1
|
Martinez Del Castillo E, Torbenson MCA, Reinig F, Konter O, Ziaco E, Büntgen U, Esper J. Diverging growth trends and climate sensitivities of individual pine trees after the 1976 extreme drought. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174370. [PMID: 38945248 DOI: 10.1016/j.scitotenv.2024.174370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Summer droughts are affecting the productivity and functioning of central European forests, with potentially lasting consequences for species composition and carbon sequestration. Long-term recovery rates and individual growth responses that may diverge from species-specific and population-wide behaviour are, however, poorly understood. Here, we present 2052 pine (Pinus sylvestris) ring width series from 19 forest sites in south-west Germany to investigate growth responses of individual trees to the exceptionally hot and dry summer of 1976. This outstanding drought event presents a distinctive test case to examine long-term post-drought recovery dynamics. We have proposed a new classification approach to identify a distinct sub-population of trees, referred to as "temporarily affected trees", with a prevalence ranging from 9 to 33 % across the forest stands. These trees exhibited an exceptionally prolonged growth suppression, lasting over a decade, indicating significantly lower resilience to the 1976 drought and a 50 % reduced capacity to recover to pre-drought states. Furthermore, shifts in resilience and recovery dynamics are accompanied by changing climate sensitivities, notably an increased response to maximum temperatures and summer droughts in post-1976 affected pines. Our findings underscore the likely interplay between individual factors and micro-site conditions that contribute to divergent tree responses to droughts. Assessing these factors at the individual tree level is recommended to advancing our understanding of forest responses to extreme drought events. By analyzing sub-population growth patterns, our study provides valuable insights into the impacts of summer droughts on central European forests in context of increasing drought events.
Collapse
Affiliation(s)
| | - Max C A Torbenson
- Department of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Frederick Reinig
- Department of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Oliver Konter
- Department of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Emanuele Ziaco
- Department of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ulf Büntgen
- Department of Geography, University of Cambridge, Cambridge, United Kingdom; Global Change Research Institute of the Czech Academy of Sciences (CzechGlobe), Brno, Czech Republic; Department of Geography, Faculty of Science, Masaryk University, Brno, Czech Republic; Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Jan Esper
- Department of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany; Global Change Research Institute of the Czech Academy of Sciences (CzechGlobe), Brno, Czech Republic
| |
Collapse
|
2
|
Bilal M, Khan ZUD, Muhammad S, Hanif U, Hussain K, Tayyab M, Sardar AA, Nawaz H, Jawad Tariq Khan M, Mahrukh, Rasool A, Faisal S, Zahid M. Comparative Microstructural Evaluation of Wood in Three Dominant Ziziphus Species of Desert Ecosystem (Cholistan), Pakistan. SCIENTIFICA 2024; 2024:3323920. [PMID: 39359906 PMCID: PMC11446617 DOI: 10.1155/2024/3323920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/07/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
The present microstructural evaluation was carried out on the woods of three ethnobotanically important local fruit trees, namely, Ziziphus mauritiana Lam., Z. spina-christi (L.) Willd., and Z. nummularia (Burm.f.) Wight and Arn., of family Rhamnaceae from Cholistan Desert of Pakistan. Wood samples were sectioned with sliding sledge microtome to make permanent slides for observing different anatomical parameters under the light microscope. All selected species were observed to have diffuse-porous wood with indistinct growth rings. The vessels were rounded in outline in all the species studied and found mostly solitary or in radial multiples of 2 in Ziziphus mauritiana and Z. nummularia, while in radial multiples of 2 to 5 in Z. spina-christi. The intervessel pits were scalariform to opposite. The rays were uniseriate in Ziziphus mauritiana, while mostly were biseriate in Ziziphus spina-christi. Simple perforation plates and diffuse, confluent, and vasicentric types of axial parenchyma were present in all the selected species. The fibers were thin-walled and nonseptate. One-way ANOVA followed by the Tukey test was conducted to observe different anatomical variations within selected species. Principal component analysis revealed correlations among studied anatomical parameters. The number of rays per mm was comparatively larger in Ziziphus nummularia, showing its greater susceptibility to wood-deteriorating agents than in other selected species. The Runkel ratio indicated the selected species suitable for making paper.
Collapse
Affiliation(s)
- Muhammad Bilal
- Dendrochronology Lab Department of Botany Government College University, Lahore 54000, Pakistan
| | - Zaheer-Ud-Din Khan
- Dendrochronology Lab Department of Botany Government College University, Lahore 54000, Pakistan
| | - Sohaib Muhammad
- Dendrochronology Lab Department of Botany Government College University, Lahore 54000, Pakistan
| | - Uzma Hanif
- Dendrochronology Lab Department of Botany Government College University, Lahore 54000, Pakistan
| | | | - Muhammad Tayyab
- Dendrochronology Lab Department of Botany Government College University, Lahore 54000, Pakistan
| | - Andleeb Anwar Sardar
- Dendrochronology Lab Department of Botany Government College University, Lahore 54000, Pakistan
| | - Hassan Nawaz
- Dendrochronology Lab Department of Botany Government College University, Lahore 54000, Pakistan
| | | | - Mahrukh
- Dendrochronology Lab Department of Botany Government College University, Lahore 54000, Pakistan
| | - Aneela Rasool
- Dendrochronology Lab Department of Botany Government College University, Lahore 54000, Pakistan
| | - Summiya Faisal
- Dendrochronology Lab Department of Botany Government College University, Lahore 54000, Pakistan
| | - Muhammad Zahid
- Dendrochronology Lab Department of Botany Government College University, Lahore 54000, Pakistan
| |
Collapse
|
3
|
Martínez‐Sancho E, Treydte K, Lehmann MM, Rigling A, Fonti P. Drought impacts on tree carbon sequestration and water use - evidence from intra-annual tree-ring characteristics. THE NEW PHYTOLOGIST 2022; 236:58-70. [PMID: 35576102 PMCID: PMC9542003 DOI: 10.1111/nph.18224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/04/2022] [Indexed: 05/22/2023]
Abstract
The impact of climate extremes on forest ecosystems is poorly understood but important for predicting carbon and water cycle feedbacks to climate. Some knowledge gaps still remain regarding how drought-related adjustments in intra-annual tree-ring characteristics directly impact tree carbon and water use. In this study we quantified the impact of an extreme summer drought on the water-use efficiency and carbon sequestration of four mature Norway spruce trees. We used detailed observations of wood formation (xylogenesis) and intra-annual tree-ring properties (quantitative wood anatomy and stable carbon isotopes) combined with physiological water-stress monitoring. During 41 d of tree water deficit, we observed an enrichment in 13 C but a reduction in cell enlargement and wall-thickening processes, which impacted the anatomical characteristics. These adjustments diminished carbon sequestration by 67% despite an 11% increase in water-use efficiency during drought. However, with the resumption of a positive hydric state in the stem, we observed a fast recovery of cell formation rates based on the accumulated assimilates produced during drought. Our findings enhance our understanding of carbon and water fluxes between the atmosphere and forest ecosystems, providing observational evidence on the tree intra-annual carbon sequestration and water-use efficiency dynamics to improve future generations of vegetation models.
Collapse
Affiliation(s)
- Elisabet Martínez‐Sancho
- Research Unit Forest DynamicsSwiss Federal Institute for Forest Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| | - Kerstin Treydte
- Research Unit Forest DynamicsSwiss Federal Institute for Forest Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| | - Marco M. Lehmann
- Research Unit Forest DynamicsSwiss Federal Institute for Forest Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| | - Andreas Rigling
- Research Unit Forest DynamicsSwiss Federal Institute for Forest Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsSwiss Federal Institute of Technology ETHUniversitaetsstrasse 168092ZurichSwitzerland
| | - Patrick Fonti
- Research Unit Forest DynamicsSwiss Federal Institute for Forest Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| |
Collapse
|
4
|
Giovannelli A, Mattana S, Emiliani G, Anichini M, Traversi ML, Pavone FS, Cicchi R. Localized stem heating from the rest to growth phase induces latewood-like cell formation and slower stem radial growth in Norway spruce saplings. TREE PHYSIOLOGY 2022; 42:1149-1163. [PMID: 34918169 DOI: 10.1093/treephys/tpab166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Recent climate projections predict a more rapid increase of winter temperature than summer and global temperature averages in temperate and cold environments. As there is relatively little experimental knowledge on the effect of winter warming on cambium phenology and stem growth in species growing in cold environments, the setting of manipulative experiments is considered of primary importance, and they can help to decipher the effect of reduced winter chilling and increased forcing temperatures on cambium reactivation, growth and xylem traits. In this study, localized stem heating was applied to investigate the effect of warming from the rest to the growth phase on cambium phenology, intra-annual stem growth dynamics and ring wood features in Picea abies (L.) H.Karst. We hypothesized that reduced winter chilling induces a postponed cambium dormancy release and decrease of stem growth, while high temperature during cell wall lignification determines an enrichment of latewood-like cells. The heating device was designed to maintain a +5 °C temperature delta with respect to air temperature, thus allowing an authentic scenario of warming. Continuous stem heating from the rest (November) to the growing phase determined, at the beginning of radial growth, a reduction of the number of cell layers in the cambium, higher number of cell layers in the wall thickening phase and an asynchronous stem radial growth when comparing heated and ambient saplings. Nevertheless, heating did not induce changes in the number of produced cell layers at the end of the growing season. The analyses of two-photon fluorescence images showed that woody rings formed during heating were enriched with latewood-like cells. Our results showed that an increase of 5 °C of temperature applied to the stem from the rest to growth might not influence, as generally reported, onset of cambial activity, but it could affect xylem morphology of Norway spruce in mountain environments.
Collapse
Affiliation(s)
- Alessio Giovannelli
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Sara Mattana
- Istituto Nazionale di Ottica (INO), Consiglio Nazionale delle Ricerche, Largo Fermi 6, Firenze 50125, Italy
| | - Giovanni Emiliani
- Istituto Protezione Sostenibile delle Piante (IPSP), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Monica Anichini
- Istituto per la Bioeconomia (IBE), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Maria Laura Traversi
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Francesco Saverio Pavone
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Via G. Sansone 1, Sesto Fiorentino 50019, Italy
| | - Riccardo Cicchi
- Istituto Nazionale di Ottica (INO), Consiglio Nazionale delle Ricerche, Largo Fermi 6, Firenze 50125, Italy
- Laboratorio Europeo di Spettroscopie Non-lineari (LENS), Via N. Carrara 1, Sesto Fiorentino 50019, Italy
| |
Collapse
|
5
|
Zuidema PA, van der Sleen P. Seeing the forest through the trees: how tree-level measurements can help understand forest dynamics. THE NEW PHYTOLOGIST 2022; 234:1544-1546. [PMID: 35478328 DOI: 10.1111/nph.18144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Pieter A Zuidema
- Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA, Wageningen, the Netherlands
| | - Peter van der Sleen
- Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
6
|
Climate-change-driven growth decline of European beech forests. Commun Biol 2022; 5:163. [PMID: 35273334 PMCID: PMC8913685 DOI: 10.1038/s42003-022-03107-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/02/2022] [Indexed: 11/08/2022] Open
Abstract
The growth of past, present, and future forests was, is and will be affected by climate variability. This multifaceted relationship has been assessed in several regional studies, but spatially resolved, large-scale analyses are largely missing so far. Here we estimate recent changes in growth of 5800 beech trees (Fagus sylvatica L.) from 324 sites, representing the full geographic and climatic range of species. Future growth trends were predicted considering state-of-the-art climate scenarios. The validated models indicate growth declines across large region of the distribution in recent decades, and project severe future growth declines ranging from -20% to more than -50% by 2090, depending on the region and climate change scenario (i.e. CMIP6 SSP1-2.6 and SSP5-8.5). Forecasted forest productivity losses are most striking towards the southern distribution limit of Fagus sylvatica, in regions where persisting atmospheric high-pressure systems are expected to increase drought severity. The projected 21st century growth changes across Europe indicate serious ecological and economic consequences that require immediate forest adaptation.
Collapse
|
7
|
Salomón RL, Peters RL, Zweifel R, Sass-Klaassen UGW, Stegehuis AI, Smiljanic M, Poyatos R, Babst F, Cienciala E, Fonti P, Lerink BJW, Lindner M, Martinez-Vilalta J, Mencuccini M, Nabuurs GJ, van der Maaten E, von Arx G, Bär A, Akhmetzyanov L, Balanzategui D, Bellan M, Bendix J, Berveiller D, Blaženec M, Čada V, Carraro V, Cecchini S, Chan T, Conedera M, Delpierre N, Delzon S, Ditmarová Ľ, Dolezal J, Dufrêne E, Edvardsson J, Ehekircher S, Forner A, Frouz J, Ganthaler A, Gryc V, Güney A, Heinrich I, Hentschel R, Janda P, Ježík M, Kahle HP, Knüsel S, Krejza J, Kuberski Ł, Kučera J, Lebourgeois F, Mikoláš M, Matula R, Mayr S, Oberhuber W, Obojes N, Osborne B, Paljakka T, Plichta R, Rabbel I, Rathgeber CBK, Salmon Y, Saunders M, Scharnweber T, Sitková Z, Stangler DF, Stereńczak K, Stojanović M, Střelcová K, Světlík J, Svoboda M, Tobin B, Trotsiuk V, Urban J, Valladares F, Vavrčík H, Vejpustková M, Walthert L, Wilmking M, Zin E, Zou J, Steppe K. The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nat Commun 2022; 13:28. [PMID: 35013178 PMCID: PMC8748979 DOI: 10.1038/s41467-021-27579-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/26/2021] [Indexed: 12/03/2022] Open
Abstract
Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.
Collapse
Affiliation(s)
- Roberto L Salomón
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
- Grupo de Investigación Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Richard L Peters
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Roman Zweifel
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Ute G W Sass-Klaassen
- Forest Ecology and Forest Management, Wageningen University and Research, 6700 AA, Wageningen, The Netherlands.
| | - Annemiek I Stegehuis
- European Forest Institute, Resilience Programme, 53113, Bonn, Germany
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 00, Prague, Czech Republic
| | - Marko Smiljanic
- DendroGreif, Institute for Botany and Landscape Ecology, University Greifswald, 17487, Greifswald, Germany
| | - Rafael Poyatos
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85721, USA
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, 85721, USA
| | - Emil Cienciala
- IFER-Institute of Forest Ecosystem Research, 254 01, Jilove u Prahy, Czech Republic
- Global Change Research Institute of the Czech Academy of Sciences, 603 00, Brno, Czech Republic
| | - Patrick Fonti
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Bas J W Lerink
- Wageningen Environmental Research, Wageningen University and Research, 6700 AA, Wageningen, The Netherlands
| | - Marcus Lindner
- European Forest Institute, Resilience Programme, 53113, Bonn, Germany
| | - Jordi Martinez-Vilalta
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Maurizio Mencuccini
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- ICREA, 08010, Barcelona, Spain
| | - Gert-Jan Nabuurs
- Forest Ecology and Forest Management, Wageningen University and Research, 6700 AA, Wageningen, The Netherlands
- Wageningen Environmental Research, Wageningen University and Research, 6700 AA, Wageningen, The Netherlands
| | - Ernst van der Maaten
- Chair of Forest Growth and Woody Biomass Production, TU Dresden, 01737, Tharandt, Germany
| | - Georg von Arx
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Andreas Bär
- Department of Botany, University of Innsbruck, 6020, Innsbruck, Austria
| | - Linar Akhmetzyanov
- Forest Ecology and Forest Management, Wageningen University and Research, 6700 AA, Wageningen, The Netherlands
| | - Daniel Balanzategui
- Climate Dynamics and Landscape Evolution, Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, 14473, Potsdam, Germany
- Geography Department, Humboldt University, 12489, Berlin, Germany
| | - Michal Bellan
- Global Change Research Institute of the Czech Academy of Sciences, 603 00, Brno, Czech Republic
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Jörg Bendix
- Laboratory for Climatology and Remote Sensing (LCRS), Faculty of Geography, 35032, Marburg, Germany
| | - Daniel Berveiller
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91405, Orsay, France
| | - Miroslav Blaženec
- Institute of Forest Ecology, Slovak Academy of Sciences, 96053, Zvolen, Slovakia
| | - Vojtěch Čada
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 00, Prague, Czech Republic
| | - Vinicio Carraro
- Department of Land, Environment, Agriculture and Forestry, University of Padua, Padua, Italy
| | - Sébastien Cecchini
- Office National des Forêts, Département Recherche Développement et Innovation, 77300, Fontainebleau, France
| | - Tommy Chan
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, 00014, Helsinki, Finland
| | - Marco Conedera
- Swiss Federal Research Institute WSL, Insubric Ecosystems Research Group, 6593, Cadenazzo, Switzerland
| | - Nicolas Delpierre
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91405, Orsay, France
| | - Sylvain Delzon
- Universite de Bordeaux, INRAE, BIOGECO, 33615, Pessac, France
| | - Ľubica Ditmarová
- Institute of Forest Ecology, Slovak Academy of Sciences, 96053, Zvolen, Slovakia
| | - Jiri Dolezal
- Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Eric Dufrêne
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91405, Orsay, France
| | - Johannes Edvardsson
- Laboratory for Wood Anatomy and Dendrochronology, Department of Geology, Lund University, Lund, Sweden
| | | | - Alicia Forner
- Departamento de Ecología, Centro de Investigaciones sobre Desertificación (CIDE-CSIC), 46113, Moncada, Valencia, Spain
- National Museum of Natural Sciences, CSIC, 28006, Madrid, Spain
| | - Jan Frouz
- Institute for environmental studies, Faculty of Science, Charles University, Praha, Czech Republic
| | - Andrea Ganthaler
- Department of Botany, University of Innsbruck, 6020, Innsbruck, Austria
| | - Vladimír Gryc
- Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Aylin Güney
- Izmir Katip Çelebi University, Faculty of Forestry, Çigli, Izmir, Turkey
- Southwest Anatolia Forest Research Institute, Antalya, Turkey
| | - Ingo Heinrich
- Climate Dynamics and Landscape Evolution, Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, 14473, Potsdam, Germany
- Geography Department, Humboldt University, 12489, Berlin, Germany
- Natural Sciences Unit, German Archaeological Institute, 14195, Berlin, Germany
| | - Rainer Hentschel
- Brandenburg State Forestry Center of Excellence, Eberswalde, Germany
| | - Pavel Janda
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 00, Prague, Czech Republic
| | - Marek Ježík
- Institute of Forest Ecology, Slovak Academy of Sciences, 96053, Zvolen, Slovakia
| | - Hans-Peter Kahle
- Chair of Forest Growth and Dendroecology, University of Freiburg, 79085, Freiburg, Germany
| | - Simon Knüsel
- Swiss Federal Research Institute WSL, Insubric Ecosystems Research Group, 6593, Cadenazzo, Switzerland
| | - Jan Krejza
- Global Change Research Institute of the Czech Academy of Sciences, 603 00, Brno, Czech Republic
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Łukasz Kuberski
- Department of Natural Forests, Forest Research Institute, 17-230, Białowieża, Poland
| | - Jiří Kučera
- Environmental Measuring Systems Ltd., 621 00, Brno, Czech Republic
| | | | - Martin Mikoláš
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 00, Prague, Czech Republic
| | - Radim Matula
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 00, Prague, Czech Republic
| | - Stefan Mayr
- Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000, Nancy, France
| | - Walter Oberhuber
- Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000, Nancy, France
| | - Nikolaus Obojes
- Institute for Alpine Environment, Eurac Research, 39100, Bozen/Bolzano, Italy
| | - Bruce Osborne
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Teemu Paljakka
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, 00014, Helsinki, Finland
| | - Roman Plichta
- Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Inken Rabbel
- Department for Geography, University of Bonn, 53115, Bonn, Germany
| | - Cyrille B K Rathgeber
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
- Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000, Nancy, France
| | - Yann Salmon
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, 00014, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014, Helsinki, Finland
| | - Matthew Saunders
- Trinity College Dublin, School of Natural Sciences, Botany Department, Dublin, Ireland
| | - Tobias Scharnweber
- DendroGreif, Institute for Botany and Landscape Ecology, University Greifswald, 17487, Greifswald, Germany
| | - Zuzana Sitková
- National Forest Centre, Forest Research Institute, 96001, Zvolen, Slovakia
| | | | | | - Marko Stojanović
- Global Change Research Institute of the Czech Academy of Sciences, 603 00, Brno, Czech Republic
| | - Katarína Střelcová
- Technical University in Zvolen, Faculty of Forestry, 96001, Zvolen, Slovakia
| | - Jan Světlík
- Global Change Research Institute of the Czech Academy of Sciences, 603 00, Brno, Czech Republic
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Miroslav Svoboda
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 00, Prague, Czech Republic
| | - Brian Tobin
- UCD Earth Institute, University College Dublin, Belfield, Dublin, Ireland
- UCD Forestry, School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Volodymyr Trotsiuk
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 00, Prague, Czech Republic
| | - Josef Urban
- Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
- Siberian Federal University, 660041, Krasnoyarsk, Russia
| | | | - Hanuš Vavrčík
- Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Monika Vejpustková
- Forestry and Game Management Research Institute, 252 02, Jíloviště, Czech Republic
| | - Lorenz Walthert
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Martin Wilmking
- DendroGreif, Institute for Botany and Landscape Ecology, University Greifswald, 17487, Greifswald, Germany
| | - Ewa Zin
- Department of Natural Forests, Forest Research Institute, 17-230, Białowieża, Poland
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences (SLU), 230 53, Alnarp, Sweden
| | - Junliang Zou
- Beijing Research & Development Centre for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
8
|
Camarero JJ, Gazol A, Linares JC, Fajardo A, Colangelo M, Valeriano C, Sánchez-Salguero R, Sangüesa-Barreda G, Granda E, Gimeno TE. Differences in temperature sensitivity and drought recovery between natural stands and plantations of conifers are species-specific. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148930. [PMID: 34378542 DOI: 10.1016/j.scitotenv.2021.148930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Forests are being impacted by climate and land-use changes which have altered their productivity and growth. Understanding how tree growth responds to climate in natural and planted stands may provide valuable information to prepare management in sight of climate change. Plantations are expected to show higher sensitivity to climate and lower post-drought resilience than natural stands, due to their lower compositional and structural diversity. We reconstructed and compared the radial growth of six conifers with contrasting ecological and climatic niches (Abies pinsapo, Cedrus atlantica, Pinus sylvestris, Pinus nigra, Pinus pinea, Pinus pinaster) in natural and planted stands subjected to seasonal drought in 40 sites. We quantified the relationships between individual growth variability and climate variables (temperature, precipitation and the SPEI drought index), as well as post-drought resilience. Elevated precipitation during the previous autumn-winter and current spring to early summer enhanced growth in both natural and planted stands of all species. Temperature effects on growth were less consistent: only plantations of A. pinsapo, C. atlantica, P. nigra, P. pinea, P. sylvetris and a natural stand of P. nigra showed negative impacts of summer temperature on growth. Drought reduced growth of all species in both plantations and natural stands, with variations in the temporal scale of the response. Drought constrained growth more severely in natural stands than in plantations of C. atlantica, P. pinaster and P. nigra, whereas the inverse pattern was found for A. pinsapo. Resilience to drought varied between species: natural stands of A. pinsapo, C. atlantica and P. pinaster recovered faster than plantations, while P. pinea plantations recovered faster than natural stands. Overall, plantations did not consistently show a higher sensitivity to climate and a lower capacity to recover after drought. Therefore, plantations are potential tools for mitigating climate warming.
Collapse
Affiliation(s)
- J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, E-50192 Zaragoza, Spain.
| | - Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, E-50192 Zaragoza, Spain
| | - Juan Carlos Linares
- Depto. de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra. Utrera km. 1, E-41013 Sevilla, Spain
| | - Alex Fajardo
- Instituto de Investigación Interdisciplinario (I(3)), Universidad de Talca, Campus Lircay, Talca 3460000, Chile
| | - Michele Colangelo
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, E-50192 Zaragoza, Spain; Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università della Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Cristina Valeriano
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, E-50192 Zaragoza, Spain
| | - Raúl Sánchez-Salguero
- Depto. de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra. Utrera km. 1, E-41013 Sevilla, Spain
| | | | - Elena Granda
- Department of Life Sciences, University of Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | - Teresa E Gimeno
- Basque Centre for Climate Change (BC3), Leioa 48940, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48008, Spain
| |
Collapse
|
9
|
Modeling the Radial Stem Growth of the Pine (Pinus sylvestris L.) Forests Using the Satellite-Derived NDVI and LST (MODIS/AQUA) Data. ATMOSPHERE 2020. [DOI: 10.3390/atmos12010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The paper considers a new approach to modeling the relationship between the increase in woody phytomass in the pine forest and satellite-derived Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) (MODIS/AQUA) data. The developed model combines the phenological and forest growth processes. For the analysis, NDVI and LST (MODIS) satellite data were used together with the measurements of tree-ring widths (TRW). NDVI data contain features of each growing season. The models include parameters of parabolic approximation of NDVI and LST time series transformed using principal component analysis. The study shows that the current rate of TRW is determined by the total values of principal components of the satellite indices over the season and the rate of tree increment in the preceding year.
Collapse
|
10
|
Raffelsbauer V, Spannl S, Peña K, Pucha-Cofrep D, Steppe K, Bräuning A. Tree Circumference Changes and Species-Specific Growth Recovery After Extreme Dry Events in a Montane Rainforest in Southern Ecuador. FRONTIERS IN PLANT SCIENCE 2019; 10:342. [PMID: 30967890 PMCID: PMC6439692 DOI: 10.3389/fpls.2019.00342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Under drought conditions, even tropical rainforests might turn from carbon sinks to sources, and tree species composition might be altered by increased mortality. We monitored stem diameter variations of 40 tree individuals with stem diameters above 10 cm belonging to eleven different tree genera and three tree life forms with high-resolution dendrometers from July 2007 to November 2010 and additionally March 2015 to December 2017 in a tropical mountain rainforest in South Ecuador, a biodiversity hotspot with more than 300 different tree species belonging to different functional types. Although our study area receives around 2200 mm of annual rainfall, dry spells occur regularly during so-called "Veranillo del Niño" (VdN) periods in October-November. In climate change scenarios, droughts are expected with higher frequency and intensity as today. We selected dry intervals with a minimum of four consecutive days to examine how different tree species respond to drought stress, raising the question if some species are better adapted to a possible higher frequency and increasing duration of dry periods. We analyzed the averaged species-specific stem shrinkage rates and recovery times during and after dry periods. The two deciduous broadleaved species Cedrela montana and Handroanthus chrysanthus showed the biggest stem shrinkage of up to 2 mm after 10 consecutive dry days. A comparison of daily circumference changes over 600 consecutive days revealed different drought responses between the families concerning the percentage of days with stem shrinkage/increment, ranging from 27.5 to 72.5% for Graffenrieda emarginata to 45-55% for Podocarpus oleifolius under same climate conditions. Moreover, we found great difference of recovery times after longer-lasting (i.e., eight to ten days) VdN drought events between the two evergreen broadleaved species Vismia cavanillesiana and Tapirira guianensis. While Vismia replenished to pre-VdN stem circumference after only 5 days, Tapirira needed 52 days on average to restore its circumference. Hence, a higher frequency of droughts might increase inter-species competition and species-specific mortality and might finally alter the species composition of the ecosystem.
Collapse
Affiliation(s)
- Volker Raffelsbauer
- Institute of Geography, Friedrich Alexander University Erlangen-Nürnberg, Nuremberg, Germany
| | - Susanne Spannl
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| | - Kelly Peña
- Laboratorio de Dendrocronología y Anatomía de la Madera, Carrera de Ingeniería Forestal, Universidad Nacional de Loja, Loja, Ecuador
| | - Darwin Pucha-Cofrep
- Laboratorio de Dendrocronología y Anatomía de la Madera, Carrera de Ingeniería Forestal, Universidad Nacional de Loja, Loja, Ecuador
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Achim Bräuning
- Institute of Geography, Friedrich Alexander University Erlangen-Nürnberg, Nuremberg, Germany
| |
Collapse
|
11
|
Zuidema PA, Poulter B, Frank DC. A Wood Biology Agenda to Support Global Vegetation Modelling. TRENDS IN PLANT SCIENCE 2018; 23:1006-1015. [PMID: 30209023 DOI: 10.1016/j.tplants.2018.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 05/06/2023]
Abstract
Realistic forecasting of forest responses to climate change critically depends on key advancements in global vegetation modelling. Compared with traditional 'big-leaf' models that simulate forest stands, 'next-generation' vegetation models aim to track carbon-, light-, water-, and nutrient-limited growth of individual trees. Wood biology can play an important role in delivering the required knowledge at tissue-to-individual levels, at minute-to-century scales and for model parameterization and benchmarking. We propose a wood biology research agenda that contributes to filling six knowledge gaps: sink versus source limitation, drivers of intra-annual growth, drought impacts, functional wood traits, dynamic biomass allocation, and nutrient cycling. Executing this agenda will expedite model development and increase the ability of models to forecast global change impact on forest dynamics.
Collapse
Affiliation(s)
- Pieter A Zuidema
- Forest Ecology and Forest Management, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands.
| | | | - David C Frank
- Laboratory of Tree-Ring Research, University of Arizona, 1215 E Lowell Street, Tucson, AZ 85721, USA
| |
Collapse
|
12
|
Contrasting Patterns of Tree Growth of Mediterranean Pine Species in the Iberian Peninsula. FORESTS 2018. [DOI: 10.3390/f9070416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Prislan P, Cufar K, De Luis M, Gricar J. Precipitation is not limiting for xylem formation dynamics and vessel development in European beech from two temperate forest sites. TREE PHYSIOLOGY 2018; 38:186-197. [PMID: 29325135 DOI: 10.1093/treephys/tpx167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
We investigated the dynamics of xylem differentiation processes and vessel characteristics in Fagus sylvatica L. to evaluate the plasticity of xylem structures under different environmental conditions. In 2008-10, analyses were performed on microcores collected weekly from two temperate sites: Menina planina (1200 m above sea level (a.s.l.)) and Panska reka (400 m a.s.l.). The duration between the onset and end of major cell differentiation steps and vessel characteristics (i.e., density, VD; mean diameter, MVD; mean area, MVA; and theoretic conductivity area, TCA) were analysed in the first and last quarters of the xylem rings, also in respect of local weather conditions (precipitation, temperature). Although the onset, duration and end of xylem formation phases differed between the two sites, the time spans between the successive wood formation phases were similar. Significant differences in MVD, MVA and TCA values were found between the first and last quarters of xylem increment, regardless of the site and year. Vessel density, on the other hand, depended on xylem-ring width and differed significantly between the sites, being about 30% higher at the high elevation site, in beech trees with 54% narrower xylem rings. Vessel density in the first quarter of the xylem ring showed a positive correlation with the onset of cell expansion, whereas a negative correlation of VD with the cessation of cell production was found in the last quarter of xylem increment. This may be explained by year-to-year differences in the timing of cambial reactivation and leaf development, which effect hormonal regulation of radial growth. No significant linkage between intra-annual weather conditions and conduit characteristics was found. It can thus be presumed that precipitation is not a limiting factor for xylem growth and cell differentiation in beech at the two temperate study sites and sites across Europe with similar weather conditions.
Collapse
Affiliation(s)
- Peter Prislan
- Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Katarina Cufar
- Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Martin De Luis
- Department of Geography and Regional Planning, University of Zaragoza-IUCA, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Jožica Gricar
- Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
Popkova MI, Vaganov EA, Shishov VV, Babushkina EA, Rossi S, Fonti MV, Fonti P. Modeled Tracheidograms Disclose Drought Influence on Pinus sylvestris Tree-Rings Structure From Siberian Forest-Steppe. FRONTIERS IN PLANT SCIENCE 2018; 9:1144. [PMID: 30127799 PMCID: PMC6088211 DOI: 10.3389/fpls.2018.01144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/17/2018] [Indexed: 05/17/2023]
Abstract
Wood formation allows trees to adjust in a changing climate. Understanding what determine its adjustment is crucial to evaluate impacts of climatic changes on trees and forests growth. Despite efforts to characterize wood formation, little is known on its impact on the xylem cellular structure. In this study we apply the Vaganov-Shashkin model to generate synthetic tracheidograms and verify its use to investigate the formation of intra-annual density fluctuations (IADF), one of the most frequent climate tree-ring markers in drought-exposed sites. Results indicate that the model can produce realistic tracheidograms, except for narrow rings (<1 mm), when cambial activity stops due to an excess of drought or a lack of growth vigor. These observations suggest that IADFs are caused by a release of drought limitation to cells formation in the first half of the growing season, but that narrow rings are indicators of an even more extreme and persistent water stress. Taking the example of IADFs formation, this study demonstrated that the Vaganov-Shashkin model is a useful tool to study the climatic impact on tree-ring structures. The ability to produce synthetic tracheidogram represents an unavoidable step to link climate to tree growth and xylem functioning under future scenarios.
Collapse
Affiliation(s)
- Margarita I. Popkova
- Department of Mathematical Methods and Information Technology, Siberian Federal University, Krasnoyarsk, Russia
- *Correspondence: Margarita I. Popkova, Patrick Fonti,
| | - Eugene A. Vaganov
- Siberian Federal University, Rectorate, Krasnoyarsk, Russia
- V.N. Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russia
| | - Vladimir V. Shishov
- Department of Mathematical Methods and Information Technology, Siberian Federal University, Krasnoyarsk, Russia
- LE STUDIUM Loire Valley Institute for Advanced Studies, Orléans, France
| | | | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Marina V. Fonti
- Institute of Ecology and Geography, Siberian Federal University, Krasnoyarsk, Russia
| | - Patrick Fonti
- WSL Swiss Federal Research Institute, Landscape Dynamics, Birmensdorf, Switzerland
- *Correspondence: Margarita I. Popkova, Patrick Fonti,
| |
Collapse
|
15
|
Wang M, Jiang Y, Zhang W, Dong M, Kang M, Xu H. Climatic Response of Tracheid Features of Picea meyeri Along Altitude Gradient of Luyashan Mountains of North China. POLISH JOURNAL OF ECOLOGY 2017. [DOI: 10.3161/15052249pje2017.65.4.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mingchang Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geography Science, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China
- College of Resources Science and Technology, Faculty of Geographical Science, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Yuan Jiang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geography Science, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China
- College of Resources Science and Technology, Faculty of Geographical Science, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Wentao Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geography Science, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China
- College of Resources Science and Technology, Faculty of Geographical Science, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
- Business Development Department, China Forest International Engineering Consulting Co., Ltd., 14 Hepinglibei Street, Dongcheng District, Beijing 100013, China
| | - Manyu Dong
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geography Science, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China
- College of Resources Science and Technology, Faculty of Geographical Science, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Muyi Kang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geography Science, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China
- College of Resources Science and Technology, Faculty of Geographical Science, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Hui Xu
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, 300 Massachusetts Ave, Amherst MA, 01003, USA
| |
Collapse
|
16
|
Climate extremes and predicted warming threaten Mediterranean Holocene firs forests refugia. Proc Natl Acad Sci U S A 2017; 114:E10142-E10150. [PMID: 29109266 DOI: 10.1073/pnas.1708109114] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Warmer and drier climatic conditions are projected for the 21st century; however, the role played by extreme climatic events on forest vulnerability is still little understood. For example, more severe droughts and heat waves could threaten quaternary relict tree refugia such as Circum-Mediterranean fir forests (CMFF). Using tree-ring data and a process-based model, we characterized the major climate constraints of recent (1950-2010) CMFF growth to project their vulnerability to 21st-century climate. Simulations predict a 30% growth reduction in some fir species with the 2050s business-as-usual emission scenario, whereas growth would increase in moist refugia due to a longer and warmer growing season. Fir populations currently subjected to warm and dry conditions will be the most vulnerable in the late 21st century when climatic conditions will be analogous to the most severe dry/heat spells causing dieback in the late 20th century. Quantification of growth trends based on climate scenarios could allow defining vulnerability thresholds in tree populations. The presented predictions call for conservation strategies to safeguard relict tree populations and anticipate how many refugia could be threatened by 21st-century dry spells.
Collapse
|
17
|
Björklund J, Seftigen K, Schweingruber F, Fonti P, von Arx G, Bryukhanova MV, Cuny HE, Carrer M, Castagneri D, Frank DC. Cell size and wall dimensions drive distinct variability of earlywood and latewood density in Northern Hemisphere conifers. THE NEW PHYTOLOGIST 2017; 216:728-740. [PMID: 28636081 DOI: 10.1111/nph.14639] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 04/27/2017] [Indexed: 05/29/2023]
Abstract
Interannual variability of wood density - an important plant functional trait and environmental proxy - in conifers is poorly understood. We therefore explored the anatomical basis of density. We hypothesized that earlywood density is determined by tracheid size and latewood density by wall dimensions, reflecting their different functional tasks. To determine general patterns of variability, density parameters from 27 species and 349 sites across the Northern Hemisphere were correlated to tree-ring width parameters and local climate. We performed the same analyses with density and width derived from anatomical data comprising two species and eight sites. The contributions of tracheid size and wall dimensions to density were disentangled with sensitivity analyses. Notably, correlations between density and width shifted from negative to positive moving from earlywood to latewood. Temperature responses of density varied intraseasonally in strength and sign. The sensitivity analyses revealed tracheid size as the main determinant of earlywood density, while wall dimensions become more influential for latewood density. Our novel approach of integrating detailed anatomical data with large-scale tree-ring data allowed us to contribute to an improved understanding of interannual variations of conifer growth and to illustrate how conifers balance investments in the competing xylem functions of hydraulics and mechanical support.
Collapse
Affiliation(s)
- Jesper Björklund
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zuercherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Kristina Seftigen
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zuercherstrasse 111, Birmensdorf, 8903, Switzerland
- Gothenburg University Laboratory for Dendrochronology, Department of Earth Sciences, University of Gothenburg, Guldhedsgatan 5a, Göteborg, 40530, Sweden
- Université catholique de Louvain, Earth and Life Institute, Georges Lemaître Centre for Earth and Climate Research, Place Louis Pasteur, Louvain-la-Neuve, B-1348, Belgium
| | - Fritz Schweingruber
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zuercherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Patrick Fonti
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zuercherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Georg von Arx
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zuercherstrasse 111, Birmensdorf, 8903, Switzerland
- Climatic Change and Climate Impacts, Institute for Environmental Sciences, 66 Blvd Carl Vogt, Geneva, CH-1205, Switzerland
| | - Marina V Bryukhanova
- V.N. Sukachev Institute of Forest SB RAS, Akademgorodok 50, bld.28, Krasnoyarsk, 660036, Russia
- Siberian Federal University, Svobodny pr. 79, Krasnoyarsk, 660041, Russia
| | - Henri E Cuny
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zuercherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Marco Carrer
- Dept. TeSAF, University of Padova, Via dell'Università 16, Legnaro (PD), I-35020, Italy
| | - Daniele Castagneri
- Dept. TeSAF, University of Padova, Via dell'Università 16, Legnaro (PD), I-35020, Italy
| | - David C Frank
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zuercherstrasse 111, Birmensdorf, 8903, Switzerland
- Laboratory of Tree-Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| |
Collapse
|
18
|
Castagneri D, Fonti P, von Arx G, Carrer M. How does climate influence xylem morphogenesis over the growing season? Insights from long-term intra-ring anatomy in Picea abies. ANNALS OF BOTANY 2017; 119:1011-1020. [PMID: 28130220 PMCID: PMC5604563 DOI: 10.1093/aob/mcw274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/30/2016] [Indexed: 05/17/2023]
Abstract
BACKGROUND AND AIMS During the growing season, the cambium of conifer trees produces successive rows of xylem cells, the tracheids, that sequentially pass through the phases of enlargement and secondary wall thickening before dying and becoming functional. Climate variability can strongly influence the kinetics of morphogenetic processes, eventually affecting tracheid shape and size. This study investigates xylem anatomical structure in the stem of Picea abies to retrospectively infer how, in the long term, climate affects the processes of cell enlargement and wall thickening. METHODS Tracheid anatomical traits related to the phases of enlargement (diameter) and wall thickening (wall thickness) were innovatively inspected at the intra-ring level on 87-year-long tree-ring series in Picea abies trees along a 900 m elevation gradient in the Italian Alps. Anatomical traits in ten successive tree-ring sectors were related to daily temperature and precipitation data using running correlations. KEY RESULTS Close to the altitudinal tree limit, low early-summer temperature negatively affected cell enlargement. At lower elevation, water availability in early summer was positively related to cell diameter. The timing of these relationships shifted forward by about 20 (high elevation) to 40 (low elevation) d from the first to the last tracheids in the ring. Cell wall thickening was affected by climate in a different period in the season. In particular, wall thickness of late-formed tracheids was strongly positively related to August-September temperature at high elevation. CONCLUSIONS Morphogenesis of tracheids sequentially formed in the growing season is influenced by climate conditions in successive periods. The distinct climate impacts on cell enlargement and wall thickening indicate that different morphogenetic mechanisms are responsible for different tracheid traits. Our approach of long-term and high-resolution analysis of xylem anatomy can support and extend short-term xylogenesis observations, and increase our understanding of climate control of tree growth and functioning under different environmental conditions.
Collapse
Affiliation(s)
- Daniele Castagneri
- Università degli Studi di Padova, Dept. TeSAF, Viale dell’Università 16, 35020 Legnaro (PD), Italy
- For correspondence. E-mail
| | - Patrick Fonti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf (ZH), Switzerland
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf (ZH), Switzerland
| | - Marco Carrer
- Università degli Studi di Padova, Dept. TeSAF, Viale dell’Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
19
|
Lavrič M, Eler K, Ferlan M, Vodnik D, Gričar J. Chronological Sequence of Leaf Phenology, Xylem and Phloem Formation and Sap Flow of Quercus pubescens from Abandoned Karst Grasslands. FRONTIERS IN PLANT SCIENCE 2017; 8:314. [PMID: 28321232 PMCID: PMC5337753 DOI: 10.3389/fpls.2017.00314] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/20/2017] [Indexed: 05/31/2023]
Abstract
Intra-annual variations in leaf development, radial growth, including the phloem part, and sap flow have rarely been studied in deciduous trees from drought-prone environments. In order to understand better the chronological order and temporal course of these processes, we monitored leaf phenology, xylem and phloem formation and sap flow in Quercus pubescens from abandoned karst grasslands in Slovenia during the growing season of 2014. We found that the initial earlywood vessel formation started before bud opening at the beginning of April. Buds started to open in the second half of April and full leaf unfolding occurred by the end of May. LAI values increased correspondingly with leaf development. About 28% of xylem and 22% of phloem annual increment were formed by the time of bud break. Initial earlywood vessels were fully lignified and ready for water transport, indicating that they are essential to provide hydraulic conductivity for axial water flow during leaf development. Sap flow became active and increasing contemporarily with leaf development and LAI values. Similar early spring patterns of xylem sap flow and LAI denoted that water transport in oaks broadly followed canopy leaf area development. In the initial 3 weeks of radial growth, phloem growth preceded that of xylem, indicating its priority over xylem at the beginning of the growing season. This may be related to the fact that after bud break, the developing foliage is a very large sink for carbohydrates but, at the same time, represents a small transpirational area. Whether the interdependence of the chronological sequence of the studied processes is fixed in Q. pubescens needs to be confirmed with more data and several years of analyses, although the 'correct sequence' of processes is essential for synchronized plant performance and response to environmental stress.
Collapse
Affiliation(s)
- Martina Lavrič
- Department of Yield and Silviculture, Slovenian Forestry InstituteLjubljana, Slovenia
| | - Klemen Eler
- Department of Agronomy, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
- Department of Forest Ecology, Slovenian Forestry InstituteLjubljana, Slovenia
| | - Mitja Ferlan
- Department of Forest Ecology, Slovenian Forestry InstituteLjubljana, Slovenia
| | - Dominik Vodnik
- Department of Agronomy, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - Jožica Gričar
- Department of Yield and Silviculture, Slovenian Forestry InstituteLjubljana, Slovenia
| |
Collapse
|