1
|
Duchoslavová J, Jansa J. Strategies of resource sharing in clonal plants: a conceptual model and an example of contrasting strategies in two closely related species. ANNALS OF BOTANY 2024; 134:887-900. [PMID: 39126662 PMCID: PMC11560365 DOI: 10.1093/aob/mcae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND AND AIMS Clonal growth is widespread among herbaceous plants, and helps them to cope with environmental heterogeneity through resource integration via connecting clonal organs. Such integration is considered to balance heterogeneity by translocation of resources from rich to poor patches. However, such an 'equalization' strategy is only one of several possible strategies. Under certain conditions, a strategy emphasizing acropetal movement and exploration of new areas or a strategy of accumulating resources in older ramets may be preferred. The optimal strategy may be determined by environmental conditions, such as resource availability and level of light competition. We aimed to summarize possible translocation strategies in a conceptual analysis and to examine translocation in two species from different habitats. METHODS Resource translocation was compared between two closely related species from different habitats with contrasting productivity. The study examined the bidirectional translocation of carbon and nitrogen in pairs of mother and daughter ramets grown under light heterogeneity (one ramet shaded) at two developmental stages using stable-isotope labelling. KEY RESULTS At the early developmental stage, both species translocated resources towards daughters and the translocation was modified by shading. Later, the species of low-productivity habitats, Fragaria viridis, translocated carbon to shaded ramets (both mother and daughter), according to the 'equalization' strategy. In contrast, the species of high-productivity habitats, Potentilla reptans, did not support shaded mother ramets. Nitrogen translocation remained mainly acropetal in both species. CONCLUSIONS The two studied species exhibited different translocation strategies, which may be linked to the habitat conditions experienced by each species. The results indicate that we need to consider different possible strategies. We emphasize the importance of bidirectional tracing in translocation studies and the need for further studies to investigate the translocation patterns in species from contrasting habitats using a comparative approach.
Collapse
Affiliation(s)
- Jana Duchoslavová
- Department of Botany, Faculty of Science, Charles University, 128 43 Praha 2, Czech Republic
| | - Jan Jansa
- Institute of Microbiology, Czech Academy of Sciences, 142 20 Praha 4, Czech Republic
| |
Collapse
|
2
|
Wang D, Song F, Zhou Y, Zhong T, Zhang Y, Deng Q, Wang X, Wang S, Wang D, Zhu X, Jiang N, Liu X. Effects of alkaline salt stress on growth, physiological properties and medicinal components of clonal Glechoma longituba (Nakai) Kupr. BMC PLANT BIOLOGY 2024; 24:965. [PMID: 39402458 PMCID: PMC11475845 DOI: 10.1186/s12870-024-05668-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Glechoma longituba, recognized as a medicinal plant, provides valuable pharmaceutical raw materials for treating various diseases. Saline-alkali stress may effectively enhance the medicinal quality of G. longituba by promoting the synthesis of secondary metabolites. To investigate the changes in the primary medicinal components of G. longituba under saline-alkali stress and improve the quality of medicinal materials, Na2CO3 was applied to induce short-term stress under different conditions and the biomass, physiologically active substances and primary medicinal components of G. longituba were measured in this study. RESULTS Under alkaline salt stress, the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) were elevated in G. longituba, accompanied by increased accumulation of proline (Pro) and malondialdehyde (MDA). Furthermore, analysis of the medicinal constituents revealed that G. longituba produced the highest levels of soluble sugars, flavonoids, ursolic acid, and oleanolic acid under 0.6% Na2CO3 stress for 48 h, 0.2% Na2CO3 stress for 72 h, 0.4% Na2CO3 stress for 12 h, and 0.4% Na2CO3 stress for 8 h, respectively. CONCLUSIONS Short-term Na2CO3 stress enhances the synthesis of medicinal components in G. longituba. By manipulating stress conditions, the production of various medicinal substances could be optimized. This approach may serve as a basis for the targeted cultivation of G. longituba, offering potential applications in the treatment of diverse diseases.
Collapse
Affiliation(s)
- Donghai Wang
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, P. R. China
| | - Fangshuai Song
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, P. R. China
| | - Yitong Zhou
- School of Biological Science and Technology, Hubei Minzu University, Enshi, 445000, P. R. China
| | - Tingting Zhong
- School of Biological Science and Technology, Hubei Minzu University, Enshi, 445000, P. R. China
| | - Yuyan Zhang
- School of Biological Science and Technology, Hubei Minzu University, Enshi, 445000, P. R. China
| | - Qiao Deng
- School of Biological Science and Technology, Hubei Minzu University, Enshi, 445000, P. R. China
| | - Xinqi Wang
- School of Biological Science and Technology, Hubei Minzu University, Enshi, 445000, P. R. China
| | - Siqi Wang
- School of Biological Science and Technology, Hubei Minzu University, Enshi, 445000, P. R. China
| | - Daocai Wang
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, P. R. China
- School of Biological Science and Technology, Hubei Minzu University, Enshi, 445000, P. R. China
| | - Xiqiang Zhu
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, P. R. China
- School of Biological Science and Technology, Hubei Minzu University, Enshi, 445000, P. R. China
| | - Ning Jiang
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, P. R. China
- School of Biological Science and Technology, Hubei Minzu University, Enshi, 445000, P. R. China
| | - Xiaopeng Liu
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, P. R. China.
- School of Biological Science and Technology, Hubei Minzu University, Enshi, 445000, P. R. China.
| |
Collapse
|
3
|
Keen RM, Bachle S, Bartmess M, Nippert JB. Combined effects of fire and drought are not sufficient to slow shrub encroachment in tallgrass prairie. Oecologia 2024; 204:727-742. [PMID: 38492034 DOI: 10.1007/s00442-024-05526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/03/2024] [Indexed: 03/18/2024]
Abstract
Woody encroachment-the spread of woody vegetation in open ecosystems-is a common threat to grasslands worldwide. Reversing encroachment can be exceedingly difficult once shrubs become established, particularly clonal species that resprout following disturbance. Single stressors are unlikely to reverse woody encroachment, but using multiple stressors in tandem could be successful in slowing or reversing encroachment. We explored whether increasing fire frequency in conjunction with multi-year drought could reduce growth and survival of encroaching shrubs in a tallgrass prairie in northeastern Kansas, USA. Passive rainout shelters (~ 50% rainfall reduction) were constructed over mature clonal shrubs (Cornus drummondii) and co-existing C4 grasses in two fire treatments (1-year and 4-year burn frequency). Leaf- and whole-plant level physiological responses to drought and fire frequency were monitored in shrubs and grasses from 2019 to 2022. Shrub biomass and stem density following fire were unaffected by five years of consecutive drought treatment, regardless of fire frequency. The drought treatment had more negative effects on grass leaf water potential and photosynthetic rates compared to shrubs. Shrub photosynthetic rates were remarkably stable across each growing season. Overall, we found that five consecutive years of moderate drought in combination with fire was not sufficient to reduce biomass production or stem density in an encroaching clonal shrub (C. drummondii). These results suggest that moderate but chronic press-drought events do not sufficiently stress encroaching clonal shrubs to negatively impact their resilience following fire events, even when fire frequency is high.
Collapse
Affiliation(s)
- R M Keen
- Division of Biology, Kansas State University, Manhattan, KS, USA.
| | - S Bachle
- Division of Biology, Kansas State University, Manhattan, KS, USA
- LI-COR Biosciences, Lincoln, NE, 68504, USA
| | - M Bartmess
- United States Department of Agriculture, Natural Resource Conservation Service, Pottawatomie County, KS, USA
| | - J B Nippert
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
4
|
Bisang I, Ehrlén J, Hedenäs L. Life-history characteristics and historical factors are important to explain regional variation in reproductive traits and genetic diversity in perennial mosses. ANNALS OF BOTANY 2023; 132:29-42. [PMID: 36928083 PMCID: PMC10550275 DOI: 10.1093/aob/mcad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND AIMS Plants have evolved an unrivalled diversity of reproductive strategies, including variation in the degree of sexual vs. clonal reproduction. This variation has important effects on the dynamics and genetic structure of populations. We examined the association between large-scale variation in reproductive patterns and intraspecific genetic diversity in two moss species where sex is manifested in the dominant haploid generation and sex expression is irregular. We predicted that in regions with more frequent realized sexual reproduction, populations should display less skewed sex ratios, should more often express sex and should have higher genetic diversity than in regions with largely clonal reproduction. METHODS We assessed reproductive status and phenotypic sex in the dioicous long-lived Drepanocladus trifarius and D. turgescens, in 248 and 438 samples across two regions in Scandinavia with frequent or rare realized sexual reproduction, respectively. In subsets of the samples, we analysed genetic diversity using nuclear and plastid sequence information and identified sex with a sex-specific molecular marker in non-reproductive samples. KEY RESULTS Contrary to our predictions, sex ratios did not differ between regions; genetic diversity did not differ in D. trifarius and it was higher in the region with rare sexual reproduction in D. turgescens. Supporting our predictions, relatively more samples expressed sex in D. trifarius in the region with frequent sexual reproduction. Overall, samples were mostly female. The degree of sex expression and genetic diversity differed between sexes. CONCLUSIONS Sex expression levels, regional sex ratios and genetic diversity were not directly associated with the regional frequency of realized sexual reproduction, and relationships and variation patterns differed between species. We conclude that a combination of species-specific life histories, such as longevity, overall degree of successful sexual reproduction and recruitment, and historical factors are important to explain this variation. Our data on haploid-dominated plants significantly complement plant reproductive biology.
Collapse
Affiliation(s)
- Irene Bisang
- Department of Botany, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
| | - Johan Ehrlén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Lars Hedenäs
- Department of Botany, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
| |
Collapse
|
5
|
Zhang J, You WH, Li NN, Du DL. Invasive clonal plants possess greater capacity for division of labor than natives in high patch contrast environments. FRONTIERS IN PLANT SCIENCE 2023; 14:1210070. [PMID: 37492774 PMCID: PMC10363633 DOI: 10.3389/fpls.2023.1210070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/31/2023] [Indexed: 07/27/2023]
Abstract
Invasion success of clonal plants is closely related to their unique clonal life history, and clonal division of labor is a crucial clonal trait. However, so far, it is unclear whether invasive alien clonal species generally possess a greater capacity for division of labor than native species and whether this pattern is affected by environmental conditions. To test whether patch contrast affects the differences in the capacity for division of labor between invasive alien and native clonal plants, we selected five pairs of exotic invasive and native clonal plant species that are congeneric and co-occurring in China as experimental materials. We grew the clonal fragment pairs of these invasive and native plants under high, low, or no contrast of reciprocal patchiness of light and nutrient, respectively, with ramet connections either severed (division of labor prevented) or kept intact (division of labor allowed). The results showed that connection significantly decreased the proportion of biomass allocated to roots in distal (younger) ramets, whereas it increased in proximal (older) ramets of all studied plants under high -contrast treatments. This clear pattern strongly indicated the occurrence of division of labor. Furthermore, the connection had a more pronounced effect on the pattern of biomass allocation of invasive alien plants, resulting in a greater increase in biomass for invasive alien plants compared to native plants. These findings suggest that the invasive alien plants possess a greater capacity for division of labor, which may confer a competitive advantage to them over natives, thus facilitating their invasion success in some heterogeneous habitats such as forest edges where light and soil nutrients show a high negative correlation.
Collapse
|
6
|
Eckert S, Eilers EJ, Jakobs R, Anaia RA, Aragam KS, Bloss T, Popp M, Sasidharan R, Schnitzler JP, Stein F, Steppuhn A, Unsicker SB, van Dam NM, Yepes S, Ziaja D, Müller C. Inter-laboratory comparison of plant volatile analyses in the light of intra-specific chemodiversity. Metabolomics 2023; 19:62. [PMID: 37351733 DOI: 10.1007/s11306-023-02026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
INTRODUCTION Assessing intraspecific variation in plant volatile organic compounds (VOCs) involves pitfalls that may bias biological interpretation, particularly when several laboratories collaborate on joint projects. Comparative, inter-laboratory ring trials can inform on the reproducibility of such analyses. OBJECTIVES In a ring trial involving five laboratories, we investigated the reproducibility of VOC collections with polydimethylsiloxane (PDMS) and analyses by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). As model plant we used Tanacetum vulgare, which shows a remarkable diversity in terpenoids, forming so-called chemotypes. We performed our ring-trial with two chemotypes to examine the sources of technical variation in plant VOC measurements during pre-analytical, analytical, and post-analytical steps. METHODS Monoclonal root cuttings were generated in one laboratory and distributed to five laboratories, in which plants were grown under laboratory-specific conditions. VOCs were collected on PDMS tubes from all plants before and after a jasmonic acid (JA) treatment. Thereafter, each laboratory (donors) sent a subset of tubes to four of the other laboratories (recipients), which performed TD-GC-MS with their own established procedures. RESULTS Chemotype-specific differences in VOC profiles were detected but with an overall high variation both across donor and recipient laboratories. JA-induced changes in VOC profiles were not reproducible. Laboratory-specific growth conditions led to phenotypic variation that affected the resulting VOC profiles. CONCLUSION Our ring trial shows that despite large efforts to standardise each VOC measurement step, the outcomes differed both qualitatively and quantitatively. Our results reveal sources of variation in plant VOC research and may help to avoid systematic errors in similar experiments.
Collapse
Affiliation(s)
- Silvia Eckert
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Elisabeth J Eilers
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Ruth Jakobs
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Redouan Adam Anaia
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | - Tanja Bloss
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Moritz Popp
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Munich, Germany
| | - Rohit Sasidharan
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | | | - Florian Stein
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Anke Steppuhn
- Department of Molecular Botany, Hohenheim University, Stuttgart, Germany
| | - Sybille B Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Nicole M van Dam
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Sol Yepes
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Dominik Ziaja
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
7
|
Ievinsh G. Halophytic Clonal Plant Species: Important Functional Aspects for Existence in Heterogeneous Saline Habitats. PLANTS (BASEL, SWITZERLAND) 2023; 12:1728. [PMID: 37111952 PMCID: PMC10144567 DOI: 10.3390/plants12081728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
Plant modularity-related traits are important ecological determinants of vegetation composition, dynamics, and resilience. While simple changes in plant biomass resulting from salt treatments are usually considered a sufficient indicator for resistance vs. susceptibility to salinity, plants with a clonal growth pattern show complex responses to changes in environmental conditions. Due to physiological integration, clonal plants often have adaptive advantages in highly heterogeneous or disturbed habitats. Although halophytes native to various heterogeneous habitats have been extensively studied, no special attention has been paid to the peculiarities of salt tolerance mechanisms of clonal halophytes. Therefore, the aim of the present review is to identify probable and possible halophytic plant species belonging to different types of clonal growth and to analyze available scientific information on responses to salinity in these species. Examples, including halophytes with different types of clonal growth, will be analyzed, such as based on differences in the degree of physiological integration, ramet persistence, rate of clonal expansion, salinity-induced clonality, etc.
Collapse
Affiliation(s)
- Gederts Ievinsh
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| |
Collapse
|
8
|
Tong L, Wu W, Lin Y, Chen D, Zeng R, Lu L, Song Y. Insect Herbivory on Main Stem Enhances Induced Defense of Primary Tillers in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1199. [PMID: 36904060 PMCID: PMC10005496 DOI: 10.3390/plants12051199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Clonal plants are interconnected to form clonal plant networks with physiological integration, enabling the reassignment as well as sharing of resources among the members. The systemic induction of antiherbivore resistance via clonal integration may frequently operate in the networks. Here, we used an important food crop rice (Oryza sativa), and its destructive pest rice leaffolder (LF; Cnaphalocrocis medinalis) as a model to examine defense communication between the main stem and clonal tillers. LF infestation and MeJA pretreatment on the main stem for two days reduced the weight gain of LF larvae fed on the corresponding primary tillers by 44.5% and 29.0%, respectively. LF infestation and MeJA pretreatment on the main stem also enhanced antiherbivore defense responses in primary tillers: increased levels of a trypsin protease inhibitor, putative defensive enzymes, and jasmonic acid (JA), a key signaling compound involved in antiherbivore induced defenses; strong induction of genes encoding JA biosynthesis and perception; and rapid activation of JA pathway. However, in a JA perception OsCOI RNAi line, LF infestation on main stem showed no or minor effects on antiherbivore defense responses in primary tillers. Our work demonstrates that systemic antiherbivore defense operate in the clonal network of rice plants and JA signaling plays a crucial role in mediating defense communication between main stem and tillers in rice plants. Our findings provide a theoretical basis for the ecological control of pests by using the systemic resistance of cloned plants themselves.
Collapse
Affiliation(s)
- Lu Tong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wanghui Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Guangxi Zhuang Autonomous Region Forest Inventory & Planning Institute, Nanning 530022, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yibin Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Daoqian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rensen Zeng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Long Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Song
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Evans JP, Meckstroth S, Garai J. The Amelioration of Grazing through Physiological Integration by a Clonal Dune Plant. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040724. [PMID: 36840072 PMCID: PMC9962606 DOI: 10.3390/plants12040724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 05/14/2023]
Abstract
Rhizomatous growth and associated physiological integration can allow a clonal dune species to potentially compensate for the selective removal of leaves associated with herbivory. Hydrocotyle bonariensis is a rhizomatous clonal plant species that is abundant in the coastal dune environments of the southeastern United States that are inhabited by large feral horse populations. H. bonariensis has been shown to integrate resources among ramets within extensive clones as an adaptation to resource heterogeneity in sandy soils. In this study, we hypothesized that clonal integration is a mechanism that promotes H. bonariensis persistence in these communities, despite high levels of herbivory by feral horses. In a field experiment, we used exclosures to test for herbivory in H. bonariensis over a four-month period. We found that feral horses utilized H. bonariensis as a food species, and that while grazing will suppress clonal biomass, H. bonariensis is able to maintain populations in a high grazing regime with and without competition present. We then conducted an experiment in which portions of H. bonariensis clones were clipped to simulate different levels of grazing. Half of the clones were severed to eliminate the possibility of integration. We found that after 12 weeks, the mean number of leaves and ramets increased as the grazing level increased, for integrated clones. Integrated clones had significantly increased biomass production compared to the severed equivalents. Our research suggests that rhizomatous growth and physiological integration are traits that allow clonal plant species to maintain populations and to tolerate grazing in coastal dune environments.
Collapse
Affiliation(s)
- Jonathan P. Evans
- Department of Biology, University of the South, Sewanee, TN 37383, USA
- Correspondence: ; Tel.: +1-(931)-598-1304
| | - Shelby Meckstroth
- Department of Biology, University of the South, Sewanee, TN 37383, USA
| | - Julie Garai
- Department of Mathematics and Computer Science, University of the South, Sewanee, TN 37383, USA
| |
Collapse
|
10
|
Rodriguez-Quintero WD, Moreno-Chacón M, Carrasco-Urra F, Saldaña A. From dark to darkness, negative phototropism influences the support-tree location of the massive woody climber Hydrangea serratifolia (Hydrangeaceae) in a Chilean temperate rainforest. PLANT SIGNALING & BEHAVIOR 2022; 17:2122244. [PMID: 36476262 PMCID: PMC9733698 DOI: 10.1080/15592324.2022.2122244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 06/17/2023]
Abstract
Climbing plants rely on suitable support to provide the light conditions they require in the canopy. Negative phototropism is a directional search behavior proposed to detect a support-tree, which indicates growth or movement away from light, based on light attenuation. In a Chilean temperate rainforest, we addressed whether the massive woody climber Hydrangea serratifolia (H. et A.) F. Phil (Hydrangeaceae) presents a support-tree location pattern influenced by light availability. We analyzed direction and light received in two groups of juvenile shoots: searching shoots (SS), with plagiotropic (creeping) growth vs. ascending shoots (AS), with orthotropic growth. We found that, in accordance with light attenuation, SS and AS used directional orientation to search and then ascend host trees. The light available to H. serratifolia searching shoots was less than that of the general forest understory; the directional orientation in both groups showed a significant deviation from a random distribution, with no circular statistical difference between them. Circular-linear regression indicated a relationship between directional orientations and light availability. Negative phototropism encodes the light environment's heterogeneous spatial and temporal information, guiding the shoot apex to the most shaded part of the support-tree base, the climbing start point.
Collapse
Affiliation(s)
- W. David Rodriguez-Quintero
- Departamento de Botánica, Universidad de Concepción, Concepción, Chile
- Centro de Ecología Aplicada Ltda, Principe de Gales6465La Reina, Chile
| | | | | | - Alfredo Saldaña
- Departamento de Botánica, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
11
|
Wu Z, Wang Z, Xie D, Wang H, Zhao A, Wang Y, Wang H, Xu X, Li T, Zhao J. Effects of highland environments on clonal diversity in aquatic plants: An interspecific comparison study on the Qinghai-Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2022; 13:1040282. [PMID: 36340384 PMCID: PMC9632175 DOI: 10.3389/fpls.2022.1040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Clonal reproduction is one of the most distinctive characteristics of plants and is common and diverse in aquatic macrophytes. The balance between sexual and asexual reproduction is affected by various conditions, especially adverse environments. However, we know little about clonal diversity of aquatic plants under suboptimal conditions, such as at high altitudes, and having this information would help us understand how environmental gradients influence patterns of clonal and genetic variation in freshwater species. The microsatellite data of four aquatic taxa in our previous studies were revisited to estimate clonal and genetic diversity on the Qinghai-Tibetan Plateau. Clonal diversity among different genetic groups was compared. Local environmental features were surveyed. Beta regressions were used to identify the environmental factors that significantly explained clonal diversity for relative taxon. The level of clonal diversity from high to low was Stuckenia filiformis > Hippuris vulgaris > Myriophyllum species > Ranunculus section Batrachium species. A positive correlation between clonal and genetic diversity was identified for all taxa, except H. vulgaris. Clonal diversity was affected by climate in S. filiformis and by the local environment in H. vulgaris. For Myriophyllum spp., low elevation and high sediment nutrition were significant for sexual recruitment. The environmental effects on clonal diversity were not significant in R. sect. Batrachium spp. Clonal diversity of aquatic plants is moderate to high and varies greatly in highlands. The effects of breeding systems and environmental factors on the patterns of clonal variation were identified. Elevational gradients, climates and local conditions play different roles in clonal diversity among relative taxon. Our results highlight the importance of sexual recruitment in alpine aquatic plant populations and the influence of environmental factors on the genetic patterns in freshwater species at local and regional scales.
Collapse
Affiliation(s)
- Zhigang Wu
- The State Key Laboratory of Freshwater Ecology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhong Wang
- Department of Ecology, College of Life Sciences, Wuhan University, Wuhan, China
- School of Science, Tibet University, Lhasa, China
| | - Dong Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- The National Wetland Ecosystem Field Station of Taihu Lake, National Forestry Administration, Suzhou, China
| | - Huijun Wang
- The State Key Laboratory of Freshwater Ecology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aiwen Zhao
- The State Key Laboratory of Freshwater Ecology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- School of Science, Tibet University, Lhasa, China
| | - Yalin Wang
- The State Key Laboratory of Freshwater Ecology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Department of Ecology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hanling Wang
- Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Xinwei Xu
- Department of Ecology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tao Li
- The State Key Laboratory of Freshwater Ecology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jindong Zhao
- The State Key Laboratory of Freshwater Ecology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
12
|
Effects of Clonal Integration on Foraging Behavior of Three Clonal Plants in Heterogeneous Soil Environments. FORESTS 2022. [DOI: 10.3390/f13050696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Environments are ubiquitously heterogeneous in nature, and clonal plants commonly benefit from both clonal integration and foraging responses in heterogeneous environments. While many studies have examined clonal integration and foraging responses separately, few have tested the effect of clonal integration on the foraging response of clonal plants to environmental heterogeneity. We grew offspring ramets of each of three clonal plants (Hydrocotyle vulgaris, Duchesnea indica, and Glechoma longituba) in both homogeneous and heterogenous soil environments and severed their stem connection to a mother ramet (to prevent clonal integration from the mother ramet) or kept it intact (to allow clonal integration). Without clonal integration from the mother ramet, soil heterogeneity had no effect on biomass or number of ramets for any of the three species. With clonal integration, soil heterogeneity also had no effect on biomass or number of ramets of D. indica and G. longituba, but significantly decreased biomass and marginally significantly decreased number of ramets of H. vulgaris. Without clonal integration, offspring ramets did not demonstrate either shoot or root foraging responses in terms of total, shoot and root biomass and ramet number in the heterogeneous soil environment in any of the three species. With integration, offspring ramets of H. vulgaris also did not demonstrate either root or shoot foraging responses, but offspring ramets of G. longituba demonstrated both root and shoot foraging responses, and those of D. indica demonstrated a root foraging response when they grew in the heterogeneous soil environment. We conclude that clonal integration can alter the foraging response of clonal plants, but this effect is species-specific. Our results also suggest that foraging responses of clonal plants in heterogeneous soil environments may not necessarily benefit the growth of clonal plants.
Collapse
|
13
|
Kottler EJ, Gedan KB. Sexual reproduction is light-limited as marsh grasses colonize maritime forest. AMERICAN JOURNAL OF BOTANY 2022; 109:514-525. [PMID: 35244201 DOI: 10.1002/ajb2.1831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/24/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Climate change is driving abiotic shifts that can threaten the conservation of foundation species and the habitats they support. Directional range shifting is one mechanism of escape, but requires the successful colonization of habitats where interspecific interactions may differ from those to which a species has adapted. For plants with multiple reproductive strategies, these range-edge interactions may alter the investment or allocation toward a given reproductive strategy. In this study, we quantified sexual reproduction of the clonal marsh grass Spartina patens across an inland colonization front into maritime forest being driven by sea-level rise. We find that flowering is variable across S. patens meadows, but consistently reduced in low light conditions like those of the forest understory. Observational surveys of S. patens flowering at four sites in the Delmarva Peninsula agreed with the results of two experimental manipulations of light availability (shading experiment in S. patens-dominated marsh and a forest dieback manipulation). These three approaches pinpointed light limitation as a principal control on S. patens flowering capacity, suggesting that light competition with taller upland species can suppress S. patens flowering along its upland migration front. Consequently, all propagation in shaded conditions must occur clonally or via seeds from the marsh, a reproductive restriction that could limit the potential for local adaptation and reduce genetic diversity. Future research is needed to determine whether the lack of flowering is the result of a trade-off between sexual and clonal reproduction or results from insufficient photosynthetic products needed to achieve either reproductive method.
Collapse
Affiliation(s)
- Ezra J Kottler
- Department of Biological Sciences, George Washington University, 800 22nd ST NW, Suite 6000, Washington, D.C. 20052, USA
| | - Keryn B Gedan
- Department of Biological Sciences, George Washington University, 800 22nd ST NW, Suite 6000, Washington, D.C. 20052, USA
| |
Collapse
|
14
|
Freschet GT, Pagès L, Iversen CM, Comas LH, Rewald B, Roumet C, Klimešová J, Zadworny M, Poorter H, Postma JA, Adams TS, Bagniewska‐Zadworna A, Bengough AG, Blancaflor EB, Brunner I, Cornelissen JHC, Garnier E, Gessler A, Hobbie SE, Meier IC, Mommer L, Picon‐Cochard C, Rose L, Ryser P, Scherer‐Lorenzen M, Soudzilovskaia NA, Stokes A, Sun T, Valverde‐Barrantes OJ, Weemstra M, Weigelt A, Wurzburger N, York LM, Batterman SA, Gomes de Moraes M, Janeček Š, Lambers H, Salmon V, Tharayil N, McCormack ML. A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. THE NEW PHYTOLOGIST 2021; 232:973-1122. [PMID: 34608637 PMCID: PMC8518129 DOI: 10.1111/nph.17572] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/22/2021] [Indexed: 05/17/2023]
Abstract
In the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies. It is meant to be used not only as starting point by students and scientists who desire working on below-ground ecosystems, but also by experts for consolidating and broadening their views on multiple aspects of root ecology. Beyond the classical compilation of measurement protocols, we have synthesised recommendations from the literature to provide key background knowledge useful for: (1) defining below-ground plant entities and giving keys for their meaningful dissection, classification and naming beyond the classical fine-root vs coarse-root approach; (2) considering the specificity of root research to produce sound laboratory and field data; (3) describing typical, but overlooked steps for studying roots (e.g. root handling, cleaning and storage); and (4) gathering metadata necessary for the interpretation of results and their reuse. Most importantly, all root traits have been introduced with some degree of ecological context that will be a foundation for understanding their ecological meaning, their typical use and uncertainties, and some methodological and conceptual perspectives for future research. Considering all of this, we urge readers not to solely extract protocol recommendations for trait measurements from this work, but to take a moment to read and reflect on the extensive information contained in this broader guide to root ecology, including sections I-VII and the many introductions to each section and root trait description. Finally, it is critical to understand that a major aim of this guide is to help break down barriers between the many subdisciplines of root ecology and ecophysiology, broaden researchers' views on the multiple aspects of root study and create favourable conditions for the inception of comprehensive experiments on the role of roots in plant and ecosystem functioning.
Collapse
Affiliation(s)
- Grégoire T. Freschet
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
- Station d’Ecologie Théorique et ExpérimentaleCNRS2 route du CNRS09200MoulisFrance
| | - Loïc Pagès
- UR 1115 PSHCentre PACA, site AgroparcINRAE84914Avignon cedex 9France
| | - Colleen M. Iversen
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Louise H. Comas
- USDA‐ARS Water Management Research Unit2150 Centre Avenue, Bldg D, Suite 320Fort CollinsCO80526USA
| | - Boris Rewald
- Department of Forest and Soil SciencesUniversity of Natural Resources and Life SciencesVienna1190Austria
| | - Catherine Roumet
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Jitka Klimešová
- Department of Functional EcologyInstitute of Botany CASDukelska 13537901TrebonCzech Republic
| | - Marcin Zadworny
- Institute of DendrologyPolish Academy of SciencesParkowa 562‐035KórnikPoland
| | - Hendrik Poorter
- Plant Sciences (IBG‐2)Forschungszentrum Jülich GmbHD‐52425JülichGermany
- Department of Biological SciencesMacquarie UniversityNorth RydeNSW2109Australia
| | | | - Thomas S. Adams
- Department of Plant SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Agnieszka Bagniewska‐Zadworna
- Department of General BotanyInstitute of Experimental BiologyFaculty of BiologyAdam Mickiewicz UniversityUniwersytetu Poznańskiego 661-614PoznańPoland
| | - A. Glyn Bengough
- The James Hutton InstituteInvergowrie, Dundee,DD2 5DAUK
- School of Science and EngineeringUniversity of DundeeDundee,DD1 4HNUK
| | | | - Ivano Brunner
- Forest Soils and BiogeochemistrySwiss Federal Research Institute WSLZürcherstr. 1118903BirmensdorfSwitzerland
| | - Johannes H. C. Cornelissen
- Department of Ecological ScienceFaculty of ScienceVrije Universiteit AmsterdamDe Boelelaan 1085Amsterdam1081 HVthe Netherlands
| | - Eric Garnier
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Arthur Gessler
- Forest DynamicsSwiss Federal Research Institute WSLZürcherstr. 1118903BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH Zurich8092ZurichSwitzerland
| | - Sarah E. Hobbie
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSt PaulMN55108USA
| | - Ina C. Meier
- Functional Forest EcologyUniversity of HamburgHaidkrugsweg 122885BarsbütelGermany
| | - Liesje Mommer
- Plant Ecology and Nature Conservation GroupDepartment of Environmental SciencesWageningen University and ResearchPO Box 476700 AAWageningenthe Netherlands
| | | | - Laura Rose
- Station d’Ecologie Théorique et ExpérimentaleCNRS2 route du CNRS09200MoulisFrance
- Senckenberg Biodiversity and Climate Research Centre (BiK-F)Senckenberganlage 2560325Frankfurt am MainGermany
| | - Peter Ryser
- Laurentian University935 Ramsey Lake RoadSudburyONP3E 2C6Canada
| | | | - Nadejda A. Soudzilovskaia
- Environmental Biology DepartmentInstitute of Environmental SciencesCMLLeiden UniversityLeiden2300 RAthe Netherlands
| | - Alexia Stokes
- INRAEAMAPCIRAD, IRDCNRSUniversity of MontpellierMontpellier34000France
| | - Tao Sun
- Institute of Applied EcologyChinese Academy of SciencesShenyang110016China
| | - Oscar J. Valverde‐Barrantes
- International Center for Tropical BotanyDepartment of Biological SciencesFlorida International UniversityMiamiFL33199USA
| | - Monique Weemstra
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Alexandra Weigelt
- Systematic Botany and Functional BiodiversityInstitute of BiologyLeipzig UniversityJohannisallee 21-23Leipzig04103Germany
| | - Nina Wurzburger
- Odum School of EcologyUniversity of Georgia140 E. Green StreetAthensGA30602USA
| | - Larry M. York
- Biosciences Division and Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Sarah A. Batterman
- School of Geography and Priestley International Centre for ClimateUniversity of LeedsLeedsLS2 9JTUK
- Cary Institute of Ecosystem StudiesMillbrookNY12545USA
| | - Moemy Gomes de Moraes
- Department of BotanyInstitute of Biological SciencesFederal University of Goiás1974690-900Goiânia, GoiásBrazil
| | - Štěpán Janeček
- School of Biological SciencesThe University of Western Australia35 Stirling HighwayCrawley (Perth)WA 6009Australia
| | - Hans Lambers
- School of Biological SciencesThe University of Western AustraliaCrawley (Perth)WAAustralia
| | - Verity Salmon
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Nishanth Tharayil
- Department of Plant and Environmental SciencesClemson UniversityClemsonSC29634USA
| | - M. Luke McCormack
- Center for Tree ScienceMorton Arboretum, 4100 Illinois Rt. 53LisleIL60532USA
| |
Collapse
|
15
|
Freschet GT, Pagès L, Iversen CM, Comas LH, Rewald B, Roumet C, Klimešová J, Zadworny M, Poorter H, Postma JA, Adams TS, Bagniewska-Zadworna A, Bengough AG, Blancaflor EB, Brunner I, Cornelissen JHC, Garnier E, Gessler A, Hobbie SE, Meier IC, Mommer L, Picon-Cochard C, Rose L, Ryser P, Scherer-Lorenzen M, Soudzilovskaia NA, Stokes A, Sun T, Valverde-Barrantes OJ, Weemstra M, Weigelt A, Wurzburger N, York LM, Batterman SA, Gomes de Moraes M, Janeček Š, Lambers H, Salmon V, Tharayil N, McCormack ML. A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. THE NEW PHYTOLOGIST 2021. [PMID: 34608637 DOI: 10.1111/nph.17572.hal-03379708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies. It is meant to be used not only as starting point by students and scientists who desire working on below-ground ecosystems, but also by experts for consolidating and broadening their views on multiple aspects of root ecology. Beyond the classical compilation of measurement protocols, we have synthesised recommendations from the literature to provide key background knowledge useful for: (1) defining below-ground plant entities and giving keys for their meaningful dissection, classification and naming beyond the classical fine-root vs coarse-root approach; (2) considering the specificity of root research to produce sound laboratory and field data; (3) describing typical, but overlooked steps for studying roots (e.g. root handling, cleaning and storage); and (4) gathering metadata necessary for the interpretation of results and their reuse. Most importantly, all root traits have been introduced with some degree of ecological context that will be a foundation for understanding their ecological meaning, their typical use and uncertainties, and some methodological and conceptual perspectives for future research. Considering all of this, we urge readers not to solely extract protocol recommendations for trait measurements from this work, but to take a moment to read and reflect on the extensive information contained in this broader guide to root ecology, including sections I-VII and the many introductions to each section and root trait description. Finally, it is critical to understand that a major aim of this guide is to help break down barriers between the many subdisciplines of root ecology and ecophysiology, broaden researchers' views on the multiple aspects of root study and create favourable conditions for the inception of comprehensive experiments on the role of roots in plant and ecosystem functioning.
Collapse
Affiliation(s)
- Grégoire T Freschet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier, 34293, France
- Station d'Ecologie Théorique et Expérimentale, CNRS, 2 route du CNRS, 09200, Moulis, France
| | - Loïc Pagès
- UR 1115 PSH, Centre PACA, site Agroparc, INRAE, 84914, Avignon cedex 9, France
| | - Colleen M Iversen
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Louise H Comas
- USDA-ARS Water Management Research Unit, 2150 Centre Avenue, Bldg D, Suite 320, Fort Collins, CO, 80526, USA
| | - Boris Rewald
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Catherine Roumet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier, 34293, France
| | - Jitka Klimešová
- Department of Functional Ecology, Institute of Botany CAS, Dukelska 135, 37901, Trebon, Czech Republic
| | - Marcin Zadworny
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Johannes A Postma
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Thomas S Adams
- Department of Plant Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - A Glyn Bengough
- The James Hutton Institute, Invergowrie, Dundee,, DD2 5DA, UK
- School of Science and Engineering, University of Dundee, Dundee,, DD1 4HN, UK
| | - Elison B Blancaflor
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Zürcherstr. 111, 8903, Birmensdorf, Switzerland
| | - Johannes H C Cornelissen
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Eric Garnier
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier, 34293, France
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Research Institute WSL, Zürcherstr. 111, 8903, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, 8092, Zurich, Switzerland
| | - Sarah E Hobbie
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, 55108, USA
| | - Ina C Meier
- Functional Forest Ecology, University of Hamburg, Haidkrugsweg 1, 22885, Barsbütel, Germany
| | - Liesje Mommer
- Plant Ecology and Nature Conservation Group, Department of Environmental Sciences, Wageningen University and Research, PO Box 47, 6700 AA, Wageningen, the Netherlands
| | | | - Laura Rose
- Station d'Ecologie Théorique et Expérimentale, CNRS, 2 route du CNRS, 09200, Moulis, France
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Peter Ryser
- Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada
| | | | - Nadejda A Soudzilovskaia
- Environmental Biology Department, Institute of Environmental Sciences, CML, Leiden University, Leiden, 2300 RA, the Netherlands
| | - Alexia Stokes
- INRAE, AMAP, CIRAD, IRD, CNRS, University of Montpellier, Montpellier, 34000, France
| | - Tao Sun
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Oscar J Valverde-Barrantes
- International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Monique Weemstra
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier, 34293, France
| | - Alexandra Weigelt
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Johannisallee 21-23, Leipzig, 04103, Germany
| | - Nina Wurzburger
- Odum School of Ecology, University of Georgia, 140 E. Green Street, Athens, GA, 30602, USA
| | - Larry M York
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sarah A Batterman
- School of Geography and Priestley International Centre for Climate, University of Leeds, Leeds, LS2 9JT, UK
- Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA
| | - Moemy Gomes de Moraes
- Department of Botany, Institute of Biological Sciences, Federal University of Goiás, 19, 74690-900, Goiânia, Goiás, Brazil
| | - Štěpán Janeček
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley (Perth), WA 6009, Australia
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, Crawley (Perth), WA, Australia
| | - Verity Salmon
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Nishanth Tharayil
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
| | - M Luke McCormack
- Center for Tree Science, Morton Arboretum, 4100 Illinois Rt. 53, Lisle, IL, 60532, USA
| |
Collapse
|
16
|
Wang M, Mori S, Kurosawa Y, Ferrio JP, Yamaji K, Koyama K. Consistent scaling of whole-shoot respiration between Moso bamboo (Phyllostachys pubescens) and trees. JOURNAL OF PLANT RESEARCH 2021; 134:989-997. [PMID: 34115233 PMCID: PMC8364903 DOI: 10.1007/s10265-021-01320-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
Both Moso bamboo (Phyllostachys pubescens) and tree forests have a large biomass; they are considered to play an important role in ecosystem carbon budgets. The scaling relationship between individual whole-shoot (i.e., aboveground parts) respiration and whole-shoot mass provides a clue for comparing the carbon budgets of Moso bamboo and tree forests. However, nobody has empirically demonstrated whether there is a difference between these forest types in the whole-shoot scaling relationship. We developed whole-shoot chambers and measured the shoot respiration of 58 individual mature bamboo shoots from the smallest to the largest in a Moso bamboo forest, and then compared them with that of 254 tree shoots previously measured. For 30 bamboo shoots, we measured the respiration rate of leaves, branches, and culms. We found that the scaling exponent of whole-shoot respiration of bamboo fitted by a simple power function on a log-log scale was 0.843 (95 % CI 0.797-0.885), which was consistent with that of trees, 0.826 (95 % CI 0.799-0.851), but higher than 3/4, the value typifying the Kleiber's rule. The respiration rates of leaves, branches, and culms at the whole-shoot level were proportional to their mass, revealing a constant mean mass-specific respiration of 1.19, 0.224, and 0.0978 µmol CO2 kg- 1 s- 1, respectively. These constant values suggest common traits of organs among physiologically integrated ramets within a genet. Additionally, the larger the shoots, the smaller the allocation of organ mass to the metabolically active leaves, and the larger the allocation to the metabolically inactive culms. Therefore, these shifts in shoot-mass partitioning to leaves and culms caused a negative metabolic scaling of Moso bamboo shoots. The observed convergent metabolic scaling of Moso bamboo and trees may facilitate comparisons of the ecosystem carbon budgets of Moso bamboo and tree forests.
Collapse
Affiliation(s)
- Mofei Wang
- The United Graduate School of Agricultural Science, Iwate University, Morioka, Iwate, 020-8550, Japan
- Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata, 997-8555, Japan
| | - Shigeta Mori
- The United Graduate School of Agricultural Science, Iwate University, Morioka, Iwate, 020-8550, Japan.
- Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata, 997-8555, Japan.
| | - Yoko Kurosawa
- The United Graduate School of Agricultural Science, Iwate University, Morioka, Iwate, 020-8550, Japan
- Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata, 997-8555, Japan
| | - Juan Pedro Ferrio
- Aragon Agency for Research and Development (ARAID), 50018, Zaragoza, Spain
- Department of Forest Resources, Agrifood Research and Technology Centre of Aragon (CITA), 50059, Zaragoza, Spain
| | - Keiko Yamaji
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kohei Koyama
- Department of Agro-environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| |
Collapse
|
17
|
Wedel ER, O’Keefe K, Nippert JB, Hoch B, O’Connor RC. Spatio-temporal differences in leaf physiology are associated with fire, not drought, in a clonally integrated shrub. AOB PLANTS 2021; 13:plab037. [PMID: 34336177 PMCID: PMC8317628 DOI: 10.1093/aobpla/plab037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
In highly disturbed environments, clonality facilitates plant survival via resprouting after disturbance, resource sharing among interconnected stems and vegetative reproduction. These traits likely contribute to the encroachment of deep-rooted clonal shrubs in tallgrass prairie. Clonal shrubs have access to deep soil water and are typically thought of as relatively insensitive to environmental variability. However, how leaf physiological traits differ among stems within individual clonal shrubs (hereafter 'intra-clonal') in response to extreme environmental variation (i.e. drought or fire) is unclear. Accounting for intra-clonal differences among stems in response to disturbance is needed to more accurately parameterize models that predict the effects of shrub encroachment on ecosystem processes. We assessed intra-clonal leaf-level physiology of the most dominant encroaching shrub in Kansas tallgrass prairie, Cornus drummondii, in response to precipitation and fire. We compared leaf gas exchange rates from the periphery to centre within shrub clones during a wet (2015) and extremely dry (2018) year. We also compared leaf physiology between recently burned shrubs (resprouts) with unburned shrubs in 2018. Resprouts had higher gas exchange rates and leaf nitrogen content than unburned shrubs, suggesting increased rates of carbon gain can contribute to recovery after fire. In areas recently burned, resprouts had higher gas exchange rates in the centre of the shrub than the periphery. In unburned areas, leaf physiology remained constant across the growing season within clonal shrubs (2015 and 2018). Results suggest single measurements within a shrub are likely sufficient to parameterize models to understand the effects of shrub encroachment on ecosystem carbon and water cycles, but model parameterization may require additional complexity in the context of fire.
Collapse
Affiliation(s)
- Emily R Wedel
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66502, USA
| | - Kimberly O’Keefe
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Jesse B Nippert
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66502, USA
| | - Braden Hoch
- Plant Protection and Weed Control Program, Kansas Department of Agriculture, Manhattan, KS 66502, USA
| | - Rory C O’Connor
- USDA-Agricultural Research Service, Eastern Oregon Agricultural Research Center, 67826-A Hwy 205, Burns, OR 97720, USA
| |
Collapse
|
18
|
Garfì G, Carimi F, Fazan L, Gristina AS, Kozlowski G, Livreri Console S, Motisi A, Pasta S. From glacial refugia to hydrological microrefugia: Factors and processes driving the persistence of the climate relict tree Zelkova sicula. Ecol Evol 2021; 11:2919-2936. [PMID: 33767847 PMCID: PMC7981228 DOI: 10.1002/ece3.7253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/14/2020] [Accepted: 01/13/2021] [Indexed: 01/08/2023] Open
Abstract
With only two tiny populations, the climate relict Zelkova sicula (Sicily, Italy) is one of the rarest trees in the world. It also represents the most marginal member of genus Zelkova that was widespread in the broadleaved forests thriving in warm-temperate climates throughout Eurasia until the Last Glacial Age. Occurring at the westernmost range of the genus under typical Mediterranean climate, the micro-topographic settings have always appeared crucial for the survival of this relict. However, the factors and processes actually involved in its persistence in the current refugia, as well as the response of similar relict trees in arid environments, are poorly understood worldwide. In the aim to elucidate these aspects, in the two sites hosting Z. sicula analyses of topographical attributes were combined with investigations on soil moisture dynamics. Additionally, plants' growth and spatial distribution patterns were analyzed to detect fine-scale differences between populations and assess the possible ecological amplitude of the species. Results revealed that convergent topographies are basic determinants of microrefugia in arid environments. Within the investigated sites, underground moisture never decreases below 25%, buffering seasonal rainfall fluctuations. Therefore, hydrological microrefugia play a key role in decoupling from regional climate, supporting the target species in coping with an unsuitable climatic envelope. Additionally, the inter-population variability of biometric attributes showed that individual growth is site-dependent and the species retains a relative ecological plasticity, whereas the strongly clumped spatial patterns confirmed the common clonal growth. On one hand, deeply incised landforms have acted as effective hydrologic microrefugia, on the other clonality coupled with triploidy supposedly improved the resistance of Z. sicula to harsh environments, though entailing inability to reproduce sexually. Most likely, sterility and environmental/physical barriers that have existed for millennia have prevented this relict from leaving the last suitable microrefugia, resulting in the two current rear edge populations.
Collapse
Affiliation(s)
- Giuseppe Garfì
- Institute of Biosciences and BioResources – CNRPalermoItaly
| | | | - Laurence Fazan
- Department of Biology and Botanical GardenUniversity of FribourgFribourgSwitzerland
| | | | - Gregor Kozlowski
- Department of Biology and Botanical GardenUniversity of FribourgFribourgSwitzerland
- Natural History Museum FribourgFribourgSwitzerland
- Shanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghai Chenshan Botanical GardenSongjiangChina
| | | | - Antonio Motisi
- Institute of Biosciences and BioResources – CNRPalermoItaly
| | | |
Collapse
|
19
|
Physiological Integration Increases Sexual Reproductive Performance of the Rhizomatous Grass Hierochloe glabra. PLANTS 2020; 9:plants9111608. [PMID: 33228108 PMCID: PMC7699368 DOI: 10.3390/plants9111608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022]
Abstract
Clonal plants usually reproduce asexually through vegetative propagation and sexually by producing seeds. Physiological integration, the translocation of essential resources between ramets, usually improves vegetative reproduction. However, how physiological integration affects sexual reproduction has been less studied in clonal grasses. Here, we chose Hierochloe glabra, a major early spring forage of the eastern Eurasian steppe, and conducted a series of field experiments, including sampling reproductive ramets connected by tillering nodes to different numbers of vegetative ramets and 15N leaf labeling of ramet pairs at the seed-filling stage. In the natural populations of H. glabra, vegetative ramets were taller, had more and larger leaves, and greater biomass than reproductive ramets. Except for reproductive ramet biomass, sexual reproductive characteristics significantly increased with an increase in the number and biomass of vegetative ramets connected to tillering nodes. 15N labeling showed that vegetative ramets supplied nutrients to reproductive ramets through tillering nodes. Overall, our results indicate that significant differences in morphological characteristics and biomass allocation underlie resources translocation from vegetative ramets towards reproductive ramets. Physiological integration between different functional ramets can increase sexual reproductive performance, which will be beneficial to population persistence in H. glabra.
Collapse
|
20
|
Jueterbock A, Boström C, Coyer JA, Olsen JL, Kopp M, Dhanasiri AKS, Smolina I, Arnaud-Haond S, Van de Peer Y, Hoarau G. The Seagrass Methylome Is Associated With Variation in Photosynthetic Performance Among Clonal Shoots. FRONTIERS IN PLANT SCIENCE 2020; 11:571646. [PMID: 33013993 PMCID: PMC7498905 DOI: 10.3389/fpls.2020.571646] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Evolutionary theory predicts that clonal organisms are more susceptible to extinction than sexually reproducing organisms, due to low genetic variation and slow rates of evolution. In agreement, conservation management considers genetic variation as the ultimate measure of a population's ability to survive over time. However, clonal plants are among the oldest living organisms on our planet. Here, we test the hypothesis that clonal seagrass meadows display epigenetic variation that complements genetic variation as a source of phenotypic variation. In a clonal meadow of the seagrass Zostera marina, we characterized DNA methylation among 42 shoots. We also sequenced the whole genome of 10 shoots to correlate methylation patterns with photosynthetic performance under exposure to and recovery from 27°C, while controlling for somatic mutations. Here, we show for the first time that clonal seagrass shoots display DNA methylation variation that is independent from underlying genetic variation, and associated with variation in photosynthetic performance under experimental conditions. It remains unknown to what degree this association could be influenced by epigenetic responses to transplantation-related stress, given that the methylomes showed a strong shift under acclimation to laboratory conditions. The lack of untreated control samples in the heat stress experiment did not allow us to distinguish methylome shifts induced by acclimation from such induced by heat stress. Notwithstanding, the co-variation in DNA methylation and photosynthetic performance may be linked via gene expression because methylation patterns varied in functionally relevant genes involved in photosynthesis, and in the repair and prevention of heat-induced protein damage. While genotypic diversity has been shown to enhance stress resilience in seagrass meadows, we suggest that epigenetic variation plays a similar role in meadows dominated by a single genotype. Consequently, conservation management of clonal plants should consider epigenetic variation as indicator of resilience and stability.
Collapse
Affiliation(s)
- Alexander Jueterbock
- Algal and Microbial Biotechnology Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Marine Molecular Ecology Group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - James A. Coyer
- Marine Molecular Ecology Group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Shoals Marine Laboratory, University of New Hampshire, Durham, NH, United States
| | - Jeanine L. Olsen
- Ecological Genetics-Genomics Group, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Martina Kopp
- Marine Molecular Ecology Group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Anusha K. S. Dhanasiri
- Marine Molecular Ecology Group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Irina Smolina
- Marine Molecular Ecology Group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Bioinformatics and Systems Biology, VIB Center for Plant Systems Biology, Ghent, Belgium
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Galice Hoarau
- Marine Molecular Ecology Group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
21
|
Reisch C, Meier S, Schmid C, Bartelheimer M. Clonal diversity and genetic variation of the sedge Carex nigra in an alpine fen depend on soil nutrients. PeerJ 2020; 8:e8887. [PMID: 32547850 PMCID: PMC7275680 DOI: 10.7717/peerj.8887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/11/2020] [Indexed: 11/20/2022] Open
Abstract
In this study we analysed the impact of water regime and soil nutrients on the clonal diversity and genetic variation of the sedge Carex nigra in a central alpine fen. For our analysis, we established 16 study plots randomly distributed over the fen. We determined the exact elevation of each plot as an indicator for the water regime and measured the content of phosphorous and potassium in the soil of each plot. Clonal diversity and genetic variation of C. nigra were assessed with nuclear microsatellites using leaf material collected in 20 subplots along a diagonal cross within each study plot. The influence of water regime and soil mineral nutrients on clonal diversity and genetic variation was estimated by Bayesian multiple regression. Our study revealed a clear impact of soil nutrient conditions on clonal diversity and genetic variation of C. nigra, which increased with the concentration of phosphorous and decreased with the concentration of potassium. Key background to these findings seems to be the relative offspring success from generative as compared to clonal propagation. Phosphorous acquisition is essential during seedling establishment. Clonal diversity and genetic variation increase, therefore, at sites with higher phosphorous contents due to more successful recruitment. High levels of clonal diversity and genetic variation at sites of low potassium availability may in contrast be mainly caused by increased plant susceptibility to abiotic stress under conditions of potassium deficiency, which brings about more gaps in C. nigra stands and favors the ingrowth from other clones or recruitment from seeds.
Collapse
Affiliation(s)
- Christoph Reisch
- Institute of Plant Sciences, University of Regensburg, Regensburg, Germany
| | - Stefanie Meier
- Institute of Plant Sciences, University of Regensburg, Regensburg, Germany
| | - Christoph Schmid
- Institute of Plant Sciences, University of Regensburg, Regensburg, Germany
| | - Maik Bartelheimer
- Institute for Evolution and Biodiversity, Faculty of Biology, University of Münster, Münster, Germany
| |
Collapse
|
22
|
Stanik N, Lampei C, Rosenthal G. Summer aridity rather than management shapes fitness-related functional traits of the threatened mountain plant Arnica montana. Ecol Evol 2020; 10:5069-5078. [PMID: 32551082 PMCID: PMC7297756 DOI: 10.1002/ece3.6259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 11/30/2022] Open
Abstract
Semi-natural mountain grasslands are increasingly exposed to environmental stress under climate change. However, which are the environmental factors that limit plants in these grasslands? Also, is the present management effective against these changes? Fitness-related functional traits may offer a way to detect changes in performance and provide new insights into their vulnerability to climate change. We investigated changes in performance and variability of functional traits of the mountain grassland target species Arnica montana along a climate gradient in Central German low mountain ranges. This gradient represents at its lower end climate conditions that are expected at its upper end under future climate change. We measured vegetative, generative, and physiological traits to account for multiple ways of plant responses to the environment. Using mixed effects and multivariate models, we evaluated changes in trait values among individuals as well as the variability of their populations in order to assess performance under changing summer aridity and different management regimes. Fitness-related performance of most traits showed strongly positive associations with reduced summer aridity at higher elevations, while only specific leaf area and leaf dry matter content showed no association. This suggests a higher performance level at less arid montane sites and that the physiological traits are less sensitive to this climate change factor. The coefficient of variation of almost all traits declined steadily with decreasing site aridity. We suggest that this reduced variability indicates a lower environmental stress level for A. montana toward its environmental optimum at montane elevations, especially because the trait performance increased simultaneously. Surprisingly, management factors and habitat characteristics had only low influence on both trait performance and variability. In summary, summer aridity had a stronger effect to shape the trait performance and variability of A. montana under increased environmental stress than management and other habitat characteristics.
Collapse
Affiliation(s)
- Nils Stanik
- Department of Landscape and Vegetation EcologyInstitute of Landscape Architecture and Environmental PlanningUniversity of KasselKasselGermany
| | - Christian Lampei
- Institute of Landscape Ecology, Biodiversity and Ecosystem Research GroupUniversity of MünsterMünsterGermany
| | - Gert Rosenthal
- Department of Landscape and Vegetation EcologyInstitute of Landscape Architecture and Environmental PlanningUniversity of KasselKasselGermany
| |
Collapse
|
23
|
Martin FM, Dommanget F, Lavallée F, Evette A. Clonal growth strategies of Reynoutria japonica in response to light, shade, and mowing, and perspectives for management. NEOBIOTA 2020. [DOI: 10.3897/neobiota.56.47511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many of the most invasive plant species in the world can propagate clonally, suggesting clonality offers advantages that facilitate invasion. Gaining insights into the clonal growth dynamics of invasive plants should thus improve understanding of the mechanisms of their dominance, resilience and expansion. Belonging to the shortlist of the most problematic terrestrial invaders, Reynoutria japonica var. japonica Houtt. (Japanese knotweed) has colonized all five continents, likely facilitated by its impressive ability to propagate vegetatively. However, its clonal growth patterns are surprisingly understudied; we still do not know how individuals respond to key environmental conditions, including light availability and disturbance. To contribute to filling this knowledge gap, we designed a mesocosm experiment to observe the morphological variation in R. japonica growth in homogeneous or heterogeneous conditions of light stress (shade) and disturbance (mowing). Rhizome fragments were planted in the middle of large pots between two habitat patches that consisted of either one or a combination of the following three environmental conditions: full light without mowing, full light with frequent mowing, or shade without mowing. At the end of the experiment, biomass and traits related to clonal growth (spacer and rhizome lengths, number of rhizome branches, and number of ramets) were measured. After 14 months, all individuals had survived, even those frequently mowed or growing under heavy shade. We showed that R. japonica adopts a ‘phalanx’ growth form when growing in full light and a ‘guerrilla’ form when entirely shaded. The former is characteristic of a space-occupancy strategy while the latter is more associated with a foraging strategy. In heterogeneous conditions, we also showed that clones seemed to invest preferentially more in favorable habitat patches rather than in unfavorable ones (mowed or shaded), possibly exhibiting an escape strategy. These observations could improve the management of this species, specifically by illustrating how aggressive early control measures must be, by highlighting the importance of repeated mowing of entire stands, as this plant appears to compensate readily to partial mowing, and by informing on its potential responses towards the restoration of a cover of competitive native plants.
Collapse
|
24
|
Cotado A, Munné-Bosch S. Plasticity in the growth habit prolongs survival at no physiological cost in a monocarpic perennial at high altitudes. ANNALS OF BOTANY 2020; 125:413-421. [PMID: 31830255 PMCID: PMC7061168 DOI: 10.1093/aob/mcz202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/10/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND AIMS Monocarpic plants are those that flower, produce seeds and then die. Although most monocarpic plants are annual or biennial, some of them are perennial. However, relatively little is known regarding the biology of monocarpic perennials. Pyrenean saxifrage (Saxifraga longifolia) is a monocarpic perennial that is well adapted to high-mountain ecosystems. Here, we evaluated altitudinal changes in clonality in various populations growing in their natural habitat with particular emphasis on the physiological costs of clonal growth. METHODS We assessed the percentage of clonal plants in nine populations growing in their natural habitat, as well as the plant stress response of clonal and non-clonal plants, in terms of photoprotection and accumulation of stress-related phytohormones, in a 3-year study at Las Blancas (2100 m a.s.l.). We also evaluated the influence of plant size on the activation of defensive responses to biotic and abiotic stresses. KEY RESULTS We found that 12 % of Pyrenean saxifrage plants growing at the highest altitudes (2100 m a.s.l.) produced lateral rosettes which survived the flowering of the main rosette and shared the same axonomorphic root, thus escaping monocarpic senescence. This clonal growth did not worsen the physiological performance of plants growing at this altitude. Furthermore, increased plant size did not negatively affect the physiology of plants, despite adjustments in endogenous stress-related phytohormones. In contrast, maturity led to rapid physiological deterioration of the rosette, which was associated with monocarpic senescence. CONCLUSIONS This study shows that the evolution of clonality has allowed Pyrenean saxifrage to survive harsh environmental conditions and it provides evidence that harsh environments push plant species to their limits in terms of life form and longevity.
Collapse
Affiliation(s)
- Alba Cotado
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat, University of Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Reijers VC, Lammers C, de Rond AJA, Hoetjes SCS, Lamers LPM, van der Heide T. Resilience of beach grasses along a biogeomorphic successive gradient: resource availability vs. clonal integration. Oecologia 2020; 192:201-212. [PMID: 31802199 PMCID: PMC6974500 DOI: 10.1007/s00442-019-04568-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
Abstract
Coastal ecosystems are often formed through two-way interactions between plants and their physical landscape. By expanding clonally, landscape-forming plants can colonize bare unmodified environments and stimulate vegetation-landform feedback interactions. Yet, to what degree these plants rely on clonal integration for overcoming physical stress during biogeomorphological succession remains unknown. Here, we investigated the importance of clonal integration and resource availability on the resilience of two European beach grasses (i.e. Elytrigia juncea and Ammophila arenaria) over a natural biogeomorphic dune gradient from beach (unmodified system) to foredune (biologically modified system). We found plant resilience, as measured by its ability to recover and expand following disturbance (i.e. plant clipping), to be independent on the presence of rhizomal connections between plant parts. Instead, resource availability over the gradient largely determined plant resilience. The pioneer species, Elytrigia, demonstrated a high resilience to physical stress, independent of its position on the biogeomorphic gradient (beach or embryonic dune). In contrast, the later successional species (Ammophila) proved to be highly resilient on the lower end of its distribution (embryonic dune), but it did not fully recover on the foredunes, most likely as a result of nutrient deprivation. We argue that in homogenously resource-poor environments as our beach system, overall resource availability, instead of translocation through a clonal network, determines the resilience of plant species. Hence, the formation of high coastal dunes may increase the resistance of beach grasses to the physical stresses of coastal flooding, but the reduced marine nutrient input may negatively affect the resilience of plants.
Collapse
Affiliation(s)
- Valérie C Reijers
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
- Department Coastal Systems, Royal Netherlands Institute for Sea Research and Utrecht University, 1790 AB, Den Burg, The Netherlands.
| | - Carlijn Lammers
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- Department Coastal Systems, Royal Netherlands Institute for Sea Research and Utrecht University, 1790 AB, Den Burg, The Netherlands
| | - Anne J A de Rond
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Sean C S Hoetjes
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Leon P M Lamers
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Tjisse van der Heide
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- Department Coastal Systems, Royal Netherlands Institute for Sea Research and Utrecht University, 1790 AB, Den Burg, The Netherlands
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
26
|
Bielčik M, Aguilar-Trigueros CA, Lakovic M, Jeltsch F, Rillig MC. The role of active movement in fungal ecology and community assembly. MOVEMENT ECOLOGY 2019; 7:36. [PMID: 31832199 PMCID: PMC6864958 DOI: 10.1186/s40462-019-0180-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/15/2019] [Indexed: 05/16/2023]
Abstract
Movement ecology aims to provide common terminology and an integrative framework of movement research across all groups of organisms. Yet such work has focused on unitary organisms so far, and thus the important group of filamentous fungi has not been considered in this context. With the exception of spore dispersal, movement in filamentous fungi has not been integrated into the movement ecology field. At the same time, the field of fungal ecology has been advancing research on topics like informed growth, mycelial translocations, or fungal highways using its own terminology and frameworks, overlooking the theoretical developments within movement ecology. We provide a conceptual and terminological framework for interdisciplinary collaboration between these two disciplines, and show how both can benefit from closer links: We show how placing the knowledge from fungal biology and ecology into the framework of movement ecology can inspire both theoretical and empirical developments, eventually leading towards a better understanding of fungal ecology and community assembly. Conversely, by a greater focus on movement specificities of filamentous fungi, movement ecology stands to benefit from the challenge to evolve its concepts and terminology towards even greater universality. We show how our concept can be applied for other modular organisms (such as clonal plants and slime molds), and how this can lead towards comparative studies with the relationship between organismal movement and ecosystems in the focus.
Collapse
Affiliation(s)
- Miloš Bielčik
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Carlos A. Aguilar-Trigueros
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Milica Lakovic
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Florian Jeltsch
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
- Department of Plant Ecology and Nature Conservation, University of Potsdam, Am Mühlenberg 3, 14476 Potsdam-Golm, Germany
| | - Matthias C. Rillig
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| |
Collapse
|
27
|
Herbivory and inbreeding affect growth, reproduction, and resistance in the rhizomatous offshoots of Solanum carolinense (Solanaceae). Evol Ecol 2019. [DOI: 10.1007/s10682-019-09997-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
The effect of ramet mortality on clonal plant growth. Theory Biosci 2019; 138:215-221. [PMID: 30734908 PMCID: PMC6800848 DOI: 10.1007/s12064-019-00274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
Abstract
Clonal plants grow horizontally by producing multiple physiological individuals (ramets). We studied clonal growth in a homogeneous environment using a dynamic spatial model based on a stochastic cellular automaton. We investigated different growth forms from the aspect of ramet mortality. Non-steady-state and quasi-steady-state cases were defined, and we determined the number of steps suitable for making a reliable difference between these two types of cases. This given number of steps was used when testing for the proportion of quasi-steady-state cases in 1000 repetitions. We also tested the efficiency of occupation in these cases. Our expectation was that higher occupation would be associated with lower ramet mortality. The results only partially verified this hypothesis. Though with increasing ramet mortality, the average number of ramets tended to decrease, it was not the lowest ramet mortality that resulted in the highest occupation. Our results showed that very low ramet mortality was unfavourable for the plant, as the spreading front and the area behind this front were so packed that the plant was not able to return and recolonize the vacated sites in the central area. This resulted in a lower proportion of quasi-steady-state cases and lower occupation in these cases. Our results may contribute to a deeper understanding of clonal plant growth and its limiting factors.
Collapse
|
29
|
Clonal Saplings of Trembling Aspen Do Not Coordinate Defense Induction. J Chem Ecol 2018; 44:1045-1050. [DOI: 10.1007/s10886-018-1006-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 01/09/2023]
|
30
|
Pan BH, Xie YH, Li F, Zou YA, Deng ZM. Responses to Sedimentation in Ramet Populations of the Clonal Plant Carex brevicuspis. FRONTIERS IN PLANT SCIENCE 2018; 9:512. [PMID: 29713333 PMCID: PMC5911480 DOI: 10.3389/fpls.2018.00512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
In aquatic ecosystems, sedimentation is an important factor that affects plant growth, mainly due to sediment depth. Clonal morphological plasticity is an effective strategy in clonal plants for acclimatization to sediment burial. To date, few studies have examined growth responses to sedimentation on the clonal plants at the ramet population level. This study aimed to explore the interactive effects of population size and burial depth on growth and clonal morphology of Carex brevicuspis. Three population sizes (2, 8, and 32 ramets) and 3 burial depths (0 cm, 5 cm, and 10 cm) were used in this experiment. Under shallow (5 cm) and deep (10 cm) burial conditions, biomass accumulation and relative growth rate (RGR) were lower than in the no burial treatment (P < 0.05). RGR of the small and medium populations was especially high compared to the large populations (P < 0.05). Biomass allocation was higher to belowground parts than aboveground parts, except for the small populations in the 5 cm burial treatments. Both shallow burial and smaller populations led to more biomass being allocated to aboveground parts. Deep burial elongated the first order spacer more than shallow burial, and sedimentation had negative effects on the second order spacer length. The number of new ramets did not decrease in the 5 or 10 cm burial treatments compared to the unburial treatment, and larger populations usually had more ramets than smaller ones; the proportion of clumping ramets was higher than the proportion of spreading ramets, and deeper burial and smaller populations led to higher proportions of spreading ramets. These results indicated that the growth of C. brevicuspis was limited by sediment burial at the ramet population level. Smaller populations enable C. brevicuspis to adjust its escape response to burial stress, may allow this species to effectively survive and widely distribute in Dongting Lake wetland.
Collapse
Affiliation(s)
- Bai-Han Pan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Hong Xie
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Feng Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Ye-Ai Zou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Zheng-Miao Deng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
31
|
Guo Z, Lin H, Chen S, Yang Q. Altitudinal Patterns of Leaf Traits and Leaf Allometry in Bamboo Pleioblastus amarus. FRONTIERS IN PLANT SCIENCE 2018; 9:1110. [PMID: 30108603 PMCID: PMC6080356 DOI: 10.3389/fpls.2018.01110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/10/2018] [Indexed: 05/05/2023]
Abstract
Awareness of local-scale variation in leaf traits for a single species and the relationships between these traits and their dependence on altitude might be essential for extrapolating ecophysiological processes from the leaf to the ecosystem level. While altitudinal patterns of leaf traits have been extensively studied in a number of species, little is known about such patterns in bamboos. We analyzed leaf functional traits and leaf allometric relationships of Pleioblastus amarus at three different altitudes (200, 400, and 800 m). With increasing altitude, most functional traits, including leaf length, width, perimeter, area, dry weight, and water content, decreased significantly, while the leaf length:width ratio exhibited a marked increase, resulting in a tendency toward narrow leaves. Specific leaf area first increased, and then decreased, while the change in leaf dry matter content showed the opposite trend. Leaf area was positively correlated with leaf length, leaf width and leaf perimeter, but negatively correlated with the leaf length:width ratio. With increasing altitude, the slopes of these relationships for leaf area first increased, and then decreased. Leaf biomass was positively correlated with leaf length, width, perimeter, and area, with the slopes of the relationships being the same at all altitudes. Thus, the leaves of this bamboo species at middle altitude have the highest specific leaf area and lowest leaf dry matter content. Our findings suggest that this bamboo species has a big potential of growth and morphological plasticity.
Collapse
Affiliation(s)
- Ziwu Guo
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- *Correspondence: Ziwu Guo, Shuanglin Chen,
| | - Hua Lin
- Forestry Bureau of Shaxian County, Shaxian, China
| | - Shuanglin Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- *Correspondence: Ziwu Guo, Shuanglin Chen,
| | - Qingping Yang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
32
|
Saixiyala, Yang D, Zhang S, Liu G, Yang X, Huang Z, Ye X. Facilitation by a Spiny Shrub on a Rhizomatous Clonal Herbaceous in Thicketization-Grassland in Northern China: Increased Soil Resources or Shelter from Herbivores. FRONTIERS IN PLANT SCIENCE 2017; 8:809. [PMID: 28559913 PMCID: PMC5432564 DOI: 10.3389/fpls.2017.00809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 04/30/2017] [Indexed: 11/30/2024]
Abstract
The formation of fertility islands by shrubs increases soil resources heterogeneity in thicketization-grasslands. Clonal plants, especially rhizomatous or stoloniferous clonal plants, can form large clonal networks and use heterogeneously distributed resources effectively. In addition, shrubs, especially spiny shrubs, may also provide herbaceous plants with protection from herbivores, acting as 'shelters'. The interaction between pre-dominated clonal herbaceous plants and encroaching shrubs remains unclear in thicketization-grassland under grazing pressure. We hypothesized that clonal herbaceous plants can be facilitated by encroached shrubs as a 'shelter from herbivores' and/or as an 'increased soil resources' under grazing pressure. To test this hypothesis, a total of 60 quadrats were chosen in a thicket-grassland in northern China that was previously dominated by Leymus chinensis and was encroached upon by the spiny leguminous plant Caragana intermedia. The soil and plant traits beneath and outside the shrub canopies were sampled, investigated and contrasted with an enclosure. The soil organic matter, soil total nitrogen and soil water content were significantly higher in the soil beneath the shrub canopies than in the soil outside the canopies. L. chinensis beneath the shrub canopies had significantly higher plant height, single shoot biomass, leaf length and width than outside the shrub canopies. There were no significantly differences between plant growth in enclosure and outside the shrub canopies. These results suggested that under grazing pressure in a grassland undergoing thicketization, the growth of the rhizomatous clonal herbaceous plant L. chinensis was facilitated by the spiny shrub C. intermedia as a 'shelter from herbivores' more than through 'increased soil resources'. We propose that future studies should focus on the community- and ecosystem-level impacts of plant clonality.
Collapse
Affiliation(s)
- Saixiyala
- Inner Mongolia Research Center for Prataculture, State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Inner Mongolia Academy of Agricultural and Animal Husbandry SciencesHohhot, China
| | - Ding Yang
- Inner Mongolia Research Center for Prataculture, State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Inner Mongolia Academy of Agricultural and Animal Husbandry SciencesHohhot, China
| | - Shudong Zhang
- Inner Mongolia Research Center for Prataculture, State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Guofang Liu
- Inner Mongolia Research Center for Prataculture, State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Xuejun Yang
- Inner Mongolia Research Center for Prataculture, State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Zhenying Huang
- Inner Mongolia Research Center for Prataculture, State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Xuehua Ye
- Inner Mongolia Research Center for Prataculture, State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| |
Collapse
|