1
|
Surendran K, Pradeep S, Pillai PP. Comparative transcriptome and metabolite profiling reveal diverse pattern of CYP-TS gene expression during corosolic acid biosynthesis in Lagerstroemia speciosa (L.) Pers. PLANT CELL REPORTS 2024; 43:122. [PMID: 38642121 DOI: 10.1007/s00299-024-03203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/19/2024] [Indexed: 04/22/2024]
Abstract
KEY MESSAGE Extensive leaf transcriptome profiling and differential gene expression analysis of field grown and elicited shoot cultures of L. speciosa suggest that differential synthesis of CRA is mediated primarily by CYP and TS genes, showing functional diversity. Lagerstroemia speciosa L. is a tree species with medicinal and horticultural attributes. The pentacyclic triterpene, Corosolic acid (CRA) obtained from this species is widely used for the management of diabetes mellitus in traditional medicine. The high mercantile value of the compound and limited availability of innate resources entail exploration of alternative sources for CRA production. Metabolic pathway engineering for enhanced bioproduction of plant secondary metabolites is an attractive proposition for which, candidate genes in the pathway need to be identified and characterized. Therefore, in the present investigation, we focused on the identification of cytochrome P450 (CYP450) and oxidosqualene cyclases (OSC) genes and their differential expression during biosynthesis of CRA. The pattern of differential expression of these genes in the shoot cultures of L. speciosa, elicited with different epigenetic modifiers (azacytidine (AzaC), sodium butyrate (NaBu) and anacardic acid (AA)), was studied in comparison with field grown plant. Further, in vitro cultures with varying (low to high) concentrations of CRA were systematically assessed for the expression of CYP-TS and associated genes involved in CRA biosynthesis by transcriptome sequencing. The sequenced samples were de novo assembled into 180,290 transcripts of which, 92,983 transcripts were further annotated by UniProt. The results are collectively given in co-occurrence heat maps to identify the differentially expressed genes. The combined transcript and metabolite profiles along with RT-qPCR analysis resulted in the identification of CYP-TS genes with high sequence variation. Further, instances of concordant/discordant relation between CRA biosynthesis and CYP-TS gene expression were observed, indicating functional diversity in genes.
Collapse
Affiliation(s)
- Karuna Surendran
- Department of Genomic Science, Central University of Kerala, Kasaragod, 671320, India
| | - Siya Pradeep
- Department of Genomic Science, Central University of Kerala, Kasaragod, 671320, India
| | | |
Collapse
|
2
|
Yu K, Liang P, Yu H, Liu H, Guo J, Yan X, Li Z, Li G, Wang Y, Wang C. Integrating Transcriptome and Chemical Analyses to Provide Insights into Biosynthesis of Terpenoids and Flavonoids in the Medicinal Industrial Crop Andrographis paniculate and Its Antiviral Medicinal Parts. Molecules 2024; 29:852. [PMID: 38398604 PMCID: PMC10893308 DOI: 10.3390/molecules29040852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Andrographis paniculata is a medicinal plant traditionally used to produce diterpene lactones and flavonoids, which possess various biological activities. Widely distributed in China, India, and other Southeast Asia countries, A. paniculata has become an important economic crop, significantly treating SARS-CoV-2, and is being cultivated on a large scale in southern China. The biosynthesis of active ingredients in A. paniculata are regulated and controlled by genes, but their specific roles are still not fully understood. To further explore the growth regulation factors and utilization of its medicinal parts of this industrial crop, chemical and transcriptome analyses were conducted on the roots, stems, and leaves of A. paniculata to identify the biosynthesis pathways and related candidate genes of the active ingredients. The chemical analysis revealed that the main components of A. paniculata were diterpene lactones and flavonoids, which displayed potential ability to treat SARS-CoV-2 through molecular docking. Moreover, the transcriptome sequencing annotated a total of 40,850 unigenes, including 7962 differentially expressed genes. Among these, 120 genes were involved in diterpene lactone biosynthesis and 60 genes were involved in flavonoid biosynthesis. The expression of diterpene lactone-related genes was the highest in leaves and the lowest in roots, consistent with our content determination results. It is speculated that these highly expressed genes in leaves may be involved in the biosynthesis pathway of diterpenes. Furthermore, two class Ⅰ terpene synthases in A. paniculata transcriptome were also annotated, providing reference for the downstream pathway of the diterpene lactone biosynthesis. With their excellent market value, our experiments will promote the study of the biosynthetic genes for active ingredients in A. paniculata and provide insights for subsequent in vitro biosynthesis.
Collapse
Affiliation(s)
- Kuo Yu
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (H.Y.); (X.Y.); (Z.L.)
| | - Pengjie Liang
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
| | - Heshui Yu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (H.Y.); (X.Y.); (Z.L.)
| | - Hui Liu
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
| | - Jialiang Guo
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
| | - Xiaohui Yan
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (H.Y.); (X.Y.); (Z.L.)
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (H.Y.); (X.Y.); (Z.L.)
| | - Guoqiang Li
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
| | - Ying Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chunhua Wang
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (H.Y.); (X.Y.); (Z.L.)
| |
Collapse
|
3
|
Darnet E, Teixeira B, Schaller H, Rogez H, Darnet S. Elucidating the Mesocarp Drupe Transcriptome of Açai ( Euterpe oleracea Mart.): An Amazonian Tree Palm Producer of Bioactive Compounds. Int J Mol Sci 2023; 24:ijms24119315. [PMID: 37298279 DOI: 10.3390/ijms24119315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Euterpe oleracea palm, endemic to the Amazon region, is well known for açai, a fruit violet beverage with nutritional and medicinal properties. During E. oleracea fruit ripening, anthocyanin accumulation is not related to sugar production, contrarily to grape and blueberry. Ripened fruits have a high content of anthocyanins, isoprenoids, fibers, and proteins, and are poor in sugars. E. oleracea is proposed as a new genetic model for metabolism partitioning in the fruit. Approximately 255 million single-end-oriented reads were generated on an Ion Proton NGS platform combining fruit cDNA libraries at four ripening stages. The de novo transcriptome assembly was tested using six assemblers and 46 different combinations of parameters, a pre-processing and a post-processing step. The multiple k-mer approach with TransABySS as an assembler and Evidential Gene as a post-processer have shown the best results, with an N50 of 959 bp, a read coverage mean of 70x, a BUSCO complete sequence recovery of 36% and an RBMT of 61%. The fruit transcriptome dataset included 22,486 transcripts representing 18 Mbp, of which a proportion of 87% had significant homology with other plant sequences. Approximately 904 new EST-SSRs were described, and were common and transferable to Phoenix dactylifera and Elaeis guineensis, two other palm trees. The global GO classification of transcripts showed similar categories to that in P. dactylifera and E. guineensis fruit transcriptomes. For an accurate annotation and functional description of metabolism genes, a bioinformatic pipeline was developed to precisely identify orthologs, such as one-to-one orthologs between species, and to infer multigenic family evolution. The phylogenetic inference confirmed an occurrence of duplication events in the Arecaceae lineage and the presence of orphan genes in E. oleracea. Anthocyanin and tocopherol pathways were annotated entirely. Interestingly, the anthocyanin pathway showed a high number of paralogs, similar to in grape, whereas the tocopherol pathway exhibited a low and conserved gene number and the prediction of several splicing forms. The release of this exhaustively annotated molecular dataset of E. oleracea constitutes a valuable tool for further studies in metabolism partitioning and opens new great perspectives to study fruit physiology with açai as a model.
Collapse
Affiliation(s)
- Elaine Darnet
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA) & Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-750, PA, Brazil
- International Associated Laboratory PALMHEAT, Frech Scientific Research National Center (CNRS)/UFPA, 75016 Paris, France
| | - Bruno Teixeira
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA) & Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-750, PA, Brazil
| | - Hubert Schaller
- International Associated Laboratory PALMHEAT, Frech Scientific Research National Center (CNRS)/UFPA, 75016 Paris, France
- Plant Isoprenoid Biology, Institute of Molecular Biology of Plants of the Scientific Research National Center, Strasbourg University, 67081 Strasbourg, France
| | - Hervé Rogez
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA) & Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-750, PA, Brazil
| | - Sylvain Darnet
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA) & Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-750, PA, Brazil
- International Associated Laboratory PALMHEAT, Frech Scientific Research National Center (CNRS)/UFPA, 75016 Paris, France
- Plant Isoprenoid Biology, Institute of Molecular Biology of Plants of the Scientific Research National Center, Strasbourg University, 67081 Strasbourg, France
| |
Collapse
|
4
|
Singh R, Singh A, Mahato AK, Paliwal R, Tiwari G, Kumar A. De Novo Transcriptome Profiling for the Generation and Validation of Microsatellite Markers, Transcription Factors, and Database Development for Andrographis paniculata. Int J Mol Sci 2023; 24:ijms24119212. [PMID: 37298166 DOI: 10.3390/ijms24119212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/12/2023] Open
Abstract
Andrographis paniculata belongs to the family Acanthaceae and is known for its medicinal properties owing to the presence of unique constituents belonging to the lactones, diterpenoids, diterpene glycosides, flavonoids, and flavonoid glycosides groups of chemicals. Andrographolide, a major therapeutic constituent of A. paniculata, is extracted primarily from the leaves of this plant and exhibits antimicrobial and anti-inflammatory activities. Using 454 GS-FLX pyrosequencing, we have generated a whole transcriptome profile of entire leaves of A. paniculata. A total of 22,402 high-quality transcripts were generated, with an average transcript length and N50 of 884 bp and 1007 bp, respectively. Functional annotation revealed that 19,264 (86%) of the total transcripts showed significant similarity with the NCBI-Nr database and were successfully annotated. Out of the 19,264 BLAST hits, 17,623 transcripts were assigned GO terms and distributed into three major functional categories: molecular function (44.62%), biological processes (29.19%), and cellular component (26.18%) based on BLAST2GO. Transcription factor analysis showed 6669 transcripts, belonging to 57 different transcription factor families. Fifteen TF genes that belong to the NAC, MYB, and bHLH TF categories were validated by RT PCR amplification. In silico analysis of gene families involved in the synthesis of biochemical compounds having medicinal values, such as cytochrome p450, protein kinases, heat shock proteins, and transporters, was completed and a total of 102 different transcripts encoding enzymes involved in the biosynthesis of terpenoids were predicted. Out of these, 33 transcripts belonged to terpenoid backbone biosynthesis. This study also identified 4254 EST-SSRs from 3661 transcripts, representing 16.34% of the total transcripts. Fifty-three novel EST-SSR markers generated from our EST dataset were used to assess the genetic diversity among eighteen A. paniculata accessions. The genetic diversity analysis revealed two distinct sub-clusters and all accessions based on the genetic similarity index were distinct from each other. A database based on EST transcripts, EST-SSR markers, and transcription factors has been developed using data generated from the present study combined with available transcriptomic resources from a public database using Meta transcriptome analysis to make genomic resources available in one place to the researchers working on this medicinal plant.
Collapse
Affiliation(s)
- Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Akshay Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Ajay Kumar Mahato
- The Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Ritu Paliwal
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Gunjan Tiwari
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Ashok Kumar
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| |
Collapse
|
5
|
Prajapati MR, Singh J, Kumar P, Dixit R. De novo transcriptome analysis and identification of defensive genes in garlic (Allium sativum L.) using high-throughput sequencing. J Genet Eng Biotechnol 2023; 21:56. [PMID: 37162611 PMCID: PMC10172436 DOI: 10.1186/s43141-023-00499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND Garlic (Allium sativum L.) is the second most widely cultivated Allium which is mainly grown in temperate regions and used as a flavoring agent in a wide variety of foods. Garlic contains various bioactive compounds whose metabolic pathways, plant-pathogen interactions, defensive genes, identify interaction networks, and functional genomics were not previously predicted in the garlic at the genomic level. To address this issue, we constructed two garlic Illumina 2000 libraries from tissues of garlic clove and leaf. RESULTS Approximately 43 million 125 bp paired-end reads were obtained in the two libraries. A total of 239,973 contigs were generated by de novo assembly of both samples and were compared with the sequences in the NCBI non-redundant protein database (Nr). In total, 42% of contigs were matched to known proteins in public databases including Nr, Gene Ontology (GO), and Cluster Orthologous Gene Database (COG), and then, contigs were mapped to 138 via functional annotation against the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG). In addition, a number of regulatory genes including the CCHC (Zn) family, followed by WD40, bromodomain, bZIP, AP2-EREBP, BED-type (Zn) proteins, and defense response proteins related to different conserved domains, such as RGA3, NBS-LRR, TIR-NBS-LRR, LRR, NBS-ARC, and CC-NBS-LRR were discovered based on the transcriptome dataset. We compared the ortholog gene family of the A. sativum transcriptome to A. thaliana, O. sativa, and Z. mays and found that 12,077 orthologous gene families are specific to A. sativum L. Furthermore, we identified genes involved in plant defense mechanisms, their protein-protein interaction network, and plant-pathogen interaction pathways. CONCLUSIONS Our study contains an extensive sequencing and functional gene-annotation analysis of A. sativum L. The findings provide insights into the molecular basis of TFs, defensive genes, and a reference for future studies on the genetics and breeding of A. sativum L.
Collapse
Affiliation(s)
- Malyaj R Prajapati
- Division of Microbial and Environmental Biotechnology, College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, 250110, India
| | - Jitender Singh
- Department of Microbiology, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India.
| | - Pankaj Kumar
- Division of Microbial and Environmental Biotechnology, College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, 250110, India.
| | - Rekha Dixit
- Division of Microbial and Environmental Biotechnology, College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, 250110, India
| |
Collapse
|
6
|
Tian X, Yan L, Jiang L, Xiang G, Li G, Zhu L, Wu J. Comparative transcriptome analysis of leaf, stem, and root tissues of Semiliquidambar cathayensis reveals candidate genes involved in terpenoid biosynthesis. Mol Biol Rep 2022; 49:5585-5593. [PMID: 35543829 DOI: 10.1007/s11033-022-07492-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/19/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Semiliquidambar cathayensis is a traditional medicinal plant and endemic species in China. Its roots, branches, leaves, bark, and nectar are known to have therapeutic effects against rheumatoid arthritis, lumbar muscle strain, and several other diseases. However, limited knowledge regarding the molecular properties of S. cathayensis highlights the need for further research in order to elucidate the underlying pathways governing the synthesis of its active ingredients and regulation of its accumulation processes. METHODS We conducted transcriptome sequencing of the leaf, stem and root epidermises, and stem and root xylems of S. cathayensis with three biological replicates. Moreover, candidate genes involved in terpenoid biosynthesis, such as IDI, FPPS, DXR, SQS, GPPS, and HMGR were selected for quantitative real-time PCR analysis. RESULTS We identified 88,582 unigenes. Among which, 36,144 unigenes were annotated to the nr protein database, 21,981 to the Gene Ontology database, 11,565 to the Clusters of Orthologous Groups database, 24,209 to the Pfam database, 21,685 to the SWISS-PROT database, and 12,753 to the Kyoto Encyclopedia of Genes and Genomes (KEGG), with 5072 unigenes common to all six databases. Of those annotated using the KEGG database, 187 unigenes were related to the terpenoid metabolism pathway, and expression analysis of the related genes indicated that the mevalonate and methylerythritol 4-phosphate pathways play different roles in terpenoid biosynthesis in different tissues of S. cathayensis. CONCLUSIONS These findings greatly expand gene resources of S. cathayensis and provide basic data for the study of the biosynthetic pathways and molecular mechanisms of terpenoids.
Collapse
Affiliation(s)
| | - Lihong Yan
- Hunan Botanical Garden, Changsha, 410116, China
| | | | | | - Gaofei Li
- Hunan Botanical Garden, Changsha, 410116, China
| | - Lu Zhu
- Hunan Botanical Garden, Changsha, 410116, China
| | - Jia Wu
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
7
|
Fang H, Zheng K, Zhang J, Gu X, Zhao Y, Zheng Y, Wang Q. Differences in gene expression and endophytic bacterial diversity in Atractylodes macrocephala Koidz. rhizomes from different growth years. Can J Microbiol 2022; 68:353-366. [PMID: 35080442 DOI: 10.1139/cjm-2021-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atractylodes macrocephala Koidz. (AMK) is widely used owing to its pharmacological activity in traditional Chinese medicine (TCM). Here, we aimed to characterize the differentially expressed genes (DEGs) of one- and three-year growth (OYG and TYG) rhizomes of AMK combined with the endophytic bacterial diversity analysis using high-throughput RNA-sequencing. 114,572 unigenes were annotated in six public databases. 3570 DEGs revealed a clear difference, of which 936 and 2634 genes were up- and down-regulated, respectively. The results of KEGG pathway analysis indicated that DEGs corresponding to the terpenoid synthesis gene were downregulated in TYG rhizomes. 414,424 sequences corresponding to the 16S rRNA gene were divided into 1267 operational taxonomic units (OTUs). Moreover, the diversity of endophytic bacteria changed with species in OYG (773) and TYG (1201) rhizomes at OTU level, and Proteobacteria, Actinobacteria, and Bacteroidetes were the dominant phyla. Comparison of species differences among different growth years revealed that some species were significantly different, such as Actinomycetes, Variovorax, Cloacibacterium, etc. Interestingly, the decrease in the function-related metabolism of terpenoids and polyketides was found to be correlated the low expression of terpene synthesis genes in TYG rhizomes assessed using PICRUSt2. These data provide a scientific basis for elucidating the mechanism underlying metabolite accumulation and endophytic bacterial diversity in relation to the growth years in AMK.
Collapse
Affiliation(s)
- Huiyong Fang
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, College of Pharmacy, China;
| | - Kaiyan Zheng
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| | - Jianyun Zhang
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China, 050200.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China, 050200;
| | - Xian Gu
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| | - Yanyun Zhao
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| | - Yuguang Zheng
- Hebei Chemical and Pharmaceutical College, 118457, Shijiazhuang, Hebei, China.,Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China;
| | - Qian Wang
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| |
Collapse
|
8
|
Emerging roles of NAC transcription factor in medicinal plants: progress and prospects. 3 Biotech 2021; 11:425. [PMID: 34567930 DOI: 10.1007/s13205-021-02970-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022] Open
Abstract
Transcriptional factors act as mediators in regulating stress response in plants from signal perception to processing the directed gene expression. WRKY, MYB, AP2/ERF, etc. are some of the major families of transcription factors known to mediate stress mechanisms in plants by regulating the production of secondary metabolites. NAC domain-containing proteins are among these large transcription factors families in plants. These proteins play impulsive roles in plant growth, development, and various abiotic as well as biotic stresses. They are involved in regulating the different signaling pathways of plant hormones that direct a plant's immunity against pathogens, thereby affecting their immune responses. However, their role in stress regulation or defence mechanism in plants through the secondary metabolite biosynthesis pathway is studied for very few cases. Emerging concern over the requirement of medicinal plants for the production of biocompatible drugs and antibiotics, the study of these vast, affecting proteins should be focused to improve their qualitative and quantitative production further. In medicinal plants, phytochemicals and secondary metabolites are the major biochemicals that impose antimicrobial and other medicinal properties in these plants. This review compiles the NAC transcription factors reported in selected medicinal plants and their possible roles in different mechanisms. Further, the comprehensive understanding of the molecular mechanism, genetic engineering, and regulation responses of NAC TFs in medicinal plants, can lead to improvement in stress response, immunity, and production of usable secondary metabolites.
Collapse
|
9
|
Srivastava P, Garg A, Misra RC, Chanotiya CS, Ghosh S. UGT86C11 is a novel plant UDP-glycosyltransferase involved in labdane diterpene biosynthesis. J Biol Chem 2021; 297:101045. [PMID: 34363833 PMCID: PMC8427245 DOI: 10.1016/j.jbc.2021.101045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022] Open
Abstract
Glycosyltransferases constitute a large family of enzymes across all domains of life, but knowledge of their biochemical function remains largely incomplete, particularly in the context of plant specialized metabolism. The labdane diterpenes represent a large class of phytochemicals with many pharmacological benefits, such as anti-inflammatory, hepatoprotective, and anticarcinogenic. The medicinal plant kalmegh (Andrographis paniculata) produces bioactive labdane diterpenes; notably, the C19-hydroxyl diterpene (andrograpanin) is predominantly found as C19-O-glucoside (neoandrographolide), whereas diterpenes having additional hydroxylation(s) at C3 (14-deoxy-11,12-didehydroandrographolide) or C3 and C14 (andrographolide) are primarily detected as aglycones, signifying scaffold-selective C19-O-glucosylation of diterpenes in planta. Here, we analyzed UDP-glycosyltransferase (UGT) activity and diterpene levels across various developmental stages and tissues and found an apparent correlation of UGT activity with the spatiotemporal accumulation of neoandrographolide, the major diterpene C19-O-glucoside. The biochemical analysis of recombinant UGTs preferentially expressed in neoandrographolide-accumulating tissues identified a previously uncharacterized UGT86 member (ApUGT12/UGT86C11) that catalyzes C19-O-glucosylation of diterpenes with strict scaffold selectivity. ApUGT12 localized to the cytoplasm and catalyzed diterpene C19-O-glucosylation in planta. The substrate selectivity demonstrated by the recombinant ApUGT12 expressed in plant and bacterium hosts was comparable to native UGT activity. Recombinant ApUGT12 showed significantly higher catalytic efficiency using andrograpanin compared with 14-deoxy-11,12-didehydroandrographolide and trivial activity using andrographolide. Moreover, ApUGT12 silencing in plants led to a drastic reduction in neoandrographolide content and increased levels of andrograpanin. These data suggest the involvement of ApUGT12 in scaffold-selective C19-O-glucosylation of labdane diterpenes in plants. This knowledge of UGT86 function might help in developing plant chemotypes and synthesis of pharmacologically relevant diterpenes.
Collapse
Affiliation(s)
- Payal Srivastava
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anchal Garg
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| | - Rajesh Chandra Misra
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| | - Chandan Singh Chanotiya
- Phytochemistry Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| | - Sumit Ghosh
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Zhang S, Zhao L, Shan C, Shi Y, Ma K, Wu J. Exploring the biosynthetic pathway of lignin in Acorus tatarinowii Schott using de novo leaf and rhizome transcriptome analysis. Biosci Rep 2021; 41:BSR20210006. [PMID: 34076245 PMCID: PMC8200657 DOI: 10.1042/bsr20210006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023] Open
Abstract
Acorus tatarinowii Schott is a well-known Chinese traditional herb. Lignin is the major biologically active ingredient and exerts a broad range of pharmacological effects: it is an antitumor, antioxidant and bacteriostatic agent, and protects the cardiovascular system. In the present study, the transcriptomes of the leaf and rhizome tissues of A. tatarinowii Schott were obtained using the BGISEQ-500 platform. A total of 141777 unigenes were successfully assembled, of which 76714 were annotated in public databases. Further analysis of the lignin biosynthesis pathway revealed a total of 107 unigenes encoding 8 key enzymes, which were involved in this pathway. Furthermore, the expression of the key genes involved in lignin synthesis in different tissues was identified by quantitative real-time PCR. Analysis of the differentially expressed genes (DEGs) showed that most of the up-regulated unigenes were enriched in rhizome tissues. In addition, 2426 unigenes were annotated to the transcriptome factor (TF) family. Moreover, 16 TFs regulating the same key enzyme (peroxidase) were involved in the lignin synthesis pathway. The alignment of peroxidase amino acid sequences and the analysis of the structural characteristics revealed that the key peroxidase enzyme had well-conserved sequences, spatial structures, and active sites. The present study is the first to provide comprehensive genetic information on A. tatarinowii Schott at the transcriptional level, and will facilitate our understanding of the lignin biosynthesis pathway.
Collapse
Affiliation(s)
- Shengxiang Zhang
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Liqiang Zhao
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Chunmiao Shan
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Yuanyuan Shi
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Kelong Ma
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China
- Clinical College of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiawen Wu
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, China
| |
Collapse
|
11
|
Shailaja A, Srinath M, Bindu BVB, Giri CC. Isolation of 4-hydroxy 3-methyl 2-butenyl 4-diphosphate reductase ( ApHDR) gene of methyl erythritol diphosphate (MEP) pathway, in silico analysis and differential tissue specific ApHDR expression in Andrographis paniculata (Burm. f) Nees. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:223-235. [PMID: 33707865 PMCID: PMC7907293 DOI: 10.1007/s12298-021-00952-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/23/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED The full length Andrographis paniculate 4-hydroxy 3-methyl 2-butenyl 4-diphosphate reductase (ApHDR) gene of MEP pathway was isolated for the first time. The ApHDR ORF with 1404 bp flanked by 100 bp 5'UTR and 235 bp 3'UTR encoding 467 amino acids (NCBI accession number: MK503970) and cloned in pET 102, transformed and expressed in E. coli BL21. The ApHDR protein physico-chemical properties, secondary and tertiary structure were analyzed. The Ramachandran plot showed 93.8% amino acids in the allowed regions, suggesting high reliability. The cluster of 16 ligands for binding site in ApHDR involved six amino acid residues having 5-8 ligands. The Fe-S cluster binding site was formed with three conserved residues of cysteine at positions C123, C214, C251 of ApHDR. The substrate HMBPP and inhibitors clomazone, paraquat, benzyl viologen's interactions with ApHDR were also assessed using docking. The affinity of Fe-S cluster binding to the cleft was found similar to HMBPP. The HPLC analysis of different type of tissue (plant parts) revealed highest andrographolide content in young leaves followed by mature leaves, stems and roots. The differential expression profile of ApHDR suggested a significant variation in the expression pattern among different tissues such as mature leaves, young leaves, stem and roots. A 16-fold higher expression of ApHDR was observed in the mature leaves of A. paniculata as compared to roots. The young leaves and stem showed 5.5 fold and fourfold higher expression than roots of A. paniculata. Our result generated new genomic information on ApHDR which may open up prospects of manipulation for enhanced diterpene lactone andrographolide production in A. paniculata. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00952-0.
Collapse
Affiliation(s)
- Aayeti Shailaja
- Centre for Plant Molecular Biology (CPMB), Osmania University, Hyderabad, Telangana 500007 India
| | - Mote Srinath
- Centre for Plant Molecular Biology (CPMB), Osmania University, Hyderabad, Telangana 500007 India
| | | | - Charu Chandra Giri
- Centre for Plant Molecular Biology (CPMB), Osmania University, Hyderabad, Telangana 500007 India
| |
Collapse
|
12
|
Bester R, Cook G, Maree HJ. Citrus Tristeza Virus Genotype Detection Using High-Throughput Sequencing. Viruses 2021; 13:168. [PMID: 33498597 PMCID: PMC7910887 DOI: 10.3390/v13020168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
The application of high-throughput sequencing (HTS) has successfully been used for virus discovery to resolve disease etiology in many agricultural crops. The greatest advantage of HTS is that it can provide a complete viral status of a plant, including information on mixed infections of viral species or virus variants. This provides insight into the virus population structure, ecology, or evolution and can be used to differentiate among virus variants that may contribute differently toward disease etiology. In this study, the use of HTS for citrus tristeza virus (CTV) genotype detection was evaluated. A bioinformatic pipeline for CTV genotype detection was constructed and evaluated using simulated and real data sets to determine the parameters to discriminate between false positive read mappings and true genotype-specific genome coverage. A 50% genome coverage cut-off was identified for non-target read mappings. HTS with the associated bioinformatic pipeline was validated and proposed as a CTV genotyping assay.
Collapse
Affiliation(s)
- Rachelle Bester
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa;
| | - Glynnis Cook
- Citrus Research International, P.O. Box 28, Nelspruit 1200, South Africa;
| | - Hans J. Maree
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa;
- Citrus Research International, Stellenbosch, P.O. Box 2201, Matieland 7602, South Africa
| |
Collapse
|
13
|
Patel AA, Shukla YM, Kumar S, Sakure AA, Parekh MJ, Zala HN. Transcriptome analysis for molecular landscaping of genes controlling diterpene andrographolide biosynthesis in Andrographis paniculata ( Burm . f.) Nees. 3 Biotech 2020; 10:512. [PMID: 33173716 PMCID: PMC7648546 DOI: 10.1007/s13205-020-02511-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/25/2020] [Indexed: 11/30/2022] Open
Abstract
Kalmegh [Andrographis paniculata (Burm. f.) Nees.] is one of the essential medicinal plants due to an important terpenoid, i.e. andrographolide possesses immense therapeutic and pharmacological uses. The experiment was performed to elucidate the expression of candidate genes associated with andrographolide biosynthesis. Based on results obtained in chromatography for andrographolide content analysis of six genotypes, two contrast genotypes, i.e. IC-520361 (maximum andrographolide content-2.33%) and Anand Local (lowest andrographolide content-1.01%) were selected for the transcriptome analysis. A total of 1.04 Gb of raw data were produced using MiSeq Illumina platform, in which IC 520361 generated 645 million base pairs sequence along with 4,524,251 raw reads and Anand Local produced 419 million base pairs sequence along with 3,021,316 raw reads. The combined assembly of high quality reads generated for both the samples had 33,247,454 bp of total assembled bases and 38,292 of transcripts. The GC percent of assembled transcripts was 44.79%, an average read length was 800 bp and N50 value was 1186 bp. Species-specific distribution using BLAST X (Nr), showed the highest Blast hits with Sesamum indicum. Out of 23,346 transcripts, 87% of transcripts annotated in UniProt KB (Universal Protein Resource KnowledgeBase) database and only 0.21% of transcripts were annotated in TAIR (The Arabidopsis Information Resources). Biological processes gene ontology classified based on Blast2GO showed, out of 6853 transcripts, 1370 of transcripts were represented by terpenoid biosynthetic pathway, which involved in secondary metabolite andrographolide biosynthesis. The heat map showed 1016 transcripts were differentially expressed between two kalmegh genotypes, in which nine important differentially expressed transcripts related to MEP (2C methyl-d-erythritol 4-phosphate) and MVA (Mevalonic acid) andrographolide biosynthesis pathways such as, geranyl diphosphate synthase small subunit, Isopentenyl-diphosphate delta-isomerase i-like, 4, 13-hydroxy-3-methylglutaryl-coenzyme a reductase etc. were upregulated in IC 520361 as compared to Anand Local, which were validated through RT-qPCR. The highest expression of gene 13-hydroxy-3-methylglutaryl-coenzyme a reductase (HMGR) was reported, which is responsible for accumulation of andrographolide in leaf. This comparative transcriptome analysis confirmed the expression level of genes were higher in accession IC 520361 as compare to Anand Local related to andrographolide biosynthesis pathways i.e. MEP and MVA. These up-regulated genes could be over-expressed to enhance the andrographolide content using genetic engineering of these metabolic pathways. It will also give an idea to the breeder for development of molecular markers for direct screening of the genotypes.
Collapse
Affiliation(s)
- Ankita A. Patel
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388 110 India
| | - Yogesh M. Shukla
- Department of Biochemistry, B.A. College of Agriculture, Anand Agricultural University, Anand, 388 110 India
| | - Sushil Kumar
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388 110 India
| | - Amar A. Sakure
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388 110 India
| | - Mithil J. Parekh
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388 110 India
| | - Harshvardhan N. Zala
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388 110 India
- Department of Biotechnology, S. D. Agricultural University, Sardarkrushinagar, 385 506 India
| |
Collapse
|
14
|
Tai Y, Hou X, Liu C, Sun J, Guo C, Su L, Jiang W, Ling C, Wang C, Wang H, Pan G, Si X, Yuan Y. Phytochemical and comparative transcriptome analyses reveal different regulatory mechanisms in the terpenoid biosynthesis pathways between Matricaria recutita L. and Chamaemelum nobile L. BMC Genomics 2020; 21:169. [PMID: 32070270 PMCID: PMC7029581 DOI: 10.1186/s12864-020-6579-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/13/2020] [Indexed: 01/20/2023] Open
Abstract
Background Matricaria recutita (German chamomile) and Chamaemelum nobile (Roman chamomile) belong to the botanical family Asteraceae. These two herbs are not only morphologically distinguishable, but their secondary metabolites – especially the essential oils present in flowers are also different, especially the terpenoids. The aim of this project was to preliminarily identify regulatory mechanisms in the terpenoid biosynthetic pathways that differ between German and Roman chamomile by performing comparative transcriptomic and metabolomic analyses. Results We determined the content of essential oils in disk florets and ray florets in these two chamomile species, and found that the terpenoid content in flowers of German chamomile is greater than that of Roman chamomile. In addition, a comparative RNA-seq analysis of German and Roman chamomile showed that 54% of genes shared > 75% sequence identity between the two species. In particular, more highly expressed DEGs (differentially expressed genes) and TF (transcription factor) genes, different regulation of CYPs (cytochrome P450 enzymes), and rapid evolution of downstream genes in the terpenoid biosynthetic pathway of German chamomile could be the main reasons to explain the differences in the types and levels of terpenoid compounds in these two species. In addition, a phylogenetic tree constructed from single copy genes showed that German chamomile and Roman chamomile are closely related to Chrysanthemum nankingense. Conclusion This work provides the first insights into terpenoid biosynthesis in two species of chamomile. The candidate unigenes related to terpenoid biosynthesis will be important in molecular breeding approaches to modulate the essential oil composition of Matricaria recutita and Chamaemelum nobile.
Collapse
Affiliation(s)
- Yuling Tai
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaojuan Hou
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Chun Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Jiameng Sun
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Chunxiao Guo
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Ling Su
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Jiang
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Chengcheng Ling
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Chengxiang Wang
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Huanhuan Wang
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Guifang Pan
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Xiongyuan Si
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Yi Yuan
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
15
|
Mining genes associated with furanocoumarin biosynthesis in an endangered medicinal plant, Glehnia littoralis. J Genet 2020. [DOI: 10.1007/s12041-019-1170-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Song J, Luo H, Xu Z, Zhang Y, Xin H, Zhu D, Zhu X, Liu M, Wang W, Ren H, Chen H, Gao T. Mining genes associated with furanocoumarin biosynthesis in an endangered medicinal plant, Glehnia littoralis. J Genet 2020; 99:11. [PMID: 32089530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The endangered medicinal plant Glehnia littoralis is one of the important natural source of furanocoumarin, which has been used as mucolytic, antitussive, antitumour and antibacterial. However, the genetic information of furanocoumarin biosynthesis in G. littoralis is scarce at present. The objective of this study was to mine the putative candidate genes involved in the biosynthesis pathwayof furanocoumarin and provide references for gene identification, and functional genomics of G. littoralis. We carried out the transcriptome analysis of leaves and roots in G. littoralis, which provided a dataset for gene mining. Psoralen, imperatorin and isoimperatorin were detected in G. littoralis by high performance liquid chromatography analysis. Candidate key genes were mined based on the annotations and local BLAST with homologous sequences using BioEdit software. The relative expression of genes was analysed using quantitative real-time polymerase chain reaction. Further, the CYP450 genes were mined using phylogenetic analyses using MEGA 6.0 software. Atotal of 156,949 unigenes were generated, of which 9021 were differentially-expressed between leaves and roots. A total of 82 unigenes encoding eight enzymes in furanocoumarin biosynthetic pathway were first obtained. Seven genes that encoded key enzymes in the downstream furanocoumarin biosynthetic pathway and expressed more in roots than leaves were screened. Twenty-six candidate CYP450 unigenes expressed abundantly in roots and were chiefly concentrated in CYP71, CYP85 and CYP72 clans. Finally, we filtered 102 differentially expressed transcription factors (TFs) unigenes. The transcriptome of G. littoralis was characterized which would help to elucidate the furanocoumarin biosynthetic pathway in G. littoralis and provide an invaluable resource for further study of furanocoumarin.
Collapse
Affiliation(s)
- Jiejie Song
- Key Laboratory of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
De novo transcriptome of Gymnema sylvestre identified putative lncRNA and genes regulating terpenoid biosynthesis pathway. Sci Rep 2019; 9:14876. [PMID: 31619732 PMCID: PMC6795813 DOI: 10.1038/s41598-019-51355-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 09/16/2019] [Indexed: 01/06/2023] Open
Abstract
Gymnema sylvestre is a highly valuable medicinal plant in traditional Indian system of medicine and used in many polyherbal formulations especially in treating diabetes. However, the lack of genomic resources has impeded its research at molecular level. The present study investigated functional gene profile of G. sylvestre via RNA sequencing technology. The de novo assembly of 88.9 million high quality reads yielded 23,126 unigenes, of which 18116 were annotated against databases such as NCBI nr database, gene ontology (GO), KEGG, Pfam, CDD, PlantTFcat, UniProt & GreeNC. Total 808 unigenes mapped to 78 different Transcription Factor families, whereas 39 unigenes assigned to CYP450 and 111 unigenes coding for enzymes involved in the biosynthesis of terpenoids including transcripts for synthesis of important compounds like Vitamin E, beta-amyrin and squalene. Among them, presence of six important enzyme coding transcripts were validated using qRT-PCR, which showed high expression of enzymes involved in methyl-erythritol phosphate (MEP) pathway. This study also revealed 1428 simple sequence repeats (SSRs), which may aid in molecular breeding studies. Besides this, 8 putative long non-coding RNAs (lncRNAs) were predicted from un-annotated sequences, which may hold key role in regulation of essential biological processes in G. sylvestre. The study provides an opportunity for future functional genomic studies and to uncover functions of the lncRNAs in G. sylvestre.
Collapse
|
18
|
Batista DS, Koehler AD, Romanel E, de Souza VC, Silva TD, Almeida MC, Maciel TEF, Ferreira PRB, Felipe SHS, Saldanha CW, Maldaner J, Dias LLC, Festucci-Buselli RA, Otoni WC. De novo assembly and transcriptome of Pfaffia glomerata uncovers the role of photoautotrophy and the P450 family genes in 20-hydroxyecdysone production. PROTOPLASMA 2019; 256:601-614. [PMID: 30357479 DOI: 10.1007/s00709-018-1322-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Pfaffia glomerata is a medically important species because it produces the phytoecdysteroid 20-hydroxyecdysone (20-E). However, there has been no ready-to-use transcriptome data available in the literature for this plant. Here, we present de novo transcriptome sequencing of RNA from P. glomerata in order to investigate the 20-E production as well as to understand the biochemical pathway of secondary metabolites in this non-model species. We then analyze the effect of photoautotrophy on the production of 20-E genes phylogenetically identified followed by expression analysis. For this, total messenger RNA (mRNA) from leaves, stems, roots, and flowers was used to construct indexed mRNA libraries. Based on the similarity searches against plant non-redundant protein database, gene ontology, and eukaryotic orthologous groups, 164,439 transcripts were annotated. In addition, the effect of photoautotrophy in two genes putatively involved in the 20-E synthesis pathway was analyzed. The Phantom gene (CYP76C), a precursor of the route, showed increased expression in P. glomerata plants cultured under photoautotrophic conditions. This was accompanied by increased production of this metabolite indicating a putative involvement in 20-E synthesis. This work reveals that several genes in the P. glomerata transcriptome are related to secondary metabolism and stresses, that genes of the P450 family participate in the 20-E biosynthesis route, and that plants cultured under photoautotrophic conditions promote an upregulated Phantom gene and enhance the productivity of 20-E. The data will be used for future investigations of the 20-E synthesis pathway in P. glomerata while offering a better understanding of the metabolism of the species.
Collapse
Affiliation(s)
| | - Andréa Dias Koehler
- Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Elisson Romanel
- Laboratório de Genômica de Plantas e Bioenergia (PGEMBL), Departamento de Biotecnologia, EEL/USP, Lorena, SP, Brazil
| | - Vinícius Cairus de Souza
- Departamento de Ciência da Computação, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Tatiane Dulcineia Silva
- Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Maíra Carolina Almeida
- Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Talles Elisson F Maciel
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | | | - Joseila Maldaner
- Centro de Pesquisa em Florestas/DDPA/SEAPI, Santa Maria, RS, Brazil
| | | | | | - Wagner Campos Otoni
- Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
19
|
Pourmazaheri H, Soorni A, Kohnerouz BB, Dehaghi NK, Kalantar E, Omidi M, Naghavi MR. Comparative analysis of the root and leaf transcriptomes in Chelidonium majus L. PLoS One 2019; 14:e0215165. [PMID: 30986259 PMCID: PMC6464174 DOI: 10.1371/journal.pone.0215165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/27/2019] [Indexed: 12/31/2022] Open
Abstract
Chelidonium majus is a traditional medicinal plant, which commonly known as a rich resource for the major benzylisoquinoline alkaloids (BIAs), including morphine, sanguinarine, and berberine. To understand the biosynthesis of C. majus BIAs, we performed de novo transcriptome sequencing of its leaf and root tissues using Illumina technology. Following comprehensive evaluation of de novo transcriptome assemblies produced with five programs including Trinity, Bridger, BinPacker, IDBA-tran, and Velvet/Oases using a series of k-mer sizes (from 25 to 91), BinPacker was found to produce the best assembly using a k-mer of 25. This study reports the results of differential gene expression (DGE), functional annotation, gene ontology (GO) analysis, classification of transcription factor (TF)s, and SSR and miRNA discovery. Our DGE analysis identified 6,028 transcripts that were up-regulated in the leaf, and 4,722 transcripts that were up-regulated in the root. Further investigations showed that most of the genes involved in the BIA biosynthetic pathway are significantly expressed in the root compared to the leaf. GO analysis showed that the predominant GO domain is "cellular component", while TF analysis found bHLH to be the most highly represented TF family. Our study further identified 10 SSRs, out of a total of 39,841, that showed linkage to five unigenes encoding enzymes in the BIA pathway, and 10 conserved miRNAs that were previously not detected in this plant. The comprehensive transcriptome information presented herein provides a foundation for further explorations on study of the molecular mechanisms of BIA synthesis in C. majus.
Collapse
Affiliation(s)
- Helen Pourmazaheri
- Department of Plant Breeding and Biotechnology, College of Agriculture, University of Tabriz, Tabriz, Islamic Republic of Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Islamic Republic of Iran
| | - Aboozar Soorni
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Bahram Baghban Kohnerouz
- Department of Plant Breeding and Biotechnology, College of Agriculture, University of Tabriz, Tabriz, Islamic Republic of Iran
| | - Nafiseh Khosravi Dehaghi
- Department of Pharmacognosy, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Islamic Republic of Iran
| | - Enayatollah Kalantar
- Department of Microbiology and Immunology, Faculty of Medicine, Alborz University of Medical Science, Karaj, Islamic Republic of Iran
| | - Mansoor Omidi
- Agronomy and Plant Breeding Department, Agricultural & Natural Resources College, University of Tehran, Karaj, Islamic Republic of Iran
| | - Mohammad Reza Naghavi
- Agronomy and Plant Breeding Department, Agricultural & Natural Resources College, University of Tehran, Karaj, Islamic Republic of Iran
| |
Collapse
|
20
|
Sun W, Leng L, Yin Q, Xu M, Huang M, Xu Z, Zhang Y, Yao H, Wang C, Xiong C, Chen S, Jiang C, Xie N, Zheng X, Wang Y, Song C, Peters RJ, Chen S. The genome of the medicinal plant Andrographis paniculata provides insight into the biosynthesis of the bioactive diterpenoid neoandrographolide. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:841-857. [PMID: 30444296 PMCID: PMC7252214 DOI: 10.1111/tpj.14162] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 05/09/2023]
Abstract
Andrographis paniculata is a herbaceous dicot plant widely used for its anti-inflammatory and anti-viral properties across its distribution in China, India and other Southeast Asian countries. A. paniculata was used as a crucial therapeutic treatment during the influenza epidemic of 1919 in India, and is still used for the treatment of infectious disease in China. A. paniculata produces large quantities of the anti-inflammatory diterpenoid lactones andrographolide and neoandrographolide, and their analogs, which are touted to be the next generation of natural anti-inflammatory medicines for lung diseases, hepatitis, neurodegenerative disorders, autoimmune disorders and inflammatory skin diseases. Here, we report a chromosome-scale A. paniculata genome sequence of 269 Mb that was assembled by Illumina short reads, PacBio long reads and high-confidence (Hi-C) data. Gene annotation predicted 25 428 protein-coding genes. In order to decipher the genetic underpinning of diterpenoid biosynthesis, transcriptome data from seedlings elicited with methyl jasmonate were also obtained, which enabled the identification of genes encoding diterpenoid synthases, cytochrome P450 monooxygenases, 2-oxoglutarate-dependent dioxygenases and UDP-dependent glycosyltransferases potentially involved in diterpenoid lactone biosynthesis. We further carried out functional characterization of pairs of class-I and -II diterpene synthases, revealing the ability to produce diversified labdane-related diterpene scaffolds. In addition, a glycosyltransferase able to catalyze O-linked glucosylation of andrograpanin, yielding the major active product neoandrographolide, was also identified. Thus, our results demonstrate the utility of the combined genomic and transcriptomic data set generated here for the investigation of the production of the bioactive diterpenoid lactone constituents of the important medicinal herb A. paniculata.
Collapse
Affiliation(s)
- Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Liang Leng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - MeiMei Xu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011-1079, USA
| | - Mingkun Huang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Zhichao Xu
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 100193, Beijing, China
| | - Yujun Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Hui Yao
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 100193, Beijing, China
| | - Caixia Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Chao Xiong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Sha Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Chunhong Jiang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., 341008, Ganzhou, China
| | - Ning Xie
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., 341008, Ganzhou, China
| | - Xilong Zheng
- Hainan Branch, Institute of Medicinal Plant Development, 570311, Wanning, China
| | - Ying Wang
- Wuhan Benagen Tech Solutions Company Limited, 430070, Wuhan, China
| | - Chi Song
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011-1079, USA
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| |
Collapse
|
21
|
Zhao F, Sun M, Zhang W, Jiang C, Teng J, Sheng W, Li M, Zhang A, Duan Y, Xue J. Comparative transcriptome analysis of roots, stems and leaves of Isodon amethystoides reveals candidate genes involved in Wangzaozins biosynthesis. BMC PLANT BIOLOGY 2018; 18:272. [PMID: 30409115 PMCID: PMC6225716 DOI: 10.1186/s12870-018-1505-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/26/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Isodon amethystoides (Ben-th) Cy Wu et Hsuan is an important traditional medicinal plant endowed with pharmacological properties effective in the treatment of various diseases, including pulmonary tuberculosis. The tetracyclic diterpenoids, Wangzaozins (Wangzaozin A, glaucocalyxin A, glaucocalyxin B), are the major bioactive compounds of I. amethystoides. However, the molecular information about the biosynthesis of these compounds still remains unclear. RESULTS An examination of the accumulated levels of Wangzaozins in I. amethystoides revealed considerable variations in the root, stem, and leaf tissues of this plant, indicating possible differences in metabolite biosynthesis and accumulation among various tissues. To better elucidate the tetracyclic diterpenoid biosynthesis pathway, we generated transcriptome sequences from the root, stem, and leaf tissues, and performed de novo sequence assembly, yielding 230,974 transcripts and 114,488 unigenes, with average N50 lengths of 1914 and 1241 bp, respectively. Putative functions could be assigned to 73,693 transcripts (31.9%) based on BLAST searches against annotation databases, including GO, KEGG, Swiss-Prot, NR, and Pfam. Moreover, the candidate genes involving in the diterpenoid biosynthesis, such as CPS, KSL, were also analyzed. The expression profiles of eight transcripts, involving the tetracyclic diterpenoid biosynthesis, were validated in different I. amethystoides tissues by qRT-PCR, unraveling the gene expression profile of the pathway. The differential expressions of ISPD, ISPF and ISPH (MEP pathway), and IaCPS and IaKSL (diterpenoid pathway) candidate genes in leaves and roots, may contribute to the high accumulation of Wangzaozins in I. amethystoides leaves. CONCLUSION The genomic dataset and analyses reported here lay the foundations for further research on this important medicinal plant.
Collapse
Affiliation(s)
- Fenglan Zhao
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Mengchu Sun
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Wanjun Zhang
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Chunli Jiang
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Jingtong Teng
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Wei Sheng
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Mingzhi Li
- Genepioneer Biotechnologies Co. Ltd, Nanjing City, China
| | - Aimin Zhang
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Yongbo Duan
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China.
| | - Jianping Xue
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China.
| |
Collapse
|
22
|
Trends in herbgenomics. SCIENCE CHINA-LIFE SCIENCES 2018; 62:288-308. [PMID: 30128965 DOI: 10.1007/s11427-018-9352-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023]
Abstract
From Shen Nong's Herbal Classic (Shennong Bencao Jing) to the Compendium of Materia Medica (Bencao Gangmu) and the first scientific Nobel Prize for the mainland of China, each milestone in the historical process of the development of traditional Chinese medicine (TCM) involves screening, testing and integrating. After thousands of years of inheritance and development, herbgenomics (bencaogenomics) has bridged the gap between TCM and international advanced omics studies, promoting the application of frontier technologies in TCM. It is a discipline that uncovers the genetic information and regulatory networks of herbs to clarify their molecular mechanism in the prevention and treatment of human diseases. The main theoretical system includes genomics, functional genomics, proteomics, transcriptomics, metabolomics, epigenomics, metagenomics, synthetic biology, pharmacogenomics of TCM, and bioinformatics, among other fields. Herbgenomics is mainly applicable to the study of medicinal model plants, genomic-assisted breeding, herbal synthetic biology, protection and utilization of gene resources, TCM quality evaluation and control, and TCM drug development. Such studies will accelerate the application of cutting-edge technologies, revitalize herbal research, and strongly promote the development and modernization of TCM.
Collapse
|
23
|
Transcriptome Analysis of Bael (Aegle marmelos (L.) Corr.) a Member of Family Rutaceae. FORESTS 2018. [DOI: 10.3390/f9080450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aegle marmelos (L.) Corr. is a medicinally and horticulturally important tree member of the family Rutaceae. It is native to India, where it is also known as Bael. Despite its importance, the genomic resources of this plant are scarce. This study presented the first-ever report of expressed transcripts in the leaves of Aegle marmelos. A total of 133,616 contigs were assembled to 46,335 unigenes with minimum and maximum lengths of 201 bp and 14,853 bp, respectively. There were 7002 transcription factors and 94,479 simple sequence repeat (SSR) markers. The A. marmelos transcripts were also annotated based on information from other members of Rutaceae; namely Citrus clementina and Citrus sinensis. A total of 482 transcripts were annotated as cytochrome p450s (CYPs), and 314 transcripts were annotated as glucosyltransferases (GTs). In the A. marmelos leaves, the monoterpenoid biosynthesis pathway was predominant. This study provides an important genomic resource along with useful information about A. marmelos.
Collapse
|
24
|
Rai MK, Shekhawat JK, Kataria V, Shekhawat N. De novo assembly of leaf transcriptome, functional annotation and genomic resources development in Prosopis cineraria , a multipurpose tree of Indian Thar Desert. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Lin H, Wang J, Qi M, Guo J, Rong Q, Tang J, Wu Y, Ma X, Huang L. Molecular cloning and functional characterization of multiple NADPH-cytochrome P450 reductases from Andrographis paniculata. Int J Biol Macromol 2017; 102:208-217. [DOI: 10.1016/j.ijbiomac.2017.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 01/07/2023]
|
26
|
Xin J, Zhang RC, Wang L, Zhang YQ. Researches on Transcriptome Sequencing in the Study of Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:7521363. [PMID: 28900463 PMCID: PMC5576426 DOI: 10.1155/2017/7521363] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/21/2017] [Accepted: 05/16/2017] [Indexed: 12/12/2022]
Abstract
Due to its incomparable advantages, the application of transcriptome sequencing in the study of traditional Chinese medicine attracts more and more attention of researchers, which greatly promote the development of traditional Chinese medicine. In this paper, the applications of transcriptome sequencing in traditional Chinese medicine were summarized by reviewing recent related papers.
Collapse
Affiliation(s)
- Jie Xin
- School of Pharmacy, Shan Dong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Rong-chao Zhang
- School of Pharmacy, Shan Dong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lei Wang
- School of Pharmacy, Shan Dong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yong-qing Zhang
- School of Pharmacy, Shan Dong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
27
|
De Novo Assembly, Annotation, and Characterization of Root Transcriptomes of Three Caladium Cultivars with a Focus on Necrotrophic Pathogen Resistance/Defense-Related Genes. Int J Mol Sci 2017; 18:ijms18040712. [PMID: 28346370 PMCID: PMC5412298 DOI: 10.3390/ijms18040712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 01/11/2023] Open
Abstract
Roots are vital to plant survival and crop yield, yet few efforts have been made to characterize the expressed genes in the roots of non-model plants (root transcriptomes). This study was conducted to sequence, assemble, annotate, and characterize the root transcriptomes of three caladium cultivars (Caladium × hortulanum) using RNA-Seq. The caladium cultivars used in this study have different levels of resistance to Pythiummyriotylum, the most damaging necrotrophic pathogen to caladium roots. Forty-six to 61 million clean reads were obtained for each caladium root transcriptome. De novo assembly of the reads resulted in approximately 130,000 unigenes. Based on bioinformatic analysis, 71,825 (52.3%) caladium unigenes were annotated for putative functions, 48,417 (67.4%) and 31,417 (72.7%) were assigned to Gene Ontology (GO) and Clusters of Orthologous Groups (COG), respectively, and 46,406 (64.6%) unigenes were assigned to 128 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. A total of 4518 distinct unigenes were observed only in Pythium-resistant "Candidum" roots, of which 98 seemed to be involved in disease resistance and defense responses. In addition, 28,837 simple sequence repeat sites and 44,628 single nucleotide polymorphism sites were identified among the three caladium cultivars. These root transcriptome data will be valuable for further genetic improvement of caladium and related aroids.
Collapse
|