1
|
Cochereau R, Voisin H, Solé-Jamault V, Novales B, Davy J, Jamme F, Renard D, Boire A. Influence of pH and lipid membrane on the liquid-liquid phase separation of wheat γ-gliadin in aqueous conditions. J Colloid Interface Sci 2024; 668:252-263. [PMID: 38678881 DOI: 10.1016/j.jcis.2024.04.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/25/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
Protein body (PB) formation in wheat seeds is a critical process influencing seed content and nutritional quality. In this study, we investigate the potential mechanisms governing PB formation through an in vitro approach, focusing on γ-gliadin, a key wheat storage protein. We used a microfluidic technique to encapsulate γ-gliadin within giant unilamellar vesicles (GUVs) and tune the physicochemical conditions in a controlled and rapid way. We examined the influence of pH and protein concentration on LLPS and protein-membrane interactions using various microscopy and spectroscopy techniques. We showed that γ-gliadin encapsulated in GUVs can undergo a pH-triggered liquid-liquid phase separation (LLPS) by two distinct mechanisms depending on the γ-gliadin concentration. At low protein concentrations, γ-gliadins phase separate by a nucleation and growth-like process, while, at higher protein concentration and pH above 6.0, γ-gliadin formed a bi-continuous phase suggesting a spinodal decomposition-like mechanism. Fluorescence and microscopy data suggested that γ-gliadin dense phase exhibited affinity for the GUV membrane, forming a layer at the interface and affecting the reversibility of the phase separation.
Collapse
Affiliation(s)
| | | | | | - Bruno Novales
- INRAE, UR 1268 BIA, F-44300 Nantes, France; INRAE, PROBE/CALIS Research Infrastructures, BIBS Facility, F-44300 Nantes, France
| | | | - Frédéric Jamme
- DISCO Beamline, SOLEIL Synchrotron, 91192 Gif-sur-Yvette, France
| | | | | |
Collapse
|
2
|
da Silva BB, da Silva Junior AB, Araújo LDS, Santos ENFN, da Silva ACM, Florean EOPT, van Tilburg MF, Guedes MIF. Subcutaneous, Oral, and Intranasal Immunization of BALB/c Mice with Leishmania infantum K39 Antigen Induces Non-Protective Humoral Immune Response. Trop Med Infect Dis 2023; 8:444. [PMID: 37755905 PMCID: PMC10534909 DOI: 10.3390/tropicalmed8090444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Visceral leishmaniasis is a high-burden disease caused by parasites of the Leishmania genus. The K39 kinesin is a highly antigenic protein of Leishmania infantum, but little is known about the immune response elicited by this antigen. We evaluated the humoral immune response of female BALB/c mice (n = 6) immunized with the rK39-HFBI construct, formed by the fusion of the K39 antigen to a hydrophobin partner. The rK39-HFBI construct was administered through subcutaneous, oral, and intranasal routes using saponin as an adjuvant. We analyzed the kinetics of IgG, IgG1, and IgG2a production. The groups were then challenged by an intravenous infection with L. infantum promastigote cells. The rK39-HFBI antigen-induced high levels of total IgG (p < 0.05) in all groups, but only the subcutaneous route was associated with increased production of IgG1 and IgG2a 42 days after immunization (p < 0.05), suggesting a potential secondary immune response following the booster dose. There was no reduction in the splenic parasite load; thus, the rK39-HFBI failed to protect the mice against infection under the tested conditions. The results presented here demonstrate that the high antigenicity of the K39 antigen does not contribute to a protective immune response against visceral leishmaniasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maria Izabel Florindo Guedes
- Laboratory of Biotechnology and Molecular Biology, Northeast Biotechnology Network (RENORBIO), State University of Ceará, Fortaleza 60714903, Brazil
| |
Collapse
|
3
|
Karki U, Perez Sanchez P, Chakraborty S, Dickey B, Vargas Ulloa J, Zhang N, Xu J. Intracellular trafficking and glycosylation of hydroxyproline-O-glycosylation module in tobacco BY-2 cells is dependent on medium composition and transcriptome analysis. Sci Rep 2023; 13:13506. [PMID: 37598266 PMCID: PMC10439957 DOI: 10.1038/s41598-023-40723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
Expression of recombinant proteins in plant cells with a "designer" hydroxyproline (Hyp)-O-glycosylated peptide (HypGP), such as tandem repeats of a "Ser-Pro" motif, has been shown to boost the secreted protein yields. However, dramatic secretion and Hyp-O-glycosylation of HypGP-tagged proteins can only be achieved when the plant cells were grown in nitrogen-deficient SH medium. Only trace amounts of secreted fusion protein were detected in MS medium. This study aims to gain a deeper understanding of the possible mechanism underlying these results by examining the intracellular trafficking and Hyp-O-glycosylation of enhanced green fluorescent protein (EGFP) fused with a (SP)32 tag, consisting of 32 repeats of a "Ser-Pro" motif, in tobacco BY-2 cells. When cells were grown in MS medium, the (SP)32-EGFP formed protein body-like aggregate and was retained in the ER, without undergoing Hyp-O-glycosylation. In contrast, the fusion protein becomes fully Hyp-O-glycosylated, and then secreted in SH medium. Transcriptome analysis of the BY-2 cells grown in SH medium vs. MS medium revealed over 16,000 DEGs, with many upregulated DEGs associated with the microtubule-based movement, movement of subcellular component, and microtubule binding. These DEGs are presumably responsible for the enhanced ER-Golgi transport of HypGP-tagged proteins, enabling their glycosylation and secretion in SH medium.
Collapse
Affiliation(s)
- Uddhab Karki
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA
- Molecular BioSciences Program, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Paula Perez Sanchez
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Sankalpa Chakraborty
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA
- Molecular BioSciences Program, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Berry Dickey
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, 72401, USA
| | | | - Ningning Zhang
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA
- Molecular BioSciences Program, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA.
- Molecular BioSciences Program, Arkansas State University, Jonesboro, AR, 72401, USA.
- College of Agriculture, Arkansas State University, Jonesboro, AR, 72401, USA.
| |
Collapse
|
4
|
Li X, Li X, Fan B, Zhu C, Chen Z. Specialized endoplasmic reticulum-derived vesicles in plants: Functional diversity, evolution, and biotechnological exploitation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:821-835. [PMID: 35142108 PMCID: PMC9314129 DOI: 10.1111/jipb.13233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
A central role of the endoplasmic reticulum (ER) is the synthesis, folding and quality control of secretory proteins. Secretory proteins usually exit the ER to enter the Golgi apparatus in coat protein complex II (COPII)-coated vesicles before transport to different subcellular destinations. However, in plants there are specialized ER-derived vesicles (ERDVs) that carry specific proteins but, unlike COPII vesicles, can exist as independent organelles or travel to the vacuole in a Golgi-independent manner. These specialized ERDVs include protein bodies and precursor-accumulating vesicles that accumulate storage proteins in the endosperm during seed development. Specialized ERDVs also include precursor protease vesicles that accumulate amino acid sequence KDEL-tailed cysteine proteases and ER bodies in Brassicales plants that accumulate myrosinases that hydrolyzes glucosinolates. These functionally specialized ERDVs act not only as storage organelles but also as platforms for signal-triggered processing, activation and deployment of specific proteins with important roles in plant growth, development and adaptive responses. Some specialized ERDVs have also been exploited to increase production of recombinant proteins and metabolites. Here we discuss our current understanding of the functional diversity, evolutionary mechanisms and biotechnological application of specialized ERDVs, which are associated with some of the highly remarkable characteristics important to plants.
Collapse
Affiliation(s)
- Xie Li
- College of Life Science, Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang ProvinceChina Jiliang UniversityHangzhou310018China
| | - Xifeng Li
- College of Life Science, Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang ProvinceChina Jiliang UniversityHangzhou310018China
| | - Baofang Fan
- Department of Botany and Plant Pathology, Center for Plant BiologyPurdue UniversityWest Lafayette47907‐2054INUSA
| | - Cheng Zhu
- College of Life Science, Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang ProvinceChina Jiliang UniversityHangzhou310018China
| | - Zhixiang Chen
- College of Life Science, Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang ProvinceChina Jiliang UniversityHangzhou310018China
- Department of Botany and Plant Pathology, Center for Plant BiologyPurdue UniversityWest Lafayette47907‐2054INUSA
| |
Collapse
|
5
|
Matsuoka Y, Yamada T, Maruyama N. Wheat α-gliadin and high-molecular-weight glutenin subunit accumulate in different storage compartments of transgenic soybean seed. Transgenic Res 2022; 31:43-58. [PMID: 34427836 DOI: 10.1007/s11248-021-00279-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
Wheat seed storage proteins (prolamins) are important for the grain quality because they provide a characteristic texture to wheat flour products. In wheat endosperm cells, prolamins are transported from the Endoplasmic reticulum to Protein storage vacuoles through two distinct pathways-a conventional pathway passing through the Golgi apparatus and an unconventional Golgi-bypassing pathway during which prolamins accumulate in the ER lumen, forming Protein bodies. Unfortunately, transport studies conducted previously achieved limited success because of the seed-specificity of the latter pathway and the multigene architecture of prolamins. To overcome this difficulty, we expressed either of the two families of wheat prolamins, namely α-gliadin or High-molecular-weight subunit of glutenin, in soybean seed, which naturally lacks prolamin-like proteins. SDS-PAGE analysis indicated the successful expression of recombinant wheat prolamins in transgenic soybean seeds. Their accumulation states were quite different-α-gliadin accumulated with partial fragmentation whereas the HMW-glutenin subunit formed disulfide-crosslinked polymers without fragmentation. Immunoelectron microscopy of seed sections revealed that α-gliadin was transported to PSVs whereas HMW-glutenin was deposited in novel ER-derived compartments distinct from PSVs. Observation of a developmental stage of seed cells showed the involvement of post-Golgi Prevacuolar compartments in the transport of α-gliadin. In a similar stage of cells, deposits of HMW-glutenin surrounded by membranes studded with ribosomes were observed confirming the accumulation of this prolamin as ER-derived PBs. Subcellular fractionation analysis supported the electron microscopy observations. Our results should help in better understanding of molecular events during the transport of prolamins in wheat.
Collapse
Affiliation(s)
- Yuki Matsuoka
- Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Tetsuya Yamada
- Graduate School of Agriculture, Hokkaido University, Kita9 Nishi9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Nobuyuki Maruyama
- Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
6
|
Improving Protein Quantity and Quality—The Next Level of Plant Molecular Farming. Int J Mol Sci 2022; 23:ijms23031326. [PMID: 35163249 PMCID: PMC8836236 DOI: 10.3390/ijms23031326] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/15/2022] Open
Abstract
Plants offer several unique advantages in the production of recombinant pharmaceuticals for humans and animals. Although numerous recombinant proteins have been expressed in plants, only a small fraction have been successfully put into use. The hugely distinct expression systems between plant and animal cells frequently cause insufficient yield of the recombinant proteins with poor or undesired activity. To overcome the issues that greatly constrain the development of plant-produced pharmaceuticals, great efforts have been made to improve expression systems and develop alternative strategies to increase both the quantity and quality of the recombinant proteins. Recent technological revolutions, such as targeted genome editing, deconstructed vectors, virus-like particles, and humanized glycosylation, have led to great advances in plant molecular farming to meet the industrial manufacturing and clinical application standards. In this review, we discuss the technological advances made in various plant expression platforms, with special focus on the upstream designs and milestone achievements in improving the yield and glycosylation of the plant-produced pharmaceutical proteins.
Collapse
|
7
|
Yang J, Xun H, Niu L, He H, Cheng Y, Zhong X, Zhao Q, Xing G, Liu J, Yang X. Elastin-like polypeptide and γ-zein fusions significantly increase recombinant protein accumulation in soybean seeds. Transgenic Res 2021; 30:675-686. [PMID: 33963986 DOI: 10.1007/s11248-021-00258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/03/2021] [Indexed: 11/30/2022]
Abstract
Soybean seeds are an ideal host for the production of recombinant proteins because of their high content of proteins, long-term stability of seed proteins under ambient conditions, and easy establishment of efficient purification protocols. In this study, a polypeptide fusion strategy was applied to explore the capacity of elastin-like polypeptide (ELP) and γ-zein fusions in increasing the accumulation of the recombinant protein in soybean seeds. Transgenic soybean plants were generated to express the γ-zein- or ELP-fused green fluorescent protein (GFP) under the control of the soybean seed-specific promoter of β-conglycinin alpha subunit (BCSP). Significant differences were observed in the accumulation of zein-GFP and GFP-ELP from that of the unfused GFP in transgenic soybean seeds based on the total soluble protein (TSP), despite the low-copy of T-DNA insertions and similar expression at the mRNA levels in selected transgenic lines. The average levels of zein-GFP and GFP-ELP accumulated in immature seeds of these transgenic lines were 0.99% and 0.29% TSP, respectively, compared with 0.07% TSP of the unfused GFP. In mature soybean seeds, the accumulation of zein-GFP and GFP-ELP proteins was 1.8% and 0.84% TSP, an increase of 3.91- and 1.82-fold, respectively, in comparison with that of the unfused GFP (0.46% TSP). Confocal laser scanning analysis showed that both zein-GFP and GFP-ELP were abundantly deposited in many small spherical particles of transgenic seeds, while there were fewer such florescence signals in the same cellular compartments of the unfused GFP-expressing seeds. Despite increased recombinant protein accumulation, there were no significant changes in the total protein and oil content in seeds between the transgenic and non-transformed plants, suggesting the possible presence of threshold limits of total protein accumulation in transgenic soybean seeds. Overall, our results indicate that γ-zein and ELP fusions significantly increased the accumulation of the recombinant protein, but exhibited no significant influence on the total protein and oil content in soybean seeds.
Collapse
Affiliation(s)
- Jing Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - HongWei Xun
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Lu Niu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Hongli He
- Jilin Normal University, Siping, 136000, China
| | | | - Xiaofang Zhong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Qianqian Zhao
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Guojie Xing
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | | | - Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
8
|
Xisto MF, Dias RS, Feitosa-Araujo E, Prates JWO, da Silva CC, de Paula SO. Efficient Plant Production of Recombinant NS1 Protein for Diagnosis of Dengue. FRONTIERS IN PLANT SCIENCE 2020; 11:581100. [PMID: 33193526 PMCID: PMC7649140 DOI: 10.3389/fpls.2020.581100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/02/2020] [Indexed: 05/28/2023]
Abstract
Dengue fever is endemic in more than 120 countries, which account for 3.9 billion people at risk of infection worldwide. The absence of a vaccine with effective protection against the four serotypes of this virus makes differential molecular diagnosis the key step for the correct treatment of the disease. Rapid and efficient diagnosis prevents progression to a more severe stage of this disease. Currently, the limiting factor in the manufacture of dengue (DENV) diagnostic kits is the lack of large-scale production of the non-structural 1 (NS1) protein (antigen) to be used in the capture of antibodies from the blood serum of infected patients. In this work, we use plant biotechnology and genetic engineering as tools for the study of protein production for research and commercial purposes. Gene transfer, integration and expression in plants is a valid strategy for obtaining large-scale and low-cost heterologous protein production. The authors produced NS1 protein of the dengue virus serotype 2 (NS1DENV2) in the Arabidopsis thaliana plant. Transgenic plants obtained by genetic transformation expressed the recombinant protein that was purified and characterized for diagnostic use. The yield was 203 μg of the recombinant protein per gram of fresh leaf. By in situ immunolocalization, transgenic protein was observed within the plant tissue, located in aggregates bodies. These antigens showed high sensitivity and specificity to both IgM (84.29% and 91.43%, respectively) and IgG (83.08% and 87.69%, respectively). The study goes a step further to validate the use of plants as a strategy for obtaining large-scale and efficient protein production to be used in dengue virus diagnostic tests.
Collapse
Affiliation(s)
| | - Roberto Sousa Dias
- Department of General Biology, Federal University of Viçosa, Viçosa, Brazil
| | | | | | | | | |
Collapse
|
9
|
Arcalís E, Hörmann-Dietrich U, Zeh L, Stoger E. 3D Electron Microscopy Gives a Clue: Maize Zein Bodies Bud From Central Areas of ER Sheets. FRONTIERS IN PLANT SCIENCE 2020; 11:809. [PMID: 32595683 PMCID: PMC7301906 DOI: 10.3389/fpls.2020.00809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/19/2020] [Indexed: 05/27/2023]
Abstract
Zeins are the main storage proteins in maize seed endosperm, and the onset of zein synthesis in young seeds challenges the endomembrane system and results in the formation of storage organelles. Even though zeins lack a conventional endoplasmic reticulum (ER) retention signal, they accumulate within the ER and assemble in conspicuous ER-derived protein bodies (PBs) stabilized by disulfide bridge formation and hydrophobic interaction between zein chains. Zein body formation during seed development has been extensively studied, as well as the mechanisms that lead to the initiation of PBs. However, the exact course of the PB formation process and the spatial relationship with the ER remain unclear. The development of serial block face scanning electron microscopy (SBF-SEM) techniques that allow three-dimensional imaging combined with the high resolution of electron microscopy provides new perspectives on the study of the plant endomembrane system. Here, we demonstrate that (i) the ER of maize seeds is mainly formed by massive sheets and (ii) PBs are not budding from tubules or the edge of sheets, but protrude from the entire surface of the ER sheet.
Collapse
Affiliation(s)
| | | | | | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| |
Collapse
|
10
|
Baysal C, Pérez-González A, Eseverri Á, Jiang X, Medina V, Caro E, Rubio L, Christou P, Zhu C. Recognition motifs rather than phylogenetic origin influence the ability of targeting peptides to import nuclear-encoded recombinant proteins into rice mitochondria. Transgenic Res 2020; 29:37-52. [PMID: 31598902 PMCID: PMC7000509 DOI: 10.1007/s11248-019-00176-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/01/2019] [Indexed: 10/30/2022]
Abstract
Mitochondria fulfil essential functions in respiration and metabolism as well as regulating stress responses and apoptosis. Most native mitochondrial proteins are encoded by nuclear genes and are imported into mitochondria via one of several receptors that recognize N-terminal signal peptides. The targeting of recombinant proteins to mitochondria therefore requires the presence of an appropriate N-terminal peptide, but little is known about mitochondrial import in monocotyledonous plants such as rice (Oryza sativa). To gain insight into this phenomenon, we targeted nuclear-encoded enhanced green fluorescent protein (eGFP) to rice mitochondria using six mitochondrial pre-sequences with diverse phylogenetic origins, and investigated their effectiveness by immunoblot analysis as well as confocal and electron microscopy. We found that the ATPA and COX4 (Saccharomyces cerevisiae), SU9 (Neurospora crassa), pFA (Arabidopsis thaliana) and OsSCSb (Oryza sativa) peptides successfully directed most of the eGFP to the mitochondria, whereas the MTS2 peptide (Nicotiana plumbaginifolia) showed little or no evidence of targeting ability even though it is a native plant sequence. Our data therefore indicate that the presence of particular recognition motifs may be required for mitochondrial targeting, whereas the phylogenetic origin of the pre-sequences probably does not play a key role in the success of mitochondrial targeting in dedifferentiated rice callus and plants.
Collapse
Affiliation(s)
- Can Baysal
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
| | - Ana Pérez-González
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Álvaro Eseverri
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Xi Jiang
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Vicente Medina
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
| | - Elena Caro
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Luis Rubio
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain.
| |
Collapse
|
11
|
Arcalis E, Ibl V, Hilscher J, Rademacher T, Avesani L, Morandini F, Bortesi L, Pezzotti M, Vitale A, Pum D, De Meyer T, Depicker A, Stoger E. Russell-Like Bodies in Plant Seeds Share Common Features With Prolamin Bodies and Occur Upon Recombinant Protein Production. FRONTIERS IN PLANT SCIENCE 2019; 10:777. [PMID: 31316529 PMCID: PMC6611407 DOI: 10.3389/fpls.2019.00777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/28/2019] [Indexed: 05/06/2023]
Abstract
Although many recombinant proteins have been produced in seeds at high yields without adverse effects on the plant, endoplasmic reticulum (ER) stress and aberrant localization of endogenous or recombinant proteins have also been reported. The production of murine interleukin-10 (mIL-10) in Arabidopsis thaliana seeds resulted in the de novo formation of ER-derived structures containing a large fraction of the recombinant protein in an insoluble form. These bodies containing mIL-10 were morphologically similar to Russell bodies found in mammalian cells. We confirmed that the compartment containing mIL-10 was enclosed by ER membranes, and 3D electron microscopy revealed that these structures have a spheroidal shape. Another feature shared with Russell bodies is the continued viability of the cells that generate these organelles. To investigate similarities in the formation of Russell-like bodies and the plant-specific protein bodies formed by prolamins in cereal seeds, we crossed plants containing ectopic ER-derived prolamin protein bodies with a line accumulating mIL-10 in Russell-like bodies. This resulted in seeds containing only one population of protein bodies in which mIL-10 inclusions formed a central core surrounded by the prolamin-containing matrix, suggesting that both types of protein aggregates are together removed from the secretory pathway by a common mechanism. We propose that, like mammalian cells, plant cells are able to form Russell-like bodies as a self-protection mechanism, when they are overloaded with a partially transport-incompetent protein, and we discuss the resulting challenges for recombinant protein production.
Collapse
Affiliation(s)
- Elsa Arcalis
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Verena Ibl
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Julia Hilscher
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Thomas Rademacher
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Luisa Bortesi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Alessandro Vitale
- Institute of Agricultural Biology and Biotechnology, CNR, Milan, Italy
| | - Dietmar Pum
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Thomas De Meyer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ann Depicker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- *Correspondence: Eva Stoger, ;
| |
Collapse
|
12
|
Marques LÉC, Silva BB, Dutra RF, Florean EOPT, Menassa R, Guedes MIF. Transient Expression of Dengue Virus NS1 Antigen in Nicotiana benthamiana for Use as a Diagnostic Antigen. FRONTIERS IN PLANT SCIENCE 2019; 10:1674. [PMID: 32010161 PMCID: PMC6976532 DOI: 10.3389/fpls.2019.01674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/28/2019] [Indexed: 05/08/2023]
Abstract
Dengue is a viral disease that represents a significant threat to global public health since billions of people are now at risk of infection by this mosquito-borne virus. The implementation of extensive screening tests is indispensable to control this disease, and the Dengue virus non-structural protein 1 (NS1) is a promising antigen for the serological diagnosis of dengue fever. Plant-based systems can be a safe and cost-effective alternative for the production of dengue virus antigens. In this work, two strategies to produce the dengue NS1 protein in Nicotiana benthamiana leaves were evaluated: Targeting NS1 to five different subcellular compartments to assess the best subcellular organelle for the expression and accumulation of NS1, and the addition of elastin-like polypeptide (ELP) or hydrophobin (HFBI) fusion tags to NS1. The transiently expressed proteins in N. benthamiana were quantified by Western blot analysis. The NS1 fused to ELP and targeted to the ER (NS1 ELP-ER) showed the highest yield (445 mg/kg), approximately a forty-fold increase in accumulation levels compared to the non-fused protein (NS1-ER), representing the first example of transient expression of DENV NS1 in plant. We also demonstrated that NS1 ELP-ER was successfully recognized by a monoclonal anti-dengue virus NS1 glycoprotein antibody, and by sera from dengue virus-infected patients. Interestingly, it was found that transient production of NS1-ER and NS1 ELP-ER using vacuum infiltration of whole plants, which is easier to scale up, rather than syringe infiltration of leaves, greatly improved the accumulation of NS1 proteins. The generated plant made NS1, even without extensive purification, showed potential to be used for the development of the NS1 diagnostic tests in resource-limited areas where dengue is endemic.
Collapse
Affiliation(s)
- Lívia É. C. Marques
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceara, Fortaleza, Brazil
- *Correspondence: Lívia É. C. Marques,
| | - Bruno B. Silva
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceara, Fortaleza, Brazil
| | - Rosa Fireman Dutra
- Department of Biomedical Engineering, Biomedical Engineering Laboratory, Federal University of Pernambuco, Recife, Brazil
| | | | - Rima Menassa
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
| | - Maria Izabel F. Guedes
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceara, Fortaleza, Brazil
| |
Collapse
|
13
|
Boire A, Sanchez C, Morel MH, Lettinga MP, Menut P. Dynamics of liquid-liquid phase separation of wheat gliadins. Sci Rep 2018; 8:14441. [PMID: 30262869 PMCID: PMC6160421 DOI: 10.1038/s41598-018-32278-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 08/28/2018] [Indexed: 02/08/2023] Open
Abstract
During wheat seeds development, storage proteins are synthetized and subsequently form dense protein phases, also called Protein Bodies (PBs). The mechanisms of PBs formation and the supramolecular assembly of storage proteins in PBs remain unclear. In particular, there is an apparent contradiction between the low solubility in water of storage proteins and their high local dynamics in dense PBs. Here, we probe the interplay between short-range attraction and long-range repulsion of a wheat gliadin isolate by investigating the dynamics of liquid-liquid phase separation after temperature quench. We do so using time-resolved small angle light scattering, phase contrast microscopy and rheology. We show that gliadins undergo liquid-liquid phase separation through Nucleation and Growth or Spinodal Decomposition depending on the quench depth. They assemble into dense phases but remain in a liquid-like state over an extended range of temperatures and concentrations. The analysis of phase separation kinetics reveals that the attraction strength of gliadins is in the same order of magnitude as other proteins. We discuss the respective role of competing interactions, protein intrinsic disorder, hydration and polydispersity in promoting local dynamics and providing this liquid-like behavior despite attractive forces.
Collapse
Affiliation(s)
- Adeline Boire
- UMR IATE, Université de Montpellier, Montpellier SupAgro, INRA, CIRAD, 2, Place Viala, 34060, Montpellier Cedex 1, France. .,INRA, UR1268 Biopolymers Interactions Assemblies, 44300, Nantes, France.
| | - Christian Sanchez
- UMR IATE, Université de Montpellier, Montpellier SupAgro, INRA, CIRAD, 2, Place Viala, 34060, Montpellier Cedex 1, France
| | - Marie-Hélène Morel
- UMR IATE, INRA, Université de Montpellier, Montpellier SupAgro, CIRAD, 2, Place Viala, 34060, Montpellier Cedex 1, France
| | - Minne Paul Lettinga
- Soft Condensed Matter Group ICS3, Jülich Forschungscentrum, Jülich, Germany.,Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, B-3001, Leuven, Belgium
| | - Paul Menut
- UMR IATE, Université de Montpellier, Montpellier SupAgro, INRA, CIRAD, 2, Place Viala, 34060, Montpellier Cedex 1, France.,Ingénierie Procédés Aliments, AgroParisTech, INRA, Université Paris-Saclay, 91300, Massy, France
| |
Collapse
|
14
|
Yanez RJR, Lamprecht R, Granadillo M, Torrens I, Arcalís E, Stöger E, Rybicki EP, Hitzeroth II. LALF 32-51 -E7, a HPV-16 therapeutic vaccine candidate, forms protein body-like structures when expressed in Nicotiana benthamiana leaves. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:628-637. [PMID: 28733985 PMCID: PMC5787834 DOI: 10.1111/pbi.12802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 05/28/2023]
Abstract
High-risk human papillomaviruses (HPVs) cause cervical cancer, and while there are good prophylactic vaccines on the market, these are ineffective against established infections, creating a clear need for therapeutic vaccines. The HPV E7 protein is one of the essential oncoproteins for the onset and maintenance of malignancy and is therefore an ideal therapeutic vaccine target. We fused the HPV-16 E7 protein to the Limulus polyphemus antilipopolysaccharide factor (LALF32-51 ), a small hydrophobic peptide that can penetrate cell membranes and that has immunomodulatory properties. LALF32-51 -E7 was transiently expressed in Nicotiana benthamiana, and we previously determined that it accumulated better when targeted to chloroplasts compared to being localized in the cytoplasm. Subsequently, we aimed to prove whether LALF32-51 -E7 was indeed associated with the chloroplasts by determining its subcellular localization. The LALF32-51 -E7 gene was fused to one encoding enhanced GFP to generate a LG fusion protein, and localization was determined by confocal laser scanning microscopy and transmission electron microscopy (TEM). The fluorescence observed from chloroplast-targeted LG was distinctively different from that of the cytoplasmic LG. Small spherical structures resembling protein bodies (PBs) were seen that clearly localized with the chloroplasts. Larger but less abundant PB-like structures were also seen for the cytoplasmic LG. PB-like structure formation was confirmed for both LG and LALF32-51 -E7 by TEM. LALF32-51 -E7 was indeed targeted to the chloroplasts by the chloroplast transit peptide used in this study, and it formed aggregated PB-like structures. This study could open a new avenue for the use of LALF32-51 as a PB-inducing peptide.
Collapse
Affiliation(s)
- Romana J. R. Yanez
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
| | - Renate Lamprecht
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
| | | | - Isis Torrens
- Center for Genetic Engineering and BiotechnologyHavanaCuba
| | - Elsa Arcalís
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Eva Stöger
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Edward P. Rybicki
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
| | - Inga I. Hitzeroth
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
15
|
Miletic S, Hünerberg M, Kaldis A, MacDonald J, Leuthreau A, McAllister T, Menassa R. A Plant-Produced Candidate Subunit Vaccine Reduces Shedding of Enterohemorrhagic Escherichia coli in Ruminants. Biotechnol J 2017; 12. [PMID: 28869356 DOI: 10.1002/biot.201700405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/30/2017] [Indexed: 12/18/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are commonly present in the gastrointestinal tract of cattle and cause serious infectious disease in humans. Immunizing cattle against EHEC is a promising strategy to decrease the risk of food contamination; however, veterinary vaccines against EHEC such as Econiche have not been widely adopted by the agricultural industry, and have been discontinued, prompting the need for more cost-effective EHEC vaccines. The objective of this project is to develop a platform to produce plant-made antigens for oral vaccination of ruminants against EHEC. Five recombinant proteins were designed as vaccine candidates and expressed transiently in Nicotiana benthamiana and transplastomically in Nicotiana tabacum. Three of these EHEC proteins, NleA, Stx2b, and a fusion of EspA accumulated when transiently expressed. Transient protein accumulation was the highest when EHEC proteins were fused to an elastin-like polypeptide (ELP) tag. In the transplastomic lines, EspA accumulated up to 479 mg kg-1 in lyophilized leaf material. Sheep that were administered leaf tissue containing recombinant EspA shed less E. coli O157:H7 when challenged, as compared to control animals. These results suggest that plant-made, transgenic EspA has the potential to reduce EHEC shedding in ruminants.
Collapse
Affiliation(s)
- Sean Miletic
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London N5V 4T3, Ontario, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London N6A 3K7, Ontario, Canada
| | - Martin Hünerberg
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1 Avenue South, Lethbridge T1J 4P4, Alberta, Canada
- Department of Animal Sciences, Ruminant Nutrition Unit, University of Göttingen, 37077 Göttingen, Germany
| | - Angelo Kaldis
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London N5V 4T3, Ontario, Canada
| | - Jacqueline MacDonald
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London N5V 4T3, Ontario, Canada
| | - Antoine Leuthreau
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London N5V 4T3, Ontario, Canada
- Université de Bordeaux and INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'ornon, France
| | - Tim McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1 Avenue South, Lethbridge T1J 4P4, Alberta, Canada
| | - Rima Menassa
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London N5V 4T3, Ontario, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London N6A 3K7, Ontario, Canada
| |
Collapse
|
16
|
Reuter LJ, Shahbazi MA, Mäkilä EM, Salonen JJ, Saberianfar R, Menassa R, Santos HA, Joensuu JJ, Ritala A. Coating Nanoparticles with Plant-Produced Transferrin-Hydrophobin Fusion Protein Enhances Their Uptake in Cancer Cells. Bioconjug Chem 2017; 28:1639-1648. [PMID: 28557453 DOI: 10.1021/acs.bioconjchem.7b00075] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The encapsulation of drugs to nanoparticles may offer a solution for targeted delivery. Here, we set out to engineer a self-assembling targeting ligand by combining the functional properties of human transferrin and fungal hydrophobins in a single fusion protein. We showed that human transferrin can be expressed in Nicotiana benthamiana plants as a fusion with Trichoderma reesei hydrophobins HFBI, HFBII, or HFBIV. Transferrin-HFBIV was further expressed in tobacco BY-2 suspension cells. Both partners of the fusion protein retained their functionality; the hydrophobin moiety enabled migration to a surfactant phase in an aqueous two-phase system, and the transferrin moiety was able to reversibly bind iron. Coating porous silicon nanoparticles with the fusion protein resulted in uptake of the nanoparticles in human cancer cells. This study provides a proof-of-concept for the functionalization of hydrophobin coatings with transferrin as a targeting ligand.
Collapse
Affiliation(s)
- Lauri J Reuter
- VTT Technical Research Centre of Finland Ltd. , FI-02044 Espoo, Finland
| | - Mohammad-Ali Shahbazi
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
- Department of Micro- and Nanotechnology, Technical University of Denmark , 2800 Copenhagen, Denmark
| | - Ermei M Mäkilä
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku , FI-20014 Turku, Finland
| | - Jarno J Salonen
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku , FI-20014 Turku, Finland
| | - Reza Saberianfar
- London Research and Development Centre, Agriculture and Agri-Food Canada , N5V 4T3 London, Ontario Canada
| | - Rima Menassa
- London Research and Development Centre, Agriculture and Agri-Food Canada , N5V 4T3 London, Ontario Canada
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki , 00014 Helsinki, Finland
| | - Jussi J Joensuu
- VTT Technical Research Centre of Finland Ltd. , FI-02044 Espoo, Finland
| | - Anneli Ritala
- VTT Technical Research Centre of Finland Ltd. , FI-02044 Espoo, Finland
| |
Collapse
|
17
|
Saberianfar R, Menassa R. Protein bodies: how the ER deals with high accumulation of recombinant proteins. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:671-673. [PMID: 28332302 PMCID: PMC5425386 DOI: 10.1111/pbi.12730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/27/2017] [Accepted: 03/16/2017] [Indexed: 05/06/2023]
Affiliation(s)
- Reza Saberianfar
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonONCanada
- Biology DepartmentUniversity of Western OntarioLondonONCanada
| | - Rima Menassa
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonONCanada
- Biology DepartmentUniversity of Western OntarioLondonONCanada
| |
Collapse
|