, nanoparticles and silicon fertilizers. Hence, nutrient management practices offer significant potential to enhance the caryopsis quality and yield potential of durum wheat. Through implementing tailored nutrient management strategies, farmers, breeders, and agronomists can contribute to sustainable durum wheat production, ensuring food security and maintaining the economic viability of the crop under the changing climatic conditions.
Collapse
Affiliation(s)
- Anteneh Agezew Melash
- Kálmán Kerpely Doctoral School of Crop Production and Horticultural Science, University of Debrecen, Debrecen, Hungary
- Department of Horticulture, College of Agriculture and Environmental Science, Debark University, Debark, Ethiopia
| | - Amare Assefa Bogale
- Institute of Crop Production, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Bekir Bytyqi
- Kálmán Kerpely Doctoral School of Crop Production and Horticultural Science, University of Debrecen, Debrecen, Hungary
| | - Muhoja Sylivester Nyandi
- Kálmán Kerpely Doctoral School of Crop Production and Horticultural Science, University of Debrecen, Debrecen, Hungary
| | - Éva Babett Ábrahám
- Faculty of Agricultural, Food Sciences and Environmental Management, Institute of Crop Sciences, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
de Tombeur F, Raven JA, Toussaint A, Lambers H, Cooke J, Hartley SE, Johnson SN, Coq S, Katz O, Schaller J, Violle C. Why do plants silicify? Trends Ecol Evol 2023; 38:275-288. [PMID: 36428125 DOI: 10.1016/j.tree.2022.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022]
Abstract
Despite seminal papers that stress the significance of silicon (Si) in plant biology and ecology, most studies focus on manipulations of Si supply and mitigation of stresses. The ecological significance of Si varies with different levels of biological organization, and remains hard to capture. We show that the costs of Si accumulation are greater than is currently acknowledged, and discuss potential links between Si and fitness components (growth, survival, reproduction), environment, and ecosystem functioning. We suggest that Si is more important in trait-based ecology than is currently recognized. Si potentially plays a significant role in many aspects of plant ecology, but knowledge gaps prevent us from understanding its possible contribution to the success of some clades and the expansion of specific biomes.
Collapse
Affiliation(s)
- Félix de Tombeur
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France; School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, Australia.
| | - John A Raven
- Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, UK; School of Biological Sciences, The University of Western Australia, Perth, Australia; Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, Australia
| | - Aurèle Toussaint
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Hans Lambers
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, Australia
| | - Julia Cooke
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK
| | - Sue E Hartley
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Sylvain Coq
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Ofir Katz
- Dead Sea and Arava Science Center, Mount Masada, Tamar Regional Council, Israel; Eilat Campus, Ben-Gurion University of the Negev, Eilat, Israel
| | - Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
4
|
Ahire ML, Mundada PS, Nikam TD, Bapat VA, Penna S. Multifaceted roles of silicon in mitigating environmental stresses in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:291-310. [PMID: 34826705 DOI: 10.1016/j.plaphy.2021.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/23/2021] [Accepted: 11/09/2021] [Indexed: 05/28/2023]
Abstract
Food security relies on plant productivity and plant's resilience to climate change driven environmental stresses. Plants employ diverse adaptive mechanisms of stress-signalling pathways, antioxidant defense, osmotic adjustment, nutrient homeostasis and phytohormones. Over the last few decades, silicon has emerged as a beneficial element for enhancing plant growth productivity. Silicon ameliorates biotic and abiotic stress conditions by regulating the physiological, biochemical and molecular responses. Si-uptake and transport are facilitated by specialized Si-transporters (Lsi1, Lsi2, Lsi3, and Lsi6) and, the differential root anatomy has been shown to reflect in the varying Si-uptake in monocot and dicot plants. Silicon mediates a number of plant processes including osmotic, ionic stress responses, metabolic processes, stomatal physiology, phytohormones, nutrients and source-sink relationship. Further studies on the transcriptional and post-transcriptional regulation of the Si transporter genes are required for better uptake and transport in spatial mode and under different stress conditions. In this article, we present an account of the availability, uptake, Si transporters and, the role of Silicon to alleviate environmental stress and improve plant productivity.
Collapse
Affiliation(s)
- M L Ahire
- Department of Botany, Yashavantrao Chavan Institute of Science, Satara, 415 001, Maharashtra, India
| | - P S Mundada
- Department of Botany, Savitribai Phule Pune University, Pune, 411 007, Maharashtra, India; Department of Biotechnology, Yashavantrao Chavan Institute of Science, Satara, 415 001, Maharashtra, India
| | - T D Nikam
- Department of Botany, Savitribai Phule Pune University, Pune, 411 007, Maharashtra, India
| | - V A Bapat
- Department of Biotechnology, Shivaji University, Kolhapur, 416 004, Maharashtra, India
| | - Suprasanna Penna
- Homi Bhabha National Institute, Bhabha Atomic Research Centre, Mumbai, 400 094, Maharashtra, India.
| |
Collapse
|
5
|
Wang M, Wang R, Mur LAJ, Ruan J, Shen Q, Guo S. Functions of silicon in plant drought stress responses. HORTICULTURE RESEARCH 2021; 8:254. [PMID: 34848683 PMCID: PMC8633297 DOI: 10.1038/s41438-021-00681-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 05/18/2023]
Abstract
Silicon (Si), the second most abundant element in Earth's crust, exerts beneficial effects on the growth and productivity of a variety of plant species under various environmental conditions. However, the benefits of Si and its importance to plants are controversial due to differences among the species, genotypes, and the environmental conditions. Although Si has been widely reported to alleviate plant drought stress in both the Si-accumulating and nonaccumulating plants, the underlying mechanisms through which Si improves plant water status and maintains water balance remain unclear. The aim of this review is to summarize the morphoanatomical, physiological, biochemical, and molecular processes that are involved in plant water status that are regulated by Si in response to drought stress, especially the integrated modulation of Si-triggered drought stress responses in Si accumulators and intermediate- and excluder-type plants. The key mechanisms influencing the ability of Si to mitigate the effects of drought stress include enhancing water uptake and transport, regulating stomatal behavior and transpirational water loss, accumulating solutes and osmoregulatory substances, and inducing plant defense- associated with signaling events, consequently maintaining whole-plant water balance. This study evaluates the ability of Si to maintain water balance under drought stress conditions and suggests future research that is needed to implement the use of Si in agriculture. Considering the complex relationships between Si and different plant species, genotypes, and the environment, detailed studies are needed to understand the interactions between Si and plant responses under stress conditions.
Collapse
Affiliation(s)
- Min Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ruirui Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Luis Alejandro Jose Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Jianyun Ruan
- Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture), Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, Zhejiang, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
6
|
Wang M, Wang R, Mur LAJ, Ruan J, Shen Q, Guo S. Functions of silicon in plant drought stress responses. HORTICULTURE RESEARCH 2021; 8:254. [PMID: 34848683 DOI: 10.1038/s41438-021-00681-1/6491157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 05/25/2023]
Abstract
Silicon (Si), the second most abundant element in Earth's crust, exerts beneficial effects on the growth and productivity of a variety of plant species under various environmental conditions. However, the benefits of Si and its importance to plants are controversial due to differences among the species, genotypes, and the environmental conditions. Although Si has been widely reported to alleviate plant drought stress in both the Si-accumulating and nonaccumulating plants, the underlying mechanisms through which Si improves plant water status and maintains water balance remain unclear. The aim of this review is to summarize the morphoanatomical, physiological, biochemical, and molecular processes that are involved in plant water status that are regulated by Si in response to drought stress, especially the integrated modulation of Si-triggered drought stress responses in Si accumulators and intermediate- and excluder-type plants. The key mechanisms influencing the ability of Si to mitigate the effects of drought stress include enhancing water uptake and transport, regulating stomatal behavior and transpirational water loss, accumulating solutes and osmoregulatory substances, and inducing plant defense- associated with signaling events, consequently maintaining whole-plant water balance. This study evaluates the ability of Si to maintain water balance under drought stress conditions and suggests future research that is needed to implement the use of Si in agriculture. Considering the complex relationships between Si and different plant species, genotypes, and the environment, detailed studies are needed to understand the interactions between Si and plant responses under stress conditions.
Collapse
Affiliation(s)
- Min Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ruirui Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Luis Alejandro Jose Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Jianyun Ruan
- Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture), Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, Zhejiang, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
7
|
Putra R, Vandegeer RK, Karan S, Powell JR, Hartley SE, Johnson SN. Silicon enrichment alters functional traits in legumes depending on plant genotype and symbiosis with nitrogen‐fixing bacteria. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Rocky Putra
- Hawkesbury Institute for the Environment Western Sydney University Richmond NSW Australia
| | - Rebecca K. Vandegeer
- Hawkesbury Institute for the Environment Western Sydney University Richmond NSW Australia
| | - Shawan Karan
- Technical Support Services and Mass Spectrometry Facility Western Sydney University Campbelltown NSW Australia
| | - Jeff R. Powell
- Hawkesbury Institute for the Environment Western Sydney University Richmond NSW Australia
| | - Susan E. Hartley
- Department of Biology York Environmental Sustainability Institute University of York York UK
- Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| | - Scott N. Johnson
- Hawkesbury Institute for the Environment Western Sydney University Richmond NSW Australia
| |
Collapse
|
8
|
Klotz M, Schaller J, Kurze S, Engelbrecht BMJ. Variation of foliar silicon concentrations in temperate forbs: effects of soil silicon, phylogeny and habitat. Oecologia 2021; 196:977-987. [PMID: 34259905 PMCID: PMC8367921 DOI: 10.1007/s00442-021-04978-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/21/2021] [Indexed: 10/24/2022]
Abstract
Silicon (Si) accumulation is known to alleviate various biotic and abiotic stressors in plants with potential ecological consequences. However, for dicotyledonous plants our understanding of Si variation remains limited. We conducted a comparative experimental study to investigate (1) interspecific variation of foliar Si concentrations across 37 dicotyledonous forbs of temperate grasslands, (2) intraspecific variation in foliar Si concentration in response to soil Si availability, the influence of (3) phylogenetic relatedness, and (4) habitat association to moisture. Foliar Si differed markedly (approx. 70-fold) across the investigated forbs, with some species exhibiting Si accumulation similar to grasses. Foliar Si increased with soil Si availability, but the response varied across species: species with higher Si accumulation capacity showed a stronger response, indicating that they did not actively upregulate Si uptake under low soil Si availability. Foliar Si showed a pronounced phylogenetic signal, i.e., closely related species exhibited more similar foliar Si concentrations than distantly related species. Significant differences in foliar Si concentration within closely related species pairs nevertheless support that active Si uptake and associated high Si concentrations has evolved multiple times in forbs. Foliar Si was not higher in species associated with drier habitats, implying that in dicotyledonous forbs of temperate grasslands high foliar Si is not an adaptive trait to withstand drought. Our results demonstrated considerable inter- and intraspecific variation in foliar Si concentration in temperate forbs. This variation should have pervasive, but so far understudied, ecological consequences for community composition and functioning of temperate grasslands under land-use and climate change.
Collapse
Affiliation(s)
- Marius Klotz
- Department of Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany.
| | - Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany
| | - Susanne Kurze
- Department of Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
| | - Bettina M J Engelbrecht
- Department of Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
9
|
ALKahtani M, Hafez Y, Attia K, Al-Ateeq T, Ali MAM, Hasanuzzaman M, Abdelaal K. Bacillus thuringiensis and Silicon Modulate Antioxidant Metabolism and Improve the Physiological Traits to Confer Salt Tolerance in Lettuce. PLANTS 2021; 10:plants10051025. [PMID: 34065369 PMCID: PMC8160669 DOI: 10.3390/plants10051025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/19/2021] [Accepted: 05/19/2021] [Indexed: 01/08/2023]
Abstract
We investigated the impact of Bacillus thuringiensis as seed treatment and application with silicon on lettuce plants exposed to salinity levels (4 dS m−1 and 8 dS m−1). Results revealed that leaves number, head weight, total yield, relative water content (RWC), and chlorophyll a and b declined considerably due to two salinity levels. Oxidative stress markers, i.e., hydrogen peroxide (H2O2), superoxide (O2−), and lipid peroxidation (MDA) dramatically augmented in stressed plants. On the other hand, leaves number, total yield, RWC, and chlorophyll a, b in stressed lettuce plants were considerably enhanced because of the application of Si or B. thuringiensis. In contrast, EL%, MDA, and H2O2 were considerably reduced in treated lettuce plants with Si and B. thuringiensis. In addition, the treatment with Si and B. thuringiensis increased head weight (g) and total yield (ton hectare-1), and caused up-regulation of proline and catalase, superoxide dismutase, peroxidase, and polyphenol oxidase activity in lettuce leaves under salinity conditions.
Collapse
Affiliation(s)
- Muneera ALKahtani
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh POX 102275-11675, Saudi Arabia
- Correspondence: (M.A.); (K.A.)
| | - Yaser Hafez
- Excellence Center (EPCRS), Plant Pathology and Biotechnology Lab, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| | - Kotb Attia
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh POX 2455-11451, Saudi Arabia; (K.A.); (T.A.-A.)
- Rice Biotechnology Lab, Rice Department, Field Crops Research Institute, ARC, Sakha 33717, Egypt
| | - Talal Al-Ateeq
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh POX 2455-11451, Saudi Arabia; (K.A.); (T.A.-A.)
| | - Mohamed A. M. Ali
- Department of Horticulture, Faculty of Agriculture, New Valley University, El-Kharga 72511, Egypt;
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Khaled Abdelaal
- Excellence Center (EPCRS), Plant Pathology and Biotechnology Lab, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
- Correspondence: (M.A.); (K.A.)
| |
Collapse
|
10
|
Katz O, Puppe D, Kaczorek D, Prakash NB, Schaller J. Silicon in the Soil-Plant Continuum: Intricate Feedback Mechanisms within Ecosystems. PLANTS (BASEL, SWITZERLAND) 2021; 10:652. [PMID: 33808069 PMCID: PMC8066056 DOI: 10.3390/plants10040652] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 11/28/2022]
Abstract
Plants' ability to take up silicon from the soil, accumulate it within their tissues and then reincorporate it into the soil through litter creates an intricate network of feedback mechanisms in ecosystems. Here, we provide a concise review of silicon's roles in soil chemistry and physics and in plant physiology and ecology, focusing on the processes that form these feedback mechanisms. Through this review and analysis, we demonstrate how this feedback network drives ecosystem processes and affects ecosystem functioning. Consequently, we show that Si uptake and accumulation by plants is involved in several ecosystem services like soil appropriation, biomass supply, and carbon sequestration. Considering the demand for food of an increasing global population and the challenges of climate change, a detailed understanding of the underlying processes of these ecosystem services is of prime importance. Silicon and its role in ecosystem functioning and services thus should be the main focus of future research.
Collapse
Affiliation(s)
- Ofir Katz
- Dead Sea and Arava Science Center, Mt. Masada, Tamar Regional Council, 86910 Tamar, Israel
- Eilat Campus, Ben-Gurion University of the Negev, Hatmarim Blv, 8855630 Eilat, Israel
| | - Daniel Puppe
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (D.P.); (D.K.); (J.S.)
| | - Danuta Kaczorek
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (D.P.); (D.K.); (J.S.)
- Department of Soil Environment Sciences, Warsaw University of Life Sciences (SGGW), 02776 Warsaw, Poland
| | - Nagabovanalli B. Prakash
- Department of Soil Science and Agricultural Chemistry, University of Agricultural Sciences, GKVK, Bangalore 560065, India;
| | - Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (D.P.); (D.K.); (J.S.)
| |
Collapse
|
11
|
Hömberg A, Knorr KH, Schaller J. Methane Production Rate during Anoxic Litter Decomposition Depends on Si Mass Fractions, Nutrient Stoichiometry, and Carbon Quality. PLANTS 2021; 10:plants10040618. [PMID: 33805021 PMCID: PMC8063934 DOI: 10.3390/plants10040618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
While Si influences nutrient stoichiometry and decomposition of graminoid litter, it is still unclear how Si influences anoxic litter decomposition and CH4 formation in graminoid dominated fen peatlands. First, Eriophorum vaginatum plants were grown under different Si and P availabilities, then shoots and roots were characterized regarding their proportions of C, Si, N and P and regarding C quality. Subsequently the Eriophorum shoots were subjected to anoxic decomposition. We hypothesized; that (I) litter grown under high Si availability would show a higher Si but lower nutrient mass fractions and a lower share of recalcitrant carbon moieties; (II) high-Si litter would show higher CH4 and CO2 production rates during anoxic decomposition; (III) methanogenesis would occur earlier in less recalcitrant high-Si litter, compared to low-Si litter. We found a higher Si mass fraction that coincides with a general decrease in C and N mass fractions and decreased share of recalcitrant organic moieties. For high-Si litter, the CH4 production rate was higher, but there was no long-term influence on the CO2 production rate. More labile high-Si litter and a differential response in nutrient stoichiometry led to faster onset of methanogenesis. This may have important implications for our understanding of anaerobic carbon turnover in graminoid-rich fens.
Collapse
Affiliation(s)
- Annkathrin Hömberg
- Ecohydrology & Biogeochemistry Group, University of Münster, Heisenbergstraße 2, 48149 Münster, Germany;
- Correspondence:
| | - Klaus-Holger Knorr
- Ecohydrology & Biogeochemistry Group, University of Münster, Heisenbergstraße 2, 48149 Münster, Germany;
| | - Jörg Schaller
- Leibniz Center for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany;
| |
Collapse
|
12
|
Thorne SJ, Hartley SE, Maathuis FJM. Is Silicon a Panacea for Alleviating Drought and Salt Stress in Crops? FRONTIERS IN PLANT SCIENCE 2020; 11:1221. [PMID: 32973824 PMCID: PMC7461962 DOI: 10.3389/fpls.2020.01221] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/27/2020] [Indexed: 05/04/2023]
Abstract
Salinity affects around 20% of all arable land while an even larger area suffers from recurrent drought. Together these stresses suppress global crop production by as much as 50% and their impacts are predicted to be exacerbated by climate change. Infrastructure and management practices can mitigate these detrimental impacts, but are costly. Crop breeding for improved tolerance has had some success but is progressing slowly and is not keeping pace with climate change. In contrast, Silicon (Si) is known to improve plant tolerance to a range of stresses and could provide a sustainable, rapid and cost-effective mitigation method. The exact mechanisms are still under debate but it appears Si can relieve salt stress via accumulation in the root apoplast where it reduces "bypass flow of ions to the shoot. Si-dependent drought relief has been linked to lowered root hydraulic conductance and reduction of water loss through transpiration. However, many alternative mechanisms may play a role such as altered gene expression and increased accumulation of compatible solutes. Oxidative damage that occurs under stress conditions can be reduced by Si through increased antioxidative enzymes while Si-improved photosynthesis has also been reported. Si fertilizer can be produced relatively cheaply and to assess its economic viability to improve crop stress tolerance we present a cost-benefit analysis. It suggests that Si fertilization may be beneficial in many agronomic settings but may be beyond the means of smallholder farmers in developing countries. Si application may also have disadvantages, such as increased soil pH, less efficient conversion of crops into biofuel and reduced digestibility of animal fodder. These issues may hamper uptake of Si fertilization as a routine agronomic practice. Here, we critically evaluate recent literature, quantifying the most significant physiological changes associated with Si in plants under drought and salinity stress. Analyses show that metrics associated with photosynthesis, water balance and oxidative stress all improve when Si is present during plant exposure to salinity and drought. We further conclude that most of these changes can be explained by apoplastic roles of Si while there is as yet little evidence to support biochemical roles of this element.
Collapse
Affiliation(s)
- Sarah J. Thorne
- Department of Biology, University of York, York, United Kingdom
| | - Susan E. Hartley
- Department of Biology, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
13
|
Johnson SN, Rowe RC, Hall CR. Silicon is an inducible and effective herbivore defence against Helicoverpa punctigera (Lepidoptera: Noctuidae) in soybean. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:417-422. [PMID: 31813402 DOI: 10.1017/s0007485319000798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The role of silicon (Si) in alleviating the effects of biotic and abiotic stresses, including defence against insect herbivores, in plants is widely reported. Si defence against insect herbivores is overwhelmingly studied in grasses (especially the cereals), many of which are hyper-accumulators of Si. Despite being neglected, legumes such as soybean (Glycine max) have the capacity to control Si accumulation and benefit from increased Si supply. We tested how Si supplementation via potassium, sodium or calcium silicate affected a soybean pest, the native budworm Helicoverpa punctigera Wallengren (Lepidoptera: Noctuidae). Herbivory reduced leaf biomass similarly in Si-supplemented (+Si) and non-supplemented (-Si) plants (c. 29 and 23%, respectively) relative to herbivore-free plants. Both Si supplementation and herbivory increased leaf Si concentrations. In relative terms, herbivores induced Si uptake by c. 19% in both +Si and -Si plants. All Si treatments reduced H. punctigera relative growth rates (RGR) to a similar extent for potassium (-41%), sodium (-49%) and calcium (-48%) silicate. Moreover, there was a strong negative correlation between Si accumulation in leaves and herbivore RGR. To our knowledge, this is only the second report of Si-based herbivore defence in soybean; the rapid increase in leaf Si following herbivory being indicative of an induced defence. Taken together with the other benefits of Si supplementation of legumes, Si could prove an effective herbivore defence in legumes as well as grasses.
Collapse
Affiliation(s)
- Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, NSW, Australia
| | - Rhiannon C Rowe
- Hawkesbury Institute for the Environment, Western Sydney University, NSW, Australia
| | - Casey R Hall
- Hawkesbury Institute for the Environment, Western Sydney University, NSW, Australia
| |
Collapse
|
14
|
Putra R, Powell JR, Hartley SE, Johnson SN. Is it time to include legumes in plant silicon research? Funct Ecol 2020. [DOI: 10.1111/1365-2435.13565] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Rocky Putra
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| | - Jeff R. Powell
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| | - Susan E. Hartley
- York Environmental Sustainability Institute, Department of Biology University of York York UK
| | - Scott N. Johnson
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| |
Collapse
|
15
|
Silicon and Plant-Animal Interactions: Towards an Evolutionary Framework. PLANTS 2020; 9:plants9040430. [PMID: 32244583 PMCID: PMC7238073 DOI: 10.3390/plants9040430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022]
Abstract
Herbivory is fundamental in ecology, being a major driver of ecosystem structure and functioning. Plant Si and phytoliths play a significant antiherbivory role, the understanding of which and of its evolutionary context will increase our understanding of this phenomenon, its origins, and its significance for past, extant, and future ecosystems. To achieve this goal, we need a superdisciplinary evolutionary framework connecting the role of Si in plant–herbivore interactions, in global processes, and in plant and herbivore evolution. To do this properly, we should acknowledge and incorporate into our work some basic facts that are too often overlooked. First, there is great taxonomic variance both in plant Si contents, forms, and roles, but also in herbivore responses, dietary preferences, and in fossil evidence. Second, species and their traits, as well as whole ecosystems, should be seen in the context of their entire evolutionary history and may therefore reflect not only adaptations to extant selective factors but also anachronistic traits. Third, evolutionary history and evolutionary transitions are complex, resulting in true and apparent asynchronisms. Fourth, evolution and ecology are multiscalar, in which various phenomena and processes act at various scales. Taking these issues into consideration will improve our ability to develop this needed theoretical framework and will bring us closer to gaining a more complete understanding of one of the most exciting and elusive phenomena in plant biology and ecology.
Collapse
|
16
|
Nawaz MA, Zakharenko AM, Zemchenko IV, Haider MS, Ali MA, Imtiaz M, Chung G, Tsatsakis A, Sun S, Golokhvast KS. Phytolith Formation in Plants: From Soil to Cell. PLANTS (BASEL, SWITZERLAND) 2019; 8:E249. [PMID: 31357485 PMCID: PMC6724085 DOI: 10.3390/plants8080249] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 01/19/2023]
Abstract
Silica is deposited extra- and intracellularly in plants in solid form, as phytoliths. Phytoliths have emerged as accepted taxonomic tools and proxies for reconstructing ancient flora, agricultural economies, environment, and climate. The discovery of silicon transporter genes has aided in the understanding of the mechanism of silicon transport and deposition within the plant body and reconstructing plant phylogeny that is based on the ability of plants to accumulate silica. However, a precise understanding of the process of silica deposition and the formation of phytoliths is still an enigma and the information regarding the proteins that are involved in plant biosilicification is still scarce. With the observation of various shapes and morphologies of phytoliths, it is essential to understand which factors control this mechanism. During the last two decades, significant research has been done in this regard and silicon research has expanded as an Earth-life science superdiscipline. We review and integrate the recent knowledge and concepts on the uptake and transport of silica and its deposition as phytoliths in plants. We also discuss how different factors define the shape, size, and chemistry of the phytoliths and how biosilicification evolved in plants. The role of channel-type and efflux silicon transporters, proline-rich proteins, and siliplant1 protein in transport and deposition of silica is presented. The role of phytoliths against biotic and abiotic stress, as mechanical barriers, and their use as taxonomic tools and proxies, is highlighted.
Collapse
Affiliation(s)
- Muhammad Amjad Nawaz
- Education and Scientific Center of Nanotechnology, Far Eastern Federal University, 690950 Vladivostok, Russia
| | | | | | - Muhammad Sajjad Haider
- Department of Forestry, College of Agriculture, University of Sargodha, 40100 Sargodha, Pakistan
| | - Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, 38040 Faisalabad, Pakistan
- Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, 38040 Faisalabad, Pakistan
| | - Muhammad Imtiaz
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, 38040 Faisalabad, Pakistan
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, 59626 Yeosu-Si, Korea
| | - Aristides Tsatsakis
- Department of Toxicology and Forensics, School of Medicine, University of Crete, Heraklion GR-71003, Crete, Greece
| | - Sangmi Sun
- Department of Biotechnology, Chonnam National University, 59626 Yeosu-Si, Korea.
| | - Kirill Sergeyevich Golokhvast
- Education and Scientific Center of Nanotechnology, Far Eastern Federal University, 690950 Vladivostok, Russia.
- Pacific Geographical Institute, FEB RAS, 7 Radio street, Vladivostok 690014, Russia.
| |
Collapse
|
17
|
Ishizawa H, Niiyama K, Iida Y, Shari NHZ, Ripin A, Kitajima K. Spatial variations of soil silicon availability and biogenic silicon flux in a lowland tropical forest in Malaysia. Ecol Res 2019. [DOI: 10.1111/1440-1703.12025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hidehiro Ishizawa
- Faculty and Graduate School of Agriculture, Kyoto University Kyoto Japan
| | - Kaoru Niiyama
- Forestry and Forest Products Research Institute Tsukuba Ibaraki Japan
| | - Yoshiko Iida
- Forestry and Forest Products Research Institute Tsukuba Ibaraki Japan
| | - Nur H. Z. Shari
- Forestry and Environment Division Forest Research Institute Malaysia (FRIM) Kepong Selangor Malaysia
| | - Azizi Ripin
- Green Forest Resources Rawang Selangor Malaysia
| | - Kaoru Kitajima
- Faculty and Graduate School of Agriculture, Kyoto University Kyoto Japan
| |
Collapse
|
18
|
Katz O. Plant Silicon and Phytolith Research and the Earth-Life Superdiscipline. FRONTIERS IN PLANT SCIENCE 2018; 9:1281. [PMID: 30233622 PMCID: PMC6134949 DOI: 10.3389/fpls.2018.01281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/15/2018] [Indexed: 05/29/2023]
|
19
|
Frew A, Weston LA, Reynolds OL, Gurr GM. The role of silicon in plant biology: a paradigm shift in research approach. ANNALS OF BOTANY 2018; 121:1265-1273. [PMID: 29438453 PMCID: PMC6007437 DOI: 10.1093/aob/mcy009] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/15/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Silicon (Si) is known to have numerous beneficial effects on plants, alleviating diverse forms of abiotic and biotic stress. Research on this topic has accelerated in recent years and revealed multiple effects of Si in a range of plant species. Available information regarding the impact of Si on plant defence, growth and development is fragmented, discipline-specific, and usually focused on downstream, distal phenomena rather than underlying effects. Accordingly, there is a growing need for studies that address fundamental metabolic and regulatory processes, thereby allowing greater unification and focus of current research across disciplines. SCOPE AND CONCLUSIONS Silicon is often regarded as a plant nutritional 'non-entity'. A suite of factors associated with Si have been recently identified, relating to plant chemistry, physiology, gene regulation and interactions with other organisms. Research to date has typically focused on the impact of Si application upon plant stress responses. However, the fundamental, underlying mechanisms that account for the manifold effects of Si in plant biology remain undefined. Here, the known effects of Si in higher plants relating to alleviation of both abiotic and biotic stress are briefly reviewed and the potential importance of Si in plant primary metabolism is discussed, highlighting the need for a unifying research framework targeting common underlying mechanisms. The traditional approach of discipline-specific work on single stressors in individual plant species is currently inadequate. Thus, a holistic and comparative approach is proposed to assess the mode of action of Si between plant trait types (e.g. C3, C4 and CAM; Si accumulators and non-accumulators) and between biotic and abiotic stressors (pathogens, herbivores, drought, salt), considering potential pathways (i.e. primary metabolic processes) highlighted by recent empirical evidence. Utilizing genomic, transcriptomic, proteomic and metabolomic approaches in such comparative studies will pave the way for unification of the field and a deeper understanding of the role of Si in plants.
Collapse
Affiliation(s)
- Adam Frew
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Graham Centre for Agricultural Innovation, Wagga Wagga, New South Wales, Australia
- For correspondence. E-mail
| | - Leslie A Weston
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Graham Centre for Agricultural Innovation, Wagga Wagga, New South Wales, Australia
| | - Olivia L Reynolds
- Graham Centre for Agricultural Innovation, Wagga Wagga, New South Wales, Australia
- Biosecurity and Food Safety, New South Wales Department of Primary Industries, Narellan, New South Wales, Australia
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Geoff M Gurr
- Graham Centre for Agricultural Innovation, Wagga Wagga, New South Wales, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Orange, New South Wales, Australia
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
20
|
López-Pérez MC, Pérez-Labrada F, Ramírez-Pérez LJ, Juárez-Maldonado A, Morales-Díaz AB, González-Morales S, García-Dávila LR, García-Mata J, Benavides-Mendoza A. Dynamic Modeling of Silicon Bioavailability, Uptake, Transport, and Accumulation: Applicability in Improving the Nutritional Quality of Tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:647. [PMID: 29868098 PMCID: PMC5966646 DOI: 10.3389/fpls.2018.00647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/27/2018] [Indexed: 05/08/2023]
Abstract
Silicon is an essential nutrient for humans, additionally is beneficial for terrestrial plants. In plants Si enhances tolerance to different types of stress; in humans, it improves the metabolism and increases the strength of skeletal and connective tissues as well as of the immune system. Most of the Si intake of humans come from edible plants creating a double benefit: first, because the absorption of Si increases the antioxidants and other phytochemicals in plants, thereby increasing its functional value, and second because the higher concentration of Si in plants increases intake in human consumers. Therefore, it is desirable to raise the availability of Si in the human diet through the agronomic management of Si accumulator species, such as corn, wheat, rice, soybeans, and beans. But also in such species as tomatoes, carrots, and other vegetables, whose per capita consumption has increased. However, there are few systematized recommendations for the application and management of Si fertilizers based on the physicochemical factors that determine their availability, absorption, transport, and deposition in cells and tissues. This study presents updated information about edaphic and plant factors, which determine the absorption, transport, and deposition rates in edible organs. The information was integrated into an estimated dynamic model that approximates the processes previously mentioned in a model that represents a tomato crop in soil and soilless conditions. In the model, on the other hand, was integrated the available information about key environmental factors related to Si absorption and mobilization, such as the temperature, pH, and soil organic matter. The output data of the model were compared against information collected in the literature, finding an adequate adjustment. The use of the model for educational or technical purposes, including the possibility of extending it to other horticultural crops, can increase the understanding of the agronomic management of Si in plants.
Collapse
Affiliation(s)
- Mari C. López-Pérez
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo, Mexico
| | - Fabián Pérez-Labrada
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo, Mexico
| | - Lino J. Ramírez-Pérez
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo, Mexico
| | | | - América B. Morales-Díaz
- Robótica y Manufactura Avanzada, Centro de Investigación y de Estudios Avanzados Unidad Saltillo, Ramos Arizpe, Mexico
| | - Susana González-Morales
- Departamento de Horticultura, CONACYT-Universidad Autónoma Agraria Antonio Narro, Saltillo, Mexico
| | | | | | - Adalberto Benavides-Mendoza
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo, Mexico
- *Correspondence: Adalberto Benavides-Mendoza
| |
Collapse
|
21
|
Etesami H, Jeong BR. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:881-896. [PMID: 28968941 DOI: 10.1016/j.ecoenv.2017.09.063] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/17/2017] [Accepted: 09/22/2017] [Indexed: 05/22/2023]
Abstract
In the era present, due to increasing incidences of a large number of different biotic and abiotic stresses all over the world, the growth of plants (principal crops) may be restrained by these stresses. In addition to beneficial microorganisms, use of silicon (Si)-fertilizer is known as an ecologically compatible and environmentally friendly technique to stimulate plant growth, alleviate various biotic and abiotic stresses in plants, and enhance the plant resistance to multiple stresses, because Si is not harmful, corrosive, and polluting to plants when presents in excess. Here, we reviewed the action mechanisms by which Si alleviates abiotic and biotic stresses in plants. The use of Si (mostly as industrial slags and rice straw) is predicted to become a sustainable strategy and an emerging trend in agriculture to enhance crop growth and alleviate abiotic and biotic stresses in the not too distant future. In this review article, the future research needs on the use of Si under the conditions of abiotic and biotic stresses are also highlighted.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871 Iran.
| | - Byoung Ryong Jeong
- Horticulture Major, Division of Applies Life Science (BK21 Plus Program), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
22
|
Cao BL, Wang L, Gao S, Xia J, Xu K. Silicon-mediated changes in radial hydraulic conductivity and cell wall stability are involved in silicon-induced drought resistance in tomato. PROTOPLASMA 2017; 254:2295-2304. [PMID: 28536765 DOI: 10.1007/s00709-017-1115-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/18/2017] [Indexed: 05/16/2023]
Abstract
Plants frequently experience drought stress. It is well known that silicon (Si) facilitates recovery from drought stress by improving drought resistance in plants. However, the effects of Si on the roots associated with the drought resistance in plants remain elusive. In this study, tomato (cv. 'Jinpeng 1#') was adopted to study the silicon-mediated drought avoidance and drought tolerance. The results showed that exogenous Si evidently influenced the drought-induced changes of the related indicators. Roots added with Si were more adaptable to drought stress. Silicon was involved in improving hydraulic conductivity in radial direction, which enhanced water uptake of tomato roots. Si also maintained solute accumulation at a high level, such as proline, soluble sugar, and soluble protein, and the osmotic adjustment ability of root was improved. So silicon promoted the drought avoidance by improving water absorption and water situation in tomato root. In addition, silicon enhanced antioxidant activities, including SOD activity and CAT activity, and reduced O2¯ production rate, H2O2 content, and malondialdehyde content, which contributed to alleviate harmful effects of drought and mitigate drought-induced cell wall rupture. Therefore, via induction of antioxidant activities, detoxification of the ROS, and maintenance of cell wall stability in tomato roots, silicon contributed to the drought tolerance. Though the silicon-mediated drought avoidance and drought tolerance can maintain physiological activities of tomato at relatively lower water potential, the maximal duration at which Si induced drought resistance was 3 or 5 days. When drought stress was for too long time, which exceeded the self-regulation of the tomato, mitigative effects of Si were weakened.
Collapse
Affiliation(s)
- Bi-Li Cao
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, 271018, China
- Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Shandong Agricultural University, Tai-An, Shandong, 271018, China
- Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai-An, Shandong, 271018, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Lili Wang
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, 271018, China
- Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Shandong Agricultural University, Tai-An, Shandong, 271018, China
- Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai-An, Shandong, 271018, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Song Gao
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, 271018, China
- Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Shandong Agricultural University, Tai-An, Shandong, 271018, China
- Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai-An, Shandong, 271018, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Jie Xia
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, 271018, China
- Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Shandong Agricultural University, Tai-An, Shandong, 271018, China
- Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai-An, Shandong, 271018, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Kun Xu
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
- Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
- Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| |
Collapse
|
23
|
Integrating Soil Silicon Amendment into Management Programs for Insect Pests of Drill-Seeded Rice. PLANTS 2017; 6:plants6030033. [PMID: 28805707 PMCID: PMC5620589 DOI: 10.3390/plants6030033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/01/2017] [Accepted: 08/09/2017] [Indexed: 11/21/2022]
Abstract
Silicon soil amendment has been shown to enhance plant defenses against insect pests. Rice is a silicon-accumulating graminaceous plant. In the southern United States, the rice water weevil and stem borers are important pests of rice. Current management tactics for these pests rely heavily on the use of insecticides. This study evaluated the effects of silicon amendment when combined with current management tactics for these rice insect pests in the field. Field experiments were conducted from 2013 to 2015. Rice was drill-planted in plots subjected to factorial combinations of variety (conventional and hybrid), chlorantraniliprole seed treatment (treated and untreated), and silicon amendment (treated and untreated). Silicon amendment reduced densities of weevil larvae on a single sampling date in 2014, but did not affect densities of whiteheads caused by stem borers. In contrast, insecticidal seed treatment strongly reduced densities of both weevil larvae and whiteheads. Higher densities of weevil larvae were also observed in the hybrid variety in 2014, while higher incidences of whiteheads were observed in the conventional variety in 2014 and 2015. Silicon amendment improved rice yields, as did chlorantraniliprole seed treatment and use of the hybrid variety.
Collapse
|
24
|
Cooke J, Leishman MR. Consistent alleviation of abiotic stress with silicon addition: a meta‐analysis. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12713] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Julia Cooke
- Department of Environment Earth and Ecosystems The Open University Milton KeynesMK7 6AA UK
- Department of Biological Sciences Macquarie University North Ryde NSW 2109 Australia
| | - Michelle R. Leishman
- Department of Biological Sciences Macquarie University North Ryde NSW 2109 Australia
| |
Collapse
|
25
|
Shi Y, Zhang Y, Han W, Feng R, Hu Y, Guo J, Gong H. Silicon Enhances Water Stress Tolerance by Improving Root Hydraulic Conductance in Solanum lycopersicum L. FRONTIERS IN PLANT SCIENCE 2016; 7:196. [PMID: 26941762 PMCID: PMC4761792 DOI: 10.3389/fpls.2016.00196] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/04/2016] [Indexed: 05/18/2023]
Abstract
Silicon (Si) can improve drought tolerance in plants, but the mechanism is still not fully understood. Previous research has been concentrating on Si's role in leaf water maintenance in Si accumulators, while little information is available on its role in water uptake and in less Si-accumulating plants. Here, we investigated the effects of Si on root water uptake and its role in decreasing oxidative damage in relation to root hydraulic conductance in tomato (Solanum lycopersicum 'Zhongza No.9') under water stress. Tomato seedlings were subjected to water stress induced by 10% (w/v) polyethylene glycol-6000 in the absence or presence of 2.5 mM added silicate. The results showed that Si addition ameliorated the inhibition in tomato growth and photosynthesis, and improved water status under water stress. The root hydraulic conductance of tomato plants was decreased under water stress, and it was significantly increased by added Si. There was no significant contribution of osmotic adjustment in Si-enhanced root water uptake under water stress. The transcriptions of plasma membrane aquaporin genes were not obviously changed by Si under water stress. Water stress increased the production of reactive oxygen species and induced oxidative damage, while added Si reversed these. In addition, Si addition increased the activities of superoxide dismutase and catalase and the levels of ascorbic acid and glutathione in the roots under stress. It is concluded that Si enhances the water stress tolerance via enhancing root hydraulic conductance and water uptake in tomato plants. Si-mediated decrease in membrane oxidative damage may have contributed to the enhanced root hydraulic conductance.
Collapse
Affiliation(s)
- Yu Shi
- College of Horticulture, Northwest A&F UniversityYangling, China
- College of Horticulture, Shanxi Agricultural UniversityTaigu, China
| | - Yi Zhang
- College of Horticulture, Shanxi Agricultural UniversityTaigu, China
| | - Weihua Han
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Ru Feng
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Yanhong Hu
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Jia Guo
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Haijun Gong
- College of Horticulture, Northwest A&F UniversityYangling, China
- *Correspondence: Haijun Gong,
| |
Collapse
|
26
|
Vulavala VKR, Elbaum R, Yermiyahu U, Fogelman E, Kumar A, Ginzberg I. Silicon fertilization of potato: expression of putative transporters and tuber skin quality. PLANTA 2016; 243:217-29. [PMID: 26384982 DOI: 10.1007/s00425-015-2401-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/31/2015] [Indexed: 05/06/2023]
Abstract
A silicon transporter homolog was upregulated by Si fertilization and drought in potato roots and leaves. High Si in tuber skin resulted in anatomical and compositional changes suggesting delayed skin maturation. Silicon (Si) fertilization has beneficial effects on plant resistance to biotic and abiotic stresses. Potatoes, low Si accumulators, are susceptible to yield loss due to suboptimal growth conditions; thus Si fertilization may contribute to crop improvement. The effect of Si fertilization on transcript levels of putative transporters, Si uptake and tuber quality was studied in potatoes grown in a glasshouse and fertilized with sodium silicate, under normal and drought-stress conditions. Anatomical studies and Raman spectroscopic analyses of tuber skin were conducted. A putative transporter, StLsi1, with conserved amino acid domains for Si transport, was isolated. The StLsi1 transcript was detected in roots and leaves and its level increased twofold following Si fertilization, and about fivefold in leaves upon Si × drought interaction. Nevertheless, increased Si accumulation was detected only in tuber peel of Si-fertilized plants--probably due to passive movement of Si from the soil solution--where it modified skin cell morphology and cell-wall composition. Compared to controls, skin cell area was greater, suberin biosynthetic genes were upregulated and skin cell walls were enriched with oxidized aromatic moieties suggesting enhanced lignification and suberization. The accumulating data suggest delayed tuber skin maturation following Si fertilization. Despite StLsi1 upregulation, low accumulation of Si in roots and leaves may result from low transport activity. Study of Si metabolism in potato, a major staple food, would contribute to the improvement of other low Si crops to ensure food security under changing climate.
Collapse
Affiliation(s)
- Vijaya K R Vulavala
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, 5025001, Bet Dagan, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, PO Box 12, 7610001, Rehovot, Israel
| | - Rivka Elbaum
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, PO Box 12, 7610001, Rehovot, Israel
| | - Uri Yermiyahu
- Institute of Soil and Water, Agricultural Research Organization, Gilat Center, Negev, 85280, Israel
| | - Edna Fogelman
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, 5025001, Bet Dagan, Israel
| | - Akhilesh Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, 5025001, Bet Dagan, Israel
| | - Idit Ginzberg
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, 5025001, Bet Dagan, Israel.
| |
Collapse
|
27
|
Katz O. Silica phytoliths in angiosperms: phylogeny and early evolutionary history. THE NEW PHYTOLOGIST 2015; 208:642-6. [PMID: 26134931 DOI: 10.1111/nph.13559] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Ofir Katz
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Be'er-Sheva, 84105, Israel
| |
Collapse
|
28
|
Wu J, Guo J, Hu Y, Gong H. Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress. FRONTIERS IN PLANT SCIENCE 2015; 6:453. [PMID: 26136764 PMCID: PMC4468629 DOI: 10.3389/fpls.2015.00453] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 06/02/2015] [Indexed: 05/06/2023]
Abstract
The alleviative effects of silicon (Si) on cadmium (Cd) toxicity were investigated in cucumber (Cucumis sativus L.) and tomato (Solanum lycopersicum L.) grown hydroponically. The growth of both plant species was inhibited by 100 μM Cd, but Si application counteracted the adverse effects on growth. Si application significantly decreased the Cd concentrations in shoots of both species and roots of cucumber. The root-to-shoot transport of Cd was depressed by added Si in tomato whereas it was increased by added Si in cucumber. The total content of organic acids was decreased in tomato leaves but increased in cucumber roots and leaves by Si application under Cd stress. Si application also increased the cell wall polysaccharide levels in the roots of both species under Cd toxicity. Si-mediated changes in levels of organic acids and cell wall polysaccharides might contribute to the differences in Cd transport in the two species. In addition, Si application also mitigated Cd-induced oxidative damage in both species. The results indicate that there were different mechanisms for Si-mediated decrease in shoot Cd accumulation: in tomato, Si supply decreased root-to-shoot Cd transport; whereas in cucumber, Si supply reduced the Cd uptake by roots. It is suggested that Si-mediated Cd tolerance is associated with different physiological responses in tomato and cucumber plants.
Collapse
Affiliation(s)
| | | | | | - Haijun Gong
- College of Horticulture, Northwest A&F UniversityYangling, Shaanxi, China
| |
Collapse
|