1
|
Rehman S, Bahadur S, Xia W, Runan C, Ali M, Maqbool Z. From genes to traits: Trends in RNA-binding proteins and their role in plant trait development: A review. Int J Biol Macromol 2024:136753. [PMID: 39488325 DOI: 10.1016/j.ijbiomac.2024.136753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
RNA-binding proteins (RBPs) are essential for cellular functions by attaching to RNAs, creating dynamic ribonucleoprotein complexes (RNPs) essential for managing RNA throughout its life cycle. These proteins are critical to all post-transcriptional processes, impacting vital cellular functions during development and adaptation to environmental changes. Notably, in plants, RBPs are critical for adjusting to inconsistent environmental conditions, with recent studies revealing that plants possess, more prominent, and both novel and conserved RBP families compared to other eukaryotes. This comprehensive review delves into the varied RBPs covering their structural attributes, domain base function, and their interactions with RNA in metabolism, spotlighting their role in regulating post-transcription and splicing and their reaction to internal and external stimuli. It highlights the complex regulatory roles of RBPs, focusing on plant trait regulation and the unique functions they facilitate, establishing a foundation for appreciating RBPs' significance in plant growth and environmental response strategies.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution/College of Tropical Crops, Hainan University, Sanya, 572025, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228, China; College of Life and Health Science, Hainan University, Haikou 570228, China.
| | - Wei Xia
- Sanya Nanfan Research Institution Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| | - Chen Runan
- Sanya Nanfan Research Institution/College of Tropical Crops, Hainan University, Sanya, 572025, China
| | - Maroof Ali
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, China
| | - Zainab Maqbool
- Botany Department, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
2
|
Kortsinoglou AM, Wood MJ, Myridakis AI, Andrikopoulos M, Roussis A, Eastwood D, Butt T, Kouvelis VN. Comparative genomics of Metarhizium brunneum strains V275 and ARSEF 4556: unraveling intraspecies diversity. G3 (BETHESDA, MD.) 2024; 14:jkae190. [PMID: 39210673 PMCID: PMC11457142 DOI: 10.1093/g3journal/jkae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Entomopathogenic fungi belonging to the Order Hypocreales are renowned for their ability to infect and kill insect hosts, while their endophytic mode of life and the beneficial rhizosphere effects on plant hosts have only been recently recognized. Understanding the molecular mechanisms underlying their different lifestyles could optimize their potential as both biocontrol and biofertilizer agents, as well as the wider appreciation of niche plasticity in fungal ecology. This study describes the comprehensive whole genome sequencing and analysis of one of the most effective entomopathogenic and endophytic EPF strains, Metarhizium brunneum V275 (commercially known as Lalguard Met52), achieved through Nanopore and Illumina reads. Comparative genomics for exploring intraspecies variability and analyses of key gene sets were conducted with a second effective EPF strain, M. brunneum ARSEF 4556. The search for strain- or species-specific genes was extended to M. brunneum strain ARSEF 3297 and other species of genus Metarhizium, to identify molecular mechanisms and putative key genome adaptations associated with mode of life differences. Genome size differed significantly, with M. brunneum V275 having the largest genome amongst M. brunneum strains sequenced to date. Genome analyses revealed an abundance of plant-degrading enzymes, plant colonization-associated genes, and intriguing intraspecies variations regarding their predicted secondary metabolic compounds and the number and localization of Transposable Elements. The potential significance of the differences found between closely related endophytic and entomopathogenic fungi, regarding plant growth-promoting and entomopathogenic abilities, are discussed, enhancing our understanding of their diverse functionalities and putative applications in agriculture and ecology.
Collapse
Affiliation(s)
- Alexandra M Kortsinoglou
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Martyn J Wood
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Singleton Park, SA2 8PP, Swansea, UK
| | - Antonis I Myridakis
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Marios Andrikopoulos
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Andreas Roussis
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Dan Eastwood
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Singleton Park, SA2 8PP, Swansea, UK
| | - Tariq Butt
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Singleton Park, SA2 8PP, Swansea, UK
| | - Vassili N Kouvelis
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
3
|
Ren D, Liu H, Sun X, Zhang F, Jiang L, Wang Y, Jiang N, Yan P, Cui J, Yang J, Li Z, Lu P, Luo X. Post-transcriptional regulation of grain weight and shape by the RBP-A-J-K complex in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:66-85. [PMID: 37970747 DOI: 10.1111/jipb.13583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/29/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
RNA-binding proteins (RBPs) are components of the post-transcriptional regulatory system, but their regulatory effects on complex traits remain unknown. Using an integrated strategy involving map-based cloning, functional characterizations, and transcriptomic and population genomic analyses, we revealed that RBP-K (LOC_Os08g23120), RBP-A (LOC_Os11g41890), and RBP-J (LOC_Os10g33230) encode proteins that form an RBP-A-J-K complex that negatively regulates rice yield-related traits. Examinations of the RBP-A-J-K complex indicated RBP-K functions as a relatively non-specific RBP chaperone that enables RBP-A and RBP-J to function normally. Additionally, RBP-J most likely affects GA pathways, resulting in considerable increases in grain and panicle lengths, but decreases in grain width and thickness. In contrast, RBP-A negatively regulates the expression of genes most likely involved in auxin-regulated pathways controlling cell wall elongation and carbohydrate transport, with substantial effects on the rice grain filling process as well as grain length and weight. Evolutionarily, RBP-K is relatively ancient and highly conserved, whereas RBP-J and RBP-A are more diverse. Thus, the RBP-A-J-K complex may represent a typical functional model for many RBPs and protein complexes that function at transcriptional and post-transcriptional levels in plants and animals for increased functional consistency, efficiency, and versatility, as well as increased evolutionary potential. Our results clearly demonstrate the importance of RBP-mediated post-transcriptional regulation for the diversity of complex traits. Furthermore, rice grain yield and quality may be enhanced by introducing various complete or partial loss-of-function mutations to specific RBP genes using clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 technology and by exploiting desirable natural tri-genic allelic combinations at the loci encoding the components of the RBP-A-J-K complex through marker-assisted selection.
Collapse
Affiliation(s)
- Ding Ren
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hui Liu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xuejun Sun
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- MOE Key Laboratory of Crop Physiology, Ecology and Genetic Breeding College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Fan Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Ling Jiang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ying Wang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Peiwen Yan
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jinhao Cui
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jinshui Yang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zhikang Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Pingli Lu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaojin Luo
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- MOE Key Laboratory of Crop Physiology, Ecology and Genetic Breeding College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
4
|
Wang Y, Zhang L, Zhou Y, Ma W, Li M, Guo P, Feng L, Fu C. Using landscape genomics to assess local adaptation and genomic vulnerability of a perennial herb Tetrastigma hemsleyanum (Vitaceae) in subtropical China. Front Genet 2023; 14:1150704. [PMID: 37144128 PMCID: PMC10151583 DOI: 10.3389/fgene.2023.1150704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Understanding adaptive genetic variation of plant populations and their vulnerabilities to climate change are critical to preserve biodiversity and subsequent management interventions. To this end, landscape genomics may represent a cost-efficient approach for investigating molecular signatures underlying local adaptation. Tetrastigma hemsleyanum is, in its native habitat, a widespread perennial herb of warm-temperate evergreen forest in subtropical China. Its ecological and medicinal values constitute a significant revenue for local human populations and ecosystem. Using 30,252 single nucleotide polymorphisms (SNPs) derived from reduced-representation genome sequencing in 156 samples from 24 sites, we conducted a landscape genomics study of the T. hemsleyanum to elucidate its genomic variation across multiple climate gradients and genomic vulnerability to future climate change. Multivariate methods identified that climatic variation explained more genomic variation than that of geographical distance, which implied that local adaptation to heterogeneous environment might represent an important source of genomic variation. Among these climate variables, winter precipitation was the strongest predictor of the contemporary genetic structure. F ST outlier tests and environment association analysis totally identified 275 candidate adaptive SNPs along the genetic and environmental gradients. SNP annotations of these putatively adaptive loci uncovered gene functions associated with modulating flowering time and regulating plant response to abiotic stresses, which have implications for breeding and other special agricultural aims on the basis of these selection signatures. Critically, modelling revealed that the high genomic vulnerability of our focal species via a mismatch between current and future genotype-environment relationships located in central-northern region of the T. hemsleyanum's range, where populations require proactive management efforts such as assistant adaptation to cope with ongoing climate change. Taken together, our results provide robust evidence of local climate adaption for T. hemsleyanum and further deepen our understanding of adaptation basis of herbs in subtropical China.
Collapse
Affiliation(s)
- Yihan Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Lin Zhang
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, China
| | - Yuchao Zhou
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Wenxin Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Manyu Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Peng Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Peng Guo, ; Li Feng,
| | - Li Feng
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Peng Guo, ; Li Feng,
| | - Chengxin Fu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Usman K, Souchelnytskyi S, Al-Ghouti MA, Zouari N, Abu-Dieyeh MH. Proteomic analysis of T. qataranse exposed to lead (Pb) stress reveal new proteins with potential roles in Pb tolerance and detoxification mechanism. FRONTIERS IN PLANT SCIENCE 2022; 13:1009756. [PMID: 36340352 PMCID: PMC9630582 DOI: 10.3389/fpls.2022.1009756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Soil lead (Pb) contamination is one of the environmental problems facing the modern world. Sources of Pb in soil include industrial activities such as mining and smelting processes, agricultural activities such as application of insecticide and municipal sewage sludges, and urban activities such as use of lead in gasoline, paints, and other materials. Phytoremediation is the direct use of living green plants and is an effective, cheap, non-invasive, and environmentally friendly technique used to transfer or stabilize all the toxic metals and environmental pollutants in polluted soil or groundwater. Current work in this area is invested in elucidating mechanisms that underpin toxic-metal tolerance and detoxification mechanisms. The present study aims to gain insight into the mechanisms of Pb tolerance in T. qataranse by comparative proteomics. MALDI-TOF/MS and in silico proteome analysis showed differential protein expression between treated (50 mg kg⎯1 Pb) and untreated (0 mg kg⎯1 Pb) T. qataranse. A total of eighty-six (86) differentially expressed proteins, most of which function in ion and protein binding, antioxidant activity, transport, and abiotic response stress, were identified. In addition, essential stress-regulating metabolic pathways, including glutathione metabolism, cellular response to stress, and regulation of HSF1-mediated heat shock response, were also enriched. Also, at 52- and 49-kDa MW band areas, up to six hypothetical proteins with unknown functions were identified. Of these, protein AXX17_AT2G26660 is highly rich in glycine amino acid residues (up to 76%), suggesting that it is a probable glycine-rich protein (GRP) member. Although GRPs are known to be involved in plant defense against abiotic stress, including salinity and drought, there is no report on their role on Pb tolerance and or detoxification in plants. Further enrichment analysis in the current study reveals that the hypothetical proteins do not interact with known proteins and are not part of any enriched pathway. However, additional research is needed to functionally validate the role of the identified proteins in Pb detoxification mechanism.
Collapse
Affiliation(s)
- Kamal Usman
- Agricultural Research Station (ARS), Office of VP for Research & Graduate Studies, Doha, Qatar
| | | | - Mohammad A. Al-Ghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Nabil Zouari
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Mohammed H. Abu-Dieyeh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| |
Collapse
|
6
|
Li X, Yang Y, Zeng N, Qu G, Fu D, Zhu B, Luo Y, Ostersetzer-Biran O, Zhu H. Glycine-rich RNA-binding cofactor RZ1AL is associated with tomato ripening and development. HORTICULTURE RESEARCH 2022; 9:uhac134. [PMID: 35937858 PMCID: PMC9350831 DOI: 10.1093/hr/uhac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Tomato ripening is a complex and dynamic process coordinated by many regulatory elements, including plant hormones, transcription factors, and numerous ripening-related RNAs and proteins. Although recent studies have shown that some RNA-binding proteins are involved in the regulation of the ripening process, understanding of how RNA-binding proteins affect fruit ripening is still limited. Here, we report the analysis of a glycine-rich RNA-binding protein, RZ1A-Like (RZ1AL), which plays an important role in tomato ripening, especially fruit coloring. To analyze the functions of RZ1AL in fruit development and ripening, we generated knockout cr-rz1al mutant lines via the CRISPR/Cas9 gene-editing system. Knockout of RZ1AL reduced fruit lycopene content and weight in the cr-rz1al mutant plants. RZ1AL encodes a nucleus-localized protein that is associated with Cajal-related bodies. RNA-seq data demonstrated that the expression levels of genes that encode several key enzymes associated with carotenoid biosynthesis and metabolism were notably downregulated in cr-rz1al fruits. Proteomic analysis revealed that the levels of various ribosomal subunit proteins were reduced. This could affect the translation of ripening-related proteins such as ZDS. Collectively, our findings demonstrate that RZ1AL may participate in the regulation of carotenoid biosynthesis and metabolism and affect tomato development and fruit ripening.
Collapse
Affiliation(s)
- Xindi Li
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77840, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77840, USA
| | - Yongfang Yang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ni Zeng
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guiqin Qu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Daqi Fu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Benzhong Zhu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunbo Luo
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem 9190401, Israel
| | | |
Collapse
|
7
|
Zhang Q, Dai X, Wang H, Wang F, Tang D, Jiang C, Zhang X, Guo W, Lei Y, Ma C, Zhang H, Li P, Zhao Y, Wang Z. Transcriptomic Profiling Provides Molecular Insights Into Hydrogen Peroxide-Enhanced Arabidopsis Growth and Its Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:866063. [PMID: 35463436 PMCID: PMC9019583 DOI: 10.3389/fpls.2022.866063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/28/2022] [Indexed: 05/05/2023]
Abstract
Salt stress is an important environmental factor limiting plant growth and crop production. Plant adaptation to salt stress can be improved by chemical pretreatment. This study aims to identify whether hydrogen peroxide (H2O2) pretreatment of seedlings affects the stress tolerance of Arabidopsis thaliana seedlings. The results show that pretreatment with H2O2 at appropriate concentrations enhances the salt tolerance ability of Arabidopsis seedlings, as revealed by lower Na+ levels, greater K+ levels, and improved K+/Na+ ratios in leaves. Furthermore, H2O2 pretreatment improves the membrane properties by reducing the relative membrane permeability (RMP) and malonaldehyde (MDA) content in addition to improving the activities of antioxidant enzymes, including superoxide dismutase, and glutathione peroxidase. Our transcription data show that exogenous H2O2 pretreatment leads to the induced expression of cell cycle, redox regulation, and cell wall organization-related genes in Arabidopsis, which may accelerate cell proliferation, enhance tolerance to osmotic stress, maintain the redox balance, and remodel the cell walls of plants in subsequent high-salt environments.
Collapse
Affiliation(s)
- Qikun Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiuru Dai
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai’an, China
| | - Huanpeng Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Fanhua Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Dongxue Tang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chunyun Jiang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
- Linyi Center for Disease Control and Prevention, Linyi, China
| | - Xiaoyan Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wenjing Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yuanyuan Lei
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hui Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Pinghua Li
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai’an, China
| | - Yanxiu Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zenglan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
8
|
Abdellatif IMY, Yuan S, Na R, Yoshihara S, Hamada H, Suzaki T, Ezura H, Miura K. Functional Characterization of Tomato Phytochrome A and B1B2 Mutants in Response to Heat Stress. Int J Mol Sci 2022; 23:ijms23031681. [PMID: 35163602 PMCID: PMC8835780 DOI: 10.3390/ijms23031681] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/09/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Heat stress (HS) is a prevalent negative factor affecting plant growth and development, as it is predominant worldwide and threatens agriculture on a large scale. PHYTOCHROMES (PHYs) are photoreceptors that control plant growth and development, and the stress signaling response partially interferes with their activity. PHYA, B1, and B2 are the most well-known PHY types in tomatoes. Our study aimed to identify the role of tomato 'Money Maker' phyA and phyB1B2 mutants in stable and fluctuating high temperatures at different growth stages. In the seed germination and vegetative growth stages, the phy mutants were HS tolerant, while during the flowering stage the phy mutants revealed two opposing roles depending on the HS exposure period. The response of the phy mutants to HS during the fruiting stage showed similarity to WT. The most obvious stage that demonstrated phy mutants' tolerance was the vegetative growth stage, in which a high degree of membrane stability and enhanced water preservation were achieved by the regulation of stomatal closure. In addition, both mutants upregulated the expression of heat-responsive genes related to heat tolerance. In addition to lower malondialdehyde accumulation, the phyA mutant enhanced proline levels. These results clarified the response of tomato phyA and phyB1B2 mutants to HS.
Collapse
Affiliation(s)
- Islam M. Y. Abdellatif
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; (I.M.Y.A.); (S.Y.); (R.N.); (T.S.); (H.E.)
- Department of Horticulture, Faculty of Agriculture, Minia University, El-Minia 61517, Egypt
| | - Shaoze Yuan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; (I.M.Y.A.); (S.Y.); (R.N.); (T.S.); (H.E.)
| | - Renhu Na
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; (I.M.Y.A.); (S.Y.); (R.N.); (T.S.); (H.E.)
| | - Shizue Yoshihara
- Department of Biological Science, Osaka Prefecture University, Sakai 599-8531, Japan;
| | - Haruyasu Hamada
- Pharma and Supplemental Nutrition Solutions Vehicle, Kaneka Corporation, Iwata 438-0802, Japan;
| | - Takuya Suzaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; (I.M.Y.A.); (S.Y.); (R.N.); (T.S.); (H.E.)
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; (I.M.Y.A.); (S.Y.); (R.N.); (T.S.); (H.E.)
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; (I.M.Y.A.); (S.Y.); (R.N.); (T.S.); (H.E.)
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Japan
- Correspondence:
| |
Collapse
|
9
|
Yan Y, Gan J, Tao Y, Okita TW, Tian L. RNA-Binding Proteins: The Key Modulator in Stress Granule Formation and Abiotic Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:882596. [PMID: 35783947 PMCID: PMC9240754 DOI: 10.3389/fpls.2022.882596] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 05/08/2023]
Abstract
To cope with abiotic environmental stress, plants rapidly change their gene expression transcriptionally and post-transcriptionally, the latter by translational suppression of selected proteins and the assembly of cytoplasmic stress granules (SGs) that sequester mRNA transcripts. RNA-binding proteins (RBPs) are the major players in these post-transcriptional processes, which control RNA processing in the nucleus, their export from the nucleus, and overall RNA metabolism in the cytoplasm. Because of their diverse modular domain structures, various RBP types dynamically co-assemble with their targeted RNAs and interacting proteins to form SGs, a process that finely regulates stress-responsive gene expression. This review summarizes recent findings on the involvement of RBPs in adapting plants to various abiotic stresses via modulation of specific gene expression events and SG formation. The relationship of these processes with the stress hormone abscisic acid (ABA) is discussed.
Collapse
Affiliation(s)
- Yanyan Yan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Jianghuang Gan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Yilin Tao
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
- *Correspondence: Thomas W. Okita,
| | - Li Tian
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
- Li Tian,
| |
Collapse
|
10
|
Wang L, Liu Y, Aslam M, Jakada BH, Qin Y, Cai H. The Glycine-Rich Domain Protein GRDP2 Regulates Ovule Development via the Auxin Pathway in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:698487. [PMID: 34777406 PMCID: PMC8585784 DOI: 10.3389/fpls.2021.698487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/11/2021] [Indexed: 05/22/2023]
Abstract
The glycine-rich domain proteins (GRDP) have been functionally implicated in the cell wall structure, biotic, and abiotic stress responses. However, little is known about GRDP genes in female gametophyte development of Arabidopsis. This study shows that GRDP2, a GRDP, plays a crucial role in female gametophyte development. In GRDP2 overexpression lines, grdp2-3, the embryo sacs were arrested at FG1 and no nucleus stages. Furthermore, callose staining shows that cell plate formation during megasporogenesis is disturbed in grdp2-3. In contrast, the pollen development is not affected in grdp2-3. The expression patterns of auxin-specific marker lines in female gametophytes showed that the auxin distribution and transport were significantly changed during megagametogenesis in grdp2-3. In addition, compared with the membrane-localized pattern of PIN1, PIN2, and PIN7 in WT, the signals were detected in the cytoplasm in grdp2-3. Together, our data suggest that GRDP2 plays an essential role in auxin-mediated female gametophyte development.
Collapse
Affiliation(s)
- Lulu Wang
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Yanhui Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohammad Aslam
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Bello Hassan Jakada
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Qin
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hanyang Cai
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
11
|
Plant RNA Binding Proteins as Critical Modulators in Drought, High Salinity, Heat, and Cold Stress Responses: An Updated Overview. Int J Mol Sci 2021; 22:ijms22136731. [PMID: 34201749 PMCID: PMC8269355 DOI: 10.3390/ijms22136731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Plant abiotic stress responses are tightly regulated by different players at multiple levels. At transcriptional or post-transcriptional levels, several RNA binding proteins (RBPs) regulate stress response genes through RNA metabolism. They are increasingly recognized as critical modulators of a myriad of biological processes, including stress responses. Plant RBPs are heterogeneous with one or more conservative RNA motifs that constitute canonical/novel RNA binding domains (RBDs), which can bind to target RNAs to determine their regulation as per the plant requirements at given environmental conditions. Given its biological significance and possible consideration as a potential tool in genetic manipulation programs to improve key agronomic traits amidst frequent episodes of climate anomalies, studies concerning the identification and functional characterization of RBP candidate genes are steadily mounting. This paper presents a comprehensive overview of canonical and novel RBPs and their functions in major abiotic stresses including drought, heat, salt, and cold stress conditions. To some extent, we also briefly describe the basic motif structure of RBPs that would be useful in forthcoming studies. Additionally, we also collected RBP genes that were modulated by stress, but that lacked functional characterization, providing an impetus to conduct further research.
Collapse
|
12
|
Ma L, Cheng K, Li J, Deng Z, Zhang C, Zhu H. Roles of Plant Glycine-Rich RNA-Binding Proteins in Development and Stress Responses. Int J Mol Sci 2021; 22:ijms22115849. [PMID: 34072567 PMCID: PMC8198583 DOI: 10.3390/ijms22115849] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/02/2023] Open
Abstract
In recent years, much progress has been made in elucidating the functional roles of plant glycine-rich RNA-binding proteins (GR-RBPs) during development and stress responses. Canonical GR-RBPs contain an RNA recognition motif (RRM) or a cold-shock domain (CSD) at the N-terminus and a glycine-rich domain at the C-terminus, which have been associated with several different RNA processes, such as alternative splicing, mRNA export and RNA editing. However, many aspects of GR-RBP function, the targeting of their RNAs, interacting proteins and the consequences of the RNA target process are not well understood. Here, we discuss recent findings in the field, newly defined roles for GR-RBPs and the actions of GR-RBPs on target RNA metabolism.
Collapse
Affiliation(s)
- Liqun Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.M.); (K.C.); (J.L.); (Z.D.)
| | - Ke Cheng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.M.); (K.C.); (J.L.); (Z.D.)
| | - Jinyan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.M.); (K.C.); (J.L.); (Z.D.)
| | - Zhiqi Deng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.M.); (K.C.); (J.L.); (Z.D.)
| | - Chunjiao Zhang
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs, Beijing 100083, China;
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.M.); (K.C.); (J.L.); (Z.D.)
- Correspondence:
| |
Collapse
|
13
|
Slaby P, Körner M, Albert M. A cell wall-localized glycine-rich protein of dodder acts as pathogen-associated molecular pattern. Commun Integr Biol 2021; 14:111-114. [PMID: 33995821 PMCID: PMC8096328 DOI: 10.1080/19420889.2021.1918369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cuscuta reflexa (giant dodder) is an obligate stem holoparasite withdrawing water, nutrients, and carbohydrates from its hosts. For a broad spectrum of host plants, C. reflexa usually stays unrecognized. The cultivated tomato Solanum lycopersicum, as one notable exception, possesses a leucine-rich repeat receptor protein (LRR-RP), Cuscuta receptor 1 (CuRe1), which enables tomato to recognize C. reflexa as a dangerous parasitic invader and to respond with plant immune responses. During the infection process, a glycine-rich protein (GRP) is freed from C. reflexa and gets detected by CuRe1. Here, we focus on the subcellular localization of the GRP within plant cell walls using a fluorescence based co-localization.
Collapse
Affiliation(s)
- Peter Slaby
- Department of Biology, Molecular Plant Physiology, Erlangen, Germany
| | - Max Körner
- Department of Biology, Molecular Plant Physiology, Erlangen, Germany
| | - Markus Albert
- Department of Biology, Molecular Plant Physiology, Erlangen, Germany
| |
Collapse
|
14
|
Castro-Bustos S, Maruri-López I, Ortega-Amaro MA, Serrano M, Ovando-Vázquez C, Jiménez-Bremont JF. An interactome analysis reveals that Arabidopsis thaliana GRDP2 interacts with proteins involved in post-transcriptional processes. Cell Stress Chaperones 2021; 27:165-176. [PMID: 35174430 PMCID: PMC8943079 DOI: 10.1007/s12192-022-01261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/27/2022] Open
Abstract
The Arabidopsis thaliana glycine-rich domain protein 2 (AtGRDP2) gene encodes a protein of unknown function that is involved in plant growth and salt stress tolerance. The AtGRDP2 protein (787 aa, At4g37900) is constituted by three domains: a DUF1399 located at the N-terminus, a potential RNA Recognition Motif (RRM) in the central region, and a short glycine-rich domain at the C-terminus. Herein, we analyzed the subcellular localization of AtGRDP2 protein as a GFP translational fusion and found it was localized in the cytosol and the nucleus of tobacco leaf cells. Truncated versions of AtGRDP2 showed that the DUF1399 or the RRM domains were sufficient for nuclear localization. In addition, we performed a yeast two-hybrid split-ubiquitin assay (Y2H) to identify potential interactors for AtGRDP2 protein. The Y2H assay identified proteins associated with RNA binding functions such as PABN3 (At5g65260), EF-1α (At1g07920), and CL15 (At3g25920). Heterodimeric associations in planta between AtGRDP2 and its interactors were carried out by Bimolecular Fluorescence Complementation (BiFC) assays. The data revealed heterodimeric interactions between AtGRDP2 and PABN3 in the nucleus and AtGRDP2 with EF-1α in the cytosol, while AtGRDP2-CL15 associations occurred only in the chloroplasts. Finally, functional characterization of the protein-protein interaction regions revealed that both DUF1399 and RRM domains were key for heterodimerization with its interactors. The AtGRDP2 interaction with these proteins in different compartments suggests that this glycine-rich domain protein is involved in post-transcriptional processes.
Collapse
Affiliation(s)
- Saraí Castro-Bustos
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C, San Luis Potosí, SLP, Mexico
| | - Israel Maruri-López
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Biological and Environmental Science and Engineering Division, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - María Azucena Ortega-Amaro
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C, San Luis Potosí, SLP, Mexico
- Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Salinas de Hidalgo, SLP, Mexico
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Cesaré Ovando-Vázquez
- CONACyT-Centro Nacional de Supercómputo, Instituto Potosino de Investigación Científica y Tecnológica, A.C, San Luis Potosí, SLP, Mexico
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
15
|
Zhao X, Qiu T, Feng H, Yin C, Zheng X, Yang J, Peng YL, Zhao W. A novel glycine-rich domain protein, GRDP1, functions as a critical feedback regulator for controlling cell death and disease resistance in rice. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:608-622. [PMID: 32995857 DOI: 10.1093/jxb/eraa450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Lesion mimic mutants constitute a valuable genetic resource for unraveling the signaling pathways and molecular mechanisms governing the programmed cell death and defense responses of plants. Here, we identified a lesion mimic mutant, spl-D, from T-DNA insertion rice lines. The mutant exhibited higher accumulation of H2O2, spontaneous cell death, decreased chlorophyll content, up-regulation of defense-related genes, and enhanced disease resistance. The causative gene, OsGRDP1, encodes a cytosol- and membrane-associated glycine-rich domain protein. OsGRDP1 was expressed constitutively in all of the organs of the wild-type plant, but was up-regulated throughout plant development in the spl-D mutant. Both the overexpression and knockdown (RNAi) of OsGRDP1 resulted in the lesion mimic phenotype. Moreover, the intact-protein level of OsGRDP1 was reduced in the spotted leaves from both overexpression and RNAi plants, suggesting that the disruption of intact OsGRDP1 is responsible for lesion formation. OsGRDP1 interacted with an aspartic proteinase, OsAP25. In the spl-D and overexpression plants, proteinase activity was elevated, and lesion formation was partially suppressed by an aspartic proteinase inhibitor. Taken together, our results reveal that OsGRDP1 is a critical feedback regulator, thus contributing to the elucidation of the mechanism underlying cell death and disease resistance.
Collapse
Affiliation(s)
- Xiaosheng Zhao
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Tiancheng Qiu
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Huijing Feng
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Changfa Yin
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Xunmei Zheng
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Wensheng Zhao
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Darqui FS, Radonic LM, Beracochea VC, Hopp HE, López Bilbao M. Peculiarities of the Transformation of Asteraceae Family Species: The Cases of Sunflower and Lettuce. FRONTIERS IN PLANT SCIENCE 2021; 12:767459. [PMID: 34899788 PMCID: PMC8662702 DOI: 10.3389/fpls.2021.767459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/02/2021] [Indexed: 05/17/2023]
Abstract
The Asteraceae family is the largest and most diversified family of the Angiosperms, characterized by the presence of numerous clustered inflorescences, which have the appearance of a single compound flower. It is estimated that this family represents around 10% of all flowered species, with a great biodiversity, covering all environments on the planet, except Antarctica. Also, it includes economically important crops, such as lettuce, sunflower, and chrysanthemum; wild flowers; herbs, and several species that produce molecules with pharmacological properties. Nevertheless, the biotechnological improvement of this family is limited to a few species and their genetic transformation was achieved later than in other plant families. Lettuce (Lactuca sativa L.) is a model species in molecular biology and plant biotechnology that has easily adapted to tissue culture, with efficient shoot regeneration from different tissues, organs, cells, and protoplasts. Due to this plasticity, it was possible to obtain transgenic plants tolerant to biotic or abiotic stresses as well as for the production of commercially interesting molecules (molecular farming). These advances, together with the complete sequencing of lettuce genome allowed the rapid adoption of gene editing using the CRISPR system. On the other hand, sunflower (Helianthus annuus L.) is a species that for years was considered recalcitrant to in vitro culture. Although this difficulty was overcome and some publications were made on sunflower genetic transformation, until now there is no transgenic variety commercialized or authorized for cultivation. In this article, we review similarities (such as avoiding the utilization of the CaMV35S promoter in transformation vectors) and differences (such as transformation efficiency) in the state of the art of genetic transformation techniques performed in these two species.
Collapse
Affiliation(s)
- Flavia Soledad Darqui
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
| | - Laura Mabel Radonic
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
| | - Valeria Cecilia Beracochea
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
| | - H. Esteban Hopp
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Marisa López Bilbao
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
- *Correspondence: Marisa López Bilbao,
| |
Collapse
|
17
|
Cortinovis G, Frascarelli G, Di Vittori V, Papa R. Current State and Perspectives in Population Genomics of the Common Bean. PLANTS (BASEL, SWITZERLAND) 2020; 9:E330. [PMID: 32150958 PMCID: PMC7154925 DOI: 10.3390/plants9030330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022]
Abstract
* Correspondence: r [...].
Collapse
Affiliation(s)
| | | | | | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali (D3A), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.C.); (G.F.); (V.D.V.)
| |
Collapse
|
18
|
The Ustilago maydis null mutant strains of the RNA-binding protein UmRrm75 accumulate hydrogen peroxide and melanin. Sci Rep 2019; 9:10813. [PMID: 31346214 PMCID: PMC6658566 DOI: 10.1038/s41598-019-47133-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 05/09/2019] [Indexed: 01/24/2023] Open
Abstract
Ustilago maydis is a dimorphic fungus that has emerged as a model organism for the study of fungal phytopathogenicity and RNA biology. In a previous study, we isolated the U. maydis UmRrm75 gene. The deletion of the UmRrm75 gene affected morphogenesis and pathogenicity. UmRrm75 gene encodes a protein containing three RNA recognition motifs. Here we determined that UmRrm75 has chaperone activity in Escherichia coli using the transcription anti-termination assay. Subsequently, we analyzed the growth of ΔUmRrm75 mutants at 15 °C and 37 °C, observing that mutant strains had reduced growth in comparison to parental strains. UmRrm75 gene expression was induced under these non-optimal temperatures. ΔUmRrm75 mutant colonies displayed a dark-brown color at 28 °C, which was confirmed to be melanin based on spectroscopic analysis and spectrometric data. Furthermore, ΔUmRrm75 mutant strains showed the presence of peroxisomes, and increased H2O2 levels, even at 28 °C. The ΔUmRrm75 mutant strains displayed a higher expression of redox-sensor UmYap1 gene and increased catalase activity than the parental strains. Our data show that deletion of the UmRrm75 gene results in higher levels of H2O2, increased melanin content, and abiotic stress sensitivity.
Collapse
|
19
|
Bullard R, Sharma SR, Das PK, Morgan SE, Karim S. Repurposing of Glycine-Rich Proteins in Abiotic and Biotic Stresses in the Lone-Star Tick ( Amblyomma americanum). Front Physiol 2019; 10:744. [PMID: 31275163 PMCID: PMC6591454 DOI: 10.3389/fphys.2019.00744] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/31/2019] [Indexed: 11/15/2022] Open
Abstract
Tick feeding requires the secretion of a huge number of pharmacologically dynamic proteins and other molecules which are vital for the formation of the cement cone, the establishment of the blood pool and to counter against the host immune response. Glycine-rich proteins (GRP) are found in many organisms and can function in a variety of cellular processes and structures. The functional characterization of the GRPs in the tick salivary glands has not been elucidated. GRPs have been found to play a role in the formation of the cement cone; however, new evidence suggests repurposing of GRPs in the tick physiology. In this study, an RNA interference approach was utilized to silence two glycine-rich protein genes expressed in early phase of tick feeding to determine their functional role in tick hematophagy, cement cone structure, and microbial homeostasis within the tick host. Additionally, the transcriptional regulation of GRPs was determined after exposure to biotic and abiotic stresses including cold and hot temperature, injury, and oxidative stress. This caused a significant up-regulation of AamerSigP-34358, Aam-40766, AamerSigP-39259, and Aam-36909. Our results suggest ticks repurpose these proteins and further functional characterization of GRPs may help to design novel molecular strategies to disrupt the homeostasis and the pathogen transmission.
Collapse
Affiliation(s)
- Rebekah Bullard
- Department of Cell and Molecular Biology, School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States.,Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Surendra Raj Sharma
- Department of Cell and Molecular Biology, School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Pradipta Kumar Das
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Sarah E Morgan
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Shahid Karim
- Department of Cell and Molecular Biology, School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
20
|
Lian JL, Ren LS, Zhang C, Yu CY, Huang Z, Xu AX, Dong JG. How exposure to ALS-inhibiting gametocide tribenuron-methyl induces male sterility in rapeseed. BMC PLANT BIOLOGY 2019; 19:124. [PMID: 30940071 PMCID: PMC6444545 DOI: 10.1186/s12870-019-1722-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 03/17/2019] [Indexed: 06/08/2023]
Abstract
BACKGROUND Acetolactate synthase (ALS)-inhibiting herbicide tribenuron-methyl (TBM) is an efficient gametocide that can cause rapeseed (Brassica napus L.) to become male sterile and outcrossing. To find the reason the TBM treatment leads to male sterility, an integrated study using cytological, physiological, and transcriptomic methods was conducted. RESULTS Some temporary symptoms, including the discoloration of young leaves and a short halt of raceme elongation, were observed in the rapeseed plants exposed to TBM at an application rate of 1 μg per plant. Both chloroplasts in young leaves and plastids in anthers were deformed. TBM also reduced the leaf photosynthetic rate and the contents of chlorophyll, soluble sugar and pyruvate. Both the tapetal cells and uni-nucleate microspores in the treated plants showed large autophagic vacuoles, and the tissue degenerated quickly. A transcriptomic comparison with the control identified 200 upregulated and 163 downregulated differential expression genes in the small flower buds of the TBM treatment. The genes encoding functionally important proteins, including glucan endo-1,3-beta-glucosidase A6, QUARTET3 (QRT3), ARABIDOPSIS ANTHER 7 (ATA7), non-specific lipid-transfer protein LTP11 and LTP12, histone-lysine N-methyltransferase ATXR6, spermidine coumaroyl-CoA acyltransferase (SCT), and photosystem II reaction centre protein psbB, were downregulated by TBM exposure. Some important genes encoding autophagy-related protein ATG8a and metabolic detoxification related proteins, including DTX1, DTX6, DTX35, cytosolic sulfotransferase SOT12, and six members of glutathione S-transferase, were upregulated. In addition, several genes related to hormone stimulus, such as 1-aminocyclopropane-1-carboxylate synthase 8 (ACS8), ethylene-responsive factor ERF1A, ERF1, ERF71, CRF6, and RAP2-3, were also upregulated. The transcriptional regulation is in accordance with the functional abnormalities of pollen wall formation, lipid metabolism, chloroplast structure, ethylene generation, cell cycle, and tissue autophagy. CONCLUSION The results suggested that except for ALS, the metabolic pathways related to lipid metabolism, pollen exine formation, photosynthesis and hormone response are associated with male sterility induced by TBM. The results provide new insight into the molecular mechanisms of inducing male sterility by sulfonylurea.
Collapse
Affiliation(s)
- Jing-long Lian
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Li-Suo Ren
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Cong Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Cheng-Yu Yu
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Zhen Huang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Ai-Xia Xu
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Jun-Gang Dong
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
21
|
Tada Y, Kawano R, Komatsubara S, Nishimura H, Katsuhara M, Ozaki S, Terashima S, Yano K, Endo C, Sato M, Okamoto M, Sawada Y, Hirai MY, Kurusu T. Functional screening of salt tolerance genes from a halophyte Sporobolus virginicus and transcriptomic and metabolomic analysis of salt tolerant plants expressing glycine-rich RNA-binding protein. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 278:54-63. [PMID: 30471729 DOI: 10.1016/j.plantsci.2018.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 06/09/2023]
Abstract
Sporobolus virginicus is a halophytic C4 grass found worldwide, from tropical to warm temperate regions. One Japanese genotype showed a salinity tolerance up to 1.5 M NaCl, a three-fold higher concentration than the salinity of sea water. To identify the key genes involved in the regulation of salt tolerance in S. virginicus, we produced 3500 independent transgenic Arabidopsis lines expressing random cDNA from S. virginicus and screened 10 lines which showed enhanced salt tolerance compared with the wild type in a medium containing 150 mM NaCl. Among the selected lines, two contained cDNA coding glycine-rich RNA-binding proteins (SvGRP1 and SvGRP2). This is the first reports on the function of GRPs from halophytes in salt tolerance though reports have shown GRPs are involved in diverse biological and biochemical processes including salt tolerance in Arabidopsis and some other glycophytes. Transcriptomic analysis and GO enrichment analysis of SvGRP1-expressing Arabidopsis under salt stress revealed upregulation of polyol and downregulation of glucosinolate and indole acetic acid biosynthesis/metabolic pathways. Metabolomic analysis of the SvGRP1-transformant suggested that the increase in 3-aminoppropanoic acid, citramalic acid, and isocitric acid content was associated with enhanced salt tolerance. These findings could provide novel insight into the roles of GRPs in plant salt tolerance.
Collapse
Affiliation(s)
- Yuichi Tada
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
| | - Ryuichi Kawano
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Shiho Komatsubara
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Hideki Nishimura
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
| | - Maki Katsuhara
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
| | - Soichi Ozaki
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Shin Terashima
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kentaro Yano
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Chisato Endo
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Muneo Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Mami Okamoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Takamitsu Kurusu
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan
| |
Collapse
|
22
|
The Arabidopsis-Trichoderma interaction reveals that the fungal growth medium is an important factor in plant growth induction. Sci Rep 2018; 8:16427. [PMID: 30401880 PMCID: PMC6219587 DOI: 10.1038/s41598-018-34500-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/10/2018] [Indexed: 01/21/2023] Open
Abstract
Trichoderma spp colonizes the plant rhizosphere and provides pathogen resistance, abiotic stress tolerance, and enhance growth and development. We evaluated the Arabidopsis-Trichoderma interaction using a split system in which Trichoderma atroviride and Trichoderma virens were grown on PDA or MS medium. Arabidopsis growth was significantly increased at 3 and 5 days post-inoculation with both Trichoderma species, when the fungal strains were grown on PDA in split interaction. The analysis of DR5:uidA reporter line revealed a greater auxin accumulation in root tips when the fungi were grown on PDA in a split interaction. The root hair-defective phenotype of Arabidopsis rhd6 mutant was reverted with both Trichoderma species, even in split interactions. At 12 °C, Trichoderma species in split interactions were able to mitigate the effects of cold stress on the plant, and also Trichoderma induced the AtERD14 expression, a cold related gene. Volatile organic compounds analysis revealed that Trichoderma strains produce mainly sesquiterpenes, and that the type and abundance of these compounds was dependent on the fungal strain and the culture medium. Our results show that fungal nutrition is an important factor in plant growth in a split interaction.
Collapse
|
23
|
Kumar J, Gunapati S, Kianian SF, Singh SP. Comparative analysis of transcriptome in two wheat genotypes with contrasting levels of drought tolerance. PROTOPLASMA 2018; 255:1487-1504. [PMID: 29651660 DOI: 10.1007/s00709-018-1237-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/05/2018] [Indexed: 05/19/2023]
Abstract
Drought tolerance is a complex trait that is governed by multiple genes. The study presents differential transcriptome analysis between drought-tolerant (Triticum aestivum Cv. C306) and drought-sensitive (Triticum aestivum Cv. WL711) genotypes, using Affymetrix GeneChip® Wheat Genome Array. Both genotypes exhibited diverse global transcriptional responses under control and drought conditions. Pathway analysis suggested significant induction or repression of genes involved in secondary metabolism, nucleic acid synthesis, protein synthesis, and transport in C306, as compared to WL711. Significant up- and downregulation of transcripts for enzymes, hormone metabolism, and stress response pathways were observed in C306 under drought. The elevated expression of plasma membrane intrinsic protein 1 and downregulation of late embryogenesis abundant in the leaf tissues could play an important role in delayed wilting in C306. The other regulatory genes such as MT, FT, AP2, SKP1, ABA2, ARF6, WRKY6, AOS, and LOX2 are involved in defense response in C306 genotype. Additionally, transcripts with unknown functions were identified as differentially expressed, which could participate in drought responses.
Collapse
Affiliation(s)
- Jitendra Kumar
- National Agri-Food Biotechnology Institute, Mohali, India
- USDA-ARS Cereal Disease Laboratory, St. Paul, MN, USA
| | - Samatha Gunapati
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | | | - Sudhir P Singh
- National Agri-Food Biotechnology Institute, Mohali, India.
- Center of Innovative and Applied Bioprocessing, Mohali, India.
| |
Collapse
|
24
|
Wang B, Wang G, Shen F, Zhu S. A Glycine-Rich RNA-Binding Protein, CsGR-RBP3, Is Involved in Defense Responses Against Cold Stress in Harvested Cucumber ( Cucumis sativus L.) Fruit. FRONTIERS IN PLANT SCIENCE 2018; 9:540. [PMID: 29740470 PMCID: PMC5925850 DOI: 10.3389/fpls.2018.00540] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/06/2018] [Indexed: 05/09/2023]
Abstract
Plant glycine-rich RNA-binding proteins (GR-RBPs) have been shown to play important roles in response to abiotic stresses in actively proliferating organs such as young plants, root tips, and flowers, but their roles in chilling responses of harvested fruit remains largely unknown. Here, we investigated the role of CsGR-RBP3 in the chilling response of cucumber fruit. Pre-storage cold acclimation at 10°C (PsCA) for 3 days significantly enhanced chilling tolerance of cucumber fruit compared with the control fruit that were stored at 5°C. In the control fruit, only one of the six cucumber CsGR-RBP genes, CsGR-RBP2, was enhanced whereas the other five, i.e., CsGR-RBP3, CsGR-RBP4, CsGR-RBP5, CsGR-RBP-blt801, and CsGR-RBP-RZ1A were not. However, in the fruit exposed to PsCA before storage at 5°C, CsGR-RBP2 transcript levels were not obviously different from those in the controls, whereas the other five were highly upregulated, with CsGR-RBP3 the most significantly induced. Treatment with endogenous ABA and NO biosynthesis inhibitors, tungstate and L-nitro-arginine methyl ester, respectively, prior to PsCA treatment, clearly downregulated CsGR-RBP3 expression and significantly aggravated chilling injury. These results suggest a strong connection between CsGR-RBP3 expression and chilling tolerance in cucumber fruit. Transient expression in tobacco suggests CsGR-RBP3 was located in the mitochondria, implying a role for CsGR-RBP3 in maintaining mitochondria-related functions under low temperature. Arabidopsis lines overexpressing CsGR-RBP3 displayed faster growth at 23°C, lower electrolyte leakage and higher Fv/Fm ratio at 0°C, and higher survival rate at -20°C, than wild-type plants. Under cold stress conditions, Arabidopsis plants overexpressing CsGR-RBP3 displayed lower reactive oxygen species levels, and higher catalase and superoxide dismutase expression and activities, compared with the wild-type plants. In addition, overexpression of CsGR-RBP3 significantly upregulated nine Arabidopsis genes involved in defense responses to various stresses, including chilling. These results strongly suggest CsGR-RBP3 plays a positive role in defense against chilling stress.
Collapse
Affiliation(s)
| | | | | | - Shijiang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
25
|
Czolpinska M, Rurek M. Plant Glycine-Rich Proteins in Stress Response: An Emerging, Still Prospective Story. FRONTIERS IN PLANT SCIENCE 2018; 9:302. [PMID: 29568308 PMCID: PMC5852109 DOI: 10.3389/fpls.2018.00302] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/21/2018] [Indexed: 05/21/2023]
Abstract
Seed plants are sessile organisms that have developed a plethora of strategies for sensing, avoiding, and responding to stress. Several proteins, including the glycine-rich protein (GRP) superfamily, are involved in cellular stress responses and signaling. GRPs are characterized by high glycine content and the presence of conserved segments including glycine-containing structural motifs composed of repetitive amino acid residues. The general structure of this superfamily facilitates division of GRPs into five main subclasses. Although the participation of GRPs in plant stress response has been indicated in numerous model and non-model plant species, relatively little is known about the key physiological processes and molecular mechanisms in which those proteins are engaged. Class I, II, and IV members are known to be involved in hormone signaling, stress acclimation, and floral development, and are crucial for regulation of plant cells growth. GRPs of class IV [RNA-binding proteins (RBPs)] are involved in alternative splicing or regulation of transcription and stomatal movement, seed, pollen, and stamen development; their accumulation is regulated by the circadian clock. Owing to the fact that the overexpression of GRPs can confer tolerance to stress (e.g., some are involved in cold acclimation and may improve growth at low temperatures), these proteins could play a promising role in agriculture through plant genetic engineering. Consequently, isolation, cloning, characterization, and functional validation of novel GRPs expressed in response to the diverse stress conditions are expected to be growing areas of research in the coming years. According to our knowledge, this is the first comprehensive review on participation of plant GRPs in the response to diverse stress stimuli.
Collapse
|
26
|
Wang B, Sumit R, Sahu BB, Ngaki MN, Srivastava SK, Yang Y, Swaminathan S, Bhattacharyya MK. Arabidopsis Novel Glycine-Rich Plasma Membrane PSS1 Protein Enhances Disease Resistance in Transgenic Soybean Plants. PLANT PHYSIOLOGY 2018; 176:865-878. [PMID: 29101280 PMCID: PMC5761755 DOI: 10.1104/pp.16.01982] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/21/2017] [Indexed: 05/02/2023]
Abstract
Nonhost resistance is defined as the immunity of a plant species to all nonadapted pathogen species. Arabidopsis (Arabidopsis thaliana) ecotype Columbia-0 is nonhost to the oomycete plant pathogen Phytophthora sojae and the fungal plant pathogen Fusarium virguliforme that are pathogenic to soybean (Glycine max). Previously, we reported generating the pss1 mutation in the pen1-1 genetic background as well as genetic mapping and characterization of the Arabidopsis nonhost resistance Phytophthora sojae-susceptible gene locus, PSS1 In this study, we identified six candidate PSS1 genes by comparing single-nucleotide polymorphisms of (1) the bulked DNA sample of seven F2:3 families homozygous for the pss1 allele and (2) the pen1-1 mutant with Columbia-0. Analyses of T-DNA insertion mutants for each of these candidate PSS1 genes identified the At3g59640 gene encoding a glycine-rich protein as the putative PSS1 gene. Later, complementation analysis confirmed the identity of At3g59640 as the PSS1 gene. PSS1 is induced following P. sojae infection as well as expressed in an organ-specific manner. Coexpression analysis of the available transcriptomic data followed by reverse transcriptase-polymerase chain reaction suggested that PSS1 is coregulated with ATG8a (At4g21980), a core gene in autophagy. PSS1 contains a predicted single membrane-spanning domain. Subcellular localization study indicated that it is an integral plasma membrane protein. Sequence analysis suggested that soybean is unlikely to contain a PSS1-like defense function. Following the introduction of PSS1 into the soybean cultivar Williams 82, the transgenic plants exhibited enhanced resistance to F. virguliforme, the pathogen that causes sudden death syndrome.
Collapse
Affiliation(s)
- Bing Wang
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | - Rishi Sumit
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | - Binod B Sahu
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | | | | | - Yang Yang
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | | | | |
Collapse
|
27
|
Rodríguez-Hernández AA, Muro-Medina CV, Ramírez-Alonso JI, Jiménez-Bremont JF. Modification of AtGRDP1 gene expression affects silique and seed development in Arabidopsis thaliana. Biochem Biophys Res Commun 2017; 486:252-256. [PMID: 28285133 DOI: 10.1016/j.bbrc.2017.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/06/2017] [Indexed: 11/15/2022]
Abstract
Glycine Rich Proteins (GRPs) are induced at different developmental stages and in specific plant tissues. Recently, we described a novel Arabidopsis gene encoding a short glycine-rich domain protein (AtGRDP1). This gene is involved in abiotic stress responsiveness; the Atgrdp1-null mutant seeds were more sensitive to stress, while the opposite phenotype was achieved by AtGRDP1 overexpression. In this study, we analyzed the phenotype of the fruits produced by Arabidopsis Atgrdp1 mutants and 35S::AtGRDP1 overexpression lines. Our analyses revealed important changes in silique length, seed number, seed weight and morphology in the analyzed lines. In particular, Atgrdp1 mutant lines exhibited several defects including short siliques, a diminished number of seeds per silique, and a reduction in seed size and weight as compared to Col-0. The overexpression of the AtGRDP1 gene also generated phenotypes with alterations in size of silique, number of seeds per silique, and size and weight of the seed. In addition, the expression analysis of AtGRDP1 gene showed that it was expressed in floral and fruit organs, with the highest expression level in mature siliques. The alterations in the siliques and seeds traits in the Atgrdp1 mutant line, as well as the phenotypes observed in AtGRDP1 overexpression lines, suggest a role of the AtGRDP1 gene in the Arabidopsis fruit development.
Collapse
Affiliation(s)
- Aída Araceli Rodríguez-Hernández
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, Camino a la Presa de San José 2055, C.P. 78216, San Luis Potosí, SLP, Mexico
| | - Carlos Vladimir Muro-Medina
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, Camino a la Presa de San José 2055, C.P. 78216, San Luis Potosí, SLP, Mexico
| | - Jocelin Itzel Ramírez-Alonso
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, Camino a la Presa de San José 2055, C.P. 78216, San Luis Potosí, SLP, Mexico
| | - Juan Francisco Jiménez-Bremont
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, Camino a la Presa de San José 2055, C.P. 78216, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
28
|
Sánchez-Rangel D, Chávez-Martínez AI, Rodríguez-Hernández AA, Maruri-López I, Urano K, Shinozaki K, Jiménez-Bremont JF. Simultaneous Silencing of Two Arginine Decarboxylase Genes Alters Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:300. [PMID: 27014322 PMCID: PMC4789552 DOI: 10.3389/fpls.2016.00300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/25/2016] [Indexed: 05/11/2023]
Abstract
Polyamines (PAs) are small aliphatic polycations that are found ubiquitously in all organisms. In plants, PAs are involved in diverse biological processes such as growth, development, and stress responses. In Arabidopsis thaliana, the arginine decarboxylase enzymes (ADC1 and 2) catalyze the first step of PA biosynthesis. For a better understanding of PA biological functions, mutants in PA biosynthesis have been generated; however, the double adc1/adc2 mutant is not viable in A. thaliana. In this study, we generated non-lethal A. thaliana lines through an artificial microRNA that simultaneously silenced the two ADC genes (amiR:ADC). The generated transgenic lines (amiR:ADC-L1 and -L2) showed reduced AtADC1 and AtADC2 transcript levels. For further analyses the amiR:ADC-L2 line was selected. We found that the amiR:ADC-L2 line showed a significant decrease of their PA levels. The co-silencing revealed a stunted growth in A. thaliana seedlings, plantlets and delay in its flowering rate; these phenotypes were reverted with PA treatment. In addition, amiR:ADC-L2 plants displayed two seed phenotypes, such as yellow and brownish seeds. The yellow mutant seeds were smaller than adc1, adc2 mutants and wild type seeds; however, the brownish were the smallest seeds with arrested embryos at the torpedo stage. These data reinforce the importance of PA homeostasis in the plant development processes.
Collapse
Affiliation(s)
- Diana Sánchez-Rangel
- Laboratorio de Estudios Moleculares de Respuesta a Estrés en Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica ACSan Luis Potosí, Mexico
| | - Ana I. Chávez-Martínez
- Laboratorio de Estudios Moleculares de Respuesta a Estrés en Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica ACSan Luis Potosí, Mexico
| | - Aída A. Rodríguez-Hernández
- Laboratorio de Estudios Moleculares de Respuesta a Estrés en Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica ACSan Luis Potosí, Mexico
| | - Israel Maruri-López
- Laboratorio de Estudios Moleculares de Respuesta a Estrés en Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica ACSan Luis Potosí, Mexico
| | - Kaoru Urano
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource ScienceTsukuba, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource ScienceTsukuba, Japan
| | - Juan F. Jiménez-Bremont
- Laboratorio de Estudios Moleculares de Respuesta a Estrés en Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica ACSan Luis Potosí, Mexico
- *Correspondence: Juan F. Jiménez Bremont
| |
Collapse
|
29
|
Lewinski M, Hallmann A, Staiger D. Genome-wide identification and phylogenetic analysis of plant RNA binding proteins comprising both RNA recognition motifs and contiguous glycine residues. Mol Genet Genomics 2015; 291:763-73. [DOI: 10.1007/s00438-015-1144-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/06/2015] [Indexed: 11/28/2022]
|