1
|
Li L, Zhang W, Xu S, Li Y, Xiu Y, Wang H. Endosperm-specific expressed transcription factor protein WRINKLED1-mediated oil accumulative mechanism in woody oil peony Paeonia ostii var. lishizhenii. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112266. [PMID: 39278569 DOI: 10.1016/j.plantsci.2024.112266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Paeonia ostii var. lishizhenii exhibits superiority of high α-linolenic acid in seed oils, yet, the low yield highlights the importance of enhancing oil accumulation in seeds for edible oil production. The transcription factor protein WRINKLED1 (WRI1) plays crucial roles in modulating oil content in higher plants; however, its functional characterization remains elusive in P. ostii var. lishizhenii. Herein, based on a correlation analysis of transcription factor transcript levels, FA accumulation rates, and interaction assay of FA biosynthesis associated proteins, a WRI1 homologous gene (PoWRI1) that potentially regulated oil content in P. ostii var. lishizhenii seeds was screened. The PoWRI1 exhibited an endosperm-specific and development-depended expression pattern, encoding a nuclear-localized protein with transcriptional activation capability. Notably, overexpressing PoWRI1 upregulated certain key genes relevant to glycolysis, FA biosynthesis and desaturation, and improved seed development, oil body formation and oil accumulation in Arabidopsis seeds, resulting an enhancement of total seed oil weight by 9.47-18.77 %. The defective impacts on seed phenotypes were rescued through ectopic induction of PoWRI1 in wri1 mutants. Our findings highlight the pivotal role of PoWRI1 in controlling oil accumulation in P. ostii var. lishizhenii, offering bioengineering strategies to increase seed oil accumulation and enhance its potential for edible oil production.
Collapse
Affiliation(s)
- Linkun Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Wei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Shiming Xu
- Department of Biochemistry and Molecular Biology, Yanjing Medical College, Capital Medical University, Beijing 101300, China.
| | - Yipei Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Yu Xiu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Huafang Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Le Y, Zhao W, Liu X, Chen M, Xiong X, Zhang X, Lin Z. Natural variation in GhKASI_A05 modulates cottonseed oil content in Gossypium hirsutum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109159. [PMID: 39353295 DOI: 10.1016/j.plaphy.2024.109159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/02/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Cotton is of great economic value because of its fiber that is used in natural textile commodities and its seeds that contain an edible oil with a high content of unsaturated fatty acids and biodiesel applications. Here, we reported that GhKASI_A05 was associated with the cottonseed oil content (SOC) in a natural population via candidate gene association analysis. An 11-bp Indel located in the GhKASI_A05 promoter was found to contribute to SOC and differential expression in upland cotton inbred accessions. Interaction analysis showed that GhWRI1, an AP2/EREBP family transcription factor, that reportedly functions in plant seed oil and fatty acids (FAs) accumulation, directly bound to AW-box cis-elements in two haplotypes of the GhKASI_A05 promoter and activated the expression of GhKASI_A05 at different levels. The seed-specific overexpression of GhKASI_A05 resulted in increased seed size, weight, and protein content, and C16:0 and C18:1 contents but reduced SOC. Our results provide new insights into the biological function of GhKASI in SOC and effective strategies for cotton breeding in the future.
Collapse
Affiliation(s)
- Yu Le
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wenxia Zhao
- Xinjiang Seed Industry Development Center of China, Urumqi 453 Qiantangjiang Road, Shayibake district, Urumqi, 830001, China
| | - Xinxin Liu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Meilin Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xinhui Xiong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
3
|
Kim I, Do H, Park ME, Kim HU. Multiple transcription factors of Arabidopsis thaliana that are activated by LEAFY COTYLEDON 2 regulate triacylglycerol biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:604-616. [PMID: 38594953 DOI: 10.1111/tpj.16762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Plant triacylglycerols (TAG) are used in food and various industrial feedstocks. LEAFY COTYLEDON 2 (LEC2), a master positive regulator of TAG biosynthesis, regulates a complex network of transcription factors (TFs) during seed development. Aside from WRINKLED1 (WRI1), the TFs regulated by LEC2 related to TAG biosynthesis have not yet been identified. Previously, we identified 25 seed-expressing TFs that were upregulated in Arabidopsis leaves that overexpressed senescence-induced LEC2. In this study, each of the 25 TFs was transiently expressed in the leaves of Nicotiana benthamiana to identify unknown TFs that regulate TAG biosynthesis. The TAG content of the transformed leaves was analyzed using thin layer chromatography and gas chromatography. We observed that five TFs, ARABIDOPSIS RESPONSIVE REGULATOR 21 (ARR21), AINTEGUMENTA-LIKE 6 (AIL6), APETALA2/ETHYLENE RESPONSIVE FACTOR 55 (ERF55), WRKY DNA-BINDING PROTEIN 8 (WRKY8), and ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 38 (ANAC038) increased TAG synthesis in the leaves. Among these, the promoters of AIL6, ERF55, WRKY8, and ANAC038 contain RY motifs, which are LEC2-binding sites activated by LEC2. AIL6 overexpression in Arabidopsis increased the total fatty acid (FA) content in seeds and altered the FA composition, with increases in 16:0, 18:1, and 18:2 and decreases in 18:0, 18:3, and 20:1 compared with those in the wild type (WT). AIL6 overexpression activates several FA and TAG biosynthesis genes. Therefore, our study successfully identified several new TFs regulated by LEC2 in TAG biosynthesis and showed that AIL6 increased the TAG content in seeds.
Collapse
Affiliation(s)
- Inyoung Kim
- Department of Molecular Biology, Sejong University, Seoul, 05006, Republic of Korea
| | - Hyungju Do
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Mid-Eum Park
- Department of Molecular Biology, Sejong University, Seoul, 05006, Republic of Korea
| | - Hyun Uk Kim
- Department of Molecular Biology, Sejong University, Seoul, 05006, Republic of Korea
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 05006, Republic of Korea
- Plant Engineering Research Institute, Sejong University, Seoul, 05006, Republic of Korea
| |
Collapse
|
4
|
Katral A, Hossain F, Zunjare RU, Chhabra R, Vinutha T, Duo H, Kumar B, Karjagi CG, Jacob SR, Pandey S, Neeraja CN, Vasudev S, Muthusamy V. Multilocus functional characterization of indigenous and exotic inbreds for dgat1-2, fatb, ge2 and wri1a genes affecting kernel oil and fatty acid profile in maize. Gene 2024; 895:148001. [PMID: 37977314 DOI: 10.1016/j.gene.2023.148001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Demand for maize oil is progressively increasing due to its diverse industrial applications, aside from its primary role in human nutrition and animal feed. Oil content and composition are two crucial determinants of maize oil in the international market. As kernel oil in maize is a complex quantitative trait, improving this trait presents a challenge for plant breeders and biotechnologists. Here, we characterized a set of 292 diverse maize inbreds of both indigenous and exotic origin by exploiting functional polymorphism of the dgat1-2, fatb, ge2, and wri1a genes governing kernel oil in maize. Genotyping using gene-based functional markers revealed a lower frequencies of dgat1-2 (0.15) and fatb (0.12) mutant alleles and a higher frequencies of wild-type alleles (Dgat1-2: 0.85; fatB: 0.88). The favorable wri1a allele was conserved across genotypes, while its wild-type allele (WRI1a) was not detected. In contrast, none of the genotypes possessed the ge2 favorable allele. The frequency of favorable alleles of both dgat1-2 and fatb decreased to 0.03 when considered together. Furthermore, pairwise protein-protein interactions among target gene products were conducted to understand the effect of one protein on another and their responses to kernel oil through functional enrichments. Thus, the identified maize genotypes with dgat1-2, fatb, and wri1a favourable alleles, along with insights gained through the protein-protein association network, serve as prominent and unique genetic resources for high-oil maize breeding programs. This is the first comprehensive report on the functional characterization of diverse genotypes at the molecular and protein levels.
Collapse
Affiliation(s)
| | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | | | - Rashmi Chhabra
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - T Vinutha
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Hriipulou Duo
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Bhupender Kumar
- ICAR-Indian Institute of Maize Research, New Delhi 110012, India
| | | | - Sherry R Jacob
- ICAR-National Bureau of Plant Genetic Resource, New Delhi 110012, India
| | - Sushil Pandey
- ICAR-National Bureau of Plant Genetic Resource, New Delhi 110012, India
| | | | - Sujata Vasudev
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Vignesh Muthusamy
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
5
|
Xie L, Hu J, Yan Z, Li X, Wei S, Xu R, Yang W, Gu H, Zhang Q. Tree peony transcription factor PrWRI1 enhances seed oil accumulation. BMC PLANT BIOLOGY 2023; 23:127. [PMID: 36882682 PMCID: PMC9990299 DOI: 10.1186/s12870-023-04127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND WRINKLED1 (WRI1) encodes a transcription factor, belonging to the APETALA2 (AP2) family, and plays a key role in regulating plant oil biosynthesis. As a newly woody oil crop, tree peony (Paeonia rockii) was notable for the abundant unsaturated fatty acids in its seed oil. However, the role of WRI1 during the accumulation of P. rockii seeds oil remains largely unknown. RESULTS In this study, a new member of the WRI1 family was isolated from P. rockii and was named PrWRI1. The ORF of PrWRI1 consisted of 1269 nucleotides, encoding a putative protein of 422 amino acids, and was highly expressed in immature seeds. Subcellular localization analysis in onion inner epidermal cells showed that PrWRI1 was located at the nucleolus. Ectopic overexpression of PrWRI1 could significantly increase the total fatty acid content in Nicotiana benthamiana leaf tissue and even PUFAs in transgenic Arabidopsis thaliana seeds. Furthermore, the transcript levels of most genes related to fatty acids (FA) synthesis and triacylglycerol (TAG) assembly were also up-regulated in transgenic Arabidopsis seeds. CONCLUSIONS Together, PrWRI1 could push carbon flow to FA biosynthesis and further enhance the TAG amount in seeds with a high proportion of PUFAs.
Collapse
Affiliation(s)
- Lihang Xie
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Jiayuan Hu
- Sichuan Academy of Giant Panda, Chengdu, 610000, Sichuan, China
| | - Zhenguo Yan
- Academy of Agricultural Planning and Engineering, MARA, Beijing, 100000, China
| | - Xinyao Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Sailong Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Ruilin Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Weizong Yang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shannxi, China
| | - Huihui Gu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Qingyu Zhang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shannxi, China.
| |
Collapse
|
6
|
Chen J, Gao J, Zhang L, Zhang L. Tung tree stearoyl-acyl carrier protein Δ9 desaturase improves oil content and cold resistance of Arabidopsis and Saccharomyces cerevisiae. FRONTIERS IN PLANT SCIENCE 2023; 14:1144853. [PMID: 36959932 PMCID: PMC10028071 DOI: 10.3389/fpls.2023.1144853] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The seed oil of tung tree is rich in a-eleostearic acid (ESA), which endows tung oil with the characteristic of an excellently dry oil. The stearoyl-acyl carrier protein δ9 desaturase (SAD) is a rate-limiting enzyme that converts the stearic acid to the oleic acid, the substrate for the production of the α-ESA. However, the function of the two predicted VfSAD1 and VfSAD2 genes in the tung tree has not been determined. In this study, quantitative real-time PCR (qRT-PCR) analysis showed that VfSAD1 and VfSAD2 were expressed in multiple organs of tung tree but were highly expressed in the seed during the oil rapid accumulation period. Heterologous expression of VfSAD1 and VfSAD2 could promote the production of oleic acid and its derivatives in Arabidopsis thaliana and yeast BY4741, indicating that VfSAD1 and VfSAD2 possess the stearoyl-ACP desaturases function. Furthermore, both VfSAD1 and VfSAD2 could significantly improve seed oil accumulation in Arabidopsis. VfSAD1 could also significantly promote the oil accumulation in the yeast BY4741 strain. In addition, overexpression of VfSAD1 and VfSAD2 enhanced the tolerance of yeast and Arabidopsis seedlings to low temperature stress. This study indicates that the two VfSAD genes play a vital role in the process of oil accumulation and fatty acid biosynthesis in the tung tree seed, and both of them could be used for molecular breeding in tung tree and other oil crops.
Collapse
Affiliation(s)
- Junjie Chen
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Jing Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingling Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
7
|
Kim S, Lee KR, Suh MC. Ectopic Expression of Perilla frutescens WRI1 Enhanced Storage Oil Accumulation in Nicotiana benthamiana Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:1081. [PMID: 36903941 PMCID: PMC10005204 DOI: 10.3390/plants12051081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Vegetable oils are indispensable in human and animal diets and have been widely used for the production of detergents, lubricants, cosmetics, and biofuels. The seeds of an allotetraploid Perilla frutescens contain approximately 35 to 40% oils with high levels of polyunsaturated fatty acids (PUFAs). WRINKELD1 (WRI1) encoding an AP2/ERF-type transcription factor is known to upregulate the expression of genes involved in glycolysis and fatty acid biosynthesis and TAG assembly. In this study, two WRI1 isoforms, PfWRI1A, and PfWRI1B were isolated from Perilla and predominantly expressed in developing Perilla seeds. The fluorescent signals from PfWRI1A:eYFP and PfWRI1B:eYFP driven by the CaMV 35S promoter were detected in the nucleus of the Nicotiana benthamiana leaf epidermis. Ectopic expression of each of PfWRI1A and PfWRI1B increased the levels of TAG by approximately 2.9- and 2.7-fold in N. benthamiana leaves and particularly, the enhanced levels (mol%) of C18:2, and C18:3 in the TAGs were prominent with the concomitant reduction in the amounts of saturated fatty acids. The expression levels of NbPl-PKβ1, NbKAS1, and NbFATA, which were known to be target genes of WRI1, significantly increased in tobacco leaves overexpressing PfWRI1A or PfWRI1B. Therefore, newly characterized PfWRI1A and PfWRI1B can be potentially useful for the enhanced accumulation of storage oils with increased PUFAs in oilseed crops.
Collapse
Affiliation(s)
- Semi Kim
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| | - Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju 54875, Republic of Korea
| | - Mi Chung Suh
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
8
|
Li W, Wang L, Qi Y, Xie Y, Zhao W, Dang Z, Zhang J. Overexpression of WRINKLED1 improves the weight and oil content in seeds of flax ( Linum usitatissimum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1003758. [PMID: 36247608 PMCID: PMC9562325 DOI: 10.3389/fpls.2022.1003758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Seeds of flax (Linum usitatissimum L.) are highly rich in both oil and linolenic acid (LIN). It is crucial for flax agricultural production to identify positive regulators of fatty acid biosynthesis. In this study, we find that WRINKLED1 transcription factors play important positive roles during flax seed oil accumulation. Two WRINKLED1 genes, LuWRI1a and LuWRI1b, were cloned from flax, and LuWRI1a was found be expressed predominantly in developing seeds during maturation. Overexpression of LuWRI1a increased seed size, weight, and oil content in Arabidopsis and increased seed storage oil content in transgenic flax without affecting seed production or seed oil quality. The rise in oil content in transgenic flax seeds was primarily attributable to the increase in seed weight, according to a correlational analysis. Furthermore, overexpression or interference of LuWRI1a upregulated the expression of genes in the fatty acid biosynthesis pathway and LAFL genes, and the expression level of WRI1 was highly significantly positively associated between L1L, LEC1, and BCCP2. Our findings give a theoretical scientific foundation for the future application of genetic engineering to enhance the oil content of plant seeds.
Collapse
|
9
|
Qiao Z, Kong Q, Tee WT, Lim ARQ, Teo MX, Olieric V, Low PM, Yang Y, Qian G, Ma W, Gao YG. Molecular basis of the key regulator WRINKLED1 in plant oil biosynthesis. SCIENCE ADVANCES 2022; 8:eabq1211. [PMID: 36001661 PMCID: PMC9401623 DOI: 10.1126/sciadv.abq1211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/08/2022] [Indexed: 05/20/2023]
Abstract
Vegetable oils are not only major components of human diet but also vital for industrial applications. WRINKLED1 (WRI1) is a pivotal transcription factor governing plant oil biosynthesis, but the underlying DNA-binding mechanism remains incompletely understood. Here, we resolved the structure of Arabidopsis WRI1 (AtWRI1) with its cognate double-stranded DNA (dsDNA), revealing two antiparallel β sheets in the tandem AP2 domains that intercalate into the adjacent major grooves of dsDNA to determine the sequence recognition specificity. We showed that AtWRI1 represented a previously unidentified structural fold and DNA-binding mode. Mutations of the key residues interacting with DNA element affected its binding affinity and oil biosynthesis when these variants were transiently expressed in tobacco leaves. Seed oil content was enhanced in stable transgenic wri1-1 expressing an AtWRI1 variant (W74R). Together, our findings offer a structural basis explaining WRI1 recognition and binding of DNA and suggest an alternative strategy to increase oil yield in crops through WRI1 bioengineering.
Collapse
Affiliation(s)
- Zhu Qiao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Wan Ting Tee
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Audrey R. Q. Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Miao Xuan Teo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Pui Man Low
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yuzhou Yang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Guoliang Qian
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- Corresponding author. (Y.-G.G.); (W.M.)
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
- Corresponding author. (Y.-G.G.); (W.M.)
| |
Collapse
|
10
|
Yang F, Liu G, Wu Z, Zhang D, Zhang Y, You M, Li B, Zhang X, Liang R. Cloning and Functional Analysis of TaWRI1Ls, the Key Genes for Grain Fatty Acid Synthesis in Bread Wheat. Int J Mol Sci 2022; 23:ijms23105293. [PMID: 35628114 PMCID: PMC9141799 DOI: 10.3390/ijms23105293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 01/16/2023] Open
Abstract
WRINKLED1 (WRI1), an APETALA2 (AP2) transcription factor (TF), critically regulates the processes related to fatty acid synthesis, storage oil accumulation, and seed development in plants. However, the WRI1 genes remain unknown in allohexaploid bread wheat (Triticum aestivum L.). In this study, based on the sequence of Arabidopsis AtWRI1, two TaWRI1Ls genes of bread wheat, TaWRI1L1 and TaWRI1L2, were cloned. TaWRI1L2 was closely related to monocotyledons and clustered in one subgroup with AtWRI1, while TaWRI1L1 was clustered in another subgroup with AtWRI3 and AtWRI4. Both were expressed highly in the developmental grain, subcellular localized in the nucleus, and showed transcriptional activation activity. TaWRI1L2, rather than TaWRI1L1, promoted oil body accumulation and significantly increased triglyceride (TAG) content in tobacco leaves. Overexpression of TaWRI1L2 compensated for the functional loss of AtWRI1 in an Arabidopsis mutant and restored the wild-type phenotypes of seed shape, generation, and fatty acid synthesis and accumulation. Knockout of TaWRI1L2 reduced grain size, 1000 grain weight, and grain fatty acid synthesis in bread wheat. Conclusively, TaWRI1L2, rather than TaWRI1L1, was the key transcriptional factor in the regulation of grain fatty acid synthesis in bread wheat. This study lays a foundation for gene regulation and genetic manipulation of fatty acid synthesis in wheat genetic breeding programs.
Collapse
Affiliation(s)
- Fengping Yang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (F.Y.); (G.L.); (Z.W.); (D.Z.); (Y.Z.); (M.Y.); (B.L.)
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Guoyu Liu
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (F.Y.); (G.L.); (Z.W.); (D.Z.); (Y.Z.); (M.Y.); (B.L.)
| | - Ziyan Wu
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (F.Y.); (G.L.); (Z.W.); (D.Z.); (Y.Z.); (M.Y.); (B.L.)
| | - Dongxue Zhang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (F.Y.); (G.L.); (Z.W.); (D.Z.); (Y.Z.); (M.Y.); (B.L.)
| | - Yufeng Zhang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (F.Y.); (G.L.); (Z.W.); (D.Z.); (Y.Z.); (M.Y.); (B.L.)
| | - Mingshan You
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (F.Y.); (G.L.); (Z.W.); (D.Z.); (Y.Z.); (M.Y.); (B.L.)
| | - Baoyun Li
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (F.Y.); (G.L.); (Z.W.); (D.Z.); (Y.Z.); (M.Y.); (B.L.)
| | - Xiuhai Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Correspondence: (X.Z.); (R.L.)
| | - Rongqi Liang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (F.Y.); (G.L.); (Z.W.); (D.Z.); (Y.Z.); (M.Y.); (B.L.)
- Correspondence: (X.Z.); (R.L.)
| |
Collapse
|
11
|
Advances in Understanding the Genetic Basis of Fatty Acids Biosynthesis in Perilla: An Update. PLANTS 2022; 11:plants11091207. [PMID: 35567213 PMCID: PMC9099743 DOI: 10.3390/plants11091207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022]
Abstract
Perilla, also termed as purple mint, Chinese basil, or Perilla mint, is a flavoring herb widely used in East Asia. Both crude oil and essential oil are employed for consumption as well as industrial purposes. Fatty acids (FAs) biosynthesis and oil body assemblies in Perilla have been extensively investigated over the last three decades. Recent advances have been made in order to reveal the enzymes involved in the fatty acid biosynthesis in Perilla. Among those fatty acids, alpha-linolenic acid retained the attention of scientists mainly due to its medicinal and nutraceutical properties. Lipids synthesis in Perilla exhibited similarities with Arabidopsis thaliana lipids’ pathway. The homologous coding genes for polyunsaturated fatty acid desaturases, transcription factors, and major acyl-related enzymes have been found in Perilla via de novo transcriptome profiling, genome-wide association study, and in silico whole-genome screening. The identified genes covered de novo fatty acid synthesis, acyl-CoA dependent Kennedy pathway, acyl-CoA independent pathway, Triacylglycerols (TAGs) assembly, and acyl editing of phosphatidylcholine. In addition to the enzymes, transcription factors including WRINKLED, FUSCA3, LEAFY COTYLEDON1, and ABSCISIC ACID INSENSITIVE3 have been suggested. Meanwhile, the epigenome aspect impacting the transcriptional regulation of FAs is still unclear and might require more attention from the scientific community. This review mainly outlines the identification of the key gene master players involved in Perilla FAs biosynthesis and TAGs assembly that have been identified in recent years. With the recent advances in genomics resources regarding this orphan crop, we provided an updated overview of the recent contributions into the comprehension of the genetic background of fatty acid biosynthesis. The provided resources can be useful for further usage in oil-bioengineering and the design of alpha-linolenic acid-boosted Perilla genotypes in the future.
Collapse
|
12
|
Sánchez R, González-Thuillier I, Venegas-Calerón M, Garcés R, Salas JJ, Martínez-Force E. The Sunflower WRINKLED1 Transcription Factor Regulates Fatty Acid Biosynthesis Genes through an AW Box Binding Sequence with a Particular Base Bias. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070972. [PMID: 35406952 PMCID: PMC9002759 DOI: 10.3390/plants11070972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 06/12/2023]
Abstract
Sunflower is an important oilseed crop in which the biochemical pathways leading to seed oil synthesis and accumulation have been widely studied. However, how these pathways are regulated is less well understood. The WRINKLED1 (WRI1) transcription factor is considered a key regulator in the control of triacylglycerol biosynthesis, acting through the AW box binding element (CNTNG(N)7CG). Here, we identified the sunflower WRI1 gene and characterized its activity in electrophoretic mobility shift assays. We studied its role as a co-regulator of sunflower genes involved in plastidial fatty acid synthesis. Sunflower WRI1-targets included genes encoding the pyruvate dehydrogenase complex, the α-CT and BCCP genes, genes encoding ACPs and the fatty acid synthase complex, together with the FATA1 gene. As such, sunflower WRI1 regulates genes involved in seed plastidial fatty acid biosynthesis in a coordinated manner, establishing a WRI1 push and pull strategy that drives oleic acid synthesis for its export into the cytosol. We also determined the base bias at the N positions in the active sunflower AW box motif. The sunflower AW box is sequence-sensitive at the non-conserved positions, enabling WRI1-binding. Moreover, sunflower WRI1 could bind to a non-canonical AW-box motif, opening the possibility of searching for new target genes.
Collapse
Affiliation(s)
- Rosario Sánchez
- Instituto de la Grasa (CSIC), Pablo de Olavide University Campus, Building 46, Carretera de Utrera km 1, 41013 Seville, Spain; (R.S.); (I.G.-T.); (M.V.-C.); (R.G.); (J.J.S.)
| | - Irene González-Thuillier
- Instituto de la Grasa (CSIC), Pablo de Olavide University Campus, Building 46, Carretera de Utrera km 1, 41013 Seville, Spain; (R.S.); (I.G.-T.); (M.V.-C.); (R.G.); (J.J.S.)
- Jealotts Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Mónica Venegas-Calerón
- Instituto de la Grasa (CSIC), Pablo de Olavide University Campus, Building 46, Carretera de Utrera km 1, 41013 Seville, Spain; (R.S.); (I.G.-T.); (M.V.-C.); (R.G.); (J.J.S.)
| | - Rafael Garcés
- Instituto de la Grasa (CSIC), Pablo de Olavide University Campus, Building 46, Carretera de Utrera km 1, 41013 Seville, Spain; (R.S.); (I.G.-T.); (M.V.-C.); (R.G.); (J.J.S.)
| | - Joaquín J. Salas
- Instituto de la Grasa (CSIC), Pablo de Olavide University Campus, Building 46, Carretera de Utrera km 1, 41013 Seville, Spain; (R.S.); (I.G.-T.); (M.V.-C.); (R.G.); (J.J.S.)
| | - Enrique Martínez-Force
- Instituto de la Grasa (CSIC), Pablo de Olavide University Campus, Building 46, Carretera de Utrera km 1, 41013 Seville, Spain; (R.S.); (I.G.-T.); (M.V.-C.); (R.G.); (J.J.S.)
| |
Collapse
|
13
|
Joshi A, Verma KK, D Rajput V, Minkina T, Arora J. Recent advances in metabolic engineering of microorganisms for advancing lignocellulose-derived biofuels. Bioengineered 2022; 13:8135-8163. [PMID: 35297313 PMCID: PMC9161965 DOI: 10.1080/21655979.2022.2051856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 01/09/2023] Open
Abstract
Combating climate change and ensuring energy supply to a rapidly growing global population has highlighted the need to replace petroleum fuels with clean, and sustainable renewable fuels. Biofuels offer a solution to safeguard energy security with reduced ecological footprint and process economics. Over the past years, lignocellulosic biomass has become the most preferred raw material for the production of biofuels, such as fuel, alcohol, biodiesel, and biohydrogen. However, the cost-effective conversion of lignocellulose into biofuels remains an unsolved challenge at the industrial scale. Recently, intensive efforts have been made in lignocellulose feedstock and microbial engineering to address this problem. By improving the biological pathways leading to the polysaccharide, lignin, and lipid biosynthesis, limited success has been achieved, and still needs to improve sustainable biofuel production. Impressive success is being achieved by the retouring metabolic pathways of different microbial hosts. Several robust phenotypes, mostly from bacteria and yeast domains, have been successfully constructed with improved substrate spectrum, product yield and sturdiness against hydrolysate toxins. Cyanobacteria is also being explored for metabolic advancement in recent years, however, it also remained underdeveloped to generate commercialized biofuels. The bacterium Escherichia coli and yeast Saccharomyces cerevisiae strains are also being engineered to have cell surfaces displaying hydrolytic enzymes, which holds much promise for near-term scale-up and biorefinery use. Looking forward, future advances to achieve economically feasible production of lignocellulosic-based biofuels with special focus on designing more efficient metabolic pathways coupled with screening, and engineering of novel enzymes.
Collapse
Affiliation(s)
- Abhishek Joshi
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur313001, India
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning - 530007, China
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Russia
| | - Jaya Arora
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur313001, India
| |
Collapse
|
14
|
Characterisation of Grains and Flour Fractions from Field Grown Transgenic Oil-Accumulating Wheat Expressing Oat WRI1. PLANTS 2022; 11:plants11070889. [PMID: 35406869 PMCID: PMC9002947 DOI: 10.3390/plants11070889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
Wheat (Triticum aestivum L.) is one of the major staple crops in the world and is used to prepare a range of foods. The development of new varieties with wider variation in grain composition could broaden their use. We characterized grains and flours from oil-accumulating transgenic wheat expressing the oat (Avena sativa L.) endosperm WRINKLED1 (AsWRI1) grown under field conditions. Lipid and starch accumulation was determined in developing caryopses of AsWRI1-wheat and X-ray microtomography was used to study grain morphology. The developing caryopses of AsWRI1-wheat grains had increased triacylglycerol content and decreased starch content compared to the control. Mature AsWRI1-wheat grains also had reduced weight, were wrinkled and had a shrunken endosperm and X-ray tomography revealed that the proportion of endosperm was decreased while that of the aleurone was increased. Grains were milled to produce two white flours and one bran fraction. Mineral and lipid analyses showed that the flour fractions from the AsWRI1-wheat were contaminated with bran, due to the effects of the changed morphology on milling. This study gives a detailed analysis of grains from field grown transgenic wheat that expresses a gene that plays a central regulatory role in carbon allocation and significantly affects grain composition.
Collapse
|
15
|
Lim ARQ, Kong Q, Singh SK, Guo L, Yuan L, Ma W. Sunflower WRINKLED1 Plays a Key Role in Transcriptional Regulation of Oil Biosynthesis. Int J Mol Sci 2022; 23:ijms23063054. [PMID: 35328473 PMCID: PMC8951541 DOI: 10.3390/ijms23063054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Sunflower (Helianthus annuus) is one of the most important oilseed crops worldwide. However, the transcriptional regulation underlying oil accumulation in sunflower is not fully understood. WRINKLED1 (WRI1) is an essential transcription factor governing oil accumulation in plant cells. Here, we identify and characterize a sunflower ortholog of WRI1 (HaWRI1), which is highly expressed in developing seeds. Transient production of HaWRI1 stimulated substantial oil accumulation in Nicotiana benthamiana leaves. Dual-luciferase reporter assay, electrophoretic mobility shift assay, fatty acid quantification, and gene expression analysis demonstrate that HaWRI1 acts as a pivotal transcription factor controlling the expression of genes involved in late glycolysis and fatty acid biosynthesis. HaWRI1 directly binds to the cis-element, AW-box, in the promoter of biotin carboxyl carrier protein isoform 2 (BCCP2). In addition, we characterize an 80 amino-acid C-terminal domain of HaWRI1 that is crucial for transactivation. Moreover, seed-specific overexpression of HaWRI1 in Arabidopsis plants leads to enhanced seed oil content as well as upregulation of the genes involved in fatty acid biosynthesis. Taken together, our work demonstrates that HaWRI1 plays a pivotal role in the transcriptional control of seed oil accumulation, providing a potential target for bioengineering sunflower oil yield improvement.
Collapse
Affiliation(s)
- Audrey R. Q. Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (A.R.Q.L.); (Q.K.)
| | - Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (A.R.Q.L.); (Q.K.)
| | - Sanjay K. Singh
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA; (S.K.S.); (L.Y.)
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA; (S.K.S.); (L.Y.)
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (A.R.Q.L.); (Q.K.)
- Correspondence:
| |
Collapse
|
16
|
Yang W, Hu J, Behera JR, Kilaru A, Yuan Y, Zhai Y, Xu Y, Xie L, Zhang Y, Zhang Q, Niu L. A Tree Peony Trihelix Transcription Factor PrASIL1 Represses Seed Oil Accumulation. FRONTIERS IN PLANT SCIENCE 2021; 12:796181. [PMID: 34956296 PMCID: PMC8702530 DOI: 10.3389/fpls.2021.796181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/22/2021] [Indexed: 05/31/2023]
Abstract
In many higher plants, seed oil accumulation is governed by complex multilevel regulatory networks including transcriptional regulation, which primarily affects fatty acid biosynthesis. Tree peony (Paeonia rockii), a perennial deciduous shrub endemic to China is notable for its seed oil that is abundant in unsaturated fatty acids. We discovered that a tree peony trihelix transcription factor, PrASIL1, localized in the nucleus, is expressed predominantly in developing seeds during maturation. Ectopic overexpression of PrASIL1 in Nicotiana benthamiana leaf tissue and Arabidopsis thaliana seeds significantly reduced total fatty acids and altered the fatty acid composition. These changes were in turn associated with the decreased expression of multitudinous genes involved in plastidial fatty acid synthesis and oil accumulation. Thus, we inferred that PrASIL1 is a critical transcription factor that represses oil accumulation by down-regulating numerous key genes during seed oil biosynthesis. In contrary, up-regulation of oil biosynthesis genes and a significant increase in total lipids and several major fatty acids were observed in PrASIL1-silenced tree peony leaves. Together, these results provide insights into the role of trihelix transcription factor PrASIL1 in controlling seed oil accumulation. PrASIL1 can be targeted potentially for oil enhancement in tree peony and other crops through gene manipulation.
Collapse
Affiliation(s)
- Weizong Yang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling, China
| | - Jiayuan Hu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling, China
| | - Jyoti R. Behera
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Yanping Yuan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling, China
| | - Yuhui Zhai
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling, China
| | - Yanfeng Xu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling, China
| | - Lihang Xie
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling, China
| | - Qingyu Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling, China
| | - Lixin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling, China
| |
Collapse
|
17
|
Cheng K, Pan YF, Liu LM, Zhang HQ, Zhang YM. Integrated Transcriptomic and Bioinformatics Analyses Reveal the Molecular Mechanisms for the Differences in Seed Oil and Starch Content Between Glycine max and Cicer arietinum. FRONTIERS IN PLANT SCIENCE 2021; 12:743680. [PMID: 34764968 PMCID: PMC8576049 DOI: 10.3389/fpls.2021.743680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The seed oil and starch content of soybean are significantly different from that of chickpea. However, there are limited studies on its molecular mechanisms. To address this issue, we conducted integrated transcriptomic and bioinformatics analyses for species-specific genes and acyl-lipid-, starch-, and carbon metabolism-related genes. Among seven expressional patterns of soybean-specific genes, four were highly expressed at the middle- and late oil accumulation stages; these genes significantly enriched fatty acid synthesis and carbon metabolism, and along with common acetyl CoA carboxylase (ACCase) highly expressed at soybean middle seed development stage, common starch-degrading enzyme beta-amylase-5 (BAM5) was highly expressed at soybean early seed development stage and oil synthesis-related genes ACCase, KAS, KAR, ACP, and long-chain acyl-CoA synthetase (LACS) were co-expressed with WRI1, which may result in high seed oil content and low seed starch content in soybean. The common ADP-glucose pyrophosphorylase (AGPase) was highly expressed at chickpea middle seed development stage, along with more starch biosynthesis genes co-expressed with four-transcription-factor homologous genes in chickpea than in soybean, and the common WRI1 was not co-expressed with oil synthesis genes in chickpea, which may result in high seed starch content and low seed oil content in chickpea. The above results may be used to improve chickpea seed oil content in two ways. One is to edit CaWRI1 to co-express with oil synthesis-related genes, which may increase carbon metabolites flowing to oil synthesis, and another is to increase the expression levels of miRNA159 and miRNA319 to inhibit the expression of MYB33, which may downregulate starch synthesis-related genes, making more carbon metabolites flow into oil synthesis. Our study will provide a basis for future breeding efforts to increase the oil content of chickpea seeds.
Collapse
|
18
|
Behera JR, Rahman MM, Bhatia S, Shockey J, Kilaru A. Functional and Predictive Structural Characterization of WRINKLED2, A Unique Oil Biosynthesis Regulator in Avocado. FRONTIERS IN PLANT SCIENCE 2021; 12:648494. [PMID: 34168663 PMCID: PMC8218904 DOI: 10.3389/fpls.2021.648494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/03/2021] [Indexed: 06/01/2023]
Abstract
WRINKLED1 (WRI1), a member of the APETALA2 (AP2) class of transcription factors regulates fatty acid biosynthesis and triacylglycerol (TAG) accumulation in plants. Among the four known Arabidopsis WRI1 paralogs, only WRI2 was unable to complement and restore fatty acid content in wri1-1 mutant seeds. Avocado (Persea americana) mesocarp, which accumulates 60-70% dry weight oil content, showed high expression levels for orthologs of WRI2, along with WRI1 and WRI3, during fruit development. While the role of WRI1 as a master regulator of oil biosynthesis is well-established, the function of WRI1 paralogs is poorly understood. Comprehensive and comparative in silico analyses of WRI1 paralogs from avocado (a basal angiosperm) with higher angiosperms Arabidopsis (dicot), maize (monocot) revealed distinct features. Predictive structural analyses of the WRI orthologs from these three species revealed the presence of AP2 domains and other highly conserved features, such as intrinsically disordered regions associated with predicted PEST motifs and phosphorylation sites. Additionally, avocado WRI proteins also contained distinct features that were absent in the nonfunctional Arabidopsis ortholog AtWRI2. Through transient expression assays, we demonstrated that both avocado WRI1 and WRI2 are functional and drive TAG accumulation in Nicotiana benthamiana leaves. We predict that the unique features and activities of ancestral PaWRI2 were likely lost in orthologous genes such as AtWRI2 during evolution and speciation, leading to at least partial loss of function in some higher eudicots. This study provides us with new targets to enhance oil biosynthesis in plants.
Collapse
Affiliation(s)
- Jyoti R. Behera
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Md. Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Shina Bhatia
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Jay Shockey
- United States Department of Agriculture, Agricultural Research Service, New Orleans, LA, United States
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
19
|
Genome-Wide Mapping of Histone H3 Lysine 4 Trimethylation (H3K4me3) and Its Involvement in Fatty Acid Biosynthesis in Sunflower Developing Seeds. PLANTS 2021; 10:plants10040706. [PMID: 33917507 PMCID: PMC8067477 DOI: 10.3390/plants10040706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 01/23/2023]
Abstract
Histone modifications are of paramount importance during plant development. Investigating chromatin remodeling in developing oilseeds sheds light on the molecular mechanisms controlling fatty acid metabolism and facilitates the identification of new functional regions in oil crop genomes. The present study characterizes the epigenetic modifications H3K4me3 in relationship with the expression of fatty acid-related genes and transcription factors in developing sunflower seeds. Two master transcriptional regulators identified in this analysis, VIV1 (homologous to Arabidopsis ABI3) and FUS3, cooperate in the regulation of WRINKLED 1, a transcriptional factor regulating glycolysis, and fatty acid synthesis in developing oilseeds.
Collapse
|
20
|
Kong Q, Yang Y, Low PM, Guo L, Yuan L, Ma W. The function of the WRI1-TCP4 regulatory module in lipid biosynthesis. PLANT SIGNALING & BEHAVIOR 2020; 15:1812878. [PMID: 32880205 PMCID: PMC7588184 DOI: 10.1080/15592324.2020.1812878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 05/20/2023]
Abstract
The plant-specific TCP transcription factors play pivotal roles in various processes of plant growth and development. However, little is known regarding the functions of TCPs in plant oil biosynthesis. Our recent work showed that TCP4 mediates oil production via interaction with WRINKLED1 (WRI1), an essential transcription factor governing plant fatty acid biosynthesis. Arabidopsis WRI1 (AtWRI1) physically interacts with multiple TCPs, including TCP4, TCP10, and TCP24. Transient co-expression of AtWRI1 with TCP4, but not TCP10 or TCP24, represses oil accumulation in Nicotiana benthamiana leaves. Increased TCP4 in transgenic plants overexpressing a miR319-resistant TCP4 (rTCP4) decreased the expression of AtWRI1 target genes. The tcp4 knockout mutant, the jaw-D mutant with significant reduction of TCP4 expression, and a tcp2 tcp4 tcp10 triple mutant, display increased seed oil contents compared to the wild-type Arabidopsis. The APETALA2 (AP2) transcription factor WRI1 is characterized by regulating fatty acid biosynthesis through cross-family interactions with multiple transcriptional, post-transcriptional, and post-translational regulators. The interacting regulator modules control the range of AtWRI1 transcriptional activity, allowing spatiotemporal modulation of lipid production. Interaction of TCP4 with AtWRI1, which results in a reduction of AtWRI1 activity, represents a newly discovered mechanism that enables the fine-tuning of plant oil biosynthesis.
Collapse
Affiliation(s)
- Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yuzhou Yang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Pui Man Low
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- CONTACT Wei Ma School of Biological Sciences, Nanyang Technological University, Singapore637551, Singapore
| |
Collapse
|
21
|
Guo W, Chen L, Chen H, Yang H, You Q, Bao A, Chen S, Hao Q, Huang Y, Qiu D, Shan Z, Yang Z, Yuan S, Zhang C, Zhang X, Jiao Y, Tran LP, Zhou X, Cao D. Overexpression of GmWRI1b in soybean stably improves plant architecture and associated yield parameters, and increases total seed oil production under field conditions. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1639-1641. [PMID: 31912650 PMCID: PMC7336282 DOI: 10.1111/pbi.13324] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/26/2019] [Accepted: 01/05/2020] [Indexed: 05/10/2023]
Affiliation(s)
- Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsChinese Academy of Agricultural SciencesOil Crops Research InstituteWuhanChina
| | - Limiao Chen
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsChinese Academy of Agricultural SciencesOil Crops Research InstituteWuhanChina
| | - Haifeng Chen
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsChinese Academy of Agricultural SciencesOil Crops Research InstituteWuhanChina
| | - Hongli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsChinese Academy of Agricultural SciencesOil Crops Research InstituteWuhanChina
| | - Qingbo You
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsChinese Academy of Agricultural SciencesOil Crops Research InstituteWuhanChina
| | - Aili Bao
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsChinese Academy of Agricultural SciencesOil Crops Research InstituteWuhanChina
| | - Shuilian Chen
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsChinese Academy of Agricultural SciencesOil Crops Research InstituteWuhanChina
| | - Qingnan Hao
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsChinese Academy of Agricultural SciencesOil Crops Research InstituteWuhanChina
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsChinese Academy of Agricultural SciencesOil Crops Research InstituteWuhanChina
| | - Dezhen Qiu
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsChinese Academy of Agricultural SciencesOil Crops Research InstituteWuhanChina
| | - Zhihui Shan
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsChinese Academy of Agricultural SciencesOil Crops Research InstituteWuhanChina
| | - Zhonglu Yang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsChinese Academy of Agricultural SciencesOil Crops Research InstituteWuhanChina
| | - Songli Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsChinese Academy of Agricultural SciencesOil Crops Research InstituteWuhanChina
| | - Chanjuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsChinese Academy of Agricultural SciencesOil Crops Research InstituteWuhanChina
| | - Xiaojuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsChinese Academy of Agricultural SciencesOil Crops Research InstituteWuhanChina
| | - Yongqing Jiao
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsChinese Academy of Agricultural SciencesOil Crops Research InstituteWuhanChina
- Collaborative Innovation Center of Henan Grain CropsCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Lam‐Son Phan Tran
- Institute of Research and DevelopmentDuy Tan UniversityDa NangVietnam
- Stress Adaptation Research UnitRIKEN Center for Sustainable Resource ScienceTsurumiYokohamaJapan
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsChinese Academy of Agricultural SciencesOil Crops Research InstituteWuhanChina
| | - Dong Cao
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsChinese Academy of Agricultural SciencesOil Crops Research InstituteWuhanChina
| |
Collapse
|
22
|
Correa SM, Fernie AR, Nikoloski Z, Brotman Y. Towards model-driven characterization and manipulation of plant lipid metabolism. Prog Lipid Res 2020; 80:101051. [PMID: 32640289 DOI: 10.1016/j.plipres.2020.101051] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 01/09/2023]
Abstract
Plant lipids have versatile applications and provide essential fatty acids in human diet. Therefore, there has been a growing interest to better characterize the genetic basis, regulatory networks, and metabolic pathways that shape lipid quantity and composition. Addressing these issues is challenging due to context-specificity of lipid metabolism integrating environmental, developmental, and tissue-specific cues. Here we systematically review the known metabolic pathways and regulatory interactions that modulate the levels of storage lipids in oilseeds. We argue that the current understanding of lipid metabolism provides the basis for its study in the context of genome-wide plant metabolic networks with the help of approaches from constraint-based modeling and metabolic flux analysis. The focus is on providing a comprehensive summary of the state-of-the-art of modeling plant lipid metabolic pathways, which we then contrast with the existing modeling efforts in yeast and microalgae. We then point out the gaps in knowledge of lipid metabolism, and enumerate the recent advances of using genome-wide association and quantitative trait loci mapping studies to unravel the genetic regulations of lipid metabolism. Finally, we offer a perspective on how advances in the constraint-based modeling framework can propel further characterization of plant lipid metabolism and its rational manipulation.
Collapse
Affiliation(s)
- Sandra M Correa
- Genetics of Metabolic Traits Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel; Departamento de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 050010, Colombia.
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Zoran Nikoloski
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modelling Group, Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm 14476, Germany.
| | - Yariv Brotman
- Genetics of Metabolic Traits Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| |
Collapse
|
23
|
Grimberg Å, Wilkinson M, Snell P, De Vos RP, González-Thuillier I, Tawfike A, Ward JL, Carlsson AS, Shewry P, Hofvander P. Transitions in wheat endosperm metabolism upon transcriptional induction of oil accumulation by oat endosperm WRINKLED1. BMC PLANT BIOLOGY 2020; 20:235. [PMID: 32450804 PMCID: PMC7249431 DOI: 10.1186/s12870-020-02438-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/10/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Cereal grains, including wheat (Triticum aestivum L.), are major sources of food and feed, with wheat being dominant in temperate zones. These end uses exploit the storage reserves in the starchy endosperm of the grain, with starch being the major storage component in most cereal species. However, oats (Avena sativa L.) differs in that the starchy endosperm stores significant amounts of oil. Understanding the control of carbon allocation between groups of storage compounds, such as starch and oil, is therefore important for understanding the composition and hence end use quality of cereals. WRINKLED1 is a transcription factor known to induce triacylglycerol (TAG; oil) accumulation in several plant storage tissues. RESULTS An oat endosperm homolog of WRI1 (AsWRI1) expressed from the endosperm-specific HMW1Dx5 promoter resulted in drastic changes in carbon allocation in wheat grains, with reduced seed weight and a wrinkled seed phenotype. The starch content of mature grain endosperms of AsWRI1-wheat was reduced compared to controls (from 62 to 22% by dry weight (dw)), TAG was increased by up to nine-fold (from 0.7 to 6.4% oil by dw) and sucrose from 1.5 to 10% by dw. Expression of AsWRI1 in wheat grains also resulted in multiple layers of elongated peripheral aleurone cells. RNA-sequencing, lipid analyses, and pulse-chase experiments using 14C-sucrose indicated that futile cycling of fatty acids could be a limitation for oil accumulation. CONCLUSIONS Our data show that expression of oat endosperm WRI1 in the wheat endosperm results in changes in metabolism which could underpin the application of biotechnology to manipulate grain composition. In particular, the striking effect on starch synthesis in the wheat endosperm indicates that an important indirect role of WRI1 is to divert carbon allocation away from starch biosynthesis in plant storage tissues that accumulate oil.
Collapse
Affiliation(s)
- Åsa Grimberg
- Department of Plant Breeding, Swedish University of Agricultural Sciences, SE-23053, Alnarp, Sweden.
| | - Mark Wilkinson
- Department of Plant Sciences, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Per Snell
- Department of Plant Breeding, Swedish University of Agricultural Sciences, SE-23053, Alnarp, Sweden
- Current address: MariboHilleshög Research AB, Box 302, 261 23, Landskrona, Sweden
| | - Rebecca P De Vos
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | | | - Ahmed Tawfike
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Jane L Ward
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Anders S Carlsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, SE-23053, Alnarp, Sweden
| | - Peter Shewry
- Department of Plant Sciences, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, SE-23053, Alnarp, Sweden
| |
Collapse
|
24
|
Kong Q, Yang Y, Guo L, Yuan L, Ma W. Molecular Basis of Plant Oil Biosynthesis: Insights Gained From Studying the WRINKLED1 Transcription Factor. FRONTIERS IN PLANT SCIENCE 2020; 11:24. [PMID: 32117370 PMCID: PMC7011094 DOI: 10.3389/fpls.2020.00024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/10/2020] [Indexed: 05/25/2023]
Abstract
Most plant species generate and store triacylglycerol (TAG) in their seeds, serving as a core supply of carbon and energy to support seedling development. Plant seed oils have a wide variety of applications, from being essential for human diets to serving as industrial renewable feedstock. WRINKLED1 (WRI1) transcription factor plays a central role in the transcriptional regulation of plant fatty acid biosynthesis. Since the discovery of Arabidopsis WRI1 gene (AtWRI1) in 2004, the function of WRI1 in plant oil biosynthesis has been studied intensively. In recent years, the identification of WRI1 co-regulators and deeper investigations of the structural features and molecular functions of WRI1 have advanced our understanding of the mechanism of the transcriptional regulation of plant oil biosynthesis. These advances also help pave the way for novel approaches that will better utilize WRI1 for bioengineering oil production in crops.
Collapse
Affiliation(s)
- Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yuzhou Yang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
25
|
Yang Z, Liu X, Li N, Du C, Wang K, Zhao C, Wang Z, Hu Y, Zhang M. WRINKLED1 homologs highly and functionally express in oil-rich endosperms of oat and castor. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110193. [PMID: 31481195 DOI: 10.1016/j.plantsci.2019.110193] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/11/2019] [Accepted: 07/16/2019] [Indexed: 05/03/2023]
Abstract
Oat (Avena sativa) and castor (Ricinus communis) accumulate a large amount of lipids in their endosperms, however the molecular mechanism remains unknown. In this study, differences in oil regulators between oat and wheat (Triticum aestivum) as well as common features between oat and castor were tested by analyzing their transcriptomes with further q-PCR analysis. Results indicated that WRINKLED1 (WRI1) homologs and their target genes highly expressed in the endosperms of oat and castor, but not in the starchy endosperms of wheat. Expression pattern of WRI1s was in agreement with that of oil accumulation. Three AsWRI1s (AsWRI1a, AsWRI1b and AsWRI1c) and one RcWRI1 were identified in the endosperms of oat and castor, respectively. AsWRI1c lacks VYL motif, which is different from the other three WRI1s. Expressions of these four WRI1s all complemented the phenotypes of Arabidopsis wri1-1 mutant. Overexpression of these WRI1s in Arabidopsis and tobacco BY2 cells increased oil contents of seeds and total fatty acids of the cells, respectively. Moreover, this overexpression also resulted in up-regulations of WRI1 target genes, such as PKp-β1. Taken together, our results suggest that high and functional expression of WRI1 play a key role in the oil-rich endosperms and the VYL motif is dispensable for WRI1 function.
Collapse
Affiliation(s)
- Zheng Yang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiangling Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Na Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Chang Du
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Kai Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Cuizhu Zhao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zhonghua Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yingang Hu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
26
|
Yang SU, Kim J, Kim H, Suh MC. Functional Characterization of Physcomitrella patens Glycerol-3-Phosphate Acyltransferase 9 and an Increase in Seed Oil Content in Arabidopsis by Its Ectopic Expression. PLANTS (BASEL, SWITZERLAND) 2019; 8:E284. [PMID: 31412690 PMCID: PMC6724121 DOI: 10.3390/plants8080284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 02/04/2023]
Abstract
Since vegetable oils (usually triacylglycerol [TAG]) are extensively used as food and raw materials, an increase in storage oil content and production of valuable polyunsaturated fatty acids (PUFAs) in transgenic plants is desirable. In this study, a gene encoding glycerol-3-phosphate acyltransferase 9 (GPAT9), which catalyzes the synthesis of lysophosphatidic acid (LPA) from a glycerol-3-phosphate and acyl-CoA, was isolated from Physcomitrella patens, which produces high levels of very-long-chain PUFAs in protonema and gametophores. P. patens GPAT9 shares approximately 50%, 60%, and 70% amino acid similarity with GPAT9 from Chlamydomonas reinhardtii, Klebsormidium nitens, and Arabidopsis thaliana, respectively. PpGPAT9 transcripts were detected in both the protonema and gametophores. Fluorescent signals from the eYFP:PpGPAT9 construct were observed in the ER of Nicotiana benthamiana leaf epidermal cells. Ectopic expression of PpGPAT9 increased the seed oil content by approximately 10% in Arabidopsis. The levels of PUFAs (18:2, 18:3, and 20:2) and saturated FAs (16:0, 18:0, and 20:0) increased by 60% and 43%, respectively, in the storage oil of the transgenic seeds when compared with the wild type. The transgenic embryos with increased oil content contained larger embryonic cells than the wild type. Thus, PpGPAT9 may be a novel genetic resource to enhance storage oil yields from oilseed crops.
Collapse
Affiliation(s)
- Sun Ui Yang
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Juyoung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Hyojin Kim
- Department of Life Science, Sogang University, Seoul 04107, Korea
| | - Mi Chung Suh
- Department of Life Science, Sogang University, Seoul 04107, Korea.
| |
Collapse
|
27
|
WRINKLED1, a "Master Regulator" in Transcriptional Control of Plant Oil Biosynthesis. PLANTS 2019; 8:plants8070238. [PMID: 31336651 PMCID: PMC6681333 DOI: 10.3390/plants8070238] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/31/2022]
Abstract
A majority of plant species generate and accumulate triacylglycerol (TAG) in their seeds, which is the main resource of carbon and energy supporting the process of seedling development. Plant seed oils have broad ranges of uses, being not only important for human diets but also renewable feedstock of industrial applications. The WRINKLED1 (WRI1) transcription factor is vital for the transcriptional control of plant oil biosynthetic pathways. Since the identification of the Arabidopsis WRI1 gene (AtWRI1) fifteen years ago, tremendous progress has been made in understanding the functions of WRI1 at multiple levels, ranging from the identification of AtWRI1 target genes to location of the AtWRI1 binding motif, and from discovery of intrinsic structural disorder in WRI1 to fine-tuning of WRI1 modulation by post-translational modifications and protein-protein interactions. The expanding knowledge on the functional understanding of the WRI1 regulatory mechanism not only provides a clearer picture of transcriptional regulation of plant oil biosynthetic pathway, but also helps generate new strategies to better utilize WRI1 for developing novel oil crops.
Collapse
|
28
|
Vogel PA, Bayon de Noyer S, Park H, Nguyen H, Hou L, Changa T, Khang HL, Ciftci ON, Wang T, Cahoon EB, Clemente TE. Expression of the Arabidopsis WRINKLED 1 transcription factor leads to higher accumulation of palmitate in soybean seed. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1369-1379. [PMID: 30575262 PMCID: PMC6577354 DOI: 10.1111/pbi.13061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 05/30/2023]
Abstract
Soybean (Glycine max [L.] Merr.) is a commodity crop highly valued for its protein and oil content. The high percentage of polyunsaturated fatty acids in soybean oil results in low oxidative stability, which is a key parameter for usage in baking, high temperature frying applications, and affects shelf life of packaged products containing soybean oil. Introduction of a seed-specific expression cassette carrying the Arabidopsis transcription factor WRINKLED1 (AtWRI1) into soybean, led to seed oil with levels of palmitate up to approximately 20%. Stacking of the AtWRI1 transgenic allele with a transgenic locus harbouring the mangosteen steroyl-ACP thioesterase (GmFatA) resulted in oil with total saturates up to 30%. The creation of a triple stack in soybean, wherein the AtWRI1 and GmFatA alleles were combined with a FAD2-1 silencing allele led to the synthesis of an oil with 28% saturates and approximately 60% oleate. Constructs were then assembled that carry a dual FAD2-1 silencing element/GmFatA expression cassette, alone or combined with an AtWRI1 cassette. These plasmids are designated pPTN1289 and pPTN1301, respectively. Transgenic events carrying the T-DNA of pPTN1289 displayed an oil with stearate levels between 18% and 25%, and oleate in the upper 60%, with reduced palmitate (<5%). While soybean events harboring transgenic alleles of pPTN1301 had similar levels of stearic and oleate levels as that of the pPTRN1289 events, but with levels of palmitate closer to wild type. The modified fatty acid composition results in an oil with higher oxidative stability, and functionality attributes for end use in baking applications.
Collapse
Affiliation(s)
- Pamela A. Vogel
- Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
- Department of Agronomy & HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Shen Bayon de Noyer
- Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
- Department of Agronomy & HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Hyunwoo Park
- Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
- Department of Agronomy & HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
- Present address:
LG ChemSeoulKorea
| | - Hanh Nguyen
- Center for BiotechnologyUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Lili Hou
- Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
- Department of Agronomy & HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Taity Changa
- Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
- Department of Agronomy & HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Hoang Le Khang
- Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
- Department of Agronomy & HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Ozan N. Ciftci
- Department of Food Science & TechnologyUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Tong Wang
- Department of Food Science and Human NutritionIowa State UniversityAmesIAUSA
| | - Edgar B. Cahoon
- Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
- Department of BiochemistryUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Tom Elmo Clemente
- Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
- Department of Agronomy & HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| |
Collapse
|
29
|
Vanhercke T, Dyer JM, Mullen RT, Kilaru A, Rahman MM, Petrie JR, Green AG, Yurchenko O, Singh SP. Metabolic engineering for enhanced oil in biomass. Prog Lipid Res 2019; 74:103-129. [PMID: 30822461 DOI: 10.1016/j.plipres.2019.02.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
The world is hungry for energy. Plant oils in the form of triacylglycerol (TAG) are one of the most reduced storage forms of carbon found in nature and hence represent an excellent source of energy. The myriad of applications for plant oils range across foods, feeds, biofuels, and chemical feedstocks as a unique substitute for petroleum derivatives. Traditionally, plant oils are sourced either from oilseeds or tissues surrounding the seed (mesocarp). Most vegetative tissues, such as leaves and stems, however, accumulate relatively low levels of TAG. Since non-seed tissues constitute the majority of the plant biomass, metabolic engineering to improve their low-intrinsic TAG-biosynthetic capacity has recently attracted significant attention as a novel, sustainable and potentially high-yielding oil production platform. While initial attempts predominantly targeted single genes, recent combinatorial metabolic engineering strategies have focused on the simultaneous optimization of oil synthesis, packaging and degradation pathways (i.e., 'push, pull, package and protect'). This holistic approach has resulted in dramatic, seed-like TAG levels in vegetative tissues. With the first proof of concept hurdle addressed, new challenges and opportunities emerge, including engineering fatty acid profile, translation into agronomic crops, extraction, and downstream processing to deliver accessible and sustainable bioenergy.
Collapse
Affiliation(s)
- Thomas Vanhercke
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia.
| | - John M Dyer
- USDA-ARS, US Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Md Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - James R Petrie
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia; Folear, Goulburn, NSW, Australia
| | - Allan G Green
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Olga Yurchenko
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Surinder P Singh
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| |
Collapse
|
30
|
Delatte TL, Scaiola G, Molenaar J, de Sousa Farias K, Alves Gomes Albertti L, Busscher J, Verstappen F, Carollo C, Bouwmeester H, Beekwilder J. Engineering storage capacity for volatile sesquiterpenes in Nicotiana benthamiana leaves. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1997-2006. [PMID: 29682901 PMCID: PMC6230952 DOI: 10.1111/pbi.12933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/19/2018] [Accepted: 04/02/2018] [Indexed: 05/18/2023]
Abstract
Plants store volatile compounds in specialized organs. The properties of these storage organs prevent precarious evaporation and protect neighbouring tissues from cytotoxicity. Metabolic engineering of plants is often carried out in tissues such as leaf mesophyll cells, which are abundant and easily accessible by engineering tools. However, these tissues are not suitable for the storage of volatile and hydrophobic compound such as sesquiterpenes and engineered volatiles are often lost into the headspace. In this study, we show that the seeds of Arabidopsis thaliana, which naturally contain lipid bodies, accumulate sesquiterpenes upon engineered expression. Subsequently, storage of volatile sesquiterpenes was achieved in Nicotiana benthamiana leaf tissue, by introducing oleosin-coated lipid bodies through metabolic engineering. Hereto, different combinations of genes encoding diacylglycerol acyltransferases (DGATs), transcription factors (WRINKL1) and oleosins (OLE1), from the oil seed-producing species castor bean (Ricinus communis) and Arabidopsis, were assessed for their suitability to promote lipid body formation. Co-expression of α-bisabolol synthase with Arabidopsis DGAT1 and WRINKL1 and OLE1 from castor bean promoted storage of α-bisabolol in N. benthamiana mesophyll tissue more than 17-fold. A clear correlation was found between neutral lipids and storage of sesquiterpenes, using synthases for α-bisabolol, (E)-β-caryophyllene and α-barbatene. The co-localization of neutral lipids and α-bisabolol was shown using microscopy. This work demonstrates that lipid bodies can be used as intracellular storage compartment for hydrophobic sesquiterpenes, also in the vegetative parts of plants, creating the possibility to improve yields of metabolic engineering strategies in plants.
Collapse
Affiliation(s)
| | - Giulia Scaiola
- Lab Plant PhysiolWageningen Univ & ResWageningenThe Netherlands
| | - Jamil Molenaar
- Lab Plant PhysiolWageningen Univ & ResWageningenThe Netherlands
| | | | | | | | | | - Carlos Carollo
- Lab Prod Nat & Espectrometria MassasUniv Fed Mato Grosso do SulCampo GrandeMSBrazil
| | - Harro Bouwmeester
- Lab Plant PhysiolWageningen Univ & ResWageningenThe Netherlands
- Present address:
Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jules Beekwilder
- Wageningen Univ & ResWageningen Plant ResBiosciWageningenThe Netherlands
| |
Collapse
|
31
|
Aguirre M, Kiegle E, Leo G, Ezquer I. Carbohydrate reserves and seed development: an overview. PLANT REPRODUCTION 2018; 31:263-290. [PMID: 29728792 DOI: 10.1007/s00497-018-0336-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Seeds are one of the most important food sources, providing humans and animals with essential nutrients. These nutrients include carbohydrates, lipids, proteins, vitamins and minerals. Carbohydrates are one of the main energy sources for both plant and animal cells and play a fundamental role in seed development, human nutrition and the food industry. Many studies have focused on the molecular pathways that control carbohydrate flow during seed development in monocot and dicot species. For this reason, an overview of seed biodiversity focused on the multiple metabolic and physiological mechanisms that govern seed carbohydrate storage function in the plant kingdom is required. A large number of mutants affecting carbohydrate metabolism, which display defective seed development, are currently available for many plant species. The physiological, biochemical and biomolecular study of such mutants has led researchers to understand better how metabolism of carbohydrates works in plants and the critical role that these carbohydrates, and especially starch, play during seed development. In this review, we summarize and analyze the newest findings related to carbohydrate metabolism's effects on seed development, pointing out key regulatory genes and enzymes that influence seed sugar import and metabolism. Our review also aims to provide guidelines for future research in the field and in this way to assist seed quality optimization by targeted genetic engineering and classical breeding programs.
Collapse
Affiliation(s)
- Manuel Aguirre
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
- FNWI, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Edward Kiegle
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Giulia Leo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Ignacio Ezquer
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy.
| |
Collapse
|
32
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 57:2367-2379. [PMID: 30149541 DOI: 10.1093/pcp/pcw157] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/07/2018] [Accepted: 09/05/2016] [Indexed: 05/25/2023] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
33
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 19:ijms19092506. [PMID: 30149541 PMCID: PMC6165531 DOI: 10.3390/ijms19092506] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
34
|
Kong Q, Ma W. WRINKLED1 transcription factor: How much do we know about its regulatory mechanism? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:153-156. [PMID: 29807586 DOI: 10.1016/j.plantsci.2018.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/29/2018] [Accepted: 04/15/2018] [Indexed: 05/25/2023]
Abstract
Many plant species produce and build up triacylglycerol (TAG) in their seeds as a main resource to provide carbon and energy during seedling development. Plant seed oils are important not only for human diets but also as renewable feedstock of industrial uses. WRINKLED1 (WRI1), an APETALA2 (AP2) transcription factor, plays an essential role in the transcriptional regulation of TAG biosynthesis as WRI1 regulates the expression of key genes in the glycolytic and fatty acid biosynthetic pathways. Recent work has identified intrinsic structural disorder in WRI1 that may affect the stability of the protein. Furthermore, WRI1 activity is modulated by post-translational modifications and interacting partners. These progresses shed light on regulatory functions of WRI1 at the molecular levels, paving new paths to the use of WRI1 for bioengineering of TAG in plants.
Collapse
Affiliation(s)
- Que Kong
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore.
| |
Collapse
|
35
|
de Abreu E Lima F, Li K, Wen W, Yan J, Nikoloski Z, Willmitzer L, Brotman Y. Unraveling lipid metabolism in maize with time-resolved multi-omics data. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:1102-1115. [PMID: 29385634 DOI: 10.1111/tpj.13833] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 05/19/2023]
Abstract
Maize is the cereal crop with the highest production worldwide, and its oil is a key energy resource. Improving the quantity and quality of maize oil requires a better understanding of lipid metabolism. To predict the function of maize genes involved in lipid biosynthesis, we assembled transcriptomic and lipidomic data sets from leaves of B73 and the high-oil line By804 in two distinct time-series experiments. The integrative analysis based on high-dimensional regularized regression yielded lipid-transcript associations indirectly validated by Gene Ontology and promoter motif enrichment analyses. The co-localization of lipid-transcript associations using the genetic mapping of lipid traits in leaves and seedlings of a B73 × By804 recombinant inbred line population uncovered 323 genes involved in the metabolism of phospholipids, galactolipids, sulfolipids and glycerolipids. The resulting association network further supported the involvement of 50 gene candidates in modulating levels of representatives from multiple acyl-lipid classes. Therefore, the proposed approach provides high-confidence candidates for experimental testing in maize and model plant species.
Collapse
Affiliation(s)
| | - Kun Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Weiwei Wen
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Zoran Nikoloski
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
| | - Lothar Willmitzer
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| |
Collapse
|
36
|
Wang L, Du X, Feng Y, Liu P, Zhu J, Zhang L, Du H, Ma M, Li F. Ectopic expression of EuWRI1, encoding a transcription factor in E. ulmoides, changes the seeds oil content in transgenic tobacco. Biotechnol Prog 2018; 34:337-346. [PMID: 29314787 DOI: 10.1002/btpr.2606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 11/13/2017] [Indexed: 11/09/2022]
Abstract
The WRINKLED1 (WRI1) gene is a well-established key transcriptional regulator involved in the regulation of fatty acid biosynthesis in developing seeds. In this study, a new WRI1 gene was isolated from seeds of Eucommia ulmoides and named EuWRI1. A close link between gibberellins signaling and EuWRI1 gene expression was suggested in this study. Functional characterization of EuWRI1 was elucidated through seed-specific expression in tobacco. In transgenic tobacco, the expression of EuWRI1 in eight independent transgenic lines was detected by semiquantitative RT-PCR. The relative mRNA accumulation of genes encoding enzymes involved in fatty acid biosynthesis (biotin carboxyl carrier protein and keto-ACP synthase 1) was also assayed in tobacco seeds. Analysis of the seeds oil content and starch content indicated that the transgenic lines showed a significant increase in seeds oil content, whereas starch content decreased significantly. Further analysis of the fatty acid composition revealed that palmitic acid (16:0), linoleic acid (18:2) and linolenic acid (18:3) increased significantly in seeds of transgenic tobacco lines, but stearic acid (18:0) levels significantly declined. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:337-346, 2018.
Collapse
Affiliation(s)
- Lu Wang
- Paulownia Research and Development Center, State Forestry Administration, Zhengzhou, Henan, 450003, China
| | - Xilong Du
- College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yanzhi Feng
- Paulownia Research and Development Center, State Forestry Administration, Zhengzhou, Henan, 450003, China
| | - Panfeng Liu
- Paulownia Research and Development Center, State Forestry Administration, Zhengzhou, Henan, 450003, China
| | - Jingle Zhu
- Paulownia Research and Development Center, State Forestry Administration, Zhengzhou, Henan, 450003, China
| | - Lin Zhang
- Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Hongyan Du
- Paulownia Research and Development Center, State Forestry Administration, Zhengzhou, Henan, 450003, China
| | - Mingguo Ma
- College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Fangdong Li
- Paulownia Research and Development Center, State Forestry Administration, Zhengzhou, Henan, 450003, China
| |
Collapse
|
37
|
Ji XJ, Mao X, Hao QT, Liu BL, Xue JA, Li RZ. Splice Variants of the Castor WRI1 Gene Upregulate Fatty Acid and Oil Biosynthesis When Expressed in Tobacco Leaves. Int J Mol Sci 2018; 19:E146. [PMID: 29303957 PMCID: PMC5796095 DOI: 10.3390/ijms19010146] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/25/2017] [Accepted: 01/02/2018] [Indexed: 01/03/2023] Open
Abstract
The plant-specific WRINKLED1 (WRI1) is a member of the AP2/EREBP class of transcription factors that positively regulate oil biosynthesis in plant tissues. Limited information is available for the role of WRI1 in oil biosynthesis in castor bean (Ricinus connunis L.), an important industrial oil crop. Here, we report the identification of two alternatively spliced transcripts of RcWRI1, designated as RcWRI1-A and RcWRI1-B. The open reading frames of RcWRI1-A (1341 bp) and RcWRI1-B (1332 bp) differ by a stretch of 9 bp, such that the predicted RcWRI1-B lacks the three amino acid residues "VYL" that are present in RcWRI1-A. The RcWRI1-A transcript is present in flowers, leaves, pericarps and developing seeds, while the RcWRI1-B mRNA is only detectable in developing seeds. When the two isoforms were individually introduced into an Arabidopsiswri1-1 loss-of-function mutant, total fatty acid content was almost restored to the wild-type level, and the percentage of the wrinkled seeds was largely reduced in the transgenic lines relative to the wri1-1 mutant line. Transient expression of each RcWRI1 splice isoform in N. benthamiana leaves upregulated the expression of the WRI1 target genes, and consequently increased the oil content by 4.3-4.9 fold when compared with the controls, and RcWRI1-B appeared to be more active than RcWRI1-A. Both RcWRI1-A and RcWRI1-B can be used as a key transcriptional regulator to enhance fatty acid and oil biosynthesis in leafy biomass.
Collapse
Affiliation(s)
- Xia-Jie Ji
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China.
| | - Xue Mao
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China.
| | - Qing-Ting Hao
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China.
| | - Bao-Ling Liu
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China.
| | - Jin-Ai Xue
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China.
| | - Run-Zhi Li
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
38
|
Kong Q, Ma W. WRINKLED1 as a novel 14-3-3 client: function of 14-3-3 proteins in plant lipid metabolism. PLANT SIGNALING & BEHAVIOR 2018; 13:e1482176. [PMID: 30067435 PMCID: PMC6149467 DOI: 10.1080/15592324.2018.1482176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The conserved plant 14-3-3 proteins (14-3-3s) function by binding to phosphorylated client proteins to regulate their function. Previous studies indicate that 14-3-3s are involved in the regulation of plant primary metabolism; however, not much is known regarding the functions of 14-3-3s in plant oil biosynthesis. Our recent work shows that 14-3-3 plays a role in mediating plant oil biosynthesis through interacting with the transcription factor, WRINKLED1 (WRI1). WRI1 is critical for the transcriptional control of plant oil biosynthesis. Arabidopsis WRI1 physically interacts with 14-3-3s. Transient co-expression of AtWRI1 with 14-3-3s enhances plant oil biosynthesis in leaves of Nicotiana benthamiana. Transgenic plants overexpressing of a 14-3-3 show enhanced seed oil content. Co-expression of a 14-3-3 with AtWRI1 results in increased transcriptional activity and protein stability of AtWRI1. Our transcriptional regulation model supports a concept that interaction of a 14-3-3 with a transcription factor enhances the transcriptional activity through protein stabilization.
Collapse
Affiliation(s)
- Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- CONTACT Wei Ma School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
39
|
Zang X, Pei W, Wu M, Geng Y, Wang N, Liu G, Ma J, Li D, Cui Y, Li X, Zhang J, Yu J. Genome-Scale Analysis of the WRI-Like Family in Gossypium and Functional Characterization of GhWRI1a Controlling Triacylglycerol Content. FRONTIERS IN PLANT SCIENCE 2018; 9:1516. [PMID: 30386365 PMCID: PMC6198791 DOI: 10.3389/fpls.2018.01516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/27/2018] [Indexed: 05/14/2023]
Abstract
Cotton (Gossypium spp.) is the most important natural fiber crop and the source of cottonseed oil, a basic by-product after ginning. AtWRI1 and its orthologs in several other crop species have been previously used to increase triacylglycerols in seeds and vegetative tissues. In the present study, we identified 22, 17, 9, and 11 WRI-like genes in G. hirsutum, G. barbadense, G. arboreum, and G. raimondii, respectively. This gene family was divided into four subgroups, and a more WRI2-like subfamily was identified compared with dicotyledonous Arabidopsis. An analysis of chromosomal distributions revealed that the 22 GhWRI genes were distributed on eight At and eight Dt subgenome chromosomes. Moreover, GhWRI1a was highly expressed in ovules 20-35 days after anthesis and was selected for further functional analysis. Ectopic expression of GhWRI1a rescued the seed phenotype of a wri1-7 mutant and increased the oil content of Arabidopsis seeds. Our comprehensive genome-wide analysis of the cotton WRI-like gene family lays a solid foundation for further studies.
Collapse
Affiliation(s)
- Xinshan Zang
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Man Wu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Yanhui Geng
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Nuohan Wang
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Guoyuan Liu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Jianjiang Ma
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Dan Li
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Yupeng Cui
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Xingli Li
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
- *Correspondence: Jiwen Yu,
| |
Collapse
|
40
|
Abdullah HM, Chhikara S, Akbari P, Schnell DJ, Pareek A, Dhankher OP. Comparative transcriptome and metabolome analysis suggests bottlenecks that limit seed and oil yields in transgenic Camelina sativa expressing diacylglycerol acyltransferase 1 and glycerol-3-phosphate dehydrogenase. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:335. [PMID: 30574188 PMCID: PMC6299664 DOI: 10.1186/s13068-018-1326-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/30/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND Camelina sativa has attracted much interest as alternative renewable resources for biodiesel, other oil-based industrial products and a source for edible oils. Its unique oil attributes attract research to engineering new varieties of improved oil quantity and quality. The overexpression of enzymes catalyzing the synthesis of the glycerol backbone and the sequential conjugation of fatty acids into this backbone is a promising approach for increasing the levels of triacylglycerol (TAG). In a previous study, we co-expressed the diacylglycerol acyltransferase (DGAT1) and glycerol-3-phosphate dehydrogenase (GPD1), involved in TAG metabolism, in Camelina seeds. Transgenic plants exhibited a higher-percentage seed oil content, a greater seed mass, and overall improved seed and oil yields relative to wild-type plants. To further increase seed oil content in Camelina, we utilized metabolite profiling, in conjunction with transcriptome profiling during seed development to examine potential rate-limiting step(s) in the production of building blocks for TAG biosynthesis. RESULTS Transcriptomic analysis revealed approximately 2518 and 3136 transcripts differentially regulated at significant levels in DGAT1 and GPD1 transgenics, respectively. These transcripts were found to be involved in various functional categories, including alternative metabolic routes in fatty acid synthesis, TAG assembly, and TAG degradation. We quantified the relative contents of over 240 metabolites. Our results indicate major metabolic switches in transgenic seeds associated with significant changes in the levels of glycerolipids, amino acids, sugars, and organic acids, especially the TCA cycle and glycolysis intermediates. CONCLUSIONS From the transcriptomic and metabolomic analysis of DGAT1, GPD1 and DGAT1 + GPD1 expressing lines of C. sativa, we conclude that TAG production is limited by (1) utilization of fixed carbon from the source tissues supported by the increase in glycolysis pathway metabolites and decreased transcripts levels of transcription factors controlling fatty acids synthesis; (2) TAG accumulation is limited by the activity of lipases/hydrolases that hydrolyze TAG pool supported by the increase in free fatty acids and monoacylglycerols. This comparative transcriptomics and metabolomics approach is useful in understanding the regulation of TAG biosynthesis, identifying bottlenecks, and the corresponding genes controlling these pathways identified as limitations, for generating Camelina varieties with improved seed and oil yields.
Collapse
Affiliation(s)
- Hesham M. Abdullah
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 USA
- Biotechnology Department, Faculty of Agriculture, Al-Azhar University, Cairo, 11651 Egypt
- Present Address: Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Sudesh Chhikara
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 USA
- Present Address: Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001 India
| | - Parisa Akbari
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 USA
| | - Danny J. Schnell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 100067 India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 USA
| |
Collapse
|
41
|
Hao S, Ma Y, Zhao S, Ji Q, Zhang K, Yang M, Yao Y. McWRI1, a transcription factor of the AP2/SHEN family, regulates the biosynthesis of the cuticular waxes on the apple fruit surface under low temperature. PLoS One 2017; 12:e0186996. [PMID: 29073205 PMCID: PMC5658121 DOI: 10.1371/journal.pone.0186996] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/11/2017] [Indexed: 11/22/2022] Open
Abstract
Cuticular waxes of plant and organ surfaces play an important role in protecting plants from biotic and abiotic stress and extending the freshness, storage time and shelf life in the post-harvest agricultural products. WRI1, a transcription factor of AP2/SHEN families, had been found to trigger the related genes taking part in the biosynthesis of seed oil in many plants. But whether WRI1 is involved in the biosynthesis of the cuticular waxes on the Malus fruits surface has been unclear. We investigated the changes of wax composition and structure, the related genes and WRI1 expression on Malus asiatica Nakai and sieversii fruits with the low temperature treatments, found that low temperature induced the up-regulated expression of McWRI1, which promoted gene expression of McKCS, McLACs and McWAX in very-long-chain fatty acid biosynthesis pathway, resulting in the accumulation of alkanes component and alteration of wax structure on the fruit surface. Corresponding results were verified in McWRI1 silenced by VIGS, and WRI1 silenced down-regulated the related genes on two kinds of fruits, it caused the diversity alteration in content of some alkanes, fatty acid and ester component in two kinds of fruits. We further conducted Y1H assay to find that McWRI1 transcription factor activated the promoter of McKCS, McLAC and McWAX to regulate their expression. These results demonstrated that McWRI1 is involved in regulating the genes related synthesis of very long chain fatty acid on surface of apple fruits in storage process, providing a highlight for improvement of the modified atmosphere storage of apple fruits.
Collapse
Affiliation(s)
- Suxiao Hao
- Beijing Key Laboratory of New Technology in Agriculture Application, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yiyi Ma
- Beijing Key Laboratory of New Technology in Agriculture Application, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Shuang Zhao
- Beijing Key Laboratory of New Technology in Agriculture Application, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Qianlong Ji
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Kezhong Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Mingfeng Yang
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, China
- * E-mail: (YY); (MY)
| | - Yuncong Yao
- Beijing Key Laboratory of New Technology in Agriculture Application, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, China
- * E-mail: (YY); (MY)
| |
Collapse
|