1
|
Geng R, Xu J, Jiang J, Cheng Z, Sun M, Xia N, Gao J. Identification of New Cultivar and Different Provenances of Dendrocalamus brandisii (Poaceae: Bambusoideae) Using Simple Sequence Repeats Developed from the Whole Genome. PLANTS (BASEL, SWITZERLAND) 2024; 13:2910. [PMID: 39458856 PMCID: PMC11511551 DOI: 10.3390/plants13202910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Dendrocalamus brandisii is a high-quality bamboo species that can be used for both bamboo shoots and wood. The nutritional components and flavors of D. brandisii vary from different geographical provenances. However, the unique biological characteristics of bamboo make morphological classification methods unsuitable for distinguishing them. Although the new cultivar 'Manxie No.1' has significant differences in the branch characteristics and the color of shoot sheaths compared to the D. brandisii, it still lacks precise genetic information at the molecular level. This study identified 231,789 microsatellite markers based on the whole genome of D. brandisii and analyzed their type composition and distribution on chromosomes in detail. Then, using TP-M13-SSR fluorescence-labeling technology, 34 pairs of polymorphic primers were screened to identify the new cultivar 'Manxie No.1' and 11 different geographical provenances of D. brandisii. We also constructed DNA fingerprinting profiles for them. At the same time, we mapped six polymorphic SSRs to the gene of D. brandisii, among which SSR673 was mapped to DhB10G011540, which is related to plant immunity. The specific markers selected in this study can rapidly identify the provenances and the new cultivar of D. brandisii and help explore candidate genes related to some important traits.
Collapse
Affiliation(s)
- Ruiman Geng
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China; (R.G.); (J.X.); (J.J.); (Z.C.)
| | - Junlei Xu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China; (R.G.); (J.X.); (J.J.); (Z.C.)
| | - Jutang Jiang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China; (R.G.); (J.X.); (J.J.); (Z.C.)
| | - Zhanchao Cheng
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China; (R.G.); (J.X.); (J.J.); (Z.C.)
| | - Maosheng Sun
- Institute of Bamboo and Rattan, Southwest Forestry University, Kunming 650224, China;
| | - Nianhe Xia
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Jian Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China; (R.G.); (J.X.); (J.J.); (Z.C.)
| |
Collapse
|
2
|
Aydın ÇM, Çelikbıçak Ö, Hayaloğlu AA. Evaluation of antioxidant, antimicrobial, and bioactive properties and peptide sequence composition of Malatya apricot kernels. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8022-8036. [PMID: 38837418 DOI: 10.1002/jsfa.13632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/17/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND This study used four different apricot (Prunus armeniaca) kernels cultivated in Malatya during two consecutive years. The varieties were Hacihaliloglu, Hasanbey, Kabaasi, and Zerdali. The physicochemical properties of the kernels were determined, and the bioactive content of the kernels was evaluated using kernel hydrolysates prepared using trypsin. RESULTS With regard to the physicochemical properties of the kernels, the dry matter ratio and protein content were the highest in the Hacihaliloglu variety; the ash ratio was the highest in the Kabaasi variety, and the free oil ratio was the highest in the Hasanbey variety. The bioactive compound content changed according to kernel variety. Angiotensin-converting enzyme inhibitors activity was found to be the highest in the Hacihaliloglu and Hasanbey varieties, which had the lowest amygdalin content, and Zerdali had the highest amygdalin content. The antioxidant and antimicrobial effects of the kernels varied, with Hasanbey and Kabaasi generally having the highest content in both analyses. Moreover, a concentration of 20 mg mL-1 of the hydrolysate was determined to have a destructive effect for the microorganisms used in this study. The storage protein of the kernels, except Hacihaliloglu, was found to be Prunin 1, with the longest matching protein chain in the kernels being R.QQQGGQLMANGLEETFCSLRLK.E. CONCLUSION The results suggest that the peptide sequences identified in the kernels could have antihypertensive, antioxidative, and Dipeptidyl peptidase IV (DPP-IV) inhibitory effects. Consequently, apricot kernels show potential for use in the production of functional food products. Of the kernels evaluated in this study, Hacihaliloglu and Hasanbey were deemed the most suitable varieties due to their higher bioactive content and lower amygdalin content. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Çağlar Mert Aydın
- Food Processing Technology, Vocational High School, Munzur University, Tunceli, Türkiye
| | - Ömür Çelikbıçak
- Chemistry Department, Faculty of Science, Hacettepe University, Ankara, Türkiye
| | - Ali Adnan Hayaloğlu
- Food Engineering Department, Faculty of Engineering, Inonu University, Malatya, Türkiye
| |
Collapse
|
3
|
Lawrenson T, Clarke M, Kirby R, Forner M, Steuernagel B, Brown JKM, Harwood W. An optimised CRISPR Cas9 and Cas12a mutagenesis toolkit for Barley and Wheat. PLANT METHODS 2024; 20:123. [PMID: 39138524 PMCID: PMC11321142 DOI: 10.1186/s13007-024-01234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND CRISPR Cas9 and Cas12a are the two most frequently used programmable nucleases reported in plant systems. There is now a wide range of component parts for both which likely have varying degrees of effectiveness and potentially applicability to different species. Our aim was to develop and optimise Cas9 and Cas12a based systems for highly efficient genome editing in the monocotyledons barley and wheat and produce a user-friendly toolbox facilitating simplex and multiplex editing in the cereal community. RESULTS We identified a Zea mays codon optimised Cas9 with 13 introns in conjunction with arrayed guides driven by U6 and U3 promoters as the best performer in barley where 100% of T0 plants were simultaneously edited in all three target genes. When this system was used in wheat > 90% of T0 plants were edited in all three subgenome targets. For Cas12a, an Arabidopsis codon optimised sequence with 8 introns gave the best editing efficiency in barley when combined with a tRNA based multiguide array, resulting in 90% mutant alleles in three simultaneously targeted genes. When we applied this Cas12a system in wheat 86% & 93% of T0 plants were mutated in two genes simultaneously targeted. We show that not all introns contribute equally to enhanced mutagenesis when inserted into a Cas12a coding sequence and that there is rationale for including multiple introns. We also show that the combined effect of two features which boost Cas12a mutagenesis efficiency (D156R mutation and introns) is more than the sum of the features applied separately. CONCLUSION Based on the results of our testing, we describe and provide a GoldenGate modular cloning system for Cas9 and Cas12a use in barley and wheat. Proven Cas nuclease and guide expression cassette options found in the toolkit will facilitate highly efficient simplex and multiplex mutagenesis in both species. We incorporate GRF-GIF transformation boosting cassettes in wheat options to maximise workflow efficiency.
Collapse
Affiliation(s)
- Tom Lawrenson
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Martha Clarke
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Rachel Kirby
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Macarena Forner
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - James K M Brown
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Wendy Harwood
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
4
|
Zhou J, Pan Q, Xue Y, Dong Y, Chen Y, Huang L, Zhang B, Liu ZQ, Zheng Y. Synthetic biology for Monascus: From strain breeding to industrial production. Biotechnol J 2024; 19:e2400180. [PMID: 39014924 DOI: 10.1002/biot.202400180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/18/2024]
Abstract
Traditional Chinese food therapies often motivate the development of modern medicines, and learning from them will bring bright prospects. Monascus, a conventional Chinese fungus with centuries of use in the food industry, produces various metabolites, including natural pigments, lipid-lowering substances, and other bioactive ingredients. Recent Monascus studies focused on the metabolite biosynthesis mechanisms, strain modifications, and fermentation process optimizations, significantly advancing Monascus development on a lab scale. However, the advanced manufacture for Monascus is lacking, restricting its scale production. Here, the synthetic biology techniques and their challenges for engineering filamentous fungi were summarized, especially for Monascus. With further in-depth discussions of automatic solid-state fermentation manufacturing and prospects for combining synthetic biology and process intensification, the industrial scale production of Monascus will succeed with the help of Monascus improvement and intelligent fermentation control, promoting Monascus applications in food, cosmetic, agriculture, medicine, and environmental protection industries.
Collapse
Affiliation(s)
- Junping Zhou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Qilu Pan
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yinan Xue
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yaping Dong
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yihong Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Lianggang Huang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
5
|
Vollen K, Zhao C, Alonso JM, Stepanova AN. Sourcing DNA parts for synthetic biology applications in plants. Curr Opin Biotechnol 2024; 87:103140. [PMID: 38723389 DOI: 10.1016/j.copbio.2024.103140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
Transgenic approaches are now standard in plant biology research aiming to characterize gene function or improve crops. Recent advances in DNA synthesis and assembly make constructing transgenes a routine task. What remains nontrivial is the selection of the DNA parts and optimization of the transgene design. Early career researchers and seasoned molecular biologists alike often face difficult decisions on what promoter or terminator to use, what tag to include, and where to place it. This review aims to inform about the current approaches being employed to identify and characterize DNA parts with the desired functionalities and give general advice on basic construct design. Furthermore, we hope to share the excitement about new experimental and computational tools being developed in this field.
Collapse
Affiliation(s)
- Katie Vollen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Chengsong Zhao
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
6
|
Zheng C, Zhou J, Yuan X, Zheng E, Liu X, Cui W, Yan C, Wu Y, Ruan W, Yi K, Chen J, Wang X. Elevating plant immunity by translational regulation of a rice WRKY transcription factor. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1033-1048. [PMID: 37997501 PMCID: PMC10955491 DOI: 10.1111/pbi.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023]
Abstract
Plants have intricate mechanisms that tailor their defence responses to pathogens. WRKY transcription factors play a pivotal role in plant immunity by regulating various defence signalling pathways. Many WRKY genes are transcriptionally activated upon pathogen attack, but how their functions are regulated after transcription remains elusive. Here, we show that OsWRKY7 functions as a crucial positive regulator of rice basal immunity against Xanthomonas oryzae pv. oryzae (Xoo). The activity of OsWRKY7 was regulated at both translational and post-translational levels. Two translational products of OsWRKY7 were generated by alternative initiation. The full-length OsWRKY7 protein is normally degraded by the ubiquitin-proteasome system but was accumulated following elicitor or pathogen treatment, whereas the alternate product initiated from the downstream in-frame start codon was stable. Both the full and alternate OsWRKY7 proteins have transcriptional activities in yeast and rice cells, and overexpression of each form enhanced resistance to Xoo infection. Furthermore, disruption of the main AUG in rice increased the endogenous translation of the alternate stabilized form of OsWRKY7 and enhanced bacterial blight resistance. This study provides insights into the coordination of alternative translation and protein stability in the regulation of plant growth and basal defence mediated by the OsWRKY7 transcription factor, and also suggests a promising strategy to breed disease-resistant rice by translation initiation control.
Collapse
Affiliation(s)
- Chao Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouP. R. China
- College of Plant ProtectionNorthwest A&F UniversityYanglingP.R. China
| | - Jie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouP. R. China
| | - Xiaoya Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouP. R. China
- College of Plant ProtectionNorthwest A&F UniversityYanglingP.R. China
| | - Ersong Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouP. R. China
- College of Plant ProtectionNorthwest A&F UniversityYanglingP.R. China
| | - Xiuli Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouP. R. China
| | - Weijun Cui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouP. R. China
| | - Chengqi Yan
- Institute of BiotechnologyNingbo Academy of Agricultural SciencesNingboP.R. China
| | - Yueyan Wu
- Zhejiang Wan Li UniversityNingboP.R. China
| | - Wenyuan Ruan
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Keke Yi
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouP. R. China
- Institute of Plant VirologyNingbo UniversityNingboP. R. China
| | - Xuming Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouP. R. China
| |
Collapse
|
7
|
Zavallo D, Cara N, Leone M, Crescente JM, Marfil C, Masuelli R, Asurmendi S. Assessing small RNA profiles in potato diploid hybrid and its resynthesized allopolyploid reveals conserved abundance with distinct genomic distribution. PLANT CELL REPORTS 2024; 43:85. [PMID: 38453711 DOI: 10.1007/s00299-024-03170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
KEY MESSAGE The shock produced by the allopolyploidization process on a potato interspecific diploid hybrid displays a non-random remobilization of the small RNAs profile on a variety of genomic features. Allopolyploidy, a complex process involving interspecific hybridization and whole genome duplication, significantly impacts plant evolution, leading to the emergence of novel phenotypes. Polyploids often present phenotypic nuances that enhance adaptability, enabling them to compete better and occasionally to colonize new habitats. Whole-genome duplication represents a genomic "shock" that can trigger genetic and epigenetic changes that yield novel expression patterns. In this work, we investigate the polyploidization effect on a diploid interspecific hybrid obtained through the cross between the cultivated potato Solanum tuberosum and the wild potato Solanum kurtzianum, by assessing the small RNAs (sRNAs) profile of the parental diploid hybrid and its derived allopolyploid. Small RNAs are key components of the epigenetic mechanisms involved in silencing by RNA-directed DNA Methylation (RdDM). A sRNA sequencing (sRNA-Seq) analysis was performed to individually profile the 21 to 22 nucleotide (21 to 22-nt) and 24-nt sRNA size classes due to their unique mechanism of biogenesis and mode of function. The composition and distribution of different genomic features and differentially accumulated (DA) sRNAs were evaluated throughout the potato genome. We selected a subset of genes associated with DA sRNAs for messenger RNA (mRNA) expression analysis to assess potential impacts on the transcriptome. Interestingly, we noted that 24-nt DA sRNAs that exclusively mapped to exons were correlated with differentially expressed mRNAs between genotypes, while this behavior was not observed when 24-nt DA sRNAs were mapped to intronic regions. These findings collectively emphasize the nonstochastic nature of sRNA remobilization in response to the genomic shock induced by allopolyploidization.
Collapse
Affiliation(s)
- Diego Zavallo
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA - Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Los Reseros y Nicolás Repetto, 1686, Hurlingham, CP, Argentina
| | - Nicolas Cara
- Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias (FCA), CONICET-UNCuyo, Almirante Brown 500, M5528AHB, Chacras de Coria, Mendoza, Argentina
| | - Melisa Leone
- Universidad Nacional de Hurlingham, Instituto de Biotecnología, Av. Vergara 2222 (B1688GEZ), Villa Tesei, Buenos Aires, Argentina
| | - Juan Manuel Crescente
- Grupo Biotecnología y Recursos Genéticos, EEA INTA Marcos Juárez, Ruta 12 Km 3, 2580, Marcos Juárez, Argentina
| | - Carlos Marfil
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (EEA-Mendoza-INTA), San Martín 3853, Luján de Cuyo, 5534, Mendoza, Argentina
| | - Ricardo Masuelli
- Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias (FCA), CONICET-UNCuyo, Almirante Brown 500, M5528AHB, Chacras de Coria, Mendoza, Argentina
| | - Sebastián Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA - Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Los Reseros y Nicolás Repetto, 1686, Hurlingham, CP, Argentina.
| |
Collapse
|
8
|
Cao VD, Luo G, Korynta S, Liu H, Liang Y, Shanklin J, Altpeter F. Intron-mediated enhancement of DIACYLGLYCEROL ACYLTRANSFERASE1 expression in energycane promotes a step change for lipid accumulation in vegetative tissues. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:153. [PMID: 37838699 PMCID: PMC10576891 DOI: 10.1186/s13068-023-02393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/09/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Metabolic engineering for hyperaccumulation of lipids in vegetative tissues is a novel strategy for enhancing energy density and biofuel production from biomass crops. Energycane is a prime feedstock for this approach due to its high biomass production and resilience under marginal conditions. DIACYLGLYCEROL ACYLTRANSFERASE (DGAT) catalyzes the last and only committed step in the biosynthesis of triacylglycerol (TAG) and can be a rate-limiting enzyme for the production of TAG. RESULTS In this study, we explored the effect of intron-mediated enhancement (IME) on the expression of DGAT1 and resulting accumulation of TAG and total fatty acid (TFA) in leaf and stem tissues of energycane. To maximize lipid accumulation these evaluations were carried out by co-expressing the lipogenic transcription factor WRINKLED1 (WRI1) and the TAG protect factor oleosin (OLE1). Including an intron in the codon-optimized TmDGAT1 elevated the accumulation of its transcript in leaves by seven times on average based on 5 transgenic lines for each construct. Plants with WRI1 (W), DGAT1 with intron (Di), and OLE1 (O) expression (WDiO) accumulated TAG up to a 3.85% of leaf dry weight (DW), a 192-fold increase compared to non-modified energycane (WT) and a 3.8-fold increase compared to the highest accumulation under the intron-less gene combination (WDO). This corresponded to TFA accumulation of up to 8.4% of leaf dry weight, a 2.8-fold or 6.1-fold increase compared to WDO or WT, respectively. Co-expression of WDiO resulted in stem accumulations of TAG up to 1.14% of DW or TFA up to 2.08% of DW that exceeded WT by 57-fold or 12-fold and WDO more than twofold, respectively. Constitutive expression of these lipogenic "push pull and protect" factors correlated with biomass reduction. CONCLUSIONS Intron-mediated enhancement (IME) of the expression of DGAT resulted in a step change in lipid accumulation of energycane and confirmed that under our experimental conditions it is rate limiting for lipid accumulation. IME should be applied to other lipogenic factors and metabolic engineering strategies. The findings from this study may be valuable in developing a high biomass feedstock for commercial production of lipids and advanced biofuels.
Collapse
Affiliation(s)
- Viet Dang Cao
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Guangbin Luo
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Shelby Korynta
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Hui Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Upton, NY, USA
| | - Yuanxue Liang
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Upton, NY, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA.
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Upton, NY, USA.
- Biosciences Department, Brookhaven National Laboratory, Upton, NY, USA.
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA.
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA.
| |
Collapse
|
9
|
McFarland FL, Collier R, Walter N, Martinell B, Kaeppler SM, Kaeppler HF. A key to totipotency: Wuschel-like homeobox 2a unlocks embryogenic culture response in maize (Zea mays L.). PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1860-1872. [PMID: 37357571 PMCID: PMC10440991 DOI: 10.1111/pbi.14098] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/19/2023] [Accepted: 05/28/2023] [Indexed: 06/27/2023]
Abstract
The ability of plant somatic cells to dedifferentiate, form somatic embryos and regenerate whole plants in vitro has been harnessed for both clonal propagation and as a key component of plant genetic engineering systems. Embryogenic culture response is significantly limited, however, by plant genotype in most species. This impedes advancements in both plant transformation-based functional genomics research and crop improvement efforts. We utilized natural variation among maize inbred lines to genetically map somatic embryo generation potential in tissue culture and identify candidate genes underlying totipotency. Using a series of maize lines derived from crosses involving the culturable parent A188 and the non-responsive parent B73, we identified a region on chromosome 3 associated with embryogenic culture response and focused on three candidate genes within the region based on genetic position and expression pattern. Two candidate genes showed no effect when ectopically expressed in B73, but the gene Wox2a was found to induce somatic embryogenesis and embryogenic callus proliferation. Transgenic B73 cells with strong constitutive expression of the B73 and A188 coding sequences of Wox2a were found to produce somatic embryos at similar frequencies, demonstrating that sufficient expression of either allele could rescue the embryogenic culture phenotype. Transgenic B73 plants were regenerated from the somatic embryos without chemical selection and no pleiotropic effects were observed in the Wox2a overexpression lines in the regenerated T0 plants or in the two independent events which produced T1 progeny. In addition to linking natural variation in tissue culture response to Wox2a, our data support the utility of Wox2a in enabling transformation of recalcitrant genotypes.
Collapse
Affiliation(s)
- Frank L. McFarland
- Department of AgronomyUniversity of WisconsinMadisonWIUSA
- Wisconsin Crop Innovation CenterUniversity of WisconsinMiddletonWIUSA
| | - Ray Collier
- Department of AgronomyUniversity of WisconsinMadisonWIUSA
| | | | | | - Shawn M. Kaeppler
- Department of AgronomyUniversity of WisconsinMadisonWIUSA
- Wisconsin Crop Innovation CenterUniversity of WisconsinMiddletonWIUSA
| | - Heidi F. Kaeppler
- Department of AgronomyUniversity of WisconsinMadisonWIUSA
- Wisconsin Crop Innovation CenterUniversity of WisconsinMiddletonWIUSA
| |
Collapse
|
10
|
Lebedev V. Impact of Intron and Retransformation on Transgene Expression in Leaf and Fruit Tissues of Field-Grown Pear Trees. Int J Mol Sci 2023; 24:12883. [PMID: 37629068 PMCID: PMC10454629 DOI: 10.3390/ijms241612883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Stable and high expression of introduced genes is a prerequisite for using transgenic trees. Transgene stacking enables combining several valuable traits, but repeated transformation increases the risk of unintended effects. This work studied the stability and intron-mediated enhancement of uidA gene expression in leaves and different anatomical parts of pear fruits during field trials over 14 years. The stability of reporter and herbicide resistance transgenes in retransformed pear plants, as well as possible unintended effects using high-throughput phenotyping tools, were also investigated. The activity of β-glucuronidase (GUS) varied depending on the year, but silencing did not occur. The uidA gene was expressed to a maximum in seeds, slightly less in the peel and peduncles, and much less in the pulp of pear fruits. The intron in the uidA gene stably increased expression in leaves and fruits by approximately twofold. Retransformants with the bar gene showed long-term herbicide resistance and exhibited no consistent changes in leaf size and shape. The transgenic pear was used as rootstock and scion, but grafted plants showed no transport of the GUS protein through the graft in the greenhouse and field. This longest field trial of transgenic fruit trees demonstrates stable expression under varying environmental conditions, the expression-enhancing effect of intron and the absence of unintended effects in single- and double-transformed woody plants.
Collapse
Affiliation(s)
- Vadim Lebedev
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
11
|
Kishi-Kaboshi M, Nishizawa-Yokoi A, Mitsuhara I, Toki S, Sasaki K. Excision of DNA fragments with the piggyBac system in Chrysanthemum morifolium. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:157-165. [PMID: 38250294 PMCID: PMC10797517 DOI: 10.5511/plantbiotechnology.23.0324a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/24/2023] [Indexed: 01/23/2024]
Abstract
Chrysanthemum morifolium is one of the most popular ornamental plants in the world. However, as C. morifolium is a segmental hexaploid, self-incompatible, and has a sizable heterologous genome, it is difficult to modify its trait systematically. Genome editing technology is one of the attractive methods for modifying traits systematically. For the commercial use of genetically modified C. morifolium, rigorous stabilization of its quality is essential. This trait stability can be achieved by avoiding further genome modification after suitable trait modification by genome editing. Since C. morifolium is a vegetatively propagated plant, an approach for removing genome editing tools is required. In this study, we attempted to use the piggyBac transposon system to remove specific DNA sequences from the C. morifolium genome. Using the luminescence as a visible marker, we demonstrated that inoculation of Agrobacterium harboring hyperactive piggyBac transposase removes inserted 2.6 kb DNA, which harbors piggyBac recognition sequences, from the modified Eluc sequence.
Collapse
Affiliation(s)
- Mitsuko Kishi-Kaboshi
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki 305-0852, Japan
| | - Ayako Nishizawa-Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan
| | - Ichiro Mitsuhara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan
- Laboratory of Plant Genome Engineering, Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| | - Katsutomo Sasaki
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki 305-0852, Japan
| |
Collapse
|
12
|
Zhong V, Archibald BN, Brophy JAN. Transcriptional and post-transcriptional controls for tuning gene expression in plants. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102315. [PMID: 36462457 DOI: 10.1016/j.pbi.2022.102315] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Plant biotechnologists seek to modify plants through genetic reprogramming, but our ability to precisely control gene expression in plants is still limited. Here, we review transcription and translation in the model plants Arabidopsis thaliana and Nicotiana benthamiana with an eye toward control points that may be used to predictably modify gene expression. We highlight differences in gene expression requirements between these plants and other species, and discuss the ways in which our understanding of gene expression has been used to engineer plants. This review is intended to serve as a resource for plant scientists looking to achieve precise control over gene expression.
Collapse
Affiliation(s)
- Vivian Zhong
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Bella N Archibald
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
13
|
May D, Paldi K, Altpeter F. Targeted mutagenesis with sequence-specific nucleases for accelerated improvement of polyploid crops: Progress, challenges, and prospects. THE PLANT GENOME 2023:e20298. [PMID: 36692095 DOI: 10.1002/tpg2.20298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Many of the world's most important crops are polyploid. The presence of more than two sets of chromosomes within their nuclei and frequently aberrant reproductive biology in polyploids present obstacles to conventional breeding. The presence of a larger number of homoeologous copies of each gene makes random mutation breeding a daunting task for polyploids. Genome editing has revolutionized improvement of polyploid crops as multiple gene copies and/or alleles can be edited simultaneously while preserving the key attributes of elite cultivars. Most genome-editing platforms employ sequence-specific nucleases (SSNs) to generate DNA double-stranded breaks at their target gene. Such DNA breaks are typically repaired via the error-prone nonhomologous end-joining process, which often leads to frame shift mutations, causing loss of gene function. Genome editing has enhanced the disease resistance, yield components, and end-use quality of polyploid crops. However, identification of candidate targets, genotyping, and requirement of high mutagenesis efficiency remain bottlenecks for targeted mutagenesis in polyploids. In this review, we will survey the tremendous progress of SSN-mediated targeted mutagenesis in polyploid crop improvement, discuss its challenges, and identify optimizations needed to sustain further progress.
Collapse
Affiliation(s)
- David May
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Katalin Paldi
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Fredy Altpeter
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
- Plant Cellular and Molecular Biology Program, Genetics Institute, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
| |
Collapse
|
14
|
Garcia C, Furtado de Almeida AA, Costa M, Britto D, Correa F, Mangabeira P, Silva L, Silva J, Royaert S, Marelli JP. Single-base resolution methylomes of somatic embryogenesis in Theobroma cacao L. reveal epigenome modifications associated with somatic embryo abnormalities. Sci Rep 2022; 12:15097. [PMID: 36064870 PMCID: PMC9445004 DOI: 10.1038/s41598-022-18035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 08/04/2022] [Indexed: 11/09/2022] Open
Abstract
Propagation by somatic embryogenesis in Theobroma cacao has some issues to be solved, as many morphologically abnormal somatic embryos that do not germinate into plants are frequently observed, thus hampering plant production on a commercial scale. For the first time the methylome landscape of T. cacao somatic embryogenesis was examined, using whole-genome bisulfite sequencing technique, with the aim to understand the epigenetic basis of somatic embryo abnormalities. We identified 873 differentially methylated genes (DMGs) in the CpG context between zygotic embryos, normal and abnormal somatic embryos, with important roles in development, programmed cell death, oxidative stress, and hypoxia induction, which can help to explain the morphological abnormalities of somatic embryos. We also identified the role of ethylene and its precursor 1-aminocyclopropane-1-carboxylate in several biological processes, such as hypoxia induction, cell differentiation and cell polarity, that could be associated to the development of abnormal somatic embryos. The biological processes and the hypothesis of ethylene and its precursor involvement in the somatic embryo abnormalities in cacao are discussed.
Collapse
Affiliation(s)
| | | | - Marcio Costa
- Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | | | - Fabio Correa
- Department of Statistics, Rhodes University, Makhanda, South Africa
| | - Pedro Mangabeira
- Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | | | - Jose Silva
- Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | | | | |
Collapse
|
15
|
Pan W, Liu X, Li D, Zhang H. Establishment of an Efficient Genome Editing System in Lettuce Without Sacrificing Specificity. FRONTIERS IN PLANT SCIENCE 2022; 13:930592. [PMID: 35812897 PMCID: PMC9257259 DOI: 10.3389/fpls.2022.930592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The efficiency of the CRISPR/Cas9 genome editing system remains limited in many crops. Utilizing strong promoters to boost the expression level of Cas9 are commonly used to improve the editing efficiency. However, these strategies also increase the risk of off-target mutation. Here, we developed a new strategy to utilize intron-mediated enhancement (IME)-assisted 35S promoter to drive Cas9 and sgRNA in a single transcript, which escalates the editing efficiency by moderately enhancing the expression of both Cas9 and sgRNA. In addition, we developed another strategy to enrich cells highly expressing Cas9/sgRNA by co-expressing the developmental regulator gene GRF5, which has been proved to ameliorate the transformation efficiency, and the transgenic plants from these cells also exhibited enhanced editing efficiency. This system elevated the genome editing efficiency from 14-28% to 54-81% on three targets tested in lettuce (Lactuca sativa) without increasing the off-target editing efficiency. Thus, we established a new genome editing system with highly improved on-target editing efficiency and without obvious increasement in off-target effects, which can be used to characterize genes of interest in lettuce and other crops.
Collapse
Affiliation(s)
- Wenbo Pan
- Peking University Institute of Advanced Agricultural Science, Weifang, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Xue Liu
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Dayong Li
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Huawei Zhang
- Peking University Institute of Advanced Agricultural Science, Weifang, China
| |
Collapse
|
16
|
Geddes-McAlister J, Prudhomme N, Gutierrez Gongora D, Cossar D, McLean MD. The emerging role of mass spectrometry-based proteomics in molecular pharming practices. Curr Opin Chem Biol 2022; 68:102133. [DOI: 10.1016/j.cbpa.2022.102133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/02/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
|
17
|
Identification of a biomass unaffected pale green mutant gene in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Sci Rep 2022; 12:7731. [PMID: 35546169 PMCID: PMC9095832 DOI: 10.1038/s41598-022-11825-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
Chlorophyll (Chl) is an essential component of the photosynthetic apparatus and pigments in plant greening. Leaf color is an important agronomic and commercial trait of Chinese cabbage. In this study, we identified a pale green mutant pgm created by ethyl methane sulfonate (EMS) mutagenesis in Chinese cabbage. Compared with wild-type (FT), pgm had a lower Chl content with a higher Chl a/b ratio, imperfect chloroplast structure, and lower non-photochemical quenching. However, its net photosynthetic rate and biomass showed no significant differences. Genetic analysis revealed that the pale green phenotype of pgm was controlled by a recessive nuclear gene, designated as Brpgm. We applied BSR-Seq, linkage analysis, and whole-genome resequencing to map Brpgm and predicted that the target gene was BraA10g007770.3C (BrCAO), which encodes chlorophyllide a oxygenase (CAO). Brcao sequencing results showed that the last nucleotide of its first intron changed from G to A, causing the deletion of the first nucleotide in its second CDS and termination of the protein translation. The expression of BrCAO in pgm was upregulated, and the enzyme activity of CAO in pgm was significantly decreased. These results provide an approach to explore the function of BrCAO and create a pale green variation in Chinese cabbage.
Collapse
|
18
|
Zhou P, Enders TA, Myers ZA, Magnusson E, Crisp PA, Noshay JM, Gomez-Cano F, Liang Z, Grotewold E, Greenham K, Springer NM. Prediction of conserved and variable heat and cold stress response in maize using cis-regulatory information. THE PLANT CELL 2022; 34:514-534. [PMID: 34735005 PMCID: PMC8773969 DOI: 10.1093/plcell/koab267] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/27/2021] [Indexed: 05/04/2023]
Abstract
Changes in gene expression are important for responses to abiotic stress. Transcriptome profiling of heat- or cold-stressed maize genotypes identifies many changes in transcript abundance. We used comparisons of expression responses in multiple genotypes to identify alleles with variable responses to heat or cold stress and to distinguish examples of cis- or trans-regulatory variation for stress-responsive expression changes. We used motifs enriched near the transcription start sites (TSSs) for thermal stress-responsive genes to develop predictive models of gene expression responses. Prediction accuracies can be improved by focusing only on motifs within unmethylated regions near the TSS and vary for genes with different dynamic responses to stress. Models trained on expression responses in a single genotype and promoter sequences provided lower performance when applied to other genotypes but this could be improved by using models trained on data from all three genotypes tested. The analysis of genes with cis-regulatory variation provides evidence for structural variants that result in presence/absence of transcription factor binding sites in creating variable responses. This study provides insights into cis-regulatory motifs for heat- and cold-responsive gene expression and defines a framework for developing models to predict expression responses across multiple genotypes.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Tara A Enders
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Zachary A Myers
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Erika Magnusson
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Peter A Crisp
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jaclyn M Noshay
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Fabio Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Zhikai Liang
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Kathleen Greenham
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| |
Collapse
|
19
|
Kikuta H, Goto S, Kondo M, Akada R, Hoshida H. Identification of essential intron sequences that enhance gene expression independently of splicing in the yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194784. [PMID: 34990853 DOI: 10.1016/j.bbagrm.2021.194784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Gene expression in eukaryotes is enhanced by the presence of introns in a process known as intron-mediated enhancement (IME), but its mechanism remains unclear. In Saccharomyces cerevisiae, sequences at the 5'-splice sites (SS) and branch point sites (BPS) are highly conserved compared with other higher eukaryotes. Here, the minimum intron sequence essential for IME was investigated using various short introns and a yeast codon-optimized luciferase gene as an IME model. Mutations at the 5'-SS conserved sequence and branch point in the QCR10 intron caused splicing deficiency with either a complete loss or a marked decrease in IME. By contrast, however, the 3'-AG to tG mutant was spliced and retained IME function. Moreover, heterologous introns, which did not show IME in S. cerevisiae, gained splicing competency and IME ability by substitutions to the S. cerevisiae-type 5'-SS and BPS sequences. Intriguingly, several deletion mutants between the 5'-SS and BPS in introns exhibited high levels of IME despite a loss in splicing competency. In most cases, further deletions or substitutions did not recover splicing competency and were found to decrease IME. However, a 16-nt variant consisting of the conserved 5'-SS and BPS sequences and 3'-CAG showed an IME level comparable with that of the wild-type intron. These results indicate that IME can be independent of splicing in S. cerevisiae while intron sequences at the 5'-SS and BPS play an essential role in IME.
Collapse
Affiliation(s)
- Hiroki Kikuta
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Satoshi Goto
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Masaki Kondo
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Rinji Akada
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8315, Japan; Yamaguchi University Biomedical Engineering Center, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Hisashi Hoshida
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8315, Japan; Yamaguchi University Biomedical Engineering Center, 2-16-1 Tokiwadai, Ube 755-8611, Japan.
| |
Collapse
|
20
|
Karami M, Fatahi N, Lohrasebi T, Razavi K. RAV transcription factor regulatory function in response to salt stress in two Iranian wheat landraces. JOURNAL OF PLANT RESEARCH 2022; 135:121-136. [PMID: 34853907 DOI: 10.1007/s10265-021-01356-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Amongst the transcription factor groups, the AP2/ERF (Apetala2/Ethylene Response Factor) superfamily is one of the main groups in plants and plays an essential role in tolerating abiotic and biotic stresses. The AP2/ERF superfamily consists of ERF, AP2, RAV, and Soloist families based on the AP2 domain number. The RAV (Related to ABI3/VP1) family members have been revealed to be stimulate by a number of biotic and abiotic environmental incentives; including pathogen infection, salicylic acid, osmotic stress, cold, high salinity, wounding, and exogenous hormone application. However, limited data are available on the contributions of RAV transcription factors in wheat (Triticum aestivum L.). In the present study, a total of 26 RAV genes were identified in wheat from a genome-wide search against the latest wheat genome data. Phylogenetic and sequence alignment analyses divided the wheat RAV genes into 4 clusters, I, II, III and IV. Chromosomal distribution, gene structure and motif composition were subsequently investigated. The 26 TaRAV genes were unevenly distributed on 21 chromosomes. After cloning and sequencing of 7 TaRAVs candidate genes the expression levels of two TaRAVs, TaRAV4 and TaRAV5, were validated through qPCR analyses in two salt-tolerant Iranian landraces of wheat. Our results showed that the TaRAV4 and TaRAV5 were co-expressed in wheat tissues and were highly correlated to salt tolerance indices such as the K+/Na+ ratio. Protein interaction revealed that the TaRAV4 and TaRAV5 were related to vital proteins such as PK4 and PP2C, and MYB and Zinc finger transcription factors, and Gigantea proteins. This study improved our knowledge of the RAV gene family function in wheat and the probable role of RAVs in salt tolerance mechanisms to improve crop production under changing environments. Also, the two relatively salt-tolerant landraces of wheat that were examined in this study could be suitable candidates for future breeding studies.
Collapse
Affiliation(s)
- Mohamad Karami
- Agriculture Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Narjes Fatahi
- Tehranshargh, Science Faculty, Payamnoor University, Tehran, Iran
| | - Tahmineh Lohrasebi
- Agriculture Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Khadijeh Razavi
- Agriculture Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
21
|
Kumar M, Ayzenshtat D, Marko A, Bocobza S. Optimization of T-DNA configuration with UBIQUITIN10 promoters and tRNA-sgRNA complexes promotes highly efficient genome editing in allotetraploid tobacco. PLANT CELL REPORTS 2022; 41:175-194. [PMID: 34623476 DOI: 10.1007/s00299-021-02796-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Combination of UBIQUITIN10 promoter-directed CAS9 and tRNA-gRNA complexes in gene-editing assay induces 80% mutant phenotype with a knockout of the four allelic copies in the T0 generation of allotetraploid tobaccos. While gene-editing methodologies, such as CRISPR-Cas9, have been developed and successfully used in many plant species, their use remains challenging, because they most often rely on stable or transient transgene expression. Regrettably, in all plant species, transformation causes epigenetic effects such as gene silencing and variable transgene expression. Here, UBIQUITIN10 promoters from several plant species were characterized and showed their capacity to direct high levels of transgene expression in transient and stable transformation assays, which in turn was used to improve the selection process of regenerated transformants. Furthermore, we compared various sgRNAs delivery systems and showed that the combination of UBIQUITIN10 promoters and tRNA-sgRNA complexes produced 80% mutant phenotype with a complete knockout of the four allelic copies, while the remaining 20% exhibited weaker phenotype, which suggested partial allelic knockout, in the T0 generation of the allotetraploid Nicotiana tabacum. These data provide valuable information to optimize future designs of gene editing constructs for plant research and crop improvement and open the way for valuable gene editing projects in non-model Solanaceae species.
Collapse
MESH Headings
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Gene Editing/methods
- Genome, Plant
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Tetraploidy
- Nicotiana/genetics
- Ubiquitins/genetics
- Ubiquitins/metabolism
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Dana Ayzenshtat
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Adar Marko
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Samuel Bocobza
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeZion, Israel.
| |
Collapse
|
22
|
Genome-Scale Computational Identification and Characterization of UTR Introns in Atalantia buxifolia. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Accumulated evidence has shown that CDS introns (CIs) play important roles in regulating gene expression. However, research on UTR introns (UIs) is limited. In this study, UIs (including 5′UTR and 3′UTR introns (5UIs and 3UIs)) were identified from the Atalantia buxifolia genome. The length and nucleotide distribution characteristics of both 5UIs and 3UIs and the distributions of cis-acting elements and transcription factor binding sites (TFBSs) in 5UIs were investigated. Moreover, PageMan enrichment analysis was applied to show the possible roles of transcripts containing UIs (UI-Ts). In total, 1077 5UIs and 866 3UIs were identified from 897 5UI-Ts and 670 3UI-Ts, respectively. Among them, 765 (85.28%) 5UI-Ts and 527 (78.66%) 3UI-Ts contained only one UI, and 94 (6.38%) UI-Ts contained both 5UI and 3UI. The UI density was lower than that of CDS introns, but their mean and median intron sizes were ~2 times those of the CDS introns. The A. buxifolia 5UIs were rich in gene-expression-enhancement-related elements and contained many TFBSs for BBR-BPC, MIKC_MADS, AP2 and Dof TFs, indicating that 5UIs play a role in regulating or enhancing the expression of downstream genes. Enrichment analysis revealed that UI-Ts involved in ‘not assigned’ and ‘RNA’ pathways were significantly enriched. Noteworthily, 119 (85.61%) of the 3UI-Ts were genes encoding pentatricopeptide (PPR) repeat-containing proteins. These results will be helpful for the future study of the regulatory roles of UIs in A. buxifolia.
Collapse
|
23
|
Jain M, Garg R. Enhancers as potential targets for engineering salinity stress tolerance in crop plants. PHYSIOLOGIA PLANTARUM 2021; 173:1382-1391. [PMID: 33837536 DOI: 10.1111/ppl.13421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/19/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Enhancers represent noncoding regulatory regions of the genome located distantly from their target genes. They regulate gene expression programs in a context-specific manner via interacting with promoters of one or more target genes and are generally associated with transcription factor binding sites and epi(genomic)/chromatin features, such as regions of chromatin accessibility and histone modifications. The enhancers are difficult to identify due to the modularity of their associated features. Although enhancers have been studied extensively in human and animals, only a handful of them has been identified in few plant species till date due to nonavailability of plant-specific experimental and computational approaches for their discovery. Being an important regulatory component of the genome, enhancers represent potential targets for engineering agronomic traits, including salinity stress tolerance in plants. Here, we provide a review of the available experimental and computational approaches along with the associated sequence and chromatin/epigenetic features for the discovery of enhancers in plants. In addition, we provide insights into the challenges and future prospects of enhancer research in plant biology with emphasis on potential applications in engineering salinity stress tolerance in crop plants.
Collapse
Affiliation(s)
- Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
24
|
Watson JM, Trieb J, Troestl M, Renfrew K, Mandakova T, Fulnecek J, Shippen DE, Riha K. A hypomorphic allele of telomerase uncovers the minimal functional length of telomeres in Arabidopsis. Genetics 2021; 219:6339584. [PMID: 34849882 DOI: 10.1093/genetics/iyab126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/23/2021] [Indexed: 12/23/2022] Open
Abstract
Despite the essential requirement of telomeric DNA for genome stability, the length of telomere tracts between species substantially differs, raising the question of the minimal length of telomeric DNA necessary for proper function. Here, we address this question using a hypomorphic allele of the telomerase catalytic subunit, TERT. We show that although this construct partially restored telomerase activity to a tert mutant, telomeres continued to shorten over several generations, ultimately stabilizing at a bimodal size distribution. Telomeres on two chromosome arms were maintained at a length of 1 kb, while the remaining telomeres were maintained at 400 bp. The longest telomeres identified in this background were also significantly longer in wild-type populations, suggesting cis-acting elements on these arms either promote telomerase processivity or recruitment. Genetically disrupting telomerase processivity in this background resulted in immediate lethality. Thus, telomeres of 400 bp are both necessary and sufficient for Arabidopsis viability. As this length is the estimated minimal length for t-loop formation, our data suggest that telomeres long enough to form a t-loop constitute the minimal functional length.
Collapse
Affiliation(s)
- J Matthew Watson
- Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Johanna Trieb
- Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Martina Troestl
- Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Kyle Renfrew
- Department of Biochemistry, Texas A&M University, College Station, TX 77840, USA
| | - Terezie Mandakova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Jaroslav Fulnecek
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Dorothy E Shippen
- Department of Biochemistry, Texas A&M University, College Station, TX 77840, USA
| | - Karel Riha
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
25
|
Kim S, Song H, Hur Y. Intron-retained radish (Raphanus sativus L.) RsMYB1 transcripts found in colored-taproot lines enhance anthocyanin accumulation in transgenic Arabidopsis plants. PLANT CELL REPORTS 2021; 40:1735-1749. [PMID: 34308490 DOI: 10.1007/s00299-021-02735-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Overexpression of the naturally occurring intron-retained (IR) forms of radish RsMYB1 and RsTT8 transcripts in Arabidopsis causes a substantial increase in anthocyanin accumulation. The production of anthocyanins in plants is tightly controlled by the MYB-bHLH-WD40 (MBW) complex. In this study, analysis of four radish (Raphanus sativus L.) inbred lines with different colored taproots revealed that regulatory genes of anthocyanin biosynthesis, RsMYB1 and RsTT8, produce three transcripts, one completely spliced and two intron retention (IR1 and IR2) forms. Transcripts RsMYB1-IR1 and RsMYB1-IR2 retained the 1st (380 nt) and 2nd (149 nt) introns, respectively; RsTT8-IR1 retained the 4th intron (113 nt); RsTT8-IR2 retained both the 3rd (128 nt) and 4th introns. Levels of most IR forms were substantially low in radish samples, but the RsTT8-IR2 level was higher than RsTT8 in red skin/red flesh (RsRf) root. Since all IR forms contained a stop codon within the intron, they were predicted to encode truncated proteins with defective interaction domains, resulting in the inability to form the MBW complex in vivo. However, tobacco leaves transiently co-expressing RsMYB1-IRs and RsTT8-IRs showed substantially higher anthocyanin accumulation than those co-expressing their spliced forms. Consistently, co-expression of constructs encoding truncated proteins with spliced or IR forms of their interaction partner in tobacco leaves did not result in anthocyanin accumulation. Compared with RsMYB1, the overexpression of RsMYB1-IRs in Arabidopsis pap1 mutant increased anthocyanin accumulation by > sevenfold and upregulated the expression of Arabidopsis flavonoid biosynthesis genes including AtTT8. Our results suggest that the stable co-expression of RsMYB1-IRs in fruit trees and vegetable crops could be used to increase their anthocyanin contents.
Collapse
Affiliation(s)
- Soyun Kim
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hayoung Song
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yoonkang Hur
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
26
|
You H, Sun B, Li N, Xu JW. Efficient expression of heterologous genes by the introduction of the endogenous glyceraldehyde-3-phosphate dehydrogenase gene intron 1 in Ganoderma lucidum. Microb Cell Fact 2021; 20:164. [PMID: 34419069 PMCID: PMC8379801 DOI: 10.1186/s12934-021-01654-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
Background Ganoderma lucidum, a well-known medicinal mushroom, has received wide attention as a promising cell factory for producing bioactive compounds. However, efficient expression of heterologous genes remains a major challenge in Ganoderma, hindering metabolic regulation research and molecular breeding of this species. Results We show that the presence of glyceraldehyde-3-phosphate dehydrogenase gene (gpd) intron 1 at the 5′ end of, the 3′ end of, or within the heterologous phosphinothricin-resistant gene (bar) is efficient for its expression in G. lucidum. The enhanced expression of bar is exhibited by the higher accumulation of mRNA and increased amounts of protein. Moreover, the insertion of the gpd intron 1 in the β-glucuronidase gene (gus) elevates its mRNA accumulation and enzyme activity, which facilitates the use of this reporter gene in Ganoderma. Conclusions This study has demonstrated the importance of the introduction of gpd intron 1 for the efficient expression of bar and gus in G. lucidum. The presence of the gpd intron 1 in heterologous genes increases levels of mRNA accumulation and protein expression in basidiomycete Ganoderma. The developed method may be utilized in upregulating the expression of other heterologous genes in Ganoderma. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01654-8.
Collapse
Affiliation(s)
- Hao You
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bin Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Na Li
- Faculty of Science, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jun-Wei Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
27
|
Ikeda C, Taku K, Miyazaki T, Shirai R, Nelson RS, Nyunoya H, Matsushita Y, Sasaki N. Cooperative roles of introns 1 and 2 of tobacco resistance gene N in enhanced N transcript expression and antiviral defense responses. Sci Rep 2021; 11:15424. [PMID: 34326371 PMCID: PMC8322402 DOI: 10.1038/s41598-021-94713-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/15/2021] [Indexed: 12/03/2022] Open
Abstract
The tobacco virus resistance gene N contains four introns. Transient expression of transcripts from an N transgene containing these introns and driven by the native promoter in the presence of the elicitor of tobacco mosaic virus resulted in its increased expression. The requirement of the native promoter, the elicitor, or the individual introns for enhanced expression of N has not been fully studied. Here, we determined that 35S promoter-driven N transcript expression could be enhanced in the presence of the four introns regardless of the co-expression of the virus elicitor in tobacco. Function analyses using a series of N transgenes with different combination of introns revealed that the presence of intron 1 more so than intron 2 allowed higher accumulation of premature and mature N transcripts; however, both introns were important for not only enhanced gene expression but also for induction of cell death in tobacco and induced local resistance to spread of virus in Nicotiana benthamiana. Our findings indicate that introns 1 and 2 cooperatively contribute to N expression and virus resistance.
Collapse
Affiliation(s)
- Chihiro Ikeda
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Kazuo Taku
- Gene Research Center, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Tsumugi Miyazaki
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Rikako Shirai
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Richard S Nelson
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Hiroshi Nyunoya
- Gene Research Center, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- Faculty of Science and Engineering, Waseda University, Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Yasuhiko Matsushita
- Gene Research Center, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Nobumitsu Sasaki
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan.
- Gene Research Center, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan.
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
28
|
Hsieh KT, Chen YT, Hu TJ, Lin SM, Hsieh CH, Liu SH, Shiue SY, Lo SF, Wang IW, Tseng CS, Chen LJ. Comparisons within the Rice GA 2-Oxidase Gene Family Revealed Three Dominant Paralogs and a Functional Attenuated Gene that Led to the Identification of Four Amino Acid Variants Associated with GA Deactivation Capability. RICE (NEW YORK, N.Y.) 2021; 14:70. [PMID: 34322729 PMCID: PMC8319247 DOI: 10.1186/s12284-021-00499-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/03/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND GA 2-oxidases (GA2oxs) are involved in regulating GA homeostasis in plants by inactivating bioactive GAs through 2β-hydroxylation. Rice GA2oxs are encoded by a family of 10 genes; some of them have been characterized, but no comprehensive comparisons for all these genes have been conducted. RESULTS Rice plants with nine functional GA2oxs were demonstrated in the present study, and these genes not only were differentially expressed but also revealed various capabilities for GA deactivation based on their height-reducing effects in transgenic plants. Compared to that of wild-type plants, the relative plant height (RPH) of transgenic plants was scored to estimate their reducing effects, and 8.3% to 59.5% RPH was observed. Phylogenetic analysis of class I GA2ox genes revealed two functionally distinct clades in the Poaceae. The OsGA2ox3, 4, and 8 genes belonging to clade A showed the most severe effect (8.3% to 8.7% RPH) on plant height reduction, whereas the OsGA2ox7 gene belonging to clade B showed the least severe effect (59.5% RPH). The clade A OsGA2ox3 gene contained two conserved C186/C194 amino acids that were crucial for enzymatic activity. In the present study, these amino acids were replaced with OsGA2ox7-conserved arginine (C186R) and proline (C194P), respectively, or simultaneously (C186R/C194P) to demonstrate their importance in planta. Another two amino acids, Q220 and Y274, conserved in OsGA2ox3 were substituted with glutamic acid (E) and phenylalanine (F), respectively, or simultaneously to show their significance in planta. In addition, through sequence divergence, RNA expression profile and GA deactivation capability analyses, we proposed that OsGA2ox1, OsGA2ox3 and OsGA2ox6 function as the predominant paralogs in each of their respective classes. CONCLUSIONS This study demonstrates rice has nine functional GA2oxs and the class I GA2ox genes are divided into two functionally distinct clades. Among them, the OsGA2ox7 of clade B is a functional attenuated gene and the OsGA2ox1, OsGA2ox3 and OsGA2ox6 are the three predominant paralogs in the family.
Collapse
Affiliation(s)
- Kun-Ting Hsieh
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yi-Ting Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Ting-Jen Hu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shih-Min Lin
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chih-Hung Hsieh
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Su-Hui Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shiau-Yu Shiue
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shuen-Fang Lo
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| | - I-Wen Wang
- Division of Biotechnology, Taiwan Agriculture Research Institute, Taichung, 41362, Taiwan
| | - Ching-Shan Tseng
- Division of Biotechnology, Taiwan Agriculture Research Institute, Taichung, 41362, Taiwan
| | - Liang-Jwu Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan.
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
29
|
Dwyer K, Agarwal N, Gega A, Ansari A. Proximity to the Promoter and Terminator Regions Regulates the Transcription Enhancement Potential of an Intron. Front Mol Biosci 2021; 8:712639. [PMID: 34291091 PMCID: PMC8287100 DOI: 10.3389/fmolb.2021.712639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/25/2021] [Indexed: 11/15/2022] Open
Abstract
An evolutionarily conserved feature of introns is their ability to enhance expression of genes that harbor them. Introns have been shown to regulate gene expression at the transcription and post-transcription level. The general perception is that a promoter-proximal intron is most efficient in enhancing gene expression and the effect diminishes with the increase in distance from the promoter. Here we show that the intron regains its positive influence on gene expression when in proximity to the terminator. We inserted ACT1 intron into different positions within IMD4 and INO1 genes. Transcription Run-On (TRO) analysis revealed that the transcription of both IMD4 and INO1 was maximal in constructs with a promoter-proximal intron and decreased with the increase in distance of the intron from the promoter. However, activation was partially restored when the intron was placed close to the terminator. We previously demonstrated that the promoter-proximal intron stimulates transcription by affecting promoter directionality through gene looping-mediated recruitment of termination factors in the vicinity of the promoter region. Here we show that the terminator-proximal intron also enhances promoter directionality and results in compact gene architecture with the promoter and terminator regions in close physical proximity. Furthermore, we show that both the promoter and terminator-proximal introns facilitate assembly or stabilization of the preinitiation complex (PIC) on the promoter. On the basis of these findings, we propose that proximity to both the promoter and the terminator regions affects the transcription regulatory potential of an intron, and the terminator-proximal intron enhances transcription by affecting both the assembly of preinitiation complex and promoter directionality.
Collapse
Affiliation(s)
| | | | | | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| |
Collapse
|
30
|
Vetrici MA, Yevtushenko DP, Misra S. Douglas-fir LEAFY COTYLEDON1 ( PmLEC1) is an active transcription factor during zygotic and somatic embryogenesis. PLANT DIRECT 2021; 5:e00333. [PMID: 34355111 PMCID: PMC8320655 DOI: 10.1002/pld3.333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Douglas-fir (Pseudotsuga menziesii) is one of the world's premier lumber species and somatic embryogenesis (SE) is the most promising method for rapid propagation of superior tree genotypes. The development and optimization of SE protocols in conifers is hindered by a lack of knowledge of the molecular basis of embryogenesis and limited sequence data. In Arabidopsis, the LEAFY COTYLEDON1 (AtLEC1) gene is a master regulator of embryogenesis that induces SE when expressed ectopically. We isolated the LEC1 homologue from Douglas-fir, designated as PmLEC1. PmLEC1 expression in somatic embryos and developing seeds demonstrated a unique, alternating pattern of expression with the highest levels during early stages of embryogenesis. PmLEC1 protein accumulation during seed development correlated with its transcriptional levels during early embryogenesis; however, substantial protein levels persisted until 2 weeks on germination medium. Treatment of mature, stratified seeds with 2,4-epibrassinolide, sorbitol, mannitol, or NaCl upregulated PmLEC1 expression, which may provide strategies to induce SE from mature tissues. Sequence analysis of the PmLEC1 gene revealed a 5' UTR intron containing binding sites for transcription factors (TFs), such as ABI3, LEC2, FUS3, and AGL15, which are critical regulators of embryogenesis in angiosperms. Regulatory elements for these and other seed-specific TFs and biotic and abiotic signals were identified within the PmLEC1 locus. Most importantly, functional analysis of PmLEC1 showed that it rescued the Arabidopsis lec1-1 null mutant and, in the T2 generation, led to the development of embryo-like structures, indicating a key role of PmLEC1 in the regulation of embryogenesis.
Collapse
Affiliation(s)
- Mariana A. Vetrici
- Department of Biological SciencesUniversity of LethbridgeLethbridgeABCanada
- Centre for Forest BiologyDepartment of Biochemistry & MicrobiologyUniversity of VictoriaVictoriaBCCanada
| | | | - Santosh Misra
- Centre for Forest BiologyDepartment of Biochemistry & MicrobiologyUniversity of VictoriaVictoriaBCCanada
| |
Collapse
|
31
|
Back G, Walther D. Identification of cis-regulatory motifs in first introns and the prediction of intron-mediated enhancement of gene expression in Arabidopsis thaliana. BMC Genomics 2021; 22:390. [PMID: 34039279 PMCID: PMC8157754 DOI: 10.1186/s12864-021-07711-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Intron mediated enhancement (IME) is the potential of introns to enhance the expression of its respective gene. This essential function of introns has been observed in a wide range of species, including fungi, plants, and animals. However, the mechanisms underlying the enhancement are as of yet poorly understood. The goal of this study was to identify potential IME-related sequence motifs and genomic features in first introns of genes in Arabidopsis thaliana. RESULTS Based on the rationale that functional sequence motifs are evolutionarily conserved, we exploited the deep sequencing information available for Arabidopsis thaliana, covering more than one thousand Arabidopsis accessions, and identified 81 candidate hexamer motifs with increased conservation across all accessions that also exhibit positional occurrence preferences. Of those, 71 were found associated with increased correlation of gene expression of genes harboring them, suggesting a cis-regulatory role. Filtering further for effect on gene expression correlation yielded a set of 16 hexamer motifs, corresponding to five consensus motifs. While all five motifs represent new motif definitions, two are similar to the two previously reported IME-motifs, whereas three are altogether novel. Both consensus and hexamer motifs were found associated with higher expression of alleles harboring them as compared to alleles containing mutated motif variants as found in naturally occurring Arabidopsis accessions. To identify additional IME-related genomic features, Random Forest models were trained for the classification of gene expression level based on an array of sequence-related features. The results indicate that introns contain information with regard to gene expression level and suggest sequence-compositional features as most informative, while position-related features, thought to be of central importance before, were found with lower than expected relevance. CONCLUSIONS Exploiting deep sequencing and broad gene expression information and on a genome-wide scale, this study confirmed the regulatory role on first-introns, characterized their intra-species conservation, and identified a set of novel sequence motifs located in first introns of genes in the genome of the plant Arabidopsis thaliana that may play a role in inducing high and correlated gene expression of the genes harboring them.
Collapse
Affiliation(s)
- Georg Back
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany.
| |
Collapse
|
32
|
Xia T, Yang Y, Zheng H, Han X, Jin H, Xiong Z, Qian W, Xia L, Ji X, Li G, Wang D, Zhang K. Efficient expression and function of a receptor-like kinase in wheat powdery mildew defence require an intron-located MYB binding site. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:897-909. [PMID: 33225586 PMCID: PMC8131041 DOI: 10.1111/pbi.13512] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 05/10/2023]
Abstract
The LRK10-like receptor kinases (LRK10L-RLKs) are ubiquitously present in higher plants, but knowledge of their expression and function is still limited. Here, we report expression and functional analysis of TtdLRK10L-1, a typical LRK10L-RLK in durum wheat (Triticum turgidum L. ssp. durum). The introns of TtdLRK10L-1 contained multiple kinds of predicted cis-elements. To investigate the potential effect of these cis-elements on TtdLRK10L-1 expression and function, two types of transgenic wheat lines were prepared, which expressed a GFP-tagged TtdLRK10L-1 protein (TtdLRK10L-1:GFP) from the cDNA or genomic DNA (gDNA) sequence of TtdLRK10L-1 under the native promoter. TtdLRK10L-1:GFP expression was up-regulated by the powdery mildew pathogen Blumeria graminis f. sp. tritici (Bgt) in both types of transgenic plants, with the scale of the elevation being much stronger in the gDNA lines. Both types of transgenic plants exhibited enhanced resistance to Bgt infection relative to wild type control. Notably, the Bgt defence activated in the gDNA lines was significantly stronger than that in the cDNA lines. Further analysis revealed that a putative MYB transcription factor binding site (MYB-BS, CAGTTA) located in TtdLRK10L-1 intron I was critical for the efficient expression and function of TtdLRK10L-1 in Bgt defence. This MYB-BS could also increase the activity of a superpromoter widely used in ectopic gene expression studies in plants. Together, our results deepen the understanding of the expression and functional characteristics of LRK10L-RLKs. TtdLRK10L-1 is likely useful for further dissecting the molecular processes underlying wheat defence against Bgt and for developing Bgt resistant wheat crops.
Collapse
Affiliation(s)
- Tengfei Xia
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yanping Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hongyuan Zheng
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Xinyun Han
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Huaibing Jin
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Zijun Xiong
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesPeking UniversityBeijingChina
| | - Lanqi Xia
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xiang Ji
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Guangwei Li
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Daowen Wang
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kunpu Zhang
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
33
|
Dwyer K, Agarwal N, Pile L, Ansari A. Gene Architecture Facilitates Intron-Mediated Enhancement of Transcription. Front Mol Biosci 2021; 8:669004. [PMID: 33968994 PMCID: PMC8097089 DOI: 10.3389/fmolb.2021.669004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/31/2021] [Indexed: 12/28/2022] Open
Abstract
Introns impact several vital aspects of eukaryotic organisms like proteomic plasticity, genomic stability, stress response and gene expression. A role for introns in the regulation of gene expression at the level of transcription has been known for more than thirty years. The molecular basis underlying the phenomenon, however, is still not entirely clear. An important clue came from studies performed in budding yeast that indicate that the presence of an intron within a gene results in formation of a multi-looped gene architecture. When looping is defective, these interactions are abolished, and there is no enhancement of transcription despite normal splicing. In this review, we highlight several potential mechanisms through which looping interactions may enhance transcription. The promoter-5′ splice site interaction can facilitate initiation of transcription, the terminator-3′ splice site interaction can enable efficient termination of transcription, while the promoter-terminator interaction can enhance promoter directionality and expedite reinitiation of transcription. Like yeast, mammalian genes also exhibit an intragenic interaction of the promoter with the gene body, especially exons. Such promoter-exon interactions may be responsible for splicing-dependent transcriptional regulation. Thus, the splicing-facilitated changes in gene architecture may play a critical role in regulation of transcription in yeast as well as in higher eukaryotes.
Collapse
Affiliation(s)
- Katherine Dwyer
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| | - Neha Agarwal
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| | - Lori Pile
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| |
Collapse
|
34
|
Biosensors: A Sneak Peek into Plant Cell's Immunity. Life (Basel) 2021; 11:life11030209. [PMID: 33800034 PMCID: PMC7999283 DOI: 10.3390/life11030209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 12/26/2022] Open
Abstract
Biosensors are indispensable tools to understand a plant’s immunity as its spatiotemporal dimension is key in withstanding complex plant immune signaling. The diversity of genetically encoded biosensors in plants is expanding, covering new analytes with ever higher sensitivity and robustness, but their assortment is limited in some respects, such as their use in following biotic stress response, employing more than one biosensor in the same chassis, and their implementation into crops. In this review, we focused on the available biosensors that encompass these aspects. We show that in vivo imaging of calcium and reactive oxygen species is satisfactorily covered with the available genetically encoded biosensors, while on the other hand they are still underrepresented when it comes to imaging of the main three hormonal players in the immune response: salicylic acid, ethylene and jasmonic acid. Following more than one analyte in the same chassis, upon one or more conditions, has so far been possible by using the most advanced genetically encoded biosensors in plants which allow the monitoring of calcium and the two main hormonal pathways involved in plant development, auxin and cytokinin. These kinds of biosensor are also the most evolved in crops. In the last section, we examine the challenges in the use of biosensors and demonstrate some strategies to overcome them.
Collapse
|
35
|
Kemppainen M, Chowdhury J, Lundberg-Felten J, Pardo A. Fluorescent protein expression in the ectomycorrhizal fungus Laccaria bicolor: a plasmid toolkit for easy use of fluorescent markers in basidiomycetes. Curr Genet 2020; 66:791-811. [PMID: 32170354 DOI: 10.1007/s00294-020-01060-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 10/24/2022]
Abstract
For long time, studies on ectomycorrhiza (ECM) have been limited by inefficient expression of fluorescent proteins (FPs) in the fungal partner. To convert this situation, we have evaluated the basic requirements of FP expression in the model ECM homobasidiomycete Laccaria bicolor and established eGFP and mCherry as functional FP markers. Comparison of intron-containing and intronless FP-expression cassettes confirmed that intron-processing is indispensable for efficient FP expression in Laccaria. Nuclear FP localization was obtained via in-frame fusion of FPs between the intron-containing genomic gene sequences of Laccaria histone H2B, while cytosolic FP expression was produced by incorporating the intron-containing 5' fragment of the glyceraldehyde-3-phosphate dehydrogenase encoding gene. In addition, we have characterized the consensus Kozak sequence of strongly expressed genes in Laccaria and demonstrated its boosting effect on transgene mRNA accumulation. Based on these results, an Agrobacterium-mediated transformation compatible plasmid set was designed for easy use of FPs in Laccaria. The four cloning plasmids presented here allow fast and highly flexible construction of C-terminal in-frame fusions between the sequences of interest and the two FPs, expressed either from the endogenous gene promoter, allowing thus evaluation of the native regulation modes of the gene under study, or alternatively, from the constitutive Agaricus bisporus gpdII promoter for enhanced cellular protein localization assays. The molecular tools described here for cell-biological studies in Laccaria can also be exploited in studies of other biotrophic or saprotrophic basidiomycete species susceptible to genetic transformation.
Collapse
Affiliation(s)
- Minna Kemppainen
- Laboratory of Molecular Mycology, Institute of Basic and Applied Microbiology, Department of Science and Technology, Nacional University of Quilmes and CONICET, Bernal, Buenos Aires, Argentina.
| | - Jamil Chowdhury
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Judith Lundberg-Felten
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Alejandro Pardo
- Laboratory of Molecular Mycology, Institute of Basic and Applied Microbiology, Department of Science and Technology, Nacional University of Quilmes and CONICET, Bernal, Buenos Aires, Argentina
| |
Collapse
|
36
|
Baier T, Jacobebbinghaus N, Einhaus A, Lauersen KJ, Kruse O. Introns mediate post-transcriptional enhancement of nuclear gene expression in the green microalga Chlamydomonas reinhardtii. PLoS Genet 2020; 16:e1008944. [PMID: 32730252 PMCID: PMC7419008 DOI: 10.1371/journal.pgen.1008944] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/11/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Efficient nuclear transgene expression in the green microalga Chlamydomonas reinhardtii is generally hindered by low transcription rates. Introns can increase transcript abundance by a process called Intron-Mediated Enhancement (IME) in this alga and has been broadly observed in other eukaryotes. However, the mechanisms of IME in microalgae are poorly understood. Here, we identified 33 native introns from highly expressed genes in C. reinhardtii selected from transcriptome studies as well as 13 non-native introns. We investigated their IME capacities and probed the mechanism of action by modification of splice sites, internal sequence motifs, and position within transgenes. Several introns were found to elicit strong IME and found to be broadly applicable in different expression constructs. We determined that IME in C. reinhardtii exclusively occurs from introns within transcribed ORFs regardless of the promoter and is not induced by traditional enhancers of transcription. Our results elucidate some mechanistic details of IME in C. reinhardtii, which are similar to those observed in higher plants yet underly distinctly different induction processes. Our findings narrow the focus of targets responsible for algal IME and provides evidence that introns are underestimated regulators of C. reinhardtii nuclear gene expression. Although many genetic tools and basic transformation strategies exist for the model microalga Chlamydomonas reinhardtii, high-level genetic engineering with this organism is hindered by its inherent recalcitrance to foreign gene expression and limited knowledge of responsible expression regulators. In this work, we characterized the dynamics of 33 endogenous and 13 non-native introns and their effect on gene expression as artificial insertions into codon optimized transgenes. We found that introns from different origins have the capacity to increase gene expression rates. Intron-mediated enhancement was observed exclusively when these elements were placed in transcripts but not outside of transcribed mRNA regions. Insertion of different endogenous introns into coding sequences was found to positively affect expression rates through a synergy of additive transcription enhancement and exon length reduction, similar to those natively found in the C. reinhardtii genome. Our results indicate that intensive mRNA processing plays an underestimated role in the regulation of native gene expression in C. reinhardtii. In addition to internal sequence motifs, the location of artificially introduced introns greatly affected transgene expression levels. This work is highly valuable to the greater microalgal and synthetic biology research communities and contributes to broadening our understanding of eukaryotic intron-mediated enhancement.
Collapse
Affiliation(s)
- Thomas Baier
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Nick Jacobebbinghaus
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Alexander Einhaus
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Kyle J. Lauersen
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Olaf Kruse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
37
|
Jores T, Tonnies J, Dorrity MW, Cuperus JT, Fields S, Queitsch C. Identification of Plant Enhancers and Their Constituent Elements by STARR-seq in Tobacco Leaves. THE PLANT CELL 2020; 32:2120-2131. [PMID: 32409318 PMCID: PMC7346570 DOI: 10.1105/tpc.20.00155] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/30/2020] [Accepted: 05/13/2020] [Indexed: 05/04/2023]
Abstract
Genetic engineering of cis-regulatory elements in crop plants is a promising strategy to ensure food security. However, such engineering is currently hindered by our limited knowledge of plant cis-regulatory elements. Here, we adapted self-transcribing active regulatory region sequencing (STARR-seq)-a technology for the high-throughput identification of enhancers-for its use in transiently transformed tobacco (Nicotiana benthamiana) leaves. We demonstrate that the optimal placement in the reporter construct of enhancer sequences from a plant virus, pea (Pisum sativum) and wheat (Triticum aestivum), was just upstream of a minimal promoter and that none of these four known enhancers was active in the 3' untranslated region of the reporter gene. The optimized assay sensitively identified small DNA regions containing each of the four enhancers, including two whose activity was stimulated by light. Furthermore, we coupled the assay to saturation mutagenesis to pinpoint functional regions within an enhancer, which we recombined to create synthetic enhancers. Our results describe an approach to define enhancer properties that can be performed in potentially any plant species or tissue transformable by Agrobacterium and that can use regulatory DNA derived from any plant genome.
Collapse
Affiliation(s)
- Tobias Jores
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | - Jackson Tonnies
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
- Graduate Program in Biology, University of Washington, Seattle, Washington 98195
| | - Michael W Dorrity
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
- Department of Medicine, University of Washington, Seattle, Washington 98195
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| |
Collapse
|
38
|
He Q, Wu J, Xue Y, Zhao W, Li R, Zhang L. The novel gene BrMYB2, located on chromosome A07, with a short intron 1 controls the purple-head trait of Chinese cabbage ( Brassica rapa L.). HORTICULTURE RESEARCH 2020; 7:97. [PMID: 32637125 PMCID: PMC7326913 DOI: 10.1038/s41438-020-0319-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 05/06/2023]
Abstract
Anthocyanins are important secondary metabolites in plants, but information on anthocyanin biosynthesis mechanisms in Chinese cabbage is limited. The new purple head Chinese cabbage cultivar 11S91 was analyzed, and an R2R3-MYB regulatory gene BrMYB2, located on chromosome A07, controlling the dominant purple-head trait was isolated. High expression of BrMYB2 generated a large accumulation of anthocyanins in 11S91, accompanied by highly upregulated BrTT8, BrF3'H, BrDFR1, BrANS1, BrUGTs, BrATs, and BrGSTs. 11S91 inherited the purple locus from purple trait donor 95T2-5, and they shared consensus CDSs and gDNAs with those of BrMYB2 (cBrMYB2 and gBrMYB2). Two SNPs in cBrMYB2 in 11S91 did not cause loss of function; in addition to several SNPs at both ends of intron 1, a large deletion had occurred in intron 1 of gBrMYB2 in 11S91. Genetic transformation of Arabidopsis showed that gBrMYB2 overexpression lines presented deeper purple color and higher expression than did the cBrMYB2 and cBrmyb2 lines, whereas gBrmyb2 with a long intron 1 did not cause the purple phenotype. We first show that BrMYB2 promotes anthocyanin biosynthesis under the control of the short intron 1 of gBrMYB2 in purple head Chinese cabbage, and gBrmyb2 with a long intron 1 represses anthocyanin production in white head Chinese cabbage. This evidence provides a new understanding of anthocyanin biosynthesis and purple germplasm generation in Brassica vegetables.
Collapse
Affiliation(s)
- Qiong He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi People’s Republic of China
- College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi People’s Republic of China
| | - Junqing Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi People’s Republic of China
| | - Yihua Xue
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi People’s Republic of China
| | - Wenbin Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi People’s Republic of China
| | - Ru Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi People’s Republic of China
| | - Lugang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi People’s Republic of China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, People’s Republic of China
| |
Collapse
|
39
|
Basso MF, Arraes FBM, Grossi-de-Sa M, Moreira VJV, Alves-Ferreira M, Grossi-de-Sa MF. Insights Into Genetic and Molecular Elements for Transgenic Crop Development. FRONTIERS IN PLANT SCIENCE 2020; 11:509. [PMID: 32499796 PMCID: PMC7243915 DOI: 10.3389/fpls.2020.00509] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/03/2020] [Indexed: 05/21/2023]
Abstract
Climate change and the exploration of new areas of cultivation have impacted the yields of several economically important crops worldwide. Both conventional plant breeding based on planned crosses between parents with specific traits and genetic engineering to develop new biotechnological tools (NBTs) have allowed the development of elite cultivars with new features of agronomic interest. The use of these NBTs in the search for agricultural solutions has gained prominence in recent years due to their rapid generation of elite cultivars that meet the needs of crop producers, and the efficiency of these NBTs is closely related to the optimization or best use of their elements. Currently, several genetic engineering techniques are used in synthetic biotechnology to successfully improve desirable traits or remove undesirable traits in crops. However, the features, drawbacks, and advantages of each technique are still not well understood, and thus, these methods have not been fully exploited. Here, we provide a brief overview of the plant genetic engineering platforms that have been used for proof of concept and agronomic trait improvement, review the major elements and processes of synthetic biotechnology, and, finally, present the major NBTs used to improve agronomic traits in socioeconomically important crops.
Collapse
Affiliation(s)
| | - Fabrício Barbosa Monteiro Arraes
- Plant Biotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Maíra Grossi-de-Sa
- Plant Biotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Valdeir Junio Vaz Moreira
- Plant Biotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Maria Fatima Grossi-de-Sa
- Plant Biotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Department of Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
| |
Collapse
|
40
|
Crespo-Salvador Ó, Sánchez-Giménez L, López-Galiano MJ, Fernández-Crespo E, Schalschi L, García-Robles I, Rausell C, Real MD, González-Bosch C. The Histone Marks Signature in Exonic and Intronic Regions Is Relevant in Early Response of Tomato Genes to Botrytis cinerea and in miRNA Regulation. PLANTS 2020; 9:plants9030300. [PMID: 32121544 PMCID: PMC7154849 DOI: 10.3390/plants9030300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022]
Abstract
Research into the relationship between epigenetic regulation and resistance to biotic stresses provides alternatives for plant protection and crop improvement. To unravel the mechanisms underlying tomato responses to Botrytis cinerea, we performed a chromatin immunoprecipitation (ChIP) analysis showing the increase in H3K9ac mark along the early induced genes SlyDES, SlyDOX1, and SlyLoxD encoding oxylipin-pathway enzymes, and SlyWRKY75 coding for a transcriptional regulator of hormonal signaling. This histone mark showed a more distinct distribution than the previously studied H3K4me3. The RNAPol-ChIP analysis reflected the actual gene transcription associated with increased histone modifications. A different pattern of marks in the oxylipin-related genes against P. syringae supported a pathogen-specific profile, while no significant differences occurred in SlyWRKY75. The epigenetic regulation of SlyWRKY75 by the intron-binding miR1127-3p was supported by the presence of SlyWRKY75 pre-mRNA in control plants. Interestingly, mRNA was found to be accumulated in response to B. cinerea and P. syringae, while reduction in miRNA only occurred against B. cinerea. The intronic region presented a similar pattern of marks than the rest of the gene in both pathosystems, except for H3K4me3 in the miRNA binding site upon B. cinerea. We located the gene encoding Sly-miR1127-3p, which presented reduced H3K4me3 on its promoter against B. cinerea.
Collapse
Affiliation(s)
- Óscar Crespo-Salvador
- Department of Biochemistry and Molecular Biology, University of Valencia, Agrochemical and Food Technology Institute (CSIC), 46980 Paterna, Valencia, Spain; (Ó.C.-S.); (L.S.-G.)
| | - Lorena Sánchez-Giménez
- Department of Biochemistry and Molecular Biology, University of Valencia, Agrochemical and Food Technology Institute (CSIC), 46980 Paterna, Valencia, Spain; (Ó.C.-S.); (L.S.-G.)
| | - Mª José López-Galiano
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain; (M.J.L.-G.); (I.G.-R.); (C.R.); (M.D.R.)
| | - Emma Fernández-Crespo
- Plant Physiology Area, Biochemistry and Biotechnology Group, Department CAMN, University Jaume I, 12071 Castellón, Spain; (E.F.-C.); (L.S.)
| | - Loredana Schalschi
- Plant Physiology Area, Biochemistry and Biotechnology Group, Department CAMN, University Jaume I, 12071 Castellón, Spain; (E.F.-C.); (L.S.)
| | - Inmaculada García-Robles
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain; (M.J.L.-G.); (I.G.-R.); (C.R.); (M.D.R.)
| | - Carolina Rausell
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain; (M.J.L.-G.); (I.G.-R.); (C.R.); (M.D.R.)
| | - M Dolores Real
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain; (M.J.L.-G.); (I.G.-R.); (C.R.); (M.D.R.)
| | - Carmen González-Bosch
- Department of Biochemistry and Molecular Biology, University of Valencia, Agrochemical and Food Technology Institute (CSIC), 46980 Paterna, Valencia, Spain; (Ó.C.-S.); (L.S.-G.)
- Correspondence: ; Tel.: +34-963900022
| |
Collapse
|
41
|
Feike D, Korolev AV, Soumpourou E, Murakami E, Reid D, Breakspear A, Rogers C, Radutoiu S, Stougaard J, Harwood WA, Oldroyd GED, Miller J. Characterizing standard genetic parts and establishing common principles for engineering legume and cereal roots. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2234-2245. [PMID: 31022324 PMCID: PMC6835126 DOI: 10.1111/pbi.13135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 04/18/2019] [Indexed: 05/20/2023]
Abstract
Plant synthetic biology and cereal engineering depend on the controlled expression of transgenes of interest. Most engineering in plant species to date has relied heavily on the use of a few, well-established constitutive promoters to achieve high levels of expression; however, the levels of transgene expression can also be influenced by the use of codon optimization, intron-mediated enhancement and varying terminator sequences. Most of these alternative approaches for regulating transgene expression have only been tested in small-scale experiments, typically testing a single gene of interest. It is therefore difficult to interpret the relative importance of these approaches and to design engineering strategies that are likely to succeed in different plant species, particularly if engineering multigenic traits where the expression of each transgene needs to be precisely regulated. Here, we present data on the characterization of 46 promoters and 10 terminators in Medicago truncatula, Lotus japonicus, Nicotiana benthamiana and Hordeum vulgare, as well as the effects of codon optimization and intron-mediated enhancement on the expression of two transgenes in H. vulgare. We have identified a core set of promoters and terminators of relevance to researchers engineering novel traits in plant roots. In addition, we have shown that combining codon optimization and intron-mediated enhancement increases transgene expression and protein levels in barley. Based on our study, we recommend a core set of promoters and terminators for broad use and also propose a general set of principles and guidelines for those engineering cereal species.
Collapse
Affiliation(s)
- Doreen Feike
- John Innes CentreNorwich Research ParkNorwichUK
- Present address:
EMBL HeidelbergMeyerhofstraße 169117HeidelbergGermany
| | | | - Eleni Soumpourou
- John Innes CentreNorwich Research ParkNorwichUK
- Present address:
Sainsbury LaboratoryUniversity of Cambridge47 Bateman StreetCambridgeCB2 1LRUK
| | - Eiichi Murakami
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Present address:
GRA&GREEN Inc., Incubation Center 106Nagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐0814Japan
| | - Dugald Reid
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | - Christian Rogers
- John Innes CentreNorwich Research ParkNorwichUK
- Present address:
Sainsbury LaboratoryUniversity of Cambridge47 Bateman StreetCambridgeCB2 1LRUK
| | - Simona Radutoiu
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Jens Stougaard
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | - Giles E. D. Oldroyd
- John Innes CentreNorwich Research ParkNorwichUK
- Present address:
Sainsbury LaboratoryUniversity of Cambridge47 Bateman StreetCambridgeCB2 1LRUK
| | - J. Benjamin Miller
- John Innes CentreNorwich Research ParkNorwichUK
- School of Biological SciencesUniversity of East Anglia, Norwich Research ParkNorwichUK
| |
Collapse
|
42
|
Gui Z, Li W, Fei S, Guo M, Chen H, Sun L, Han Z, Tao J, Ju X, Yang H, Wei JF, Tan R, Gu M. Single Nucleotide Polymorphisms of Ubiquitin-Related Genes were Associated with Allograft Fibrosis of Renal Transplant Fibrosis. Ann Transplant 2019; 24:553-568. [PMID: 31582715 PMCID: PMC6792502 DOI: 10.12659/aot.917767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Interstitial fibrosis and tubular atrophy (IF/TA) have been recognized as crucial factors contributing to graft loss resulting from chronic renal allograft injuries. Recent studies have indicated a significant association between the progression of organ fibrosis and single nucleotide polymorphisms (SNPs) found on certain genes. Our research sought to understand these potential associations and detect the potential impact of SNPs on ubiquitin-related genes related to allograft fibrosis in kidney transplant recipients. MATERIAL AND METHODS There were 200 patients enrolled in this study, from which samples were extracted for total DNA. Targeted next-generation sequencing was used to detect SNPs on 9 genes (FBXL21, PIAS1/2, SUMO1/2/3/4, UBE2D1, and UBE2I). Minor allele frequency (MAF) and Hardy-Weinberg equilibrium (HWE) tests were used and followed by linkage disequilibrium analysis. General linear models (GLM) were used to identify significant confounding factors. Finally, multiple inheritance models and haplotype analyses were conducted to explore associations between SNPs and the degree of the severity of renal allograft fibrosis. RESULTS In total, 144 SNPs were identified in targeted sequencing. After filtering based on results from MAF and HWE tests, 15 tagger SNPs were selected for further analyses of associations. GLMs indicated that the administration of sirolimus significantly contributed to the degree of severity of allograft fibrosis (P=0.011). After adjusting for confounding factors and applying a Bonferroni correction, multiple inheritance model analyses indicated that the recessive model of rs644731 of the PIAS2 gene was significantly correlated with the occurrence of IF/TA (P=0.01). Furthermore, single-locus based analysis of rs644731 did not indicate that it had a positive influence on IF/TA in a degree-dependent manner. Finally, linkage disequilibrium analysis revealed 3 haplotypes all lacking significant correlation with respect to the IF/TA experimental cohort. CONCLUSIONS We are the first to reveal that mutations of rs644731 in the PIAS2 gene were significantly correlated with the progression of IF/TA in kidney transplant recipients.
Collapse
Affiliation(s)
- Zeping Gui
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Wencheng Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical Iniversity, Nanjing, Jiangsu, China (mainland)
| | - Shuang Fei
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Miao Guo
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Hao Chen
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Li Sun
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Zhijian Han
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Xiaobin Ju
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Haiwei Yang
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Min Gu
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
43
|
Lebedev V. The Rooting of Stem Cuttings and the Stability of uidA Gene Expression in Generative and Vegetative Progeny of Transgenic Pear Rootstock in the Field. PLANTS (BASEL, SWITZERLAND) 2019; 8:E291. [PMID: 31430873 PMCID: PMC6724118 DOI: 10.3390/plants8080291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/12/2019] [Accepted: 08/16/2019] [Indexed: 05/07/2023]
Abstract
Adventitious rooting plays an important role in the commercial vegetative propagation of trees. Adventitious root formation is a complex biological process, but knowledge of the possible unintended effects induced by both the integration/expression of transgenes and in vitro conditions on the rooting is limited. The long-term stability of transgene expression is important both for original transformants of woody plants and its progeny. In this study, we used field-grown pear rootstock GP217 trees transformed with the reporter ß-glucuronidase (uidA) genes with and without intron and re-transformed with the herbicide resistance bar gene as model systems. We assessed the unintended effects on rooting of pear semi-hardwood cuttings and evaluated the stability of transgene expression in progeny produced by generative (seedlings) and vegetative (grafting, cutting) means up to four years. Our investigation revealed that: (1) The single and repeated transformations of clonal pear rootstocks did not result in unintended effects on adventitious root formation in cuttings; (2) stability of the transgene expression was confirmed on both generative and vegetative progeny, and no silenced transgenic plants were detected; (3) yearly variation in the gene expressions was observed and expression levels were decreased in extremely hot and dry summer; (4) the intron enhanced the expression of uidA gene in pear plants approximately two-fold compared to gene without intron. The current study provides useful information on transgene expression in progeny of fruit trees under natural environmental conditions.
Collapse
Affiliation(s)
- Vadim Lebedev
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Science avenue 6, Pushchino, Moscow Region 142290, Russia.
| |
Collapse
|
44
|
Mo D, Li X, Raabe CA, Cui D, Vollmar JF, Rozhdestvensky TS, Skryabin BV, Brosius J. A universal approach to investigate circRNA protein coding function. Sci Rep 2019; 9:11684. [PMID: 31406268 PMCID: PMC6690939 DOI: 10.1038/s41598-019-48224-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 07/29/2019] [Indexed: 02/05/2023] Open
Abstract
Circular RNAs (circRNAs) are an emerging class of RNA molecules that have been linked to human diseases and important regulatory pathways. Their functional roles are still under investigation, often hampered by inefficient circRNA formation in and ex vivo. We generated an intron-mediated enhancement (IME) system that-in comparison to previously published methods-increases circRNA formation up to 5-fold. This strategy also revealed previously undetected translation of circRNA, e.g., circRtn4. Substantiated by Western blots and mass spectrometry we showed that in mammalian cells, translation of circRtn4 containing a potential "infinite" circular reading frame resulted in "monomers" and extended proteins, presumably "multimer" tandem repeats. In order to achieve high levels of circRNA formation and translation of other natural or recombinant circRNAs, we constructed a versatile circRNA expression vector-pCircRNA-DMo. We demonstrated the general applicability of this method by efficiently generating two additional circRNAs exhibiting high expression levels. The circRNA expression vector will be an important tool to investigate different aspects of circRNA biogenesis and to gain insights into mechanisms of circular RNA translation.
Collapse
Affiliation(s)
- Dingding Mo
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931, Cologne, Germany.
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Von-Esmarch-Str. 56, D-48149, Münster, Germany.
| | - Xinping Li
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931, Cologne, Germany
| | - Carsten A Raabe
- Institute of Experimental Pathology, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, D-48149, Münster, Germany
- Brandenburg Medical School (MHB), Fehrbelliner Strasse 38, D-16816, Neuruppin, Germany
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Strasse 56, D-48149, Münster, Germany
| | - Di Cui
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931, Cologne, Germany
| | - Jeanne-Franca Vollmar
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931, Cologne, Germany
| | - Timofey S Rozhdestvensky
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Von-Esmarch-Str. 56, D-48149, Münster, Germany
| | - Boris V Skryabin
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Von-Esmarch-Str. 56, D-48149, Münster, Germany
| | - Juergen Brosius
- Institute of Experimental Pathology, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, D-48149, Münster, Germany
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
45
|
Neller KCM, Diaz CA, Platts AE, Hudak KA. De novo Assembly of the Pokeweed Genome Provides Insight Into Pokeweed Antiviral Protein (PAP) Gene Expression. FRONTIERS IN PLANT SCIENCE 2019; 10:1002. [PMID: 31447869 PMCID: PMC6691146 DOI: 10.3389/fpls.2019.01002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/17/2019] [Indexed: 05/21/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are RNA glycosidases thought to function in defense against pathogens. These enzymes remove purine bases from RNAs, including rRNA; the latter activity decreases protein synthesis in vitro, which is hypothesized to limit pathogen proliferation by causing host cell death. Pokeweed antiviral protein (PAP) is a RIP synthesized by the American pokeweed plant (Phytolacca americana). PAP inhibits virus infection when expressed in crop plants, yet little is known about the function of PAP in pokeweed due to a lack of genomic tools for this non-model species. In this work, we de novo assembled the pokeweed genome and annotated protein-coding genes. Sequencing comprised paired-end reads from a short-insert library of 83X coverage, and our draft assembly (N50 = 42.5 Kb) accounted for 74% of the measured pokeweed genome size of 1.3 Gb. We obtained 29,773 genes, 73% of which contained known protein domains, and identified several PAP isoforms. Within the gene models of each PAP isoform, a long 5' UTR intron was discovered, which was validated by RT-PCR and sequencing. Presence of the intron stimulated reporter gene expression in tobacco. To gain further understanding of PAP regulation, we complemented this genomic resource with expression profiles of pokeweed plants subjected to stress treatments [jasmonic acid (JA), salicylic acid, polyethylene glycol, and wounding]. Cluster analysis of the top differentially expressed genes indicated that some PAP isoforms shared expression patterns with genes involved in terpenoid biosynthesis, JA-mediated signaling, and metabolism of amino acids and carbohydrates. The newly sequenced promoters of all PAP isoforms contained cis-regulatory elements associated with diverse biotic and abiotic stresses. These elements mediated response to JA in tobacco, based on reporter constructs containing promoter truncations of PAP-I, the most abundant isoform. Taken together, this first genomic resource for the Phytolaccaceae plant family provides new insight into the regulation and function of PAP in pokeweed.
Collapse
Affiliation(s)
| | | | - Adrian E. Platts
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
| | | |
Collapse
|
46
|
Djemal R, Khoudi H. Combination of the endogenous promoter-intron significantly improves salt and drought tolerance conferred by TdSHN1 transcription factor in transgenic tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:435-445. [PMID: 30999131 DOI: 10.1016/j.plaphy.2019.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/27/2019] [Accepted: 04/09/2019] [Indexed: 05/08/2023]
Abstract
Recent years have witnessed a renewed interest in introns as a tool to increase gene expression. We previously isolated TdSHN1 gene encoding a transcription factor in durum wheat. Here we show that TdSHN1 intron contains many CT-stretches and the motif CGATT known to be important for IME. When subjected to bioinformatics analysis using IMEter software, TdSHN1 intron obtained a score of 17.04 which indicates that it can moderately enhance gene expression. TdSHN1 gene including its intron was placed under the control of TdSHN1 endogenous salt and drought-inducible promoter or the constitutive 35S promoter and transferred into tobacco. Transgenic lines were obtained and designated gD (with 35S promoter) and PI (with native promoter). A third construct was also used in which intron-less cDNA was driven by the 35S promoter (cD lines). Results showed that, gD lines exhibited lower stomatal density than cD lines. When subjected to drought and salt stresses, gD lines outperformed intron-less cD lines and WT. Indeed, gD lines exhibited longer roots, higher biomass production, retained more chlorophyll, produced less ROS and MDA and had higher antioxidant activity. qRT-PCR analysis revealed that gD lines had higher TdSHN1 expression levels than cD lines. In addition, expression of ROS-scavengering, stress-related and wax biosynthesis tobacco genes was higher in gD lines compared to cD lines and WT. Interestingly, under stress conditions, PI transgenic lines showed higher TdSHN1 expression levels and outperformed gD lines. These results suggest that TdSHN1 intron enhances gene expression when used alone or in combination with TdSHN1 endogenous promoter.
Collapse
Affiliation(s)
- Rania Djemal
- Laboratory of Plant Biotechnology and Improvement, University of Sfax, Center of Biotechnology of Sfax, Route Sidi Mansour, Km 6 B.P' 1177, 3018, Sfax, Tunisia
| | - Habib Khoudi
- Laboratory of Plant Biotechnology and Improvement, University of Sfax, Center of Biotechnology of Sfax, Route Sidi Mansour, Km 6 B.P' 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
47
|
Rozov SM, Deineko EV. Strategies for Optimizing Recombinant Protein Synthesis in Plant Cells: Classical Approaches and New Directions. Mol Biol 2019. [DOI: 10.1134/s0026893319020146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Phan HE, Northorp M, Lalonde RL, Ngo D, Akimenko MA. Differential actinodin1 regulation in embryonic development and adult fin regeneration in Danio rerio. PLoS One 2019; 14:e0216370. [PMID: 31048899 PMCID: PMC6497306 DOI: 10.1371/journal.pone.0216370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/18/2019] [Indexed: 12/22/2022] Open
Abstract
Actinotrichia are the first exoskeletal elements formed during zebrafish fin development. These rigid fibrils serve as skeletal support for the fin fold and as substrates for mesenchymal cell migration. In the adult intact fins, actinotrichia are restricted to the distal domain of the fin. Following fin amputation, actinotrichia also reform during regeneration. The actinodin gene family codes for structural proteins of actinotrichia. We have previously identified cis-acting regulatory elements in a 2kb genomic region upstream of the first exon of actinodin1, termed 2P, required for tissue-specific expression in the fin fold ectoderm and mesenchyme during embryonic development. Indeed, 2P contains an ectodermal enhancer in a 150bp region named epi. Deletion of epi from 2P results in loss of ectodermal-specific activity. In the present study, we sought to further characterize the activity of these regulatory sequences throughout fin development and during adult fin regeneration. Using a reporter transgenic approach, we show that a site within the epi region, termed epi3, contains an early mesenchymal-specific repressor. We also show that the larval fin fold ectodermal enhancer within epi3 remains functional in the basal epithelial layer during fin regeneration. We show that the first non-coding exon and first intron of actinodin1 contains a transcriptional enhancer and an alternative promoter that are necessary for the persistence of reporter expression reminiscent of actinodin1 expression during adulthood. Altogether, we have identified cis-acting regulatory elements that are required for tissue-specific expression as well as full recapitulation of actinodin1 expression during adulthood. Furthermore, the characterization of these elements provides us with useful molecular tools for the enhancement of transgene expression in adulthood.
Collapse
Affiliation(s)
- Hue-Eileen Phan
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marissa Northorp
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert L. Lalonde
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Dung Ngo
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
49
|
Zou B, Yu Z, Huang J, Tan C, Wang H, Fu J, Li X, Wang X, Cui S, Tang T. Association of Interleukin-31 gene polymorphisms with risk of cryptorchidism in a Chinese population. Medicine (Baltimore) 2019; 98:e15861. [PMID: 31145337 PMCID: PMC6709342 DOI: 10.1097/md.0000000000015861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study aims to investigate the possible association between Interleukin-31 (IL-31) gene polymorphisms and cryptorchidism risk.Two single nucleotide polymorphisms of IL-31, rs7977932 (C/G) and rs4758680 (C/A), were selected to be investigated in this study. Polymerase chain reaction-restriction fragment length polymorphism methods were used to discriminate the selected single nucleotide polymorphisms of IL-31 gene. A hospital-based case-control study of 112 cryptorchidism patients and 425 healthy controls was conducted.The frequencies of the C allele of rs4758680 in the patients with cryptorchidism were significantly higher compared with those in controls (89% vs 83%, P = .02, OR = 0.58, 95% CI = 0. 37-0.92). Compared with CC genotype in dominant model, notable decreased frequencies of A carriers (CA/AA genotypes) were observed in cryptorchidism patients (P = . 03, OR = 0.58, 95% CI = 0.35-0.96).Results demonstrated that IL-31 gene polymorphisms were associated with the genetic susceptibility to cryptorchidism in a Chinese population. Compared with CC genotype, the A carriers (CA/AA genotypes) of rs4758680 were protect factors in cryptorchidism susceptibility.
Collapse
Affiliation(s)
- Bing Zou
- Department of Urology
- Urogenital Diseases Lab, Affiliated Hospital of North Sichuan Medical College, Nanchong
| | - Zhihai Yu
- Department of Urology, Chongqing Three Gorges Central Hospital, Wanzhou, People's Republic of China
| | - Jing Huang
- Department of Urology
- Urogenital Diseases Lab, Affiliated Hospital of North Sichuan Medical College, Nanchong
| | - Chunlin Tan
- Department of Urology
- Urogenital Diseases Lab, Affiliated Hospital of North Sichuan Medical College, Nanchong
| | - Haiyun Wang
- Department of Urology
- Urogenital Diseases Lab, Affiliated Hospital of North Sichuan Medical College, Nanchong
| | - Jian Fu
- Department of Urology
- Urogenital Diseases Lab, Affiliated Hospital of North Sichuan Medical College, Nanchong
| | - Xin Li
- Department of Urology
- Urogenital Diseases Lab, Affiliated Hospital of North Sichuan Medical College, Nanchong
| | - Xiaojun Wang
- Department of Urology
- Urogenital Diseases Lab, Affiliated Hospital of North Sichuan Medical College, Nanchong
| | - Shu Cui
- Department of Urology
- Urogenital Diseases Lab, Affiliated Hospital of North Sichuan Medical College, Nanchong
| | - Tielong Tang
- Department of Urology
- Urogenital Diseases Lab, Affiliated Hospital of North Sichuan Medical College, Nanchong
| |
Collapse
|
50
|
Rose AB. Introns as Gene Regulators: A Brick on the Accelerator. Front Genet 2019; 9:672. [PMID: 30792737 PMCID: PMC6374622 DOI: 10.3389/fgene.2018.00672] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/04/2018] [Indexed: 01/25/2023] Open
Abstract
A picture is beginning to emerge from a variety of organisms that for a subset of genes, the most important sequences that regulate expression are situated not in the promoter but rather are located within introns in the first kilobase of transcribed sequences. The actual sequences involved are difficult to identify either by sequence comparisons or by deletion analysis because they are dispersed, additive, and poorly conserved. However, expression-controlling introns can be identified computationally in species with relatively small introns, based on genome-wide differences in oligomer composition between promoter-proximal and distal introns. The genes regulated by introns are often expressed in most tissues and are among the most highly expressed in the genome. The ability of some introns to strongly stimulate mRNA accumulation from several hundred nucleotides downstream of the transcription start site, even when the promoter has been deleted, reveals that our understanding of gene expression remains incomplete. It is unlikely that any diseases are caused by point mutations or small deletions that reduce the expression of an intron-regulated gene unless splicing is also affected. However, introns may be particularly useful in practical applications such as gene therapy because they strongly activate expression but only affect the transcription unit in which they are located.
Collapse
Affiliation(s)
- Alan B Rose
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|