1
|
Zheng X, Wang C, Zhang K, Xu Y, Qu X, Cao P, Zhou T, Chen Q. Revealing critical mechanisms involved in carbon nanosol-mediated tobacco growth using small RNA and mRNA sequencing in silico approach. BMC PLANT BIOLOGY 2024; 24:1233. [PMID: 39710652 DOI: 10.1186/s12870-024-05992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Nanomaterials have been shown to promote crop growth, yield and stress resistance. Carbon nanosol (CNS), a type of nanomaterial, is used to regulate tobacco shoot and root growth. However, information about the application of CNS to crop plants, especially tobacco, is still limited. Based on differential expression analysis and trend analysis, several miRNAs (miRN21-Novel-5p-mature, miR319b-Probable-5p-mature, miR160a-c-Known/Probable-5p-mature and miR156c-e-Known-5p-mature/star) and their target genes, including transcription factors (TFs), are likely responsible for the effect of CNS on promoting the growth of tobacco plants. In addition, we characterized nine TFs [Nitab4.5_00001789g0110 (NbbZIP), Nitab4.5_00001176g0010 (NbMYB), Nitab4.5_0001366g0010 (NbNAC), Nitab4.5_00000895g013 (NbMYB), Nitab4.5_0001225g0120 (NbNAC), Nitab4.5_0000202g0230 (NbDof), Nitab4.5_0002241g0010 (NbMYB-related), Nitab4.5_0000410g0060 (NbTCP), and Nitab4.5_0000159g0180 (NbC2H2)] associated with the response of tobacco to CNS according to the differential expression analysis, TF‒gene interaction network analysis and weighted correlation network analysis (WGCNA). Taken together, the findings of our study help understand CNS-mediated growth promotion in tobacco plants. The identification of candidate miRNAs and genes will provide potential support for the use of CNS in tobacco.
Collapse
Affiliation(s)
- Xueao Zheng
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, Henan Province, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Chen Wang
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, Henan Province, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Kunlong Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yalong Xu
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, Henan Province, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Xiaozhan Qu
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, Henan Province, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Peijian Cao
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, Henan Province, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Qiansi Chen
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, Henan Province, China.
- Beijing Life Science Academy (BLSA), Beijing, 102209, China.
| |
Collapse
|
2
|
Zhang Q, Qian C, Li L, Li W, Li Y, Zhao H. Genome-Wide Identification and Characterization of TCP Genes in Eight Prunus Species and Their Expression Patterns Under Cold Stress in P. tenella var. tenella. Genes (Basel) 2024; 15:1443. [PMID: 39596643 PMCID: PMC11593384 DOI: 10.3390/genes15111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Teosinte branched1/Cycloidea/Proliferating cell nuclear antigen factors (TCPs) are plant-specific transcription factors involved in leaf development, flowering, branching, hormone signaling, and stress responses. Prunus a key temperate fruit tree with ornamental spring blooms, still lacks comprehensive TCP gene studies across many species. METHODS We identified 154 TCP genes in eight Prunus species: 19 in Prunus tenella var. tenella, 19 in P. amygdalus, 17 in P. armeniaca 'Rojo Pasion', 19 in P. mira, 20 in P. jamasakura var. jamasakura, 19 in P. fruticosa, 19 in P. mume var. tortuosa, and 22 in P. × yedoensis 'Somei-yoshino'. These genes were classified into PCF, CIN, and CYC/TB1 groups. We examined segmental duplication, conserved motifs, and cis-acting elements. Expression patterns of 12 TCPs in P. tenella var. tenella were tested under low-temperature stress (25 °C, 5 °C, -5 °C, and -10 °C), and PtTCP9's subcellular localization was determined. RESULTS TCP genes within the same groups showed similar motifs and cis-acting elements. Cold stress analysis identified multiple low-temperature-responsive elements in gene promoters. Four genes (PtTCP2, PtTCP6, PtTCP14, and PtTCP16) increased expression under cold stress, while six genes (PtTCP1, PtTCP5, PtTCP8, PtTCP9, PtTCP17, and PtTCP19) decreased. PtTCP9 was localized to the nucleus. CONCLUSIONS This was the first genome-wide study of the TCP gene family in these eight Prunus species, providing valuable insights into the characteristics and functions of TCP genes within this important genus.
Collapse
Affiliation(s)
- Qiang Zhang
- Institute of Marine Science and technology, Shandong University, Qingdao 266215, China;
| | - Cheng Qian
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (C.Q.); (L.L.); (W.L.)
| | - Lulu Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (C.Q.); (L.L.); (W.L.)
| | - Wei Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (C.Q.); (L.L.); (W.L.)
| | - Yanhua Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (C.Q.); (L.L.); (W.L.)
| | - Han Zhao
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450014, China
| |
Collapse
|
3
|
Bi M, Wang Z, Cheng K, Meng S, Qi M. SlTCP29 and SlTCP24 participate in the morphological development of tomato compound leaves by integrating multiple pathways. PHYSIOLOGIA PLANTARUM 2024; 176:e14641. [PMID: 39659148 DOI: 10.1111/ppl.14641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
Leaves are the primary vegetative organs of plants, and their morphology is an important trait affecting plant architecture, light energy utilization, environmental adaptation, and fruit quality and yield. Leaf development is highly flexible; however, understanding the regulatory mechanisms of factors coordinating leaf morphogenesis and differentiation remains limited. In this study, we obtained a double mutant for SlTCP29 and SlTCP24 genes from the CRISPR/Cas9 mutant population, both belonging to the CINCINNATA-like TCP (TEOSINTE BRANCHED, CYCLOIDEA and PCF1/2) transcription factor subfamily. Simultaneous mutations of SlTCP29 and SlTCP24 genes increase the complexity of tomato leaves, characterized by deeper leaf margin notches and increased number of leaflets. In conjunction with RNA-seq analysis, determination of plant hormone content, and molecular interaction assays, we identified the KNOXII gene SlTKNII5, SlMIR164a, and 1-aminocyclopropane-1-carboxylic acid synthase gene SlACS1A as direct downstream targets of SlTCP29 and SlTCP24, among which SlTKNII5 can physically interact with other KNOXII members to form heterodimers. Our study provides insight into the mechanisms by which SlTCP29 and SlTCP24 are involved in the morphological development of tomato compound leaves by integrating multiple pathways, including transcription factor, microRNA, and phytohormone.
Collapse
Affiliation(s)
- Mengxi Bi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Zhijun Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Keyan Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Sida Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| |
Collapse
|
4
|
Liu C, Lv T, Shen Y, Liu T, Liu M, Hu J, Liu S, Jiang Y, Zhang M, Zhao M, Wang K, Wang Y. Genome-wide identification and integrated analysis of TCP genes controlling ginsenoside biosynthesis in Panax ginseng. BMC PLANT BIOLOGY 2024; 24:47. [PMID: 38216888 PMCID: PMC10787463 DOI: 10.1186/s12870-024-04729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Panax ginseng is an important medicinal plant, and ginsenosides are the main bioactive molecules of ginseng. The TCP (TBI, CYC, PCF) family is a group of transcription factors (TFs) that play an important role in plant growth and development, hormone signalling and synthesis of secondary metabolites. In our study, 78 PgTCP transcripts were identified from the established ginseng transcriptome database. A phylogenetic tree analysis showed that the 67 PgTCP transcripts with complete open reading frames were classified into three subfamilies, including CIN, PCF, and CYC/TB1. Protein structure analysis showed that PgTCP genes had bHLH structures. Chromosomal localization analysis showed that 63 PgTCP genes were localized on 17 of the 24 chromosomes of the Chinese ginseng genome. Expression pattern analysis showed that PgTCP genes differed among different lineages and were spatiotemporally specific. Coexpression network analysis indicated that PgTCP genes were coexpressed and involved in plant activities or metabolic regulation in ginseng. The expression levels of PgTCP genes from class I (PCF) were significantly downregulated, while the expression levels of PgTCP genes from class II (CIN and CYC/TB1) were upregulated, suggesting that TCP genes may be involved in the regulation of secondary metabolism in ginseng. As the PgTCP26-02 gene was found to be related to ginsenoside synthesis, its predicted protein structure and expression pattern were further analysed. Our results provide new insights into the origin, differentiation, evolution and function of the PgTCP gene family in ginseng, as well as the regulation of plant secondary metabolism.
Collapse
Affiliation(s)
- Chang Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Tingting Lv
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Yanhua Shen
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Tao Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Mingming Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Jian Hu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Sizhang Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Yang Jiang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China.
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China.
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China.
| |
Collapse
|
5
|
Khan AH, Min L, Ma Y, Zeeshan M, Jin S, Zhang X. High-temperature stress in crops: male sterility, yield loss and potential remedy approaches. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:680-697. [PMID: 36221230 PMCID: PMC10037161 DOI: 10.1111/pbi.13946] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 05/16/2023]
Abstract
Global food security is one of the utmost essential challenges in the 21st century in providing enough food for the growing population while coping with the already stressed environment. High temperature (HT) is one of the main factors affecting plant growth, development and reproduction and causes male sterility in plants. In male reproductive tissues, metabolic changes induced by HT involve carbohydrates, lipids, hormones, epigenetics and reactive oxygen species, leading to male sterility and ultimately reducing yield. Understanding the mechanism and genes involved in these pathways during the HT stress response will provide a new path to improve crops by using molecular breeding and biotechnological approaches. Moreover, this review provides insight into male sterility and integrates this with suggested strategies to enhance crop tolerance under HT stress conditions at the reproductive stage.
Collapse
Affiliation(s)
- Aamir Hamid Khan
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Muhammad Zeeshan
- Guangxi Key Laboratory for Agro‐Environment and Agro‐Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of AgricultureGuanxi UniversityNanningChina
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement & Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
6
|
Preusche M, Vahl M, Riediger J, Ulbrich A, Schulz M. Modulating Expression Levels of TCP Transcription Factors by Mentha x piperita Volatiles-An Allelopathic Tool to Influence Leaf Growth? PLANTS (BASEL, SWITZERLAND) 2022; 11:3078. [PMID: 36432807 PMCID: PMC9697212 DOI: 10.3390/plants11223078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Peppermint (Mentha x piperita) is a species with inhibitory allelopathic properties due to its high amounts of terpenes. Recent studies have disclosed dosage dependent growth promotion or defense reactions in plants when facing appropriate amounts of Mentha bouquet terpenes. These positive effects could be of interest for agricultural applications. To obtain more insights into leaf growth modulations, the expression of Arabidopsis and Brassica rapa TCP transcription factors were studied after fumigation with M. x piperita bouquets (Arabidopsis), with M. x piperita essential oil or with limonene (Arabidopsis and Chinese cabbage). According to qPCR studies, expression of TCP3, TCP24, and TCP20 were downregulated by all treatments in Arabidopsis, leading to altered leaf growth. Expressions of B. rapa TCPs after fumigation with the essential oil or limonene were less affected. Extensive greenhouse and polytunnel trials with white cabbage and Mentha plants showed that the developmental stage of the leaves, the dosage, and the fumigation time are of crucial importance for changed fresh and dry weights. Although further research is needed, the study may contribute to a more intensive utilization of ecologically friendly and species diversity conservation and positive allelopathic interactions in future agricultural systems.
Collapse
Affiliation(s)
- Matthias Preusche
- Department of Horticultural Production, University of Applied Science, 49090 Osnabrück, Germany
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53127 Bonn, Germany
| | - Marvin Vahl
- Department of Horticultural Production, University of Applied Science, 49090 Osnabrück, Germany
| | - Johanna Riediger
- Department of Horticultural Production, University of Applied Science, 49090 Osnabrück, Germany
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53127 Bonn, Germany
| | - Andreas Ulbrich
- Department of Horticultural Production, University of Applied Science, 49090 Osnabrück, Germany
| | - Margot Schulz
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
7
|
Cao B, Wang H, Bai J, Wang X, Li X, Zhang Y, Yang S, He Y, Yu X. miR319-Regulated TCP3 Modulates Silique Development Associated with Seed Shattering in Brassicaceae. Cells 2022; 11:cells11193096. [PMID: 36231057 PMCID: PMC9563637 DOI: 10.3390/cells11193096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Seed shattering is an undesirable trait that leads to crop yield loss. Improving silique resistance to shattering is critical for grain and oil crops. In this study, we found that miR319-targeted TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR (TCPs) inhibited the process of post-fertilized fruits (silique) elongation and dehiscence via regulation of FRUITFULL (FUL) expression in Arabidopsis thaliana and Brassica napus. AtMIR319a activation resulted in a longer silique with thickened and lignified replum, whereas overexpression of an miR319a-resistant version of AtTCP3 (mTCP3) led to a short silique with narrow and less lignified replum. Further genetic and expressional analysis suggested that FUL acted downstream of TCP3 to negatively regulate silique development. Moreover, hyper-activation of BnTCP3.A8, a B. napus homolog of AtTCP3, in rapeseed resulted in an enhanced silique resistance to shattering due to attenuated replum development. Taken together, our findings advance our knowledge of TCP-regulated silique development and provide a potential target for genetic manipulation to reduce silique shattering in Brassica crops.
Collapse
Affiliation(s)
- Biting Cao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Hongfeng Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266101, China
| | - Jinjuan Bai
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Xuan Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Xiaorong Li
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Yanfeng Zhang
- Hybrid Rape Research Center of Shaanxi Province, Yangling 712100, China
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Changchun 130102, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- Correspondence: (Y.H.); (X.Y.)
| | - Xiang Yu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (Y.H.); (X.Y.)
| |
Collapse
|
8
|
Jin K, Wang Y, Zhuo R, Xu J, Lu Z, Fan H, Huang B, Qiao G. TCP Transcription Factors Involved in Shoot Development of Ma Bamboo ( Dendrocalamus latiflorus Munro). FRONTIERS IN PLANT SCIENCE 2022; 13:884443. [PMID: 35620688 PMCID: PMC9127963 DOI: 10.3389/fpls.2022.884443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/08/2022] [Indexed: 05/10/2023]
Abstract
Ma bamboo (Dendrocalamus latiflorus Munro) is the most widely cultivated clumping bamboo in Southern China and is valuable for both consumption and wood production. The development of bamboo shoots involving the occurrence of lateral buds is unique, and it affects both shoot yield and the resulting timber. Plant-specific TCP transcription factors are involved in plant growth and development, particularly in lateral bud outgrowth and morphogenesis. However, the comprehensive information of the TCP genes in Ma bamboo remains poorly understood. In this study, 66 TCP transcription factors were identified in Ma bamboo at the genome-wide level. Members of the same subfamily had conservative gene structures and conserved motifs. The collinear analysis demonstrated that segmental duplication occurred widely in the TCP transcription factors of Ma bamboo, which mainly led to the expansion of a gene family. Cis-acting elements related to growth and development and stress response were found in the promoter regions of DlTCPs. Expression patterns revealed that DlTCPs have tissue expression specificity, which is usually highly expressed in shoots and leaves. Subcellular localization and transcriptional self-activation experiments demonstrated that the five candidate TCP proteins were typical self-activating nuclear-localized transcription factors. Additionally, the transcriptome analysis of the bamboo shoot buds at different developmental stages helped to clarify the underlying functions of the TCP members during the growth of bamboo shoots. DlTCP12-C, significantly downregulated as the bamboo shoots developed, was selected to further verify its molecular function in Arabidopsis. The DlTCP12-C overexpressing lines exhibited a marked reduction in the number of rosettes and branches compared with the wild type in Arabidopsis, suggesting that DlTCP12-C conservatively inhibits lateral bud outgrowth and branching in plants. This study provides useful insights into the evolutionary patterns and molecular functions of the TCP transcription factors in Ma bamboo and provides a valuable reference for further research on the regulatory mechanism of bamboo shoot development and lateral bud growth.
Collapse
Affiliation(s)
- Kangming Jin
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Forestry Faculty, Nanjing Forestry University, Nanjing, China
| | - Yujun Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Jing Xu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Zhuchou Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Huijin Fan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Biyun Huang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
9
|
Tang Y, Gao X, Cui Y, Xu H, Yu J. 植物TCP转录因子研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Li X, Cai K, Han Z, Zhang S, Sun A, Xie Y, Han R, Guo R, Tigabu M, Sederoff R, Pei X, Zhao C, Zhao X. Chromosome-Level Genome Assembly for Acer pseudosieboldianum and Highlights to Mechanisms for Leaf Color and Shape Change. FRONTIERS IN PLANT SCIENCE 2022; 13:850054. [PMID: 35310631 PMCID: PMC8927880 DOI: 10.3389/fpls.2022.850054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Acer pseudosieboldianum (Pax) Komarov is an ornamental plant with prominent potential and is naturally distributed in Northeast China. Here, we obtained a chromosome-scale genome assembly of A. pseudosieboldianum combining HiFi and Hi-C data, and the final assembled genome size was 690.24 Mb and consisted of 287 contigs, with a contig N50 value of 5.7 Mb and a BUSCO complete gene percentage of 98.4%. Genome evolution analysis showed that an ancient duplication occurred in A. pseudosieboldianum. Phylogenetic analyses revealed that Aceraceae family could be incorporated into Sapindaceae, consistent with the present Angiosperm Phylogeny Group system. We further construct a gene-to-metabolite correlation network and identified key genes and metabolites that might be involved in anthocyanin biosynthesis pathways during leaf color change. Additionally, we identified crucial teosinte branched1, cycloidea, and proliferating cell factors (TCP) transcription factors that might be involved in leaf morphology regulation of A. pseudosieboldianum, Acer yangbiense and Acer truncatum. Overall, this reference genome is a valuable resource for evolutionary history studies of A. pseudosieboldianum and lays a fundamental foundation for its molecular breeding.
Collapse
Affiliation(s)
- Xiang Li
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Kewei Cai
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Zhiming Han
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Shikai Zhang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Anran Sun
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Ying Xie
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Rui Han
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Ruixue Guo
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Mulualem Tigabu
- Southern Swedish Forest Research Centre, Faculty of Forest Science, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ronald Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Xiaona Pei
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Chunli Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
11
|
Rath M, Challa KR, Sarvepalli K, Nath U. CINCINNATA-Like TCP Transcription Factors in Cell Growth - An Expanding Portfolio. FRONTIERS IN PLANT SCIENCE 2022; 13:825341. [PMID: 35273626 PMCID: PMC8902296 DOI: 10.3389/fpls.2022.825341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 05/09/2023]
Abstract
Post-mitotic cell growth is a key process in plant growth and development. Cell expansion drives major growth during morphogenesis and is influenced by both endogenous factors and environmental stimuli. Though both isotropic and anisotropic cell growth can contribute to organ size and shape at different degrees, anisotropic cell growth is more likely to contribute to shape change. While much is known about the mechanisms that increase cellular turgor and cell-wall biomass during expansion, the genetic factors that regulate these processes are less studied. In the past quarter of a century, the role of the CINCINNATA-like TCP (CIN-TCP) transcription factors has been well documented in regulating diverse aspects of plant growth and development including flower asymmetry, plant architecture, leaf morphogenesis, and plant maturation. The molecular activity of the CIN-TCP proteins common to these biological processes has been identified as their ability to suppress cell proliferation. However, reports on their role regulating post-mitotic cell growth have been scanty, partly because of functional redundancy among them. In addition, it is difficult to tease out the effect of gene activity on cell division and expansion since these two processes are linked by compensation, a phenomenon where perturbation in proliferation is compensated by an opposite effect on cell growth to keep the final organ size relatively unaltered. Despite these technical limitations, recent genetic and growth kinematic studies have shown a distinct role of CIN-TCPs in promoting cellular growth in cotyledons and hypocotyls, the embryonic organs that grow solely by cell expansion. In this review, we highlight these recent advances in our understanding of how CIN-TCPs promote cell growth.
Collapse
Affiliation(s)
- Monalisha Rath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Krishna Reddy Challa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | | | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- *Correspondence: Utpal Nath,
| |
Collapse
|
12
|
Li L, Garsamo M, Yuan J, Wang X, Lam SH, Varala K, Boavida LC, Zhou Y, Liu X. CAND1 is required for pollen viability in Arabidopsis thaliana-a test of the adaptive exchange hypothesis. FRONTIERS IN PLANT SCIENCE 2022; 13:866086. [PMID: 35968124 PMCID: PMC9366119 DOI: 10.3389/fpls.2022.866086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/04/2022] [Indexed: 05/11/2023]
Abstract
The dynamic assembly of SKP1•CUL1•F-box protein (SCF) ubiquitin ligases is important for protein ubiquitination and degradation. This process is enabled by CAND1, which exchanges F-box proteins associated with the common CUL1 scaffold, and thereby, recycles the limited CUL1 core and allows diverse F-box proteins to assemble active SCFs. Previous human cell biological and computational studies have led to the adaptive exchange hypothesis, which suggests that the CAND1-mediated exchange confers plasticity on the SCF system, allowing cells to tolerate large variations in F-box protein expression. Here, we tested this hypothesis using Arabidopsis thaliana, a multicellular organism expressing hundreds of F-box protein genes at variable levels in different tissues. The cand1 null mutant in Arabidopsis is viable but produce almost no seeds. Bioinformatic, cell biological, and developmental analyses revealed that the low fertility in the cand1 mutant is associated with cell death in pollen, where the net expression of F-box protein genes is significantly higher than any other Arabidopsis tissue. In addition, we show that the transmission efficiency of the cand1 null allele was reduced through the male but not the female gametophyte. Our results suggest that CAND1 activity is essential in cells or tissues expressing high levels of F-box proteins. This finding is consistent with the proposed adaptive exchange hypothesis, demonstrating the necessity of the evolutionarily conserved CAND1-mediated exchange system in the development of a multicellular organism.
Collapse
Affiliation(s)
- Lihong Li
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Melaku Garsamo
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Jing Yuan
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Xiaojin Wang
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Susan H. Lam
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Kranthi Varala
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Leonor C. Boavida
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Yun Zhou
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Xing Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- *Correspondence: Xing Liu,
| |
Collapse
|
13
|
Wu B, Ruan C, Shah AH, Li D, Li H, Ding J, Li J, Du W. Identification of miRNA-mRNA Regulatory Modules Involved in Lipid Metabolism and Seed Development in a Woody Oil Tree ( Camellia oleifera). Cells 2021; 11:cells11010071. [PMID: 35011633 PMCID: PMC8750442 DOI: 10.3390/cells11010071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/29/2022] Open
Abstract
Tea oil camellia (Camellia oleifera), an important woody oil tree, is a source of seed oil of high nutritional and medicinal value that is widely planted in southern China. However, there is no report on the identification of the miRNAs involved in lipid metabolism and seed development in the high- and low-oil cultivars of tea oil camellia. Thus, we explored the roles of miRNAs in the key periods of oil formation and accumulation in the seeds of tea oil camellia and identified miRNA–mRNA regulatory modules involved in lipid metabolism and seed development. Sixteen small RNA libraries for four development stages of seed oil biosynthesis in high- and low-oil cultivars were constructed. A total of 196 miRNAs, including 156 known miRNAs from 35 families, and 40 novel miRNAs were identified, and 55 significantly differentially expressed miRNAs were found, which included 34 upregulated miRNAs, and 21 downregulated miRNAs. An integrated analysis of the miRNA and mRNA transcriptome sequence data revealed that 10 miRNA–mRNA regulatory modules were related to lipid metabolism; for example, the regulatory modules of ath-miR858b–MYB82/MYB3/MYB44 repressed seed oil biosynthesis, and a regulation module of csi-miR166e-5p–S-ACP-DES6 was involved in the formation and accumulation of oleic acid. A total of 23 miRNA–mRNA regulatory modules were involved in the regulation of the seed size, such as the regulatory module of hpe-miR162a_L-2–ARF19, involved in early seed development. A total of 12 miRNA–mRNA regulatory modules regulating growth and development were identified, such as the regulatory modules of han-miR156a_L+1–SPL4/SBP2, promoting early seed development. The expression changes of six miRNAs and their target genes were validated using quantitative real-time PCR, and the targeting relationship of the cpa-miR393_R-1–AFB2 regulatory module was verified by luciferase assays. These data provide important theoretical values and a scientific basis for the genetic improvement of new cultivars of tea oil camellia in the future.
Collapse
Affiliation(s)
- Bo Wu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China; (B.W.); (H.L.); (J.D.); (J.L.); (W.D.)
| | - Chengjiang Ruan
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China; (B.W.); (H.L.); (J.D.); (J.L.); (W.D.)
- Correspondence: ; Tel.: +86-411-87652536
| | - Asad Hussain Shah
- Department of Biotechnology, Faculty of Sciences, University of Kotli Azad Jammu and Kashmir, Azad Jammu and Kashmir, Kotli 11100, Pakistan;
| | - Denghui Li
- Guizhou Wulingshan Youcha Technology Innovation Research Institute Co., Ltd., Tongren 554300, China;
| | - He Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China; (B.W.); (H.L.); (J.D.); (J.L.); (W.D.)
| | - Jian Ding
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China; (B.W.); (H.L.); (J.D.); (J.L.); (W.D.)
| | - Jingbin Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China; (B.W.); (H.L.); (J.D.); (J.L.); (W.D.)
| | - Wei Du
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China; (B.W.); (H.L.); (J.D.); (J.L.); (W.D.)
| |
Collapse
|
14
|
ZmFAR1 and ZmABCG26 Regulated by microRNA Are Essential for Lipid Metabolism in Maize Anther. Int J Mol Sci 2021; 22:ijms22157916. [PMID: 34360681 PMCID: PMC8348775 DOI: 10.3390/ijms22157916] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
The function and regulation of lipid metabolic genes are essential for plant male reproduction. However, expression regulation of lipid metabolic genic male sterility (GMS) genes by noncoding RNAs is largely unclear. Here, we systematically predicted the microRNA regulators of 34 maize white brown complex members in ATP-binding cassette transporter G subfamily (WBC/ABCG) genes using transcriptome analysis. Results indicate that the ZmABCG26 transcript was predicted to be targeted by zma-miR164h-5p, and their expression levels were negatively correlated in maize B73 and Oh43 genetic backgrounds based on both transcriptome data and qRT-PCR experiments. CRISPR/Cas9-induced gene mutagenesis was performed on ZmABCG26 and another lipid metabolic gene, ZmFAR1. DNA sequencing, phenotypic, and cytological observations demonstrated that both ZmABCG26 and ZmFAR1 are GMS genes in maize. Notably, ZmABCG26 proteins are localized in the endoplasmic reticulum (ER), chloroplast/plastid, and plasma membrane. Furthermore, ZmFAR1 shows catalytic activities to three CoA substrates in vitro with the activity order of C12:0-CoA > C16:0-CoA > C18:0-CoA, and its four key amino acid sites were critical to its catalytic activities. Lipidomics analysis revealed decreased cutin amounts and increased wax contents in anthers of both zmabcg26 and zmfar1 GMS mutants. A more detailed analysis exhibited differential changes in 54 monomer contents between wild type and mutants, as well as between zmabcg26 and zmfar1. These findings will promote a deeper understanding of miRNA-regulated lipid metabolic genes and the functional diversity of lipid metabolic genes, contributing to lipid biosynthesis in maize anthers. Additionally, cosegregating molecular markers for ZmABCG26 and ZmFAR1 were developed to facilitate the breeding of male sterile lines.
Collapse
|
15
|
Qu H, Liu Y, Jiang H, Liu Y, Song W, Chen L. Identification and characterization of miRNAs associated with sterile flower buds in the tea plant based on small RNA sequencing. Hereditas 2021; 158:26. [PMID: 34271985 PMCID: PMC8285856 DOI: 10.1186/s41065-021-00188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Background miRNAs are a type of conserved, small RNA molecule that regulate gene expression and play an important role in the growth and development of plants. miRNAs are involved in seed germination, root development, shoot apical meristem maintenance, leaf development, and flower development by regulating various target genes. However, the role of miRNAs in the mechanism of tea plant flower sterility remains unclear. Therefore, we performed miRNA sequencing on the flowers of fertile male parents, female parents, and sterile offspring. Results A total of 55 known miRNAs and 90 unknown miRNAs were identified. In the infertile progeny, 37 miRNAs were differentially expressed; 18 were up-regulated and 19 were down-regulated. miR156, miR157, miR164, miR167, miR169, miR2111 and miR396 family members were down-regulated, and miR160, miR172 and miR319 family members were up-regulated. Moreover, we predicted that the 37 differentially expressed miRNAs target a total of 363 genes, which were enriched in 31 biological functions. We predicted that miR156 targets 142 genes, including ATD1A, SPL, ACA1, ACA2, CKB22 and MADS2. Conclusion We detected a large number of differentially expressed miRNAs in the sterile tea plant flowers, and their target genes were involved in complex biological processes. Among these miRNAs, the down-regulation of miR156 may be one of the factor in the formation of sterile floral buds in tea plants. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-021-00188-8.
Collapse
Affiliation(s)
- Hao Qu
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, Xishuangbanna, 666201, China.,Yunnan Provincial Key Laboratory of Tea Science, Menghai, Xishuangbanna, 666201, China
| | - Yue Liu
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, Xishuangbanna, 666201, China.,Yunnan Provincial Key Laboratory of Tea Science, Menghai, Xishuangbanna, 666201, China
| | - Huibing Jiang
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, Xishuangbanna, 666201, China.,Yunnan Provincial Key Laboratory of Tea Science, Menghai, Xishuangbanna, 666201, China
| | - Yufei Liu
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, Xishuangbanna, 666201, China.,Yunnan Provincial Key Laboratory of Tea Science, Menghai, Xishuangbanna, 666201, China
| | - Weixi Song
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, Xishuangbanna, 666201, China.,Yunnan Provincial Key Laboratory of Tea Science, Menghai, Xishuangbanna, 666201, China
| | - Linbo Chen
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, Xishuangbanna, 666201, China. .,Yunnan Provincial Key Laboratory of Tea Science, Menghai, Xishuangbanna, 666201, China.
| |
Collapse
|
16
|
Zhao Y, Su X, Wang X, Wang M, Chi X, Aamir Manzoor M, Li G, Cai Y. Comparative Genomic Analysis of TCP Genes in Six Rosaceae Species and Expression Pattern Analysis in Pyrus bretschneideri. Front Genet 2021; 12:669959. [PMID: 34079584 PMCID: PMC8165447 DOI: 10.3389/fgene.2021.669959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
TCP is a plant-specific transcription factor that plays an important role in flowering, leaf development and other physiological processes. In this study, we identified a total of 155 TCP genes: 34 in Pyrus bretschneideri, 19 in Fragaria vesca, 52 in Malus domestica, 19 in Prunus mume, 17 in Rubus occidentalis and 14 in Prunus avium. The evolutionary relationship of the TCP gene family was examined by constructing a phylogenetic tree, tracking gene duplication events, performing a sliding window analysis. The expression profile analysis and qRT-PCR results of different tissues showed that PbTCP10 were highly expressed in the flowers. These results indicated that PbTCP10 might participated in flowering induction in pear. Expression pattern analysis of different developmental stages showed that PbTCP14 and PbTCP15 were similar to the accumulation pattern of fruit lignin and the stone cell content. These two genes might participate in the thickening of the secondary wall during the formation of stone cells in pear. Subcellular localization showed that PbTCPs worked in the nucleus. This study explored the evolution of TCP genes in six Rosaceae species, and the expression pattern of TCP genes in different tissues of “Dangshan Su” pear. Candidate genes related to flower induction and stone cell formation were identified. In summary, our research provided an important theoretical basis for improving pear fruit quality and increasing fruit yield by molecular breeding.
Collapse
Affiliation(s)
- Yu Zhao
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xueqiang Su
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xinya Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Mengna Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xujing Chi
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | | | - Guohui Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
17
|
Moon S, Jung KH. First Steps in the Successful Fertilization of Rice and Arabidopsis: Pollen Longevity, Adhesion and Hydration. PLANTS (BASEL, SWITZERLAND) 2020; 9:E956. [PMID: 32751098 PMCID: PMC7465243 DOI: 10.3390/plants9080956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 02/04/2023]
Abstract
Understanding the behavior of pollen during pollination is important for food security in the future. The elucidation of pollen development and growth regulation largely relies on the study of the dicotyledonous model plant Arabidopsis thaliana. However, rice (Oryza sativa) pollen exhibits different characteristics to that of Arabidopsis. The latter undergoes programmed dehydration and withstands adverse environmental conditions, whereas rice pollen is sensitive to desiccation. Moreover, the short longevity of rice pollen significantly hampers hybrid seed production. Although the "omics" data for mature rice pollen have been accumulated, few genes that control pollination and pollen hydration have been identified. Therefore, to facilitate future studies, it is necessary to summarize the developmental processes involved in pollen production in rice and to consolidate the underlying mechanisms discovered in previous studies. In this review, we describe the pollen developmental processes and introduce gametophytic mutants, which form defective pollen in Arabidopsis and rice. In addition, we discuss the perspectives on the research on pollen longevity, adhesion and hydration.
Collapse
Affiliation(s)
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea;
| |
Collapse
|
18
|
The Regulation of CIN-like TCP Transcription Factors. Int J Mol Sci 2020; 21:ijms21124498. [PMID: 32599902 PMCID: PMC7349945 DOI: 10.3390/ijms21124498] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 01/07/2023] Open
Abstract
TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR 1 and 2 (TCP) family proteins are the plant-specific transcription factors extensively participating in diverse developmental processes by integrating external cues with internal signals. The roles of CINCINNATA (CIN)-like TCPs are conserved in control of the morphology and size of leaves, petal development, trichome formation and plant flowering. The tight regulation of CIN-like TCP activity at transcriptional and post-transcriptional levels are central for plant developmental plasticity in response to the ever-changing environmental conditions. In this review, we summarize recent progresses with regard to the function and regulation of CIN-like TCPs. CIN-like TCPs are regulated by abiotic and biotic cues including light, temperature and pathogens. They are also finely controlled by microRNA319 (miRNA319), chromatin remodeling complexes and auxin homeostasis. The protein degradation plays critical roles in tightly controlling the activity of CIN-like TCPs as well.
Collapse
|
19
|
Liu MM, Wang MM, Yang J, Wen J, Guo PC, Wu YW, Ke YZ, Li PF, Li JN, Du H. Evolutionary and Comparative Expression Analyses of TCP Transcription Factor Gene Family in Land Plants. Int J Mol Sci 2019; 20:E3591. [PMID: 31340456 PMCID: PMC6679135 DOI: 10.3390/ijms20143591] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 01/01/2023] Open
Abstract
The plant-specific Teosinte-branched 1/Cycloidea/Proliferating (TCP) transcription factor genes are involved in plants' development, hormonal pathways, and stress response but their evolutionary history is uncertain. The genome-wide analysis performed here for 47 plant species revealed 535 TCP candidates in terrestrial plants and none in aquatic plants, and that TCP family genes originated early in the history of land plants. Phylogenetic analysis divided the candidate genes into Classes I and II, and Class II was further divided into CYCLOIDEA (CYC) and CINCINNATA (CIN) clades; CYC is more recent and originated from CIN in angiosperms. Protein architecture, intron pattern, and sequence characteristics were conserved in each class or clade supporting this classification. The two classes significantly expanded through whole-genome duplication during evolution. Expression analysis revealed the conserved expression of TCP genes from lower to higher plants. The expression patterns of Class I and CIN genes in different stages of the same tissue revealed their function in plant development and their opposite effects in the same biological process. Interaction network analysis showed that TCP proteins tend to form protein complexes, and their interaction networks were conserved during evolution. These results contribute to further functional studies on TCP family genes.
Collapse
Affiliation(s)
- Ming-Ming Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Mang-Mang Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jin Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jing Wen
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Peng-Cheng Guo
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Yun-Wen Wu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Yun-Zhuo Ke
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Peng-Feng Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jia-Na Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
20
|
Li Z, An X, Zhu T, Yan T, Wu S, Tian Y, Li J, Wan X. Discovering and Constructing ceRNA-miRNA-Target Gene Regulatory Networks during Anther Development in Maize. Int J Mol Sci 2019; 20:ijms20143480. [PMID: 31311189 PMCID: PMC6678786 DOI: 10.3390/ijms20143480] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 02/07/2023] Open
Abstract
The “competing endogenous RNA (ceRNA) hypothesis” has recently been proposed for a new type of gene regulatory model in many organisms. Anther development is a crucial biological process in plant reproduction, and its gene regulatory network (GRN) has been gradually revealed during the past two decades. However, it is still unknown whether ceRNAs contribute to anther development and sexual reproduction in plants. We performed RNA and small RNA sequencing of anther tissues sampled at three developmental stages in two maize lines. A total of 28,233 stably transcribed loci, 61 known and 51 potentially novel microRNAs (miRNAs) were identified from the transcriptomes. Predicted ceRNAs and target genes were found to conserve in sequences of recognition sites where their corresponding miRNAs bound. We then reconstructed 79 ceRNA-miRNA-target gene regulatory networks consisting of 51 known miRNAs, 28 potentially novel miRNAs, 619 ceRNA-miRNA pairs, and 869 miRNA-target gene pairs. More than half of the regulation pairs showed significant negative correlations at transcriptional levels. Several well-studied miRNA-target gene pairs associated with plant flower development were located in some networks, including miR156-SPL, miR159-MYB, miR160-ARF, miR164-NAC, miR172-AP2, and miR319-TCP pairs. Six target genes in the networks were found to be orthologs of functionally confirmed genes participating in anther development in plants. Our results provide an insight that the ceRNA-miRNA-target gene regulatory networks likely contribute to anther development in maize. Further functional studies on a number of ceRNAs, miRNAs, and target genes will facilitate our deep understanding on mechanisms of anther development and sexual plants reproduction.
Collapse
Affiliation(s)
- Ziwen Li
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xueli An
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Taotao Zhu
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
| | - Tingwei Yan
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
| | - Suowei Wu
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Youhui Tian
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xiangyuan Wan
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China.
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| |
Collapse
|
21
|
Hobza R, Hudzieczek V, Kubat Z, Cegan R, Vyskot B, Kejnovsky E, Janousek B. Sex and the flower - developmental aspects of sex chromosome evolution. ANNALS OF BOTANY 2018; 122:1085-1101. [PMID: 30032185 PMCID: PMC6324748 DOI: 10.1093/aob/mcy130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/13/2018] [Indexed: 05/07/2023]
Abstract
Background The evolution of dioecious plants is occasionally accompanied by the establishment of sex chromosomes: both XY and ZW systems have been found in plants. Structural studies of sex chromosomes are now being followed up by functional studies that are gradually shedding light on the specific genetic and epigenetic processes that shape the development of separate sexes in plants. Scope This review describes sex determination diversity in plants and the genetic background of dioecy, summarizes recent progress in the investigation of both classical and emerging model dioecious plants and discusses novel findings. The advantages of interspecies hybrids in studies focused on sex determination and the role of epigenetic processes in sexual development are also overviewed. Conclusions We integrate the genic, genomic and epigenetic levels of sex determination and stress the impact of sex chromosome evolution on structural and functional aspects of plant sexual development. We also discuss the impact of dioecy and sex chromosomes on genome structure and expression.
Collapse
Affiliation(s)
- Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Vojtech Hudzieczek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Zdenek Kubat
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Radim Cegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Bohuslav Janousek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| |
Collapse
|
22
|
Andrés-Colás N, Carrió-Seguí A, Abdel-Ghany SE, Pilon M, Peñarrubia L. Expression of the Intracellular COPT3-Mediated Cu Transport Is Temporally Regulated by the TCP16 Transcription Factor. FRONTIERS IN PLANT SCIENCE 2018; 9:910. [PMID: 30018625 PMCID: PMC6037871 DOI: 10.3389/fpls.2018.00910] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/08/2018] [Indexed: 05/23/2023]
Abstract
Copper is an essential element in plants. When scarce, copper is acquired from extracellular environment or remobilized from intracellular sites, through members of the high affinity copper transporters family COPT located at the plasma membrane and internal membrane, respectively. Here, we show that COPT3 is an intracellular copper transporter, located at a compartment of the secretory pathway, that is mainly expressed in pollen grains and vascular bundles. Contrary to the COPT1 plasma membrane member, the expression of the internal COPT3 membrane transporter was higher at 12 h than at 0 h of a neutral photoperiod day under copper deficiency. The screening of a library of conditionally overexpressed transcription factors implicated members of the TCP family in the COPT3 differential temporal expression pattern. Particularly, in vitro, TCP16 was found to bind to the COPT3 promoter and down-regulated its expression. Accordingly, TCP16 was mainly expressed at 0 h under copper deficiency and induced at 12 h by copper excess. Moreover, TCP16 overexpression resulted in increased sensitivity to copper deficiency, whereas the tcp16 mutant was sensitive to copper excess. Both copper content and the expression of particular copper status markers were altered in plants with modified levels of TCP16. Consistent with TCP16 affecting pollen development, the lack of COPT3 function led to altered pollen morphology. Furthermore, analysis of copt3 and COPT3 overexpressing plants revealed that COPT3 function exerted a negative effect on TCP16 expression. Taken together, these results suggest a differential daily regulation of copper uptake depending on the external and internal copper pools, in which TCP16 inhibits copper remobilization at dawn through repression of intracellular transporters.
Collapse
Affiliation(s)
- Nuria Andrés-Colás
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Angela Carrió-Seguí
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Salah E. Abdel-Ghany
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Marinus Pilon
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Lola Peñarrubia
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| |
Collapse
|
23
|
Wang H, Wang H, Liu R, Xu Y, Lu Z, Zhou C. Genome-Wide Identification of TCP Family Transcription Factors in Medicago truncatula Reveals Significant Roles of miR319-Targeted TCPs in Nodule Development. FRONTIERS IN PLANT SCIENCE 2018; 9:774. [PMID: 29942322 PMCID: PMC6004737 DOI: 10.3389/fpls.2018.00774] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/22/2018] [Indexed: 05/24/2023]
Abstract
TCP proteins, the plant-specific transcription factors, are involved in the regulation of multiple aspects of plant development among different species, such as leaf development, branching, and flower symmetry. However, thus far, the roles of TCPs in legume, especially in nodulation are still not clear. In this study, a genome-wide analysis of TCP genes was carried out to discover their evolution and function in Medicago truncatula. In total, 21 MtTCPs were identified and classified into class I and class II, and the class II MtTCPs were further divided into two subclasses, CIN and CYC/TB1. The expression profiles of MtTCPs are dramatically different. The universal expression of class I MtTCPs was detected in all organs. However, the MtTCPs in CIN subclass were highly expressed in leaf and most of the members in CYC/TB1 subclass were highly expressed in flower. Such organ-specific expression patterns of MtTCPs suggest their different roles in plant development. In addition, most MtTCPs were down-regulated during the nodule development, except for the putative MtmiR319 targets, MtTCP3, MtTCP4, and MtTCP10A. Overexpression of MtmiR319A significantly reduced the expression level of MtTCP3/4/10A/10B and resulted in the decreased nodule number, indicating the important roles of MtmiR319-targeted MtTCPs in nodulation. Taken together, this study systematically analyzes the MtTCP gene family at a genome-wide level and their possible functions in nodulation, which lay the basis for further explorations of MtmiR319/MtTCPs module in association with nodule development in M. truncatula.
Collapse
Affiliation(s)
- Hongfeng Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Hongwei Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Rong Liu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Yiteng Xu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhichao Lu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Chuanen Zhou
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
24
|
Genome-Wide Identification and Analysis of TCP Transcription Factors Involved in the Formation of Leafy Head in Chinese Cabbage. Int J Mol Sci 2018. [PMID: 29538304 PMCID: PMC5877708 DOI: 10.3390/ijms19030847] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chinese cabbage (Brassica rapa L. ssp. pekinensis) is a widely cultivated and economically important vegetable crop with typical leaf curvature. The TCP (Teosinte branched1, Cycloidea, Proliferating cell factor) family proteins are plant-specific transcription factors (TFs) and play important roles in many plant biological processes, especially in the regulation of leaf curvature. In this study, 39 genes encoding TCP TFs are detected on the whole genome of B. rapa. Based on the phylogenetic analysis of TCPs between Arabidopsis thaliana and Brassica rapa, TCP genes of Chinese cabbage are named from BrTCP1a to BrTCP24b. Moreover, the chromosomal location; phylogenetic relationships among B. rapa, A. thaliana, and rice; gene structures and protein conserved sequence alignment; and conserved domains are analyzed. The expression profiles of BrTCPs are analyzed in different tissues. To understand the role of Chinese cabbage TCP members in regulating the curvature of leaves, the expression patterns of all BrTCP genes are detected at three development stages essential for leafy head formation. Our results provide information on the classification and details of BrTCPs and allow us to better understand the function of TCPs involved in leaf curvature of Chinese cabbage.
Collapse
|
25
|
Yang C, Song J, Ferguson AC, Klisch D, Simpson K, Mo R, Taylor B, Mitsuda N, Wilson ZA. Transcription Factor MYB26 Is Key to Spatial Specificity in Anther Secondary Thickening Formation. PLANT PHYSIOLOGY 2017; 175:333-350. [PMID: 28724622 PMCID: PMC5580765 DOI: 10.1104/pp.17.00719] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/17/2017] [Indexed: 05/03/2023]
Abstract
Successful fertilization relies on the production and effective release of viable pollen. Failure of anther opening (dehiscence), results in male sterility, although the pollen may be fully functional. MYB26 regulates the formation of secondary thickening in the anther endothecium, which is critical for anther dehiscence and fertility. Here, we show that although the MYB26 transcript shows expression in multiple floral organs, the MYB26 protein is localized specifically to the anther endothecium nuclei and that it directly regulates two NAC domain genes, NST1 and NST2, which are critical for the induction of secondary thickening biosynthesis genes. However, there is a complex relationship of regulation between these genes and MYB26. Using DEX-inducible MYB26 lines and overexpression in the various mutant backgrounds, we have shown that MYB26 up-regulates both NST1 and NST2 expression. Surprisingly normal thickening and fertility rescue does not occur in the absence of MYB26, even with constitutively induced NST1 and NST2, suggesting an additional essential role for MYB26 in this regulation. Combined overexpression of NST1 and NST2 in myb26 facilitates limited ectopic thickening in the anther epidermis, but not in the endothecium, and thus fails to rescue dehiscence. Therefore, by a series of regulatory controls through MYB26, NST1, NST2, secondary thickening is formed specifically within the endothecium; this specificity is essential for anther opening.
Collapse
Affiliation(s)
- Caiyun Yang
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Jie Song
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Alison C Ferguson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Doris Klisch
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Kim Simpson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Rui Mo
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Benjamin Taylor
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST). Üentral 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| |
Collapse
|
26
|
Carlson CH, Choi Y, Chan AP, Serapiglia MJ, Town CD, Smart LB. Dominance and Sexual Dimorphism Pervade the Salix purpurea L. Transcriptome. Genome Biol Evol 2017; 9:2377-2394. [PMID: 28957462 PMCID: PMC5622329 DOI: 10.1093/gbe/evx174] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 12/24/2022] Open
Abstract
The heritability of gene expression is critical in understanding heterosis and is dependent on allele-specific regulation by local and remote factors in the genome. We used RNA-Seq to test whether variation in gene expression among F1 and F2 intraspecific Salix purpurea progeny is attributable to cis- and trans-regulatory divergence. We assessed the mode of inheritance based on gene expression levels and allele-specific expression for F1 and F2 intraspecific progeny in two distinct tissue types: shoot tip and stem internode. In addition, we explored sexually dimorphic patterns of inheritance and regulatory divergence among F1 progeny individuals. We show that in S. purpurea intraspecific crosses, gene expression inheritance largely exhibits a maternal dominant pattern, regardless of tissue type or pedigree. A significantly greater number of cis- and trans-regulated genes coincided with upregulation of the maternal parent allele in the progeny, irrespective of the magnitude, whereas the paternal allele was higher expressed for genes showing cis × trans or compensatory regulation. Importantly, consistent with previous genetic mapping results for sex in shrub willow, we have delimited sex-biased gene expression to a 2 Mb pericentromeric region on S. purpurea chr15 and further refined the sex determination region. Altogether, our results offer insight into the inheritance of gene expression in S. purpurea as well as evidence of sexually dimorphic expression which may have contributed to the evolution of dioecy in Salix.
Collapse
Affiliation(s)
- Craig H. Carlson
- Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, New York 14456 USA
| | - Yongwook Choi
- J. Craig Venter Institute, Rockville, Maryland 20850 USA
| | - Agnes P. Chan
- J. Craig Venter Institute, Rockville, Maryland 20850 USA
| | - Michelle J. Serapiglia
- Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, New York 14456 USA
| | | | - Lawrence B. Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, New York 14456 USA
| |
Collapse
|
27
|
Lei N, Yu X, Li S, Zeng C, Zou L, Liao W, Peng M. Phylogeny and expression pattern analysis of TCP transcription factors in cassava seedlings exposed to cold and/or drought stress. Sci Rep 2017; 7:10016. [PMID: 28855620 PMCID: PMC5577251 DOI: 10.1038/s41598-017-09398-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/26/2017] [Indexed: 12/21/2022] Open
Abstract
The TCP transcription factors usually act as integrators of multiple growth regulatory and environmental stimuli. However, little is known about this gene family in the important tropical crop cassava (Manihot esculenta). In this study, 36 TCP genes were identified and renamed based on cassava whole-genome sequence and their sequence similarity with Arabidopsis TCPs. Typical TCP domains were detected in these proteins by multiple sequence alignment analysis. Evolutionary analysis indicated that MeTCPs could be divided into 8 subgroups, which was further supported by gene structure and conserved motif analyses. qRT-PCR analysis revealed tissue-specific and hormone-responsive expression patterns of MeTCP genes. Moreover, with global expression and promoter analysis, we found that MeTCPs showed similar or distinct expression patterns under cold and/or drought stress, suggesting that they might participate in distinct signaling pathways. Our study provides the first comprehensive analysis of TCP gene family in the cassava genome. The data will be useful for uncovering the potential functions of MeTCP genes, and their possible roles in mediating hormone and abiotic stress responses in cassava.
Collapse
Affiliation(s)
- Ning Lei
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Xiang Yu
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuxia Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Changying Zeng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Liangping Zou
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Wenbin Liao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
28
|
Dhaka N, Bhardwaj V, Sharma MK, Sharma R. Evolving Tale of TCPs: New Paradigms and Old Lacunae. FRONTIERS IN PLANT SCIENCE 2017; 8:479. [PMID: 28421104 PMCID: PMC5376618 DOI: 10.3389/fpls.2017.00479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/20/2017] [Indexed: 05/03/2023]
Abstract
Teosinte Branched1/Cycloidea/Proliferating cell factors (TCP) genes are key mediators of genetic innovations underlying morphological novelties, stress adaptation, and evolution of immune response in plants. They have a remarkable ability to integrate and translate diverse endogenous, and environmental signals with high fidelity. Compilation of studies, aimed at elucidating the mechanism of TCP functions, shows that it takes an amalgamation and interplay of several different factors, regulatory processes and pathways, instead of individual components, to achieve the incredible functional diversity and specificity, demonstrated by TCP proteins. Through this minireview, we provide a brief description of key structural features and molecular components, known so far, that operate this conglomerate, and highlight the important conceptual challenges and lacunae in TCP research.
Collapse
Affiliation(s)
- Namrata Dhaka
- Crop Genetics & Informatics Group, School of Computational and Integrative SciencesJawaharlal Nehru University, New Delhi, India
| | - Vasudha Bhardwaj
- Crop Genetics & Informatics Group, School of BiotechnologyJawaharlal Nehru University, New Delhi, India
| | - Manoj K. Sharma
- Crop Genetics & Informatics Group, School of BiotechnologyJawaharlal Nehru University, New Delhi, India
| | - Rita Sharma
- Crop Genetics & Informatics Group, School of Computational and Integrative SciencesJawaharlal Nehru University, New Delhi, India
| |
Collapse
|
29
|
Identification and Functional Analysis of microRNAs Involved in the Anther Development in Cotton Genic Male Sterile Line Yu98-8A. Int J Mol Sci 2016; 17:ijms17101677. [PMID: 27739413 PMCID: PMC5085710 DOI: 10.3390/ijms17101677] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 01/20/2023] Open
Abstract
Hybrid vigor contributes in a large way to the yield and quality of cotton (Gossypium hirsutum) fiber. Although microRNAs play essential regulatory roles in flower induction and development, it is still unclear if microRNAs are involved in male sterility, as the regulatory molecular mechanisms of male sterility in cotton need to be better defined. In this study, two independent small RNA libraries were constructed and sequenced from the young buds collected from the sporogenous cell formation to the meiosis stage of the male sterile line Yu98-8A and the near-isogenic line. Sequencing revealed 1588 and 1536 known microRNAs and 347 and 351 novel miRNAs from male sterile and male fertile libraries, respectively. MicroRNA expression profiles revealed that 49 conserved and 51 novel miRNAs were differentially expressed. Bioinformatic and degradome analysis indicated the regulatory complexity of microRNAs during flower induction and development. Further RT-qPCR and physiological analysis indicated that, among the different Kyoto Encyclopedia Gene and Genomes pathways, indole-3-acetic acid and gibberellic acid signaling transduction pathways may play pivotal regulatory functions in male sterility.
Collapse
|
30
|
Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis. Proc Natl Acad Sci U S A 2016; 113:11967-11972. [PMID: 27708161 DOI: 10.1073/pnas.1614852113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Ribosome production in eukaryotes requires the complex and precise coordination of several hundred assembly factors, including many small nucleolar RNAs (snoRNAs). However, at present, the distinct role of key snoRNAs in ribosome biogenesis remains poorly understood in higher plants. Here we report that a previously uncharacterized C (RUGAUGA)/D (CUGA) type snoRNA, HIDDEN TREASURE 2 (HID2), acts as an important regulator of ribosome biogenesis through a snoRNA-rRNA interaction. Nucleolus-localized HID2 is actively expressed in Arabidopsis proliferative tissues, whereas defects in HID2 cause a series of developmental defects reminiscent of ribosomal protein mutants. HID2 associates with the precursor 45S rRNA and promotes the efficiency and accuracy of pre-rRNA processing. Intriguingly, disrupting HID2 in Arabidopsis appears to impair the integrity of 27SB, a key pre-rRNA intermediate that generates 25S and 5.8S rRNA and is known to be vital for the synthesis of the 60S large ribosomal subunit and also produces an imbalanced ribosome profile. Finally, we demonstrate that the antisense-box of HID2 is both functionally essential and highly conserved in eukaryotes. Overall, our study reveals the vital and possibly conserved role of a snoRNA in monitoring the efficiency of pre-rRNA processing during ribosome biogenesis.
Collapse
|