1
|
Xiang H, Liang X, Wang S, Wang X, He N, Dong X, Wang D, Chen S, Song Q, Liu Y, Wang Q, Li W. Foliar spraying exogenous ABA resists chilling stress on adzuki beans (Vigna angularis). PLoS One 2024; 19:e0304628. [PMID: 39250484 PMCID: PMC11383210 DOI: 10.1371/journal.pone.0304628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/14/2024] [Indexed: 09/11/2024] Open
Abstract
Adzuki bean, an important legume crop, exhibits poor tolerance to low temperatures. To investigate the effect of exogenous abscisic acid (ABA) on the physiological metabolism and yield resistance of adzuki bean under low-temperature stress, we conducted a potted experiment using Longxiaodou 4 (LXD 4) and Tianjinhong (TJH) as test materials and pre-sprayed with exogenous ABA at flowering stage continuously for 5 days with an average of 12°C and an average of 15°C, respectively. We found that, compared with spraying water, foliar spraying exogenous ABA increased the activities of antioxidants and the content of non-enzymatic antioxidants, effectively inhibited the increase of malondialdehyde (MDA), hydrogen peroxide (H2O2) content, O2-· production rate. Exogenous ABA induced the activation of endogenous protective mechanisms by increasing antioxidant enzymes activities such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as elevated levels of non-enzymatic antioxidants including ascorbic acid (ASA) and glutathione (GSH). Moreover, the yield loss of 5.81%-39.84% caused by chilling stress was alleviated by spraying ABA. In conclusion, foliar spraying exogenous ABA can reduce the negative effects of low-temperature stress on the yield of Adzuki beans, which is essential to ensure stable production of Adzuki beans under low-temperature conditions.
Collapse
Affiliation(s)
- Hongtao Xiang
- Suihua Branch, Heilongjiang Academy of Agricultural Machinery Sciences, Suihua, China
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xiaoyan Liang
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Shiya Wang
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Xueyang Wang
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ning He
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xiaohui Dong
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Deming Wang
- Suihua Branch, Heilongjiang Academy of Agricultural Machinery Sciences, Suihua, China
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Shuqiang Chen
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qiulai Song
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yuqiang Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qingjuan Wang
- Qiqihar Agricultural Technology Promotion Center, Qiqihar, China
| | - Wan Li
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
2
|
Liu X, Wang T, Ruan Y, Xie X, Tan C, Guo Y, Li B, Qu L, Deng L, Li M, Liu C. Comparative Metabolome and Transcriptome Analysis of Rapeseed ( Brassica napus L.) Cotyledons in Response to Cold Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2212. [PMID: 39204648 PMCID: PMC11360269 DOI: 10.3390/plants13162212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Cold stress affects the seed germination and early growth of winter rapeseed, leading to yield losses. We employed transmission electron microscopy, physiological analyses, metabolome profiling, and transcriptome sequencing to understand the effect of cold stress (0 °C, LW) on the cotyledons of cold-tolerant (GX74) and -sensitive (XY15) rapeseeds. The mesophyll cells in cold-treated XY15 were severely damaged compared to slightly damaged cells in GX74. The fructose, glucose, malondialdehyde, and proline contents increased after cold stress in both genotypes; however, GX74 had significantly higher content than XY15. The pyruvic acid content increased after cold stress in GX74, but decreased in XY15. Metabolome analysis detected 590 compounds, of which 32 and 74 were differentially accumulated in GX74 (CK vs. cold stress) and XY15 (CK vs. cold stressed). Arachidonic acid and magnoflorine were the most up-accumulated metabolites in GX74 subjected to cold stress compared to CK. There were 461 and 1481 differentially expressed genes (DEGs) specific to XY15 and GX74 rapeseeds, respectively. Generally, the commonly expressed genes had higher expressions in GX74 compared to XY15 in CK and cold stress conditions. The expression changes in DEGs related to photosynthesis-antenna proteins, chlorophyll biosynthesis, and sugar biosynthesis-related pathways were consistent with the fructose and glucose levels in cotyledons. Compared to XY15, GX74 showed upregulation of a higher number of genes/transcripts related to arachidonic acid, pyruvic acid, arginine and proline biosynthesis, cell wall changes, reactive oxygen species scavenging, cold-responsive pathways, and phytohormone-related pathways. Taken together, our results provide a detailed overview of the cold stress responses in rapeseed cotyledons.
Collapse
Affiliation(s)
- Xinhong Liu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China; (Y.R.); (X.X.); (C.T.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Tonghua Wang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ying Ruan
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China; (Y.R.); (X.X.); (C.T.)
| | - Xiang Xie
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China; (Y.R.); (X.X.); (C.T.)
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Chengfang Tan
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China; (Y.R.); (X.X.); (C.T.)
| | - Yiming Guo
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Bao Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Liang Qu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lichao Deng
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mei Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Chunlin Liu
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China; (Y.R.); (X.X.); (C.T.)
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
3
|
Li J, Lou S, Gong J, Liang J, Zhang J, Zhou X, Li J, Wang L, Zhai M, Duan L, Lei B. Coronatine-treated seedlings increase the tolerance of cotton to low-temperature stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108832. [PMID: 38896915 DOI: 10.1016/j.plaphy.2024.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Coronatine, an analog of Jasmonic acid (JA), has been shown to enhance crop tolerance to abiotic stresses, including chilling stress. However, the underlying molecular mechanism remains largely unknown. In this study, we investigated the effect of Coronatine on cotton seedlings under low temperature using transcriptomic and metabolomics analysis. Twelve cDNA libraries from cotton seedlings were constructed, and pairwise comparisons revealed a total of 48,322 differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified the involvement of these unigenes in various metabolic pathways, including Starch and sucrose metabolism, Sesquiterpenoid and triterpenoid biosynthesis, Phenylpropanoid biosynthesis, alpha-Linolenic acid metabolism, ABC transporters, and Plant hormone signal transduction. Additionally, substantial accumulations of jasmonates (JAs), abscisic acid and major cell wall metabolites were observed. Transcriptome analysis revealed differential expression of regulatory genes, and qRT-PCR analysis confirmed the expression patterns of 9 selected genes. Co-expression analysis showed that the JA-responsive genes might form a network module with ABA biosynthesis genes or cell wall biosynthesis genes, suggesting the existence of a COR-JA-cellulose and COR-JA-ABA-cellulose regulatory pathway in cotton seedlings. Collectively, our findings uncover new insights into the molecular basis of coronatine--associated cold tolerance in cotton seedlings.
Collapse
Affiliation(s)
- Jin Li
- Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Ministry of Agriculture, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Xinjiang Key Laboratory of Crop Biotechnology, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China
| | - Shanwei Lou
- Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; State Key Laboratory of Plant Physiology & Biochemistry, Engineering Research Center of PGR, Ministry of Education & College of Agronomy and Biotechnology, and China Agricultural University, Beijing, 100193, China
| | - Jingyun Gong
- Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Ministry of Agriculture, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Xinjiang Key Laboratory of Crop Biotechnology, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China
| | - Jing Liang
- Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Ministry of Agriculture, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Xinjiang Key Laboratory of Crop Biotechnology, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China
| | - Jungao Zhang
- Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Ministry of Agriculture, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Xinjiang Key Laboratory of Crop Biotechnology, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China
| | - Xiaoyun Zhou
- Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Ministry of Agriculture, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Xinjiang Key Laboratory of Crop Biotechnology, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China
| | - Jie Li
- Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China
| | - Li Wang
- College of Agricultural, Xinjiang Agricultural University, Urumqi, 830091, China
| | - Menghua Zhai
- College of Agricultural, Xinjiang Agricultural University, Urumqi, 830091, China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology & Biochemistry, Engineering Research Center of PGR, Ministry of Education & College of Agronomy and Biotechnology, and China Agricultural University, Beijing, 100193, China.
| | - Bin Lei
- Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Ministry of Agriculture, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Xinjiang Key Laboratory of Crop Biotechnology, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China.
| |
Collapse
|
4
|
Xia W, Yang Y, Zhang C, Liu C, Xiao K, Xiao X, Wu J, Shen Y, Zhang L, Su K. Discovery of candidate genes involved in ethylene biosynthesis and signal transduction pathways related to peach bud cold resistance. Front Genet 2024; 15:1438276. [PMID: 39092433 PMCID: PMC11291253 DOI: 10.3389/fgene.2024.1438276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Background: Low temperature pose significant challenges to peach cultivation, causing severe damage to peach buds and restricting production and distribution. Ethylene, an important phytohormone, plays a critical role in enhancing plant cold resistance. Structural genes and transcription factors involved in ethylene biosynthesis and signal transduction pathways are associated with cold resistance. However, no research has specifically addressed their roles in peach cold resistance. Methods: In this study, we aimed for cold-resistance gene discovery in cold-sensitive peach cultivar "21Shiji" (21SJ) and cold-resistance cultivar "Shijizhixing" (SJZX) using RNA-seq and gas chromatography. Results: The findings revealed that under cold stress conditions, ethylene biosynthesis in "SJZX" was significantly induced. Subsequently, a structural gene, PpACO1-1, involved in ethylene biosynthesis in peach buds was significantly upregulated and showed a higher correlation with ethylene release rate. To identify potential transcription factors associated with PpACO1-1 expression and ethylene signal transduction, weighted gene co-expression network analysis was conducted using RNA-seq data. Four transcription factors: PpERF2, PpNAC078, PpWRKY65 and PpbHLH112, were identified. Conclusion: These findings provide valuable theoretical insights for investigating the regulatory mechanisms of peach cold resistance and guiding breeding strategies.
Collapse
Affiliation(s)
- Wenqian Xia
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yupeng Yang
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Chenguang Zhang
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Chunsheng Liu
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Kun Xiao
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Xiao Xiao
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Junkai Wu
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Yanhong Shen
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Libin Zhang
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
- Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Kai Su
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
- Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
5
|
Li X, Ren B, Kou X, Hou Y, Buque AL, Gao F. Recent advances and prospects of constructed wetlands in cold climates: a review from 2013 to 2023. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44691-44716. [PMID: 38965108 DOI: 10.1007/s11356-024-34065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Constructed wetland (CW), a promising, environmentally responsible, and effective green ecological treatment technology, is actively involved in the treatment of various forms of wastewater. Low temperatures will, however, lead to issues including plant dormancy, decreased microbial activity, and ice formation in CWs, which will influence how well CWs process wastewater. Applying CWs successfully and continuously in cold areas is extremely difficult. Therefore, it is crucial to find solutions for the pressing issue of increasing the CWs' ability to process wastewater at low temperatures. This review focuses on the effect of cold climate on CWs (plants, substrates, microorganisms, removal effect of pollutants). It meticulously outlines current strategies to enhance CWs' performance under low-temperature conditions, including modifications for the improvement and optimization of the internal components (i.e., plant and substrate selection, bio-augmentation) and enhancement of the external operation conditions of CWs (such as process combination, effluent recirculation, aeration, heat preservation, and operation parameter optimization). Finally, future perspectives on potential research directions and technological innovations that could strengthen CWs' performance in cold climates are prospected. This review aims to contribute valuable insights into the operation strategies, widespread implementation, and subsequent study of CWs in colder climate regions.
Collapse
Affiliation(s)
- Xiaofeng Li
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Baiming Ren
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China.
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, People's Republic of China.
| | - Xiaomei Kou
- Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi'an, 710065, People's Republic of China
- Power China Northwest Engineering Corporation Limited, Xi'an, 710065, People's Republic of China
| | - Yunjie Hou
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Arsenia Luana Buque
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Fan Gao
- Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi'an, 710065, People's Republic of China
- Power China Northwest Engineering Corporation Limited, Xi'an, 710065, People's Republic of China
| |
Collapse
|
6
|
Zhu W, Li R, Guo X, Li J, Muhammad N, Qi C, Gao M, Wang C, Liu M, Tang G, Sadeghnezhad E, Liu Z, Wang L. Integrated anatomical structure, physiological, and transcriptomic analyses to identify differential cold tolerance responses of Ziziphus jujuba mill. 'Yueguang' and its autotetraploid 'Hongguang'. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108679. [PMID: 38714127 DOI: 10.1016/j.plaphy.2024.108679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Cold stress is a limiting stress factor that limits plant distribution and development; however, polyploid plants have specific characteristics such as higher resistance to abiotic stress, especially cold stress, that allow them to overcome this challenge. The cultivated cultivar Ziziphus jujuba Mill. 'Yueguang' (YG) and its autotetraploid counterpart 'Hongguang' (HG) exhibit differential cold tolerance. However, the underlying molecular mechanism and methods to enhance their cold tolerance remain unknown. Anatomical structure and physiological analysis indicated YG had a higher wood bark ratio, and xylem ratio under cold treatment compared to HG. However, the half-lethal temperature (LT50), cortex ratio, and malondialdehyde (MDA) content were significantly decreased in YG than HG, which indicated YG was cold tolerant than HG. Transcriptome analysis showed that 2084, 1725, 2888, and 2934 differentially expressed genes (DEGs) were identified in HC vs YC, H20 vs Y20, Y20 vs YC, and H20 vs HC treatment, respectively. Meanwhile, KEGG enrichment analysis of DEGs showed that several metabolic pathways, primarily plant hormone signal transduction and the MAPK signaling pathway, were involved in the differential regulation of cold tolerance between YG and HG. Furthermore, exogenous abscisic acid (ABA) and brassinolide (BR) treatments could improve their cold tolerance through increased SOD and POD activities, decreased relative electrical conductivity, and MDA content. All of these findings suggested that plant hormone signal transduction, particularly ABA and BR, might have an important role in the regulation of differential cold tolerance between YG and HG, laying the foundation for further improving cold tolerance in jujube and examining the molecular mechanisms underlying differences in cold tolerance among different ploidy cultivars.
Collapse
Affiliation(s)
- Wenhui Zhu
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Ruimei Li
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Xiaoxue Guo
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Jiuyang Li
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Noor Muhammad
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Chaofeng Qi
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Mengjiao Gao
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Chenyu Wang
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Gangliang Tang
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Ehsan Sadeghnezhad
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Teheran, Iran
| | - Zhiguo Liu
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| |
Collapse
|
7
|
Brindisi LJ, Mattera R, Mudiyala S, Honig J, Simon JE. Genetic linkage mapping and quantitative trait locus (QTL) analysis of sweet basil (Ocimum basilicum L.) to identify genomic regions associated with cold tolerance and major volatiles. PLoS One 2024; 19:e0299825. [PMID: 38593174 PMCID: PMC11003626 DOI: 10.1371/journal.pone.0299825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/15/2024] [Indexed: 04/11/2024] Open
Abstract
Chilling sensitivity is one of the greatest challenges affecting the marketability and profitability of sweet basil (Ocimum basilicum L.) in the US and worldwide. Currently, there are no sweet basils commercially available with significant chilling tolerance and traditional aroma profiles. This study was conducted to identify quantitative trait loci (QTLs) responsible for chilling tolerance and aroma compounds in a biparental mapping population, including the Rutgers advanced breeding line that served as a chilling tolerant parent, 'CB15', the chilling sensitive parent, 'Rutgers Obsession DMR' and 200 F2 individuals. Chilling tolerance was assessed by percent necrosis using machine learning and aroma profiling was evaluated using gas chromatography (GC) mass spectrometry (MS). Single nucleotide polymorphism (SNP) markers were generated from genomic sequences derived from double digestion restriction-site associated DNA sequencing (ddRADseq) and converted to genotype data using a reference genome alignment. A genetic linkage map was constructed and five statistically significant QTLs were identified in response to chilling temperatures with possible interactions between QTLs. The QTL on LG24 (qCH24) demonstrated the largest effect for chilling response and was significant in all three replicates. No QTLs were identified for linalool, as the population did not segregate sufficiently to detect this trait. Two significant QTLs were identified for estragole (also known as methyl chavicol) with only qEST1 on LG1 being significant in the multiple-QTL model (MQM). QEUC26 was identified as a significant QTL for eucalyptol (also known as 1,8-cineole) on LG26. These QTLs may represent key mechanisms for chilling tolerance and aroma in basil, providing critical knowledge for future investigation of these phenotypic traits and molecular breeding.
Collapse
Affiliation(s)
- Lara J. Brindisi
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Jersey, United States of America
| | - Robert Mattera
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Jersey, United States of America
| | - Sonika Mudiyala
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Jersey, United States of America
| | - Joshua Honig
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Jersey, United States of America
| | - James E. Simon
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Jersey, United States of America
| |
Collapse
|
8
|
Qian L, Yin S, Lu N, Yue E, Yan J. Full-length transcriptome reveals the pivotal role of ABA and ethylene in the cold stress response of Tetrastigma hemsleyanum. FRONTIERS IN PLANT SCIENCE 2024; 15:1285879. [PMID: 38357266 PMCID: PMC10864657 DOI: 10.3389/fpls.2024.1285879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Tetrastigma hemsleyanum is a valuable herb widely used in Chinese traditional and modern medicine. Winter cold severely limits the artificial cultivation of this plant, but the physiological and molecular mechanisms upon exposure to cold stress in T. hemsleyanum are unclear. T. hemsleyanum plants with different geographical origins exhibit large differences in response to cold stress. In this research study, using T. hemsleyanum ecotypes that exhibit frost tolerance (FR) and frost sensitivity (FS), we analyzed the response of cottage seedlings to a simulated frost treatment; plant hormones were induced with both short (2 h) and long (9 h) frost treatments, which were used to construct the full-length transcriptome and obtained 76,750 transcripts with all transcripts mapped to 28,805 genes, and 27,215 genes, respectively, annotated to databases. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed enrichment in plant hormone signaling pathways. Further analysis shows that differently expressed genes (DEGs) concentrated on calcium signaling, ABA biosynthesis and signal transduction, and ethylene in response to cold stress. We also found that endogenous ABA and ethylene content were increased after cold treatment, and exogenous ABA and ethylene significantly improved cold tolerance in both ecotypes. Our results elucidated the pivotal role of ABA and ethylene in response to cold stress in T. hemsleyanum and identified key genes.
Collapse
Affiliation(s)
- Lihua Qian
- Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Shuya Yin
- Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Na Lu
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Erkui Yue
- Institute of Crop Science and Ecology, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Jianli Yan
- Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
9
|
Wang Y, Wang J, Sarwar R, Zhang W, Geng R, Zhu KM, Tan XL. Research progress on the physiological response and molecular mechanism of cold response in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1334913. [PMID: 38352650 PMCID: PMC10861734 DOI: 10.3389/fpls.2024.1334913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Low temperature is a critical environmental stress factor that restricts crop growth and geographical distribution, significantly impacting crop quality and yield. When plants are exposed to low temperatures, a series of changes occur in their external morphology and internal physiological and biochemical metabolism. This article comprehensively reviews the alterations and regulatory mechanisms of physiological and biochemical indices, such as membrane system stability, redox system, fatty acid content, photosynthesis, and osmoregulatory substances, in response to low-temperature stress in plants. Furthermore, we summarize recent research on signal transduction and regulatory pathways, phytohormones, epigenetic modifications, and other molecular mechanisms mediating the response to low temperatures in higher plants. In addition, we outline cultivation practices to improve plant cold resistance and highlight the cold-related genes used in molecular breeding. Last, we discuss future research directions, potential application prospects of plant cold resistance breeding, and recent significant breakthroughs in the research and application of cold resistance mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Wang M, Fan X, Ding F. Jasmonate: A Hormone of Primary Importance for Temperature Stress Response in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:4080. [PMID: 38140409 PMCID: PMC10748343 DOI: 10.3390/plants12244080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Temperature is a critical environmental factor that plays a vital role in plant growth and development. Temperatures below or above the optimum ranges lead to cold or heat stress, respectively. Temperature stress retards plant growth and development, and it reduces crop yields. Jasmonates (JAs) are a class of oxylipin phytohormones that play various roles in growth, development, and stress response. In recent years, studies have demonstrated that cold and heat stress affect JA biosynthesis and signaling, and JA plays an important role in the response to temperature stress. Recent studies have provided a large body of information elucidating the mechanisms underlying JA-mediated temperature stress response. In the present review, we present recent advances in understanding the role of JA in the response to cold and heat stress, and how JA interacts with other phytohormones during this process.
Collapse
Affiliation(s)
- Meiling Wang
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| | | | - Fei Ding
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| |
Collapse
|
11
|
Liu T, Wang J, Chen L, Liu S, Liu T, Yu L, Guo J, Chen Y, Zhang Y, Song B. ScAREB4 promotes potato constitutive and acclimated freezing tolerance associated with enhancing trehalose synthesis and oxidative stress tolerance. PLANT, CELL & ENVIRONMENT 2023; 46:3839-3857. [PMID: 37651608 DOI: 10.1111/pce.14707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Cold is a major environmental factor that restrains potato production. Abscisic acid (ABA) can enhance freezing tolerance in many plant species, but powerful evidence of the ABA-mediated signalling pathway related to freezing tolerance is still in deficiency. In the present study, cold acclimation capacity of the potato genotypes was enhanced alongside with improved endogenous content of ABA. Further exogenous application of ABA and its inhibitor (NDGA) could enhance and reduce potato freezing tolerance, respectively. Moreover, expression pattern of downstream genes in ABA signalling pathway was analysed and only ScAREB4 was identified with specifically upregulate in S. commersonii (CMM5) after cold and ABA treatments. Transgenic assay with overexpression of ScAREB4 showed that ScAREB4 promoted freezing tolerance. Global transcriptome profiling indicated that overexpression of ScAREB4 induced expression of TPS9 (trehalose-6-phosphate synthase) and GSTU8 (glutathione transferase), in accordance with improved TPS activity, trehalose content, higher GST activity and accumulated dramatically less H2 O2 in the ScAREB4 overexpressed transgenic lines. Taken together, the current results indicate that increased endogenous content of ABA is related to freezing tolerance in potato. Moreover, ScAREB4 functions as a downstream transcription factor of ABA signalling to promote cold tolerance, which is associated with increased trehalose content and antioxidant capacity.
Collapse
Affiliation(s)
- Tiantian Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jin Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Lin Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), MARA, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shengxuan Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Tengfei Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Liu Yu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jingjing Guo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ye Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yiling Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Botao Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Hafeez A, Ali B, Javed MA, Saleem A, Fatima M, Fathi A, Afridi MS, Aydin V, Oral MA, Soudy FA. Plant breeding for harmony between sustainable agriculture, the environment, and global food security: an era of genomics-assisted breeding. PLANTA 2023; 258:97. [PMID: 37823963 DOI: 10.1007/s00425-023-04252-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023]
Abstract
MAIN CONCLUSION Genomics-assisted breeding represents a crucial frontier in enhancing the balance between sustainable agriculture, environmental preservation, and global food security. Its precision and efficiency hold the promise of developing resilient crops, reducing resource utilization, and safeguarding biodiversity, ultimately fostering a more sustainable and secure food production system. Agriculture has been seriously threatened over the last 40 years by climate changes that menace global nutrition and food security. Changes in environmental factors like drought, salt concentration, heavy rainfalls, and extremely low or high temperatures can have a detrimental effects on plant development, growth, and yield. Extreme poverty and increasing food demand necessitate the need to break the existing production barriers in several crops. The first decade of twenty-first century marks the rapid development in the discovery of new plant breeding technologies. In contrast, in the second decade, the focus turned to extracting information from massive genomic frameworks, speculating gene-to-phenotype associations, and producing resilient crops. In this review, we will encompass the causes, effects of abiotic stresses and how they can be addressed using plant breeding technologies. Both conventional and modern breeding technologies will be highlighted. Moreover, the challenges like the commercialization of biotechnological products faced by proponents and developers will also be accentuated. The crux of this review is to mention the available breeding technologies that can deliver crops with high nutrition and climate resilience for sustainable agriculture.
Collapse
Affiliation(s)
- Aqsa Hafeez
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Aroona Saleem
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Amin Fathi
- Department of Agronomy, Ayatollah Amoli Branch, Islamic Azad University, Amol, 46151, Iran
| | - Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras (UFLA), Lavras, MG, 37200-900, Brazil
| | - Veysel Aydin
- Sason Vocational School, Department of Plant and Animal Production, Batman University, Batman, 72060, Turkey
| | - Mükerrem Atalay Oral
- Elmalı Vocational School of Higher Education, Akdeniz University, Antalya, 07058, Turkey
| | - Fathia A Soudy
- Genetics and Genetic Engineering Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| |
Collapse
|
13
|
An JP, Liu ZY, Zhang XW, Wang DR, Zeng F, You CX, Han Y. Brassinosteroid signaling regulator BIM1 integrates brassinolide and jasmonic acid signaling during cold tolerance in apple. PLANT PHYSIOLOGY 2023; 193:1652-1674. [PMID: 37392474 DOI: 10.1093/plphys/kiad371] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 07/03/2023]
Abstract
Although brassinolide (BR) and jasmonic acid (JA) play essential roles in the regulation of cold stress responses, the molecular basis of their crosstalk remains elusive. Here, we show a key component of BR signaling in apple (Malus × domestica), BR INSENSITIVE1 (BRI1)-EMS-SUPPRESSOR1 (BES1)-INTERACTING MYC-LIKE PROTEIN1 (MdBIM1), increases cold tolerance by directly activating expression of C-REPEAT BINDING FACTOR1 (MdCBF1) and forming a complex with C-REPEAT BINDING FACTOR2 (MdCBF2) to enhance MdCBF2-activated transcription of cold-responsive genes. Two repressors of JA signaling, JAZMONATE ZIM-DOMAIN1 (MdJAZ1) and JAZMONATE ZIM-DOMAIN2 (MdJAZ2), interact with MdBIM1 to integrate BR and JA signaling under cold stress. MdJAZ1 and MdJAZ2 reduce MdBIM1-promoted cold stress tolerance by attenuating transcriptional activation of MdCBF1 expression by MdBIM1 and interfering with the formation of the MdBIM1-MdCBF2 complex. Furthermore, the E3 ubiquitin ligase ARABIDOPSIS TÓXICOS en LEVADURA73 (MdATL73) decreases MdBIM1-promoted cold tolerance by targeting MdBIM1 for ubiquitination and degradation. Our results not only reveal crosstalk between BR and JA signaling mediated by a JAZ-BIM1-CBF module but also provide insights into the posttranslational regulatory mechanism of BR signaling.
Collapse
Affiliation(s)
- Jian-Ping An
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Zhi-Ying Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Xiao-Wei Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Da-Ru Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Fanchang Zeng
- College of Agriculture, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
14
|
Arkhestova DK, Shomakhov BR, Shchennikova AV, Kochieva EZ. 5'-UTR allelic variants and expression of the lycopene-ɛ-cyclase LCYE gene in maize (Zea mays L.) inbred lines of Russian selection. Vavilovskii Zhurnal Genet Selektsii 2023; 27:440-446. [PMID: 37808214 PMCID: PMC10556851 DOI: 10.18699/vjgb-23-53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 10/10/2023] Open
Abstract
In breeding, biofortification is aimed at enriching the edible parts of the plant with micronutrients. Within the framework of this strategy, molecular screening of collections of various crops makes it possible to determine allelic variants of genes, new alleles, and the linkage of allelic variants with morphophysiological traits. The maize (Zea mays L.) is an important cereal and silage crop, as well as a source of the main precursor of vitamin A - β-carotene, a derivative of the β,β-branch of the carotenoid biosynthesis pathway. The parallel β,ε-branch is triggered by lycopene-ε-cyclase LCYE, a low expression of which leads to an increase in provitamin A content and is associated with the variability of the 5'-UTR gene regulatory sequence. In this study, we screened a collection of 165 maize inbred lines of Russian selection for 5'- UTR LCYE allelic variants, as well as searched for the dependence of LCYE expression levels on the 5'-UTR allelic variant in the leaves of 14 collection lines. 165 lines analyzed were divided into three groups carrying alleles A2 (64 lines), A5 (31) and A6 (70), respectively. Compared to A2, allele A5 contained two deletions (at positions -267- 260 and -296-290 from the ATG codon) and a G251→T substitution, while allele A6 contained one deletion (-290-296) and two SNPs (G251→T, G265→T). Analysis of LCYE expression in the leaf tissue of seedlings from accessions of 14 lines differing in allelic variants showed no associations of the 5'-UTR LCYE allele type with the level of gene expression. Four lines carrying alleles A2 (6178-1, 6709-2, 2289-3) and A5 (5677) had a significantly higher level of LCYE gene expression (~0.018-0.037) than the other 10 analyzed lines (~0.0001-0.004), among which all three allelic variants were present.
Collapse
Affiliation(s)
- D Kh Arkhestova
- Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia Institute of Agriculture - Branch of the Federal Scientific Center "Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences", Nalchik, Russia
| | - B R Shomakhov
- Institute of Agriculture - Branch of the Federal Scientific Center "Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences", Nalchik, Russia
| | - A V Shchennikova
- Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - E Z Kochieva
- Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
15
|
Xue X, Xie M, Zhu L, Wang D, Xu Z, Liang L, Zhang J, Xu L, Zhou P, Ran J, Yu G, Lai Y, Sun B, Tang Y, Li H. 5-ALA Improves the Low Temperature Tolerance of Common Bean Seedlings through a Combination of Hormone Transduction Pathways and Chlorophyll Metabolism. Int J Mol Sci 2023; 24:13189. [PMID: 37685996 PMCID: PMC10487637 DOI: 10.3390/ijms241713189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Low-temperature stress is a key factor limiting the yield and quality of the common bean. 5-aminolevulinic acid (5-ALA), an antioxidant in plants, has been shown to modulate plant cold stress responses. However, the molecular mechanisms of 5-ALA-induced physiological and chemical changes in common bean seedlings under cold stress remains unknown. This study explored the physiological and transcriptome changes of common bean seedlings in response to cold stress after 5-ALA pretreatment. Physiological results showed that exogenous 5-ALA promotes the growth of common bean plants under cold stress, increases the activity of antioxidant enzymes (superoxide dismutase: 23.8%; peroxidase: 10.71%; catalase: 9.09%) and proline content (24.24%), decreases the relative conductivity (23.83%), malondialdehyde (33.65%), and active oxygen content, and alleviates the damage caused by cold to common bean seedlings. Transcriptome analysis revealed that 214 differentially expressed genes (DEGs) participate in response to cold stress. The DEGs are mainly concentrated in indole alkaloid biosynthesis, carotenoid biosynthesis, porphyrin, and chlorophyll metabolism. It is evident that exogenous 5-ALA alters the expression of genes associated with porphyrin and chlorophyll metabolism, as well as the plant hormone signal transduction pathway, which helps to maintain the energy supply and metabolic homeostasis under low-temperature stress. The results reveal the effect that applying exogenous 5-ALA has on the cold tolerance of the common bean and the molecular mechanism of its response to cold tolerance, which provides a theoretical basis for exploring and improving plant tolerance to low temperatures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.X.); (M.X.); (L.Z.); (D.W.); (Z.X.); (L.L.); (J.Z.); (L.X.); (P.Z.); (J.R.); (G.Y.); (Y.L.); (B.S.); (Y.T.)
| |
Collapse
|
16
|
Amin B, Atif MJ, Pan Y, Rather SA, Ali M, Li S, Cheng Z. Transcriptomic analysis of Cucumis sativus uncovers putative genes related to hormone signaling under low temperature (LT) and high humidity (HH) stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 333:111750. [PMID: 37257510 DOI: 10.1016/j.plantsci.2023.111750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023]
Abstract
Climate change has caused changes in environmental conditions, leading to both low temperature (LT) and high humidity (HH) stress on crops worldwide. Therefore, there is a growing need to enhance our understanding of the physiological and molecular mechanisms underlying LT and HH stress tolerance in cucumbers, given the significance of climate change. The findings of this study offer a comprehensive understanding of how the transcriptome and hormone profiles of cucumbers respond to LT and HH stress. In this study, cucumber seedlings were subjected to LT and HH stress (9/5 °C day/night temperature, 95% humidity) as well as control (CK) conditions (25/18 °C day/night temperature, 80% humidity) for 24, 48, and 72 h. It was observed that the LT and HH stress caused severe damage to the morphometric traits of the plants compared to the control treatment. The concentrations of phytohormones IAA, ethylene, and GA were lower, while ABA and JA were higher during LT and HH stress at most time points. To gain insights into the molecular mechanisms underlying this stress response, RNA-sequencing was performed. The analysis revealed a total of 10,459 differentially expressed genes (DEGs) with annotated pathways. These pathways included plant hormone signal transduction, protein processing in the endoplasmic reticulum, MAPK signaling pathway, carbon fixation in photosynthetic organisms, and glycerolipid metabolism. Furthermore, 123 DEGs associated with hormone signaling pathways were identified, and their responses to LT and HH stress were thoroughly discussed. Overall, this study sheds light on the LT and HH tolerance mechanisms in cucumbers, particularly focusing on the genes involved in the LT and HH response and the signaling pathways of endogenous phytohormones.
Collapse
Affiliation(s)
- Bakht Amin
- College of Horticulture, Northwest A&F University, Yangling 712100, China; Institute of Rice Industry Technology Research, Key Laboratory of Plant Resource Conservation andGermplasm Innovation in Mountainous Region (Ministry of Education), College of AgriculturalSciences, Guizhou University, Guiyang 550025, China
| | - Muhammad Jawaad Atif
- College of Horticulture, Northwest A&F University, Yangling 712100, China; Horticultural Research Institute, National Agricultural Research Centre, Islamabad 44000, Pakistan
| | - Yupeng Pan
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Shabir A Rather
- Center for Integrative Conservation and Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Menglun 666303, Yunnan, China
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Shuju Li
- Tianjin Kerun Cucumber Research Institute, Tianjin 300192, China
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
17
|
Sun Y, Lu Y, Xi H, Geng B, Shi H, Zhao N, Guo Z. Transcriptomic analysis revealed the candidate metabolic pathways and genes associated with cold tolerance in a mutant without anthocyanin accumulation in common vetch (Vicia sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107770. [PMID: 37216823 DOI: 10.1016/j.plaphy.2023.107770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Common vetch (Vicia sativa L.) is a leguminous crop used to feed livestock with vegetative organs or fertilize soils by returning to the field. Survival of fall-seeded plants is often affected by freezing damage during overwintering. This study aims to investigate the transcriptomic profiling in response to cold in a mutant with reduced accumulation of anthocyanins under normal growth and low-temperature conditions for understanding the underlying mechanisms. The mutant had increased cold a tolerance with higher survival rate and biomass during overwintering compared to the wild type, which led to increased forage production. Transcriptomic analysis in combination with qRT-PCR and physiological measurements revealed that reduced anthocyanins accumulation in the mutant resulted from reduced expression of serial genes involving in anthocyanin biosynthesis, which led to the altered metabolism, with an increased accumulation of free amino acids and polyamines. The higher levels of free amino acids and proline in the mutant under low temperature were associated with improved cold tolerance. The altered expression of some genes involved in ABA and GA signaling was also associated with increased cold tolerance in the mutant.
Collapse
Affiliation(s)
- Yanmei Sun
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yiwen Lu
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Haojie Xi
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Bohao Geng
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Haifan Shi
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Na Zhao
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
18
|
Ihtisham M, Hasanuzzaman M, El-Sappah AH, Zaman F, Khan N, Raza A, Sarraf M, Khan S, Abbas M, Hassan MJ, Li J, Zhao X, Zhao X. Primary plant nutrients modulate the reactive oxygen species metabolism and mitigate the impact of cold stress in overseeded perennial ryegrass. FRONTIERS IN PLANT SCIENCE 2023; 14:1149832. [PMID: 37063220 PMCID: PMC10103648 DOI: 10.3389/fpls.2023.1149832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/06/2023] [Indexed: 06/08/2023]
Abstract
Overseeded perennial ryegrass (Lolium perenne L.) turf on dormant bermudagrass (Cynodon dactylon Pers. L) in transitional climatic zones (TCZ) experience a severe reduction in its growth due to cold stress. Primary plant nutrients play an important role in the cold stress tolerance of plants. To better understand the cold stress tolerance of overseeded perennial ryegrass under TCZ, a three-factor and five-level central composite rotatable design (CCRD) with a regression model was used to study the interactive effects of nitrogen (N), phosphorus (P), and potassium (K) fertilization on lipid peroxidation, electrolyte leakage, reactive oxygen species (ROS) production, and their detoxification by the photosynthetic pigments, enzymatic and non-enzymatic antioxidants. The study demonstrated substantial effects of N, P, and K fertilization on ROS production and their detoxification through enzymatic and non-enzymatic pathways in overseeded perennial ryegrass under cold stress. Our results demonstrated that the cold stress significantly enhanced malondialdehyde, electrolyte leakage, and hydrogen peroxide contents, while simultaneously decreasing ROS-scavenging enzymes, antioxidants, and photosynthetic pigments in overseeded perennial ryegrass. However, N, P, and K application mitigated cold stress-provoked adversities by enhancing soluble protein, superoxide dismutase, peroxide dismutase, catalase, and proline contents as compared to the control conditions. Moreover, N, P, and, K application enhanced chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids in overseeded perennial ryegrass under cold stress as compared to the control treatments. Collectively, this 2-years study indicated that N, P, and K fertilization mitigated cold stress by activating enzymatic and non-enzymatic antioxidants defense systems, thereby concluding that efficient nutrient management is the key to enhanced cold stress tolerance of overseeded perennial ryegrass in a transitional climate. These findings revealed that turfgrass management will not only rely on breeding new varieties but also on the development of nutrient management strategies for coping cold stress.
Collapse
Affiliation(s)
- Muhammad Ihtisham
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Ahmed H. El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Fawad Zaman
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Nawab Khan
- College of Management, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ali Raza
- Chengdu Institute of Biology, University of Chinese Academy of Sciences, Beijing, China
| | - Mohammad Sarraf
- Department of Horticultural Sciences, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Shamshad Khan
- School of Geography and Resources Science, Neijiang Normal University, Neijiang, China
| | - Manzar Abbas
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jia Li
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Xianming Zhao
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Xin Zhao
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| |
Collapse
|
19
|
Lv G, Han R, Shi J, Chen K, Liu G, Yu Q, Yang C, Jiang J. Genome-wide identification of the TIFY family reveals JAZ subfamily function in response to hormone treatment in Betula platyphylla. BMC PLANT BIOLOGY 2023; 23:143. [PMID: 36922795 PMCID: PMC10015818 DOI: 10.1186/s12870-023-04138-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The TIFY family is a plant-specific gene family and plays an important role in plant growth and development. But few reports have been reported on the phylogenetic analysis and gene expression profiling of TIFY family genes in birch (Betula platyphylla). RESULTS In this study, we characterized TIFY family and identified 12 TIFY genes and using phylogeny and chromosome mapping analysis in birch. TIFY family members were divided into JAZ, ZML, PPD and TIFY subfamilies. Phylogenetic analysis revealed that 12 TIFY genes were clustered into six evolutionary branches. The chromosome distribution showed that 12 TIFY genes were unevenly distributed on 5 chromosomes. Some TIFY family members were derived from gene duplication in birch. We found that six JAZ genes from JAZ subfamily played essential roles in response to Methyl jasmonate (MeJA), the JAZ genes were correlated with COI1 under MeJA. Co-expression and GO enrichment analysis further revealed that JAZ genes were related to hormone. JAZ proteins involved in the ABA and SA pathways. Subcellular localization experiments confirmed that the JAZ proteins were localized in the nucleus. Yeast two-hybrid assay showed that the JAZ proteins may form homologous or heterodimers to regulate hormones. CONCLUSION Our results provided novel insights into biological function of TIFY family and JAZ subfamily in birch. It provides the theoretical reference for in-depth analysis of plant hormone and molecular breeding design for resistance.
Collapse
Affiliation(s)
- Guanbin Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China
| | - Rui Han
- College of Forestry and Grassland Science, Jilin Agricultural University, Jilin, China
| | - Jingjing Shi
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China
| | - Kun Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China
| | - Qibin Yu
- University of Florida, Lake Alfred, FL, USA
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China.
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China.
| |
Collapse
|
20
|
Zhang J, Cheng K, Liu X, Dai Z, Zheng L, Wang Y. Exogenous abscisic acid and sodium nitroprusside regulate flavonoid biosynthesis and photosynthesis of Nitraria tangutorum Bobr in alkali stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1118984. [PMID: 37008502 PMCID: PMC10057120 DOI: 10.3389/fpls.2023.1118984] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Abscisic acid (ABA) and nitric oxide (NO) are involved in mediating abiotic stress-induced plant physiological responses. Nitraria tangutorum Bobr is a typical salinized desert plant growing in an arid environment. In this study, we investigated the effects of ABA and NO on N.tangutorum seedlings under alkaline stress. Alkali stress treatment caused cell membrane damage, increased electrolyte leakage, and induced higher production of reactive oxygen species (ROS), which caused growth inhibition and oxidative stress in N.tangutorum seedlings. Exogenous application of ABA (15μm) and Sodium nitroprusside (50μm) significantly increased the plant height, fresh weight, relative water content, and degree of succulency in N.tangutorum seedlings under alkali stress. Meanwhile, the contents of ABA and NO in plant leaves were significantly increased. ABA and SNP can promote stomatal closure, decrease the water loss rate, increase leaf surface temperature and the contents of osmotic regulator proline, soluble protein, and betaine under alkali stress. Meanwhile, SNP more significantly promoted the accumulation of chlorophyll a/b and carotenoids, increased quantum yield of photosystem II (φPSII) and electron transport rate (ETRII) than ABA, and decreased photochemical quenching (qP), which improved photosynthetic efficiency and accelerated the accumulation of soluble sugar, glucose, fructose, sucrose, starch, and total sugar. However, compared with exogenous application of SNP in the alkaline stress, ABA significantly promoted the transcription of NtFLS/NtF3H/NtF3H/NtANR genes and the accumulation of naringin, quercetin, isorhamnetin, kaempferol, and catechin in the synthesis pathway of flavonoid metabolites, and isorhamnetin content was the highest. These results indicate that both ABA and SNP can reduce the growth inhibition and physiological damage caused by alkali stress. Among them, SNP has a better effect on the improvement of photosynthetic efficiency and the regulation of carbohydrate accumulation than ABA, while ABA has a more significant effect on the regulation of flavonoid and anthocyanin secondary metabolite accumulation. Exogenous application of ABA and SNP also improved the antioxidant capacity and the ability to maintain Na+/K+ balance of N. tangutorum seedlings under alkali stress. These results demonstrate the beneficial effects of ABA and NO as stress hormones and signaling molecules that positively regulate the defensive response of N. tangutorum to alkaline stress.
Collapse
|
21
|
Zhang H, Zhang X, Gao G, Ali I, Wu X, Tang M, Chen L, Jiang L, Liang T. Effects of various seed priming on morphological, physiological, and biochemical traits of rice under chilling stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1146285. [PMID: 36993861 PMCID: PMC10040639 DOI: 10.3389/fpls.2023.1146285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 06/01/2023]
Abstract
INTRODUCTION/BACKGROUND Direct-seeded rice is exceptionally vulnerable to chilling stress, especially at the seed germination and seedling growth stages in the early season of the double cropping system. METHODS Therefore, we conducted two experiments to evaluate the role of various seed primings and their different concentrations of plant growth regulators [experiment 1-abscisic acid (ABA), gibberellin (GA3), salicylic acid (SA), brassinolide (BR), paclobutrazol, uniconazole (UN), melatonin (MT), and jasmonic acid (JA)] and osmopriming substances (chitosan, polyethylene glycol 6000 (PEG6000), and CaCl2) and experiment 2-GA, BR (two best), CaCl2 (worst), and control (CK)] on rice seedlings under low temperature condition. RESULTS Results showed that the maximum germination rate of 98% was recorded in GA3 (10 mgL-1) and BR (0.3 mgL-1) among treatments. Compared to CK, root and shoot length were improved in ABA (0.5 mgL-1) and GA3 (100 mgL-1) by 64% and 68%, respectively. At the same time, root and shoot weights (fresh and dry) were enhanced in Paclobutrazol (300 mgL-1) and GA3 among treatments. Furthermore, the average root volume, average root diameter, and total root surface area were increased by 27%, 38%, and 33% in Paclobutrazol (300 mgL-1), Paclobutrazol (200 mgL-1) and JA (1 mgL-1) treatments, respectively compared to CK. In the second experiment, a respective increase of 26%, 19%, 38%, and 59% was noted in SOD, POD, CAT, and APX enzyme activities in GA treatment compared to CK. Similarly, proline, soluble sugar, soluble protein, and GA content were also improved by 42%, 25.74%, 27%, and 19%, respectively, in GA treatment compared to CK. However, a respective reduction of 21% and 18% was noted in MDA and ABA content in GA treatment compared to CK. Our finding highlighted that better germination of primed-rice seedlings was associated with fresh and dry weights of the roots and shoots and the average root volume of the seedlings. DISCUSSION Our results suggested that GA3 (10 mg L-1) and BR (0.3 mg L-1) seed priming prevent rice seedlings from chilling-induced oxidative stress by regulating antioxidant enzyme activities and maintaining ABA, GA, MDA, soluble sugar, and protein content. However, further studies (transcriptome and proteome) are needed to explore the molecular mechanisms involved in seed priming-induced chilling tolerance under field conditions.
Collapse
Affiliation(s)
- Hua Zhang
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, China
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Xiaoli Zhang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Guoqing Gao
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Izhar Ali
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, China
| | - Xiaoyan Wu
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, China
| | - Maoyan Tang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Lei Chen
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Ligeng Jiang
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, China
| | - Tianfeng Liang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| |
Collapse
|
22
|
Yang X, Liu C, Li M, Li Y, Yan Z, Feng G, Liu D. Integrated transcriptomics and metabolomics analysis reveals key regulatory network that response to cold stress in common Bean (Phaseolus vulgaris L.). BMC PLANT BIOLOGY 2023; 23:85. [PMID: 36759761 PMCID: PMC9909927 DOI: 10.1186/s12870-023-04094-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Cold temperatures can be detrimental to crop survival and productivity. Breeding progress can be improved by understanding the molecular basis of low temperature tolerance. We investigated the key routes and critical metabolites related to low temperature resistance in cold-tolerant and -sensitive common bean cultivars 120 and 093, respectively. Many potential genes and metabolites implicated in major metabolic pathways during the chilling stress response were identified through transcriptomics and metabolomics research. Under chilling stress, the expression of many genes involved in lipid, amino acid, and flavonoid metabolism, as well as metabolite accumulation increased in the two bean types. Malondialdehyde (MDA) content was lower in 120 than in 093. Regarding amino acid metabolism, 120 had a higher concentration of acidic amino acids than 093, whereas 093 had a higher concentration of basic amino acids. Methionine accumulation was clearly higher in 120 than in 093. In addition, 120 had a higher concentration of many types of flavonoids than 093. Flavonoids, methionine and malondialdehyde could be used as biomarkers of plant chilling injury. Transcriptome analysis of hormone metabolism revealed considerably greater, expression of abscisic acid (ABA), gibberellin (GA), and jasmonic acid (JA) in 093 than in 120 during chilling stress, indicating that hormone regulation modes in 093 and 120 were different. Thus, chilling stress tolerance is different between 093 and 120 possibly due to transcriptional and metabolic regulation.
Collapse
Affiliation(s)
- Xiaoxu Yang
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150000, China
| | - Chang Liu
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150000, China
| | - Mengdi Li
- Horticulture Department, College of Life Sciences, Heilongjiang University, Harbin, 150000, China
| | - Yanmei Li
- Horticulture Department, College of Life Sciences, Heilongjiang University, Harbin, 150000, China
| | - Zhishan Yan
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150000, China
| | - Guojun Feng
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150000, China.
| | - Dajun Liu
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150000, China.
| |
Collapse
|
23
|
Swain R, Sahoo S, Behera M, Rout GR. Instigating prevalent abiotic stress resilience in crop by exogenous application of phytohormones and nutrient. FRONTIERS IN PLANT SCIENCE 2023; 14:1104874. [PMID: 36844040 PMCID: PMC9947512 DOI: 10.3389/fpls.2023.1104874] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 05/29/2023]
Abstract
In recent times, the demand for food and feed for the ever-increasing population has achieved unparalleled importance, which cannot afford crop yield loss. Now-a-days, the unpleasant situation of abiotic stress triggers crop improvement by affecting the different metabolic pathways of yield and quality advances worldwide. Abiotic stress like drought, salinity, cold, heat, flood, etc. in plants diverts the energy required for growth to prevent the plant from shock and maintain regular homeostasis. Hence, the plant yield is drastically reduced as the energy is utilized for overcoming the stress in plants. The application of phytohormones like the classical auxins, cytokinins, ethylene, and gibberellins, as well as more recent members including brassinosteroids, jasmonic acids, etc., along with both macro and micronutrients, have enhanced significant attention in creating key benefits such as reduction of ionic toxicity, improving oxidative stress, maintaining water-related balance, and gaseous exchange modification during abiotic stress conditions. Majority of phytohormones maintain homeostasis inside the cell by detoxifying the ROS and enhancing the antioxidant enzyme activities which can enhance tolerance in plants. At the molecular level, phytohormones activate stress signaling pathways or genes regulated by abscisic acid (ABA), salicylic acid (SA), Jasmonic acid (JA), and ethylene. The various stresses primarily cause nutrient deficiency and reduce the nutrient uptake of plants. The application of plant nutrients like N, K, Ca, and Mg are also involved in ROS scavenging activities through elevating antioxidants properties and finally decreasing cell membrane leakage and increasing the photosynthetic ability by resynthesizing the chlorophyll pigment. This present review highlighted the alteration of metabolic activities caused by abiotic stress in various crops, the changes of vital functions through the application of exogenous phytohormones and nutrition, as well as their interaction.
Collapse
Affiliation(s)
- Rinny Swain
- Department of Agricultural Biotechnology, Crop Improvement Division, School of Agriculture, Gandhi University of Engineering and Technology (GIET) University, Rayagada, Odisha, India
| | - Smrutishree Sahoo
- Department of Genetics and Plant Breeding, Crop Improvement Division, School of Agriculture, GIET University, Rayagada, Odisha, India
| | - Mamata Behera
- Department of Genetics and Plant Breeding, Crop Improvement Division, School of Agriculture, GIET University, Rayagada, Odisha, India
| | - Gyana Ranjan Rout
- Department of Agricultural Biotechnology, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
24
|
Song Q, Li S. Modeling Plant Transcription Factor Networks Using ConSReg. Methods Mol Biol 2023; 2594:205-215. [PMID: 36264498 DOI: 10.1007/978-1-0716-2815-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plants have developed complex regulatory programs to respond to various environmental stress such as heat, drought, and cold. Systematic understanding of these biological processes depends on robust construction of regulatory networks which encodes interactions between transcription factors and target genes. In this chapter, we present a computational tool ConSReg, which predicts regulatory interactions using ATAC-seq, DAP-seq, and expression data. By using expression data generated under a specific environmental stress, ConSReg can reconstruct an interpretable, weighted, and stress response-specific regulatory network.
Collapse
Affiliation(s)
- Qi Song
- Computational Biology Department, Carnegie Mellon University, Pittsburgh,, PA, USA.
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
25
|
Ding F, Wang X, Li Z, Wang M. Jasmonate Positively Regulates Cold Tolerance by Promoting ABA Biosynthesis in Tomato. PLANTS (BASEL, SWITZERLAND) 2022; 12:60. [PMID: 36616188 PMCID: PMC9823970 DOI: 10.3390/plants12010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
As a cold-sensitive species, tomato is frequently challenged by cold stress during vegetative and reproductive growth. Understanding how tomato responds to cold stress is of critical importance for sustainable tomato production. In this work, we demonstrate that jasmonate (JA) plays a crucial role in tomato response to cold stress by promoting abscisic acid (ABA) biosynthesis. It was observed that both JA and ABA levels were substantially increased under cold conditions, whereas the suppression of JA biosynthesis abated ABA accumulation. The ABA biosynthesis gene 9-CIS-EPOXYCAROTENOID DIOXYGENASE2 (NCED2) was subsequently found to be associated with JA-mediated ABA biosynthesis in tomato plants in response to cold stress. NCED2 was rapidly induced by exogenous MeJA and cold treatment. Silencing NCED2 led to a decrease in ABA accumulation that was concurrent with increased cold sensitivity. Moreover, blocking ABA biosynthesis using a chemical inhibitor impaired JA-induced cold tolerance in tomato. Furthermore, MYC2, a core component of the JA signaling pathway, promoted the transcription of NCED2, ABA accumulation and cold tolerance in tomato. Collectively, our results support that JA signaling promotes ABA biosynthesis to confer cold tolerance in tomato.
Collapse
|
26
|
Liu X, Lu X, Yang S, Liu Y, Wang W, Wei X, Ji H, Zhang B, Xin W, Wen J, Wang J, Chen Q. Role of exogenous abscisic acid in freezing tolerance of mangrove Kandelia obovata under natural frost condition at near 32 °N. BMC PLANT BIOLOGY 2022; 22:593. [PMID: 36529723 PMCID: PMC9762092 DOI: 10.1186/s12870-022-03990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Mangroves possess substantial ecological, social, and economic functions in tropical and subtropical coastal wetlands. Kandelia obovata is the most cold-resistance species among mangrove plants, with a widespread distribution in China that ranges from Sanya (18° 12' N) to Wenzhou (28° 20' N). Here, we explored the temporal variations in physiological status and transcriptome profiling of K. obovata under natural frost conditions at ~ 32oN, as well as the positive role of exogenous abscisic acid (ABA) in cold resistance. RESULTS The soluble sugar (SS) and proline (Pro) functioned under freezing stress, of which SS was more important for K. obovata. Consistently, up-regulated DEGs responding to low temperature were significantly annotated to glycometabolism, such as starch and sucrose metabolism and amino sugar and nucleotide sugar metabolism. Notably, the top 2 pathways of KEGG enrichment were phenylpropanoid biosynthesis and flavonoid biosynthesis. For the antioxidant system, POD in conjunction with CAT removed hydrogen peroxide, and CAT appeared to be more important. The up-regulated DEGs responding to low temperature and ABA were also found to be enriched in arginine and proline metabolism, starch and sucrose metabolism, and peroxisome. Moreover, ABA triggered the expression of P5CS and P5CR, but inhibited the ProDH expression, which might contribute to Pro accumulation. Interestingly, there was no significant change in malondialdehyde (MDA) content during the cold event (P > 0.05), suggesting foliar application of ABA effectively alleviated the adverse effects of freezing stress on K. obovata by activating the antioxidant enzyme activity and increasing osmolytes accumulation, such as Pro, and the outcome was proportional to ABA concentration. CONCLUSIONS This study deepened our understanding of the physiological characters and molecular mechanisms underlying the response of K. obovata to natural frost conditions and exogenous ABA at the field level, which could provide a sound theoretical foundation for expanding mangroves plantations in higher latitudes, as well as the development coastal landscape.
Collapse
Affiliation(s)
- Xing Liu
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, Zhejiang, China
| | - Xiang Lu
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, Zhejiang, China
| | - Sheng Yang
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, Zhejiang, China
| | - Yu Liu
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, Zhejiang, China
| | - Wenqing Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xin Wei
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, Zhejiang, China
| | - Hongjiu Ji
- Marine Fisheries Research Institute of Jiangsu Province, Nantong, 226007, Jiangsu, China
| | - Bo Zhang
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, 325060, Zhejiang, China
| | - Wenzhen Xin
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, Zhejiang, China
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325000, Zhejiang, China
| | - Junxiu Wen
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, Zhejiang, China
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325000, Zhejiang, China
| | - Jinwang Wang
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, Zhejiang, China.
| | - Qiuxia Chen
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, Zhejiang, China.
| |
Collapse
|
27
|
Zhang L, Song J, Lin R, Tang M, Shao S, Yu J, Zhou Y. Tomato SlMYB15 transcription factor targeted by sly-miR156e-3p positively regulates ABA-mediated cold tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7538-7551. [PMID: 36103722 DOI: 10.1093/jxb/erac370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Cold is a common abiotic stress that seriously affects plant growth and development. MYB transcription factors are regulatory molecules that play important roles in various biological processes. We have previously demonstrated that SlMYB15 positively regulates cold tolerance in tomato. However, the underlying mechanism of SlMYB15-induced cold tolerance remains largely unexplored. Here, cold-induced SlMYB15 was found to be targeted by Solanum lycopersicum (sly)-miR156e-3p, which was decreased by cold stimulus in tomato. Tomato plants overexpressing sly-MIR156e-3p displayed significant enhancement in susceptibility to cold stress, while silencing of sly-miR156e-3p by an artificial microRNA interference strategy caused tomato plants to be more tolerant to cold. Moreover, both overexpression of SlMYB15 and silencing of sly-miR156e-3p increased the accumulation of ABA. SlMYB15 directly binds to the promoter regions of ABA biosynthesis and signalling genes, SlNCED1 and SlABF4, resulting in enhanced cold tolerance. Further experiments showed that SlMYB15 and sly-miR156e-3p also coordinated the cold tolerance of tomato via the reactive oxygen species (ROS) signalling pathway, as reflected by the increased expression of SlRBOH1, enhanced H2O2 and O2•-accumulation, and amplified activity of antioxidant enzymes in SlMYB15-overexpressing and sly-miR156e-3p-silenced plants. Taken together, our results demonstrate that SlMYB15 targeted by sly-miR156e-3p confers higher survivability to cold stress via ABA and ROS signals. This study provides valuable information for breeding improved crop cultivars better equipped with cold tolerance.
Collapse
Affiliation(s)
- Luyue Zhang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Henan, Zhengzhou 45001, China
| | - Jianing Song
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Rui Lin
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Mingjia Tang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Shujun Shao
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, P.R. China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, P.R. China
| |
Collapse
|
28
|
Hu Y, Zhang H, Gu B, Zhang J. The transcription factor VaMYC2 from Chinese wild Vitis amurensis enhances cold tolerance of grape (V. vinifera) by up-regulating VaCBF1 and VaP5CS. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:218-229. [PMID: 36272189 DOI: 10.1016/j.plaphy.2022.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/26/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Cultivated grapes, one of the most important fruit crops in the world, are sensitive to low temperature. Since Chinese wild grape Vitis amurensis is highly tolerant to cold, it is imperative to study and utilize its cold-tolerance genes for molecular breeding. Here, a VaMYC2 gene from V. amurensis was cloned, and its function was investigated by expressing VaMYC2 in the cold-sensitive V. vinifera cultivar 'Thompson Seedless'. The expression of VaMYC2 could be induced by cold stress, methyl jasmonate and ethylene treatment, but was inhibited by abscisic acid in leaves of V. amurensis. When transgenic grape lines expressing VaMYC2 were subjected to cold stress (-1 °C) for 41 h, the transgenic lines showed less freezing injury and lower electrolyte leakage and malondialdehyde content, but higher contents of soluble sugars, soluble proteins and proline, and antioxidant enzyme activities compared with wild-type. Moreover, the expression of some cold-tolerance related genes increased in transgenic lines. Besides, the interactions of VaMYC2 with VaJAZ1 and VaJAZ7B were confirmed by yeast two-hybrid and bimolecular fluorescence complementation assays. Yeast one-hybrid and dual luciferase assays showed that VaMYC2 can bind to the promoters of VaCBF1 and VaP5CS and activate their expressions. In conclusion, expression of VaMYC2 in V. vinifera enhances cold tolerance of transgenic grapes which is attributed to enhanced accumulation of osmotic regulatory substances, cell membrane stability, antioxidant enzyme activity, and expression of cold tolerance-related genes. Also, VaMYC2 interacts with VaJAZ1 and VaJAZ7, and activates the expression of VaCBF1 and VaP5CS to mediate cold tolerance in grapes.
Collapse
Affiliation(s)
- Yafan Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Hongjuan Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Bao Gu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
29
|
Li S, Liu S, Zhang Q, Cui M, Zhao M, Li N, Wang S, Wu R, Zhang L, Cao Y, Wang L. The interaction of ABA and ROS in plant growth and stress resistances. FRONTIERS IN PLANT SCIENCE 2022; 13:1050132. [PMID: 36507454 PMCID: PMC9729957 DOI: 10.3389/fpls.2022.1050132] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 05/31/2023]
Abstract
The plant hormone ABA (abscisic acid) plays an extremely important role in plant growth and adaptive stress, including but are not limited to seed germination, stomatal closure, pathogen infection, drought and cold stresses. Reactive oxygen species (ROS) are response molecules widely produced by plant cells under biotic and abiotic stress conditions. The production of apoplast ROS is induced and regulated by ABA, and participates in the ABA signaling pathway and its regulated plant immune system. In this review, we summarize ABA and ROS in apoplast ROS production, plant response to biotic and abiotic stresses, plant growth regulation, ABA signal transduction, and the regulatory relationship between ABA and other plant hormones. In addition, we also discuss the effects of protein post-translational modifications on ABA and ROS related factors.
Collapse
Affiliation(s)
- Shenghui Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Sha Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Qiong Zhang
- Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an, China
| | - Meixiang Cui
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Min Zhao
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Nanyang Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Suna Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Ruigang Wu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Lin Zhang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Yunpeng Cao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
30
|
Su H, Tan C, Liu Y, Chen X, Li X, Jones A, Zhu Y, Song Y. Physiology and Molecular Breeding in Sustaining Wheat Grain Setting and Quality under Spring Cold Stress. Int J Mol Sci 2022; 23:ijms232214099. [PMID: 36430598 PMCID: PMC9693015 DOI: 10.3390/ijms232214099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Spring cold stress (SCS) compromises the reproductive growth of wheat, being a major constraint in achieving high grain yield and quality in winter wheat. To sustain wheat productivity in SCS conditions, breeding cultivars conferring cold tolerance is key. In this review, we examine how grain setting and quality traits are affected by SCS, which may occur at the pre-anthesis stage. We have investigated the physiological and molecular mechanisms involved in floret and spikelet SCS tolerance. It includes the protective enzymes scavenging reactive oxygen species (ROS), hormonal adjustment, and carbohydrate metabolism. Lastly, we explored quantitative trait loci (QTLs) that regulate SCS for identifying candidate genes for breeding. The existing cultivars for SCS tolerance were primarily bred on agronomic and morphophysiological traits and lacked in molecular investigations. Therefore, breeding novel wheat cultivars based on QTLs and associated genes underlying the fundamental resistance mechanism is urgently needed to sustain grain setting and quality under SCS.
Collapse
Affiliation(s)
- Hui Su
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Cheng Tan
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Yonghua Liu
- School of Horticulture, Hainan University, Haikou 570228, China
| | - Xiang Chen
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Xinrui Li
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Ashley Jones
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Yulei Zhu
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (Y.Z.); (Y.S.)
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
- Correspondence: (Y.Z.); (Y.S.)
| |
Collapse
|
31
|
Hussain MA, Luo D, Zeng L, Ding X, Cheng Y, Zou X, Lv Y, Lu G. Genome-wide transcriptome profiling revealed biological macromolecules respond to low temperature stress in Brassica napus L. FRONTIERS IN PLANT SCIENCE 2022; 13:1050995. [PMID: 36452101 PMCID: PMC9702069 DOI: 10.3389/fpls.2022.1050995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/14/2022] [Indexed: 06/12/2023]
Abstract
Brassica napus L. (B. napus) is a vital oilseed crop cultivated worldwide; low temperature (LT) is one of the major stress factors that limit its growth, development, distribution, and production. Even though processes have been developed to characterize LT-responsive genes, only limited studies have exploited the molecular response mechanisms in B. napus. Here the transcriptome data of an elite B. napus variety with LT adaptability was acquired and applied to investigate the gene expression profiles of B. napus in response to LT stress. The bioinformatics study revealed a total of 79,061 unigenes, of which 3,703 genes were differentially expressed genes (DEGs), with 2,129 upregulated and 1,574 downregulated. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis pinpointed that the DEGs were enriched in LT-stress-responsive biological functions and metabolic pathways, which included sugar metabolism, antioxidant defense system, plant hormone signal transduction, and photosynthesis. Moreover, a group of LT-stress-responsive transcription factors with divergent expression patterns under LT was summarized. A combined protein interaction suggested that a complex interconnected regulatory network existed in all detected pathways. RNA-seq data was verified using real-time quantitative polymerase chain reaction analysis. Based on these findings, we presented a hypothesis model illustrating valuable information for understanding the LT response mechanisms in B. napus.
Collapse
Affiliation(s)
- Muhammad Azhar Hussain
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Dan Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Liu Zeng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Xiaoyu Ding
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Yong Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Xiling Zou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Yan Lv
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Guangyuan Lu
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| |
Collapse
|
32
|
Liu X, Wei R, Tian M, Liu J, Ruan Y, Sun C, Liu C. Combined Transcriptome and Metabolome Profiling Provide Insights into Cold Responses in Rapeseed ( Brassica napus L.) Genotypes with Contrasting Cold-Stress Sensitivity. Int J Mol Sci 2022; 23:13546. [PMID: 36362332 PMCID: PMC9657917 DOI: 10.3390/ijms232113546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2023] Open
Abstract
Low temperature is a major environmental factor, which limits rapeseed (Brassica napus L.) growth, development, and productivity. So far, the physiological and molecular mechanisms of rapeseed responses to cold stress are not fully understood. Here, we explored the transcriptome and metabolome profiles of two rapeseed genotypes with contrasting cold responses, i.e., XY15 (cold-sensitive) and GX74 (cold-tolerant). The global metabolome profiling detected 545 metabolites in siliques of both genotypes before (CK) and after cold-stress treatment (LW). The contents of several sugar metabolites were affected by cold stress with the most accumulated saccharides being 3-dehydro-L-threonic acid, D-xylonic acid, inositol, D-mannose, D-fructose, D-glucose, and L-glucose. A total of 1943 and 5239 differentially expressed genes were identified from the transcriptome sequencing in XY15CK_vs_XY15LW and GX74CK_vs_GX74LW, respectively. We observed that genes enriched in sugar metabolism and biosynthesis-related pathways, photosynthesis, reactive oxygen species scavenging, phytohormone, and MAPK signaling were highly expressed in GX74LW. In addition, several genes associated with cold-tolerance-related pathways, e.g., the CBF-COR pathway and MAPK signaling, were specifically expressed in GX74LW. Contrarily, genes in the above-mentioned pathways were mostly downregulated in XY15LW. Thus, our results indicate the involvement of these pathways in the differential cold-stress responses in XY15 and GX74.
Collapse
Affiliation(s)
- Xinhong Liu
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ran Wei
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
| | - Minyu Tian
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Crop Physiology and Molecular Biology of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Jinchu Liu
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
| | - Ying Ruan
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
| | - Chuanxin Sun
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
| | - Chunlin Liu
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Crop Physiology and Molecular Biology of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
33
|
Wang R, Zhang XJ, Guo XX, Xing Y, Qu XJ, Fan SJ. Plastid phylogenomics and morphological character evolution of Chloridoideae (Poaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:1002724. [PMID: 36407581 PMCID: PMC9666777 DOI: 10.3389/fpls.2022.1002724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Chloridoideae is one of the largest subfamilies of Poaceae, containing many species of great economic and ecological value; however, phylogenetic relationships among the subtribes and genera of Cynodonteae are controversial. In the present study, we combined 111 plastomes representing all five tribes, including 25 newly sequenced plastomes that are mostly from Cynodonteae. Phylogenetic analyses supported the five monophyletic tribes of Chloridoideae, including Centropodieae, Triraphideae, Eragrostideae, Zoysieae and Cynodonteae. Simultaneously, nine monophyletic lineages were revealed in Cynodonteae: supersubtribe Boutelouodinae, subtribes Tripogoninae, Aeluropodinae, Eleusininae, Dactylocteniinae, supersubtribe Gouiniodinae, Cleistogenes and Orinus, and subtribe Triodiinae. Within the tribe of Cynodonteae, the basal lineage is supersubtribe Boutelouodinae and Tripogoninae is sister to the remaining lineages. The clade formed of Aeluropodinae and Eleusininae is sister to the clade composed of Dactylocteniinae, supersubtribe Gouiniodinae, Cleistogenes and Orinus, and subtribe Triodiinae. The clade comprising Dactylocteniinae and supersubtribe Gouiniodinae is sister to the clade comprising Cleistogenes, Orinus, and Triodiinae. Acrachne is a genus within Eleusininae but not within Dactylocteniinae. Molecular evidence determined that Diplachne is not clustered with Leptochloa, which indicated that Diplachne should not be combined into Leptochloa. Cleistogenes is sister to a clade composed of Orinus and Triodia, whereas the recently proposed subtribe Orininae was not supported. Cynodonteae was estimated to have experienced rapid divergence within a short period, which could be a major obstacle in resolving its phylogenetic relationships. Ancestral state reconstructions of morphological characters showed that the most recent common ancestor (MRCA) of Chloridoideae has a panicle, multiple florets in each spikelet, the peaked type of stomatal subsidiary cells, and a saddle-shaped phytoliths, while the ancestral morphological characters of Cynodonteae are the panicle, peaked type of stomatal subsidiary cells, sharp-cap cell typed and equal-base-cell microhair, and square-shaped phytoliths. Overall, plastome phylogenomics provides new insights into the phylogenetic relationships and morphological character evolution of Chloridoideae.
Collapse
Affiliation(s)
- Rong Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue-Jie Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiu-Xiu Guo
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yan Xing
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiao-Jian Qu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Shou-Jin Fan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
34
|
The Application of Auxin-like Compounds Promotes Cold Acclimation in the Oilseed Rape Plant. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081283. [PMID: 36013462 PMCID: PMC9409786 DOI: 10.3390/life12081283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022]
Abstract
Cold is a major environmental key factor influencing plant growth, development, and productivity. Responses and adaption processes depend on plant physiological and biochemical modifications, first of all via the hormonal system. Indole-3-acetic acid (IAA) plays a critical role in the processes of plant functioning. To assess the influence of the auxin-like compounds 1-[2-chloroethoxycarbonylmethyl]-4-naphthalenesulfonic acid calcium salt (TA-12) and 1-[2-dimethylaminoethoxycarbonylmethyl]naphthalene chloromethylate (TA-14) in the process of cold acclimation, long-term field trials over four years were performed with two rapeseed (Brassica napus L.) plant cultivars with different wintering resistance in temperate-zone countries. In these two rapeseed cultivars, namely ‘Casino’ (less resistant) and ‘Valesca’ (more resistant), investigations were conducted in the terminal buds and root collars. The application of auxin-like compounds revealed a close interlinkage between the composition of dehydrins and the participation of the phytohormone IAA in the adaptation processes. By applying TA-12 and TA-14, the importance of the proteins, especially the composition of the dehydrins, the IAA amount, and the status of the oilseed rape cultivars at the end of the cold acclimation period were confirmed. Following on from this, when introducing oilseed rape cultivars from foreign countries, it may also be of value to assess their suitability for cultivation in temperate-zone countries.
Collapse
|
35
|
Xie Z, Yang C, Liu S, Li M, Gu L, Peng X, Zhang Z. Identification of AP2/ERF transcription factors in Tetrastigma hemsleyanum revealed the specific roles of ERF46 under cold stress. FRONTIERS IN PLANT SCIENCE 2022; 13:936602. [PMID: 36017255 PMCID: PMC9396264 DOI: 10.3389/fpls.2022.936602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Tetrastigma hemsleyanum (T. hemsleyanum) is a traditional medicinal plant that is widely used in China. Cultivated T. hemsleyanum usually encounters cold stress, limiting its growth and quality at key developmental stages. APETALA2 (AP2)/ethylene-responsive factor (ERF) transcription factors (TFs) comprise one of the largest gene superfamilies in plants and are widely involved in biotic and abiotic stresses. To reveal the roles of AP2/ERF TFs during T. hemsleyanum development, 70 AP2/ERF TFs were identified in T. hemsleyanum. Among them, 18 and 2 TFs were classified into the AP2 and RAV families, respectively. The other 50 TFs belonged to the ERF family and were further divided into the ERF and (dehydration reaction element binding factor) DREB subfamilies. The ERF subfamily contained 46 TFs, while the DREB subfamily contained 4 TFs. Phylogenetic analysis indicated that AP2/ERF TFs could be classified into five groups, in which 10 conserved motifs were confirmed. Several motifs were group- or subgroup-specific, implying that they were significant for the functions of the AP2/ERF TFs of these clades. In addition, 70 AP2/ERF TFs from the five groups were used for an expression pattern analysis under three low-temperature levels, namely, -4, 0, and 4°C. The majority of these AP2/ERF TFs exhibited a positive response to cold stress conditions. Specifically, ThERF5, ThERF31, ThERF46, and ThERF55 demonstrated a more sensitive response to cold stress. Moreover, AP2/ERF TFs exhibited specific expression patterns under cold stress. Transient overexpression and RNA interference indicated that ThERF46 has a specific tolerance to cold stress. These new insights provide the basis for further studies on the roles of AP2/ERF TFs in cold stress tolerance in T. hemsleyanum.
Collapse
Affiliation(s)
- Zhuomi Xie
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chuyun Yang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siyi Liu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingjie Li
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li Gu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Peng
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China
- Medicinal Plant Resource Center, Ningbo Research Institute of Traditional Chinese Medicine, Ningbo, China
| | - Zhongyi Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
36
|
Zhang H, Hu Y, Gu B, Cui X, Zhang J. VaMYB44 transcription factor from Chinese wild Vitis amurensis negatively regulates cold tolerance in transgenic Arabidopsis thaliana and V. vinifera. PLANT CELL REPORTS 2022; 41:1673-1691. [PMID: 35666271 DOI: 10.1007/s00299-022-02883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Heterologous expression of VaMYB44 gene in Arabidopsis and V. vinifera cv. 'Thompson Seedless' increases cold sensitivity, which is mediated by the interaction of VaMYC2 and VaTIFY5A with VaMYB44 MYB transcription factors play critical roles in plant stress response. However, the function of MYB44 under low temperature stress is largely unknown in grapes. Here, we isolated a VaMYB44 gene from Chinese wild Vitis amurensis acc. 'Shuangyou' (cold-resistant). The VaMYB44 is expressed in various organs and has lower expression levels in stems and young leaves. Exposure of the cold-sensitive V. vinifera cv. 'Thompson Seedless' and cold-resistant 'Shuangyou' grapevines to cold stress (-1 °C) resulted in differential expression of MYB44 in leaves with the former reaching 14 folds of the latter after 3 h of cold stress. Moreover, the expression of VaMYB44 was induced by exogenous ethylene, abscisic acid, and methyl jasmonate in the leaves of 'Shuangyou'. Notably, the subcellular localization assay identified VaMYB44 in the nucleus. Interestingly, heterologous expression of VaMYB44 in Arabidopsis and 'Thompson Seedless' grape increased freezing-induced damage compared to their wild-type counterparts. Accordingly, the transgenic lines had higher malondialdehyde content and electrolyte permeability, and lower activities of superoxide dismutase, peroxidase, and catalase. Moreover, the expression levels of some cold resistance-related genes decreased in transgenic lines. Protein interaction assays identified VaMYC2 and VaTIFY5A as VaMYB44 interacting proteins, and VaMYC2 could bind to the VaMYB44 promoter and promote its transcription. In conclusion, the study reveals VaMYB44 as the negative regulator of cold tolerance in transgenic Arabidopsis and transgenic grapes, and VaMYC2 and VaTIFY5A are involved in the cold sensitivity of plants by interacting with VaMYB44.
Collapse
Affiliation(s)
- Hongjuan Zhang
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Yafan Hu
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Bao Gu
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Xiaoyue Cui
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
37
|
Nai G, Liang G, Ma W, Lu S, Li Y, Gou H, Guo L, Chen B, Mao J. Overexpression VaPYL9 improves cold tolerance in tomato by regulating key genes in hormone signaling and antioxidant enzyme. BMC PLANT BIOLOGY 2022; 22:344. [PMID: 35840891 PMCID: PMC9284830 DOI: 10.1186/s12870-022-03704-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/17/2022] [Indexed: 06/02/2023]
Abstract
BACKGROUND Abscisic acid (ABA) has been reported in controlling plant growth and development, and particularly dominates a role in resistance to abiotic stress. The Pyrabactin Resistance1/PYR1-Like /Regulatory Components of ABA receptors (PYR1/PYL/RCAR) gene family, of which the PYL9 is a positive regulator related to stress response in ABA signaling transduction. Although the family has been identified in grape, detailed VaPYL9 function in cold stress remains unknown. RESULTS In order to explore the cold tolerance mechanism in grape, VaPYL9 was cloned from Vitis amurensis. The subcellular localization showed that VaPYL9 was mainly expressed in the plasma membrane. Yeast two-hybrid (Y2H) showed VaPCMT might be a potential interaction protein of VaPYL9. Through the overexpression of VaPYL9 in tomatoes, results indicated transgenic plants had higher antioxidant enzyme activities and proline content, lower malondialdehyde (MDA) and H2O2 content, and improving the ability to scavenge reactive oxygen species than wild-type (WT). Additionally, ABA content and the ratio of ABA/IAA kept a higher level than WT. Quantitative real-time PCR (qRT-PCR) showed that VaPYL9, SlNCED3, SlABI5, and antioxidant enzyme genes (POD, SOD, CAT) were up-regulated in transgenic tomatoes. Transcriptome sequencing (RNA-seq) found that VaPYL9 overexpression caused the upregulation of key genes PYR/PYL, PYL4, MAPK17/18, and WRKY in transgenic tomatoes under cold stress. CONCLUSION Overexpression VaPYL9 enhances cold resistance of transgenic tomatoes mediated by improving antioxidant enzymes activity, reducing membrane damages, and regulating key genes in plant hormones signaling and antioxidant enzymes.
Collapse
Affiliation(s)
- Guojie Nai
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Weifeng Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yanmei Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Lili Guo
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
38
|
Liang G, Ma Z, Lu S, Ma W, Feng L, Mao J, Chen B. Temperature-phase transcriptomics reveals that hormones and sugars in the phloem of grape participate in tolerance during cold acclimation. PLANT CELL REPORTS 2022; 41:1357-1373. [PMID: 35316376 DOI: 10.1007/s00299-022-02862-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Most of the upregulated genes contributed to the accumulation of soluble sugars and ABA in the phloem of 'Vitis amurensis' compared to 'Merlot' during cold acclimation. Extreme cold is one of the dominant abiotic factors affecting grape yield and quality. However, the changes in sugars, phytohormones, and gene expression in the branch phloem of different tolerant grape varieties during cold acclimation remain elusive. The data supported that with decreasing temperature, the contents of fructose, sucrose, and ABA in the phloem of Vitis amurensis (cold-tolerant, T) and 'Merlot' (cold-sensitive, S) increased during cold acclimation, and these indicators were higher in T than in S. Furthermore, the activities of sucrose synthetase, sucrose phosphate synthetase, and acid invertase peaked in the early phase of cold acclimation (approximately 5 °C) compared to other phases (approximately 28 °C, 0 °C, - 5 °C and - 10 °C). Moreover, the RNA sequencing results helped identify a total of 11,343 differentially expressed genes in the phloem of T and S, among which 4912 were upregulated and 6431 were downregulated. In the abscisic acid pathway, CRTISO, PSPY1-1, CYCP707A4-2, PYL4-1, PYL4-2, P2C08, SAPK2, TARAB1, and DBF3 were more highly expressed in T than in S. In the starch and sucrose metabolism pathway, HXK1, PGMP, GLGL1, SUS6, VCINV, BGL11, SSY1, GPS, BAM1 and BAM3 were also more highly expressed in T than in S. Moreover, the genes related to oxidative phosphorylation, such as NDHF, ND4, ND1, NAD7, NAD2, ATPB, YMF19, ATP9, PMA1 and AHA8, were upregulated in T. These results will be beneficial for understanding the potential differences in tolerance across two different cold-tolerant grapes with respect to sugar metabolism and gene expression.
Collapse
Affiliation(s)
- Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Weifeng Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lidan Feng
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou, 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
39
|
Zou J, Yang L, Li Y, Piao M, Li Y, Yao N, Zhang X, Zhang Q, Hu G, Yang D, Zuo Z. Comparative Proteomics Combined with Morphophysiological Analysis Revealed Chilling Response Patterns in Two Contrasting Maize Genotypes. Cells 2022; 11:cells11081321. [PMID: 35456000 PMCID: PMC9024610 DOI: 10.3390/cells11081321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
Maize yield is significantly influenced by low temperature, particularly chilling stress at the maize seedling stage. Various physiological approaches have been established to resist chilling stress; however, the detailed proteins change patterns underlying the maize chilling stress response at the seedling stage remain unknown, preventing the development of breeding-based methods to resist chilling stress in maize. Thus, we performed comprehensive physiological, comparative proteomics and specific phytohormone abscisic acid (ABA) assay on different maize inbred lines (tolerant-line KR701 and sensitive-line hei8834) at different seedling stages (the first leaf stage and third leaf stage) under chilling stress. The results revealed several signalling proteins and pathways in response to chilling stress at the maize seedling stage. Meanwhile, we found ABA pathway was important for chilling resistance of tolerant-line KR701 at the first leaf stage. Related chilling-responsive proteins were further catalogued and analysed, providing a resource for further investigation and maize breeding.
Collapse
Affiliation(s)
- Jinpeng Zou
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (Q.Z.)
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (L.Y.); (M.P.)
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Y.L.); (N.Y.); (X.Z.)
| | - Liang Yang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (L.Y.); (M.P.)
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Y.L.); (N.Y.); (X.Z.)
| | - Yuhong Li
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Y.L.); (N.Y.); (X.Z.)
| | - Mingxin Piao
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (L.Y.); (M.P.)
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Y.L.); (N.Y.); (X.Z.)
| | - Yaxing Li
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Y.L.); (N.Y.); (X.Z.)
| | - Nan Yao
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Y.L.); (N.Y.); (X.Z.)
| | - Xiaohong Zhang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Y.L.); (N.Y.); (X.Z.)
| | - Qian Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (Q.Z.)
| | - Guanghui Hu
- Institute of Maize Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150030, China;
| | - Deguang Yang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (Q.Z.)
- Correspondence: (D.Y.); (Z.Z.)
| | - Zecheng Zuo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (L.Y.); (M.P.)
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Y.L.); (N.Y.); (X.Z.)
- Correspondence: (D.Y.); (Z.Z.)
| |
Collapse
|
40
|
Muthuramalingam P, Shin H, Adarshan S, Jeyasri R, Priya A, Chen JT, Ramesh M. Molecular Insights into Freezing Stress in Peach Based on Multi-Omics and Biotechnology: An Overview. PLANTS 2022; 11:plants11060812. [PMID: 35336695 PMCID: PMC8954506 DOI: 10.3390/plants11060812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022]
Abstract
In nature or field conditions, plants are frequently exposed to diverse environmental stressors. Among abiotic stresses, the low temperature of freezing conditions is a critical factor that influences plants, including horticultural crops, decreasing their growth, development, and eventually quality and productivity. Fortunately, plants have developed a mechanism to improve the tolerance to freezing during exposure to a range of low temperatures. In this present review, current findings on freezing stress physiology and genetics in peach (Prunus persica) were refined with an emphasis on adaptive mechanisms for cold acclimation, deacclimation, and reacclimation. In addition, advancements using multi-omics and genetic engineering approaches unravel the molecular physiological mechanisms, including hormonal regulations and their general perceptions of freezing tolerance in peach were comprehensively described. This review might pave the way for future research to the horticulturalists and research scientists to overcome the challenges of freezing temperature and improvement of crop management in these conditions.
Collapse
Affiliation(s)
- Pandiyan Muthuramalingam
- Department of Horticultural Science, Gyeongsang National University, Jinju 52725, Korea;
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India; (S.A.); (R.J.); (A.P.); (M.R.)
| | - Hyunsuk Shin
- Department of Horticultural Science, Gyeongsang National University, Jinju 52725, Korea;
- Correspondence:
| | - Sivakumar Adarshan
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India; (S.A.); (R.J.); (A.P.); (M.R.)
| | - Rajendran Jeyasri
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India; (S.A.); (R.J.); (A.P.); (M.R.)
| | - Arumugam Priya
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India; (S.A.); (R.J.); (A.P.); (M.R.)
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan;
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India; (S.A.); (R.J.); (A.P.); (M.R.)
| |
Collapse
|
41
|
Yan L, Zeng L, Raza A, Lv Y, Ding X, Cheng Y, Zou X. Inositol Improves Cold Tolerance Through Inhibiting CBL1 and Increasing Ca 2+ Influx in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:775692. [PMID: 35371155 PMCID: PMC8969906 DOI: 10.3389/fpls.2022.775692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Rapeseed (Brassica napus L.) is an important oilseed crop worldwide. However, its productivity is significantly affected by various abiotic stresses, including cold stress. Among various stresses, cold stress is an important abiotic factor affecting plant growth, yield, and quality. The calcium channels are regarded as key pathways affecting cold tolerance in plants. Thus, improvement in cold tolerance is of great significance for crop improvement. The current study was designed to examine the beneficial role of exogenous inositol in improving cold stress tolerance in rapeseed. From the RNA-seq results, we identified 35 differently expressed genes encoding different inositol enzymes. The results show that inositol (a cyclic polyol) positively regulated cold tolerance by increasing calcium ion (Ca2+) influx in rapeseed. Furthermore, we found that the expression of calcineurin B-like (CBL1) gene was inhibited by inositol. On the other hand, overexpressed plant mediated the Ca2+ flux under cold stress suggesting the key role of inositol-Ca2+ pathway in cold tolerance. Moreover, the overexpression of BnCBL1-2 in Arabidopsis represented that transgenic plants mediated the Ca2+ flux highlighting the vital role of the inositol-Ca2+ pathway in conferring cold stress. Our study provides new insights into rapeseed cold tolerance mechanism and introduces a feasible method to improve the cold tolerance of rapeseed quickly.
Collapse
|
42
|
Xu Z, Wang J, Zhen W, Sun T, Hu X. Abscisic acid alleviates harmful effect of saline-alkaline stress on tomato seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 175:58-67. [PMID: 35180529 DOI: 10.1016/j.plaphy.2022.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Saline-alkaline stress inhibits plant growth and reduces yield. Abscisic acid (ABA) is an important plant hormone in response to plant stress. However, the role of ABA under saline-alkaline stress is poorly understood. Therefore, the mechanisms of ABA accumulation and resistance improvement in tomato seedlings were studied under saline-alkaline stress. We investigated whether ABA accumulation improved the saline-alkaline stress resistance ability of tomato. Here, wild-type (Solanum lycopersicum cv. Ailsa Craig) and ABA-deficient mutant (notabilis) seedlings were used to determine the membrane lipid peroxidation, osmotic substance and chlorophyll contents. ABA synthesis and signal transduction changes and ABA roles regulating the antioxidation in tomato seedlings subject to saline-alkaline stress were further explored. Results showed that ABA synthesis and signal transduction were induced by saline-alkaline stress. Under saline-alkaline stress, tomato seedlings had decreased relative water content, increased relative electrical conductivity and malondialdehyde content, and these changes were alleviated by exogenous ABA treatment. Exogenous ABA alleviated the degradation of chlorophyll in the leaves of tomato seedlings caused by saline-alkaline stress, further promoted the accumulation of proline and soluble sugar, reduced the content of ROS and improved the ability of the antioxidant enzyme system. Moreover, notabilis appeared to be sensitive to saline-alkaline stress. Overall, ABA is involved in the resistance of tomato seedlings to saline-alkaline stress, and exogenous ABA improves the saline-alkaline tolerance of tomato seedlings.
Collapse
Affiliation(s)
- Zijian Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Jiachun Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Wentian Zhen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Tao Sun
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
43
|
Li W, Fu Y, Lv W, Zhao S, Feng H, Shao L, Li C, Yang J. Characterization of the early gene expression profile in Populus ussuriensis under cold stress using PacBio SMRT sequencing integrated with RNA-seq reads. TREE PHYSIOLOGY 2022; 42:646-663. [PMID: 34625806 DOI: 10.1093/treephys/tpab130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Populus ussuriensis is an important and fast-growing afforestation plant species in north-eastern China. The whole-genome sequencing of P. ussuriensis has not been completed. Also, the transcriptional network of P. ussuriensis response to cold stress remains unknown. To unravel the early response of P. ussuriensis to chilling (3 °C) stress and freezing (-3 °C) stresses at the transcriptional level, we performed single-molecule real-time (SMRT) and Illumina RNA sequencing for P. ussuriensis. The SMRT long-read isoform sequencing led to the identification of 29,243,277 subreads and 575,481 circular consensus sequencing reads. Approximately 50,910 high-quality isoforms were generated, and 2272 simple sequence repeats and 8086 long non-coding RNAs were identified. The Ca2+ content and abscisic acid (ABA) content in P. ussuriensis were significantly increased under cold stresses, while the value in the freezing stress treatment group was significantly higher than the chilling stress treatment group. A total of 49 genes that are involved in the signal transduction pathways related to perception and transmission of cold stress signals, such as the Ca2+ signaling pathway, ABA signaling pathway and MAPK signaling cascade, were found to be differentially expressed. In addition, 158 transcription factors from 21 different families, such as MYB, WRKY and AP2/ERF, were differentially expressed during chilling and freezing treatments. Moreover, the measurement of physiological indicators and bioinformatics observations demonstrated the altered expression pattern of genes involved in reactive oxygen species balance and the sugar metabolism pathway during chilling and freezing stresses. This is the first report of the early responses of P. ussuriensis to cold stress, which lays the foundation for future studies on the regulatory mechanisms in cold-stress response. In addition the full-length reference transcriptome of P. ussuriensis deciphered could be used in future studies on P. ussuriensis.
Collapse
Affiliation(s)
- Wenlong Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Yanrui Fu
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Wanqiu Lv
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Shicheng Zhao
- School of Pharmacy, Harbin University of Commerce, No.138 Tongdajie Street, Harbin 150028, China
| | - He Feng
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Liying Shao
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Chenghao Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jingli Yang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
44
|
Pan X, Guan L, Lei K, Li J, Zhang X. Transcriptional and physiological data revealed cold tolerance in a photo-thermo sensitive genic male sterile line Yu17S. BMC PLANT BIOLOGY 2022; 22:44. [PMID: 35062884 PMCID: PMC8781465 DOI: 10.1186/s12870-022-03437-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Rice is highly sensitive to chilling stress during the seedling stage. However, the adaptable photo-thermo sensitive genic male sterile (PTGMS) rice line, Yu17S, exhibits tolerance to low temperatures. Currently, the molecular characteristics of Yu17S are unclear. RESULTS To evaluate the molecular mechanisms behind cold responses in rice seedlings, a comparative transcriptome analysis was performed in Yu17S during seedling development under normal temperature and low temperature conditions. In total, 9317 differentially expressed genes were detected. Gene ontology and pathway analyses revealed that these genes were involved mostly in photosynthesis, carotenoid biosynthesis, carbohydrate metabolism and plant hormone signal transduction. An integrated analysis of specific pathways combined with physiological data indicated that rice seedlings improved the performance of photosystem II when exposed to cold conditions. Genes involved in starch degradation and sucrose metabolism were activated in rice plants exposed to cold stress treatments, which was accompanied by the accumulation of soluble sugar, trehalose, raffinose and galactinol. Furthermore, chilling stress induced the expression of phytoene desaturase, 15-cis-ζ-carotene isomerase, ζ-carotene desaturase, carotenoid isomerase and β-carotene hydroxylase; this was coupled with the activation of carotenoid synthase activity and increases in abscisic acid (ABA) levels in rice seedlings. CONCLUSIONS Our results suggest that Yu17S exhibited better tolerance to cold stress with the activation of carotenoid synthase activity and increasing of ABA levels, and as well as the expression of photosynthesis-related genes under cold condition in rice seedlings.
Collapse
Affiliation(s)
- Xiaoxue Pan
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing, 401329, China
| | - Ling Guan
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing, 401329, China
| | - Kairong Lei
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing, 401329, China
| | - Jingyong Li
- Chongqing Rationing Rice Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 402160, China
| | - Xianwei Zhang
- Chongqing Rationing Rice Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 402160, China.
| |
Collapse
|
45
|
Zeng R, Cao J, Li X, Wang X, Wang Y, Yao S, Gao Y, Hu J, Luo M, Zhang L, Chen T. Waterlogging tolerance and recovery capability screening in peanut: a comparative analysis of waterlogging effects on physiological traits and yield. PeerJ 2022; 10:e12741. [PMID: 35070503 PMCID: PMC8760856 DOI: 10.7717/peerj.12741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/13/2021] [Indexed: 01/11/2023] Open
Abstract
Fifteen peanut varieties at the pod filling stage were exposed to waterlogging stress for 7 days, the enzyme activities and fluorescence parameters were measured after 7 days of waterlogging and drainage. The waterlogging tolerance and recovery capability of varieties were identified. After waterlogging, waterlogging tolerance coefficient (WTC) of relative electrolyte linkage (REL), malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, and catalase (CAT) activity, non-photochemical quenching (NPQ) and photochemical quenching (qL) of leaves of most peanut varieties were increased, while the WTC of the soil and plant analysis development (SPAD) value, PS II actual quantum yield (Φ PS II ), maximum photochemical efficiency (Fv/Fm) were decreased. After drainage, the WTC of REL, MDA content, SOD and CAT activity of leaves were decreased compared with that of after waterlogging, but these indicators of a few cultivars were increased. Φ PS II , Fv/Fm and qL can be used as important indexes to identify waterlogging recovery capability. There was a significant negative correlation between recovery capability and the proportion of reduction in yield, while no significant correlation was found between waterlogging tolerance and the proportion of reduction in yield. Therefore, it is recommended to select varieties with high recovery capability and less pod number reduction under waterlogging in peanut breeding and cultivation.
Collapse
Affiliation(s)
- Ruier Zeng
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jing Cao
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xi Li
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xinyue Wang
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ying Wang
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Suzhe Yao
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yu Gao
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jing Hu
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Mingzhu Luo
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lei Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Tingting Chen
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
46
|
Li P, Hu C, Li Y, Ge L, Wu G, Lv B, Jiang W, Xi D. The cold - resistance mechanism of a mutagenic Volvariella volvacea strain VH3 with outstanding traits revealed by transcriptome profiling. BMC Microbiol 2021; 21:336. [PMID: 34876003 PMCID: PMC8653554 DOI: 10.1186/s12866-021-02396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/22/2021] [Indexed: 11/14/2022] Open
Abstract
Background The straw mushroom (Volvariella volvacea) is one of the important vegetables that is popular for its delicious taste. However, the straw mushroom is sensitive to low temperature, resulting in economic loss during transportation and storage. We obtained a novel straw mushroom strain, named VH3, via ultraviolet mutagenesis. Results Our study revealed that VH3 exhibited high cold resistance compared to an ordinary straw mushroom cultivar, V23. We found that the electrolyte leakages of VH3 were always significantly lower than that of V23 treated with 4 °C for 0 h, 2 h,4 h, 8 h, 16 h, and 24 h. Before cold treatment (0 h), there were no difference of MDA contents, SOD activities, and CAT activities between VH3 and V23. At the late stage (8 h, 26 h, and 24 h) of cold treatment, the MDA contents of VH3 were lower while both the SOD and CAT activities were higher than those of V23. To investigate the potential mechanisms of VH3 cold resistance, we performed transcriptome sequencing to detect the transcriptome profiling of VH3 and V23 after 0 h and 4 h cold treatment. Transcriptome sequencing revealed that 111 differentially expressed genes (DEG) between V23 (0 h) and VH3 (0 h) (V23–0_vs_VH3–0), consisting 50 up-regulated and 61 down-regulated DEGs. A total of 117 DEGs were obtained between V23 (4 h) and VH3(4 h) (V23–4_vs_VH3–4), containing 94 up-regulated and 23 down-regulated DEGs. Among these DEGs, VVO_00021 and VVO_00017 were up-regulated while VVO_00003, VVO_00004, VVO_00010, and VVO_00030 were down-regulated in V23–0_vs_VH3–0 and VH3–4_vs_V23–4. KEGG and GO analysis revealed that the 6 DEGs were annotated to pathways related to cold stress. Besides, the GA3 content was also decreased in VH3. Conclusions Collectively, our study first revealed that the increased cold resistance of VH3 might be caused by the expression change of VVO_00003, VVO_00004, VVO_00017, VVO_00021, and VVO_00030, and decreased GA3. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02396-8.
Collapse
Affiliation(s)
- Peng Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Cong Hu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Yujie Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Lei Ge
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Guogan Wu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Beibei Lv
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Wei Jiang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Dandan Xi
- Shanghai Key Laboratory of Protected Horticultural Technology, Protected Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
| |
Collapse
|
47
|
Caselles V, Casadesús A, Munné-Bosch S. A Dual Role for Abscisic Acid Integrating the Cold Stress Response at the Whole-Plant Level in Iris pseudacorus L. Growing in a Natural Wetland. FRONTIERS IN PLANT SCIENCE 2021; 12:722525. [PMID: 34950157 PMCID: PMC8688363 DOI: 10.3389/fpls.2021.722525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Leaf senescence, the last stage of the developmental program of leaves, can be induced by both internal and external signals. Cold stress-induced leaf senescence is an efficient strategy to overcome winter temperatures. In this work, we studied leaf senescence in yellow flag (Iris pseudacorus L.) individuals growing in a natural wetland, not only considering its relationship with external and internal cues, but also the plant developmental program, and the biological significance of rhizomes, storage organs that remain viable through winter. Total chlorophyll contents and the maximum efficiency of PSII (Fv /Fm ratio) decreased in senescing leaves, which was associated with a sharp increase in abscisic acid (ABA) contents. Furthermore, total cytokinin and 2-isopentenyladenine contents decreased in December compared to November, as plants became more stressed due to a decline in air temperatures. ABA increases in senescing leaves increased in parallel to reductions in violaxanthin. Rhizomes also accumulated large amounts of ABA during winter, while roots did not, and neither roots nor rhizomes accumulated 9-cis-epoxycarotenoids, thus suggesting ABA, which might play a role in conferring cold tolerance to this subterranean organ, may result from phloem transport from senescing leaves. It is concluded that (i) leaf senescence is a highly regulated physiological process in yellow flag playing a key role in the modulation of the entire plant developmental program, and (ii) ABA plays a major role not only in the regulation of leaf senescence but also in the establishment of cold tolerance in rhizomes, two processes that appear to be intimately interconnected.
Collapse
Affiliation(s)
- Vicent Caselles
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Andrea Casadesús
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Research Biodiversity Institute, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
48
|
Wang X, Liu WC, Zeng XW, Yan S, Qiu YM, Wang JB, Huang X, Yuan HM. HbSnRK2.6 Functions in ABA-Regulated Cold Stress Response by Promoting HbICE2 Transcriptional Activity in Hevea brasiliensis. Int J Mol Sci 2021; 22:12707. [PMID: 34884520 PMCID: PMC8657574 DOI: 10.3390/ijms222312707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 01/22/2023] Open
Abstract
Low temperature remarkably limits rubber tree (Hevea brasiliensis Muell. Arg.) growth, latex production, and geographical distribution, but the underlying mechanisms of Hevea brasiliensis cold stress response remain elusive. Here, we identified HbSnRK2.6 as a key component in ABA signaling functions in phytohormone abscisic acid (ABA)-regulated cold stress response in Hevea brasiliensis. Exogenous application of ABA enhances Hevea brasiliensis cold tolerance. Cold-regulated (COR) genes in the CBF pathway are upregulated by ABA. Transcript levels of all five HbSnRK2.6 members are significantly induced by cold, while HbSnRK2.6A, HbSnRK2.6B, and HbSnRK2.6C can be further activated by ABA under cold conditions. Additionally, HbSnRK2.6s are localized in the cytoplasm and nucleus, and can physically interact with HbICE2, a crucial positive regulator in the cold signaling pathway. Overexpression of HbSnRK2.6A or HbSnRK2.6B in Arabidopsis extensively enhances plant responses to ABA and expression of COR genes, leading to increased cold stress tolerance. Furthermore, HbSnRK2.6A and HbSnRK2.6B can promote transcriptional activity of HbICE2, thus, increasing the expression of HbCBF1. Taken together, we demonstrate that HbSnRK2.6s are involved in ABA-regulated cold stress response in Hevea brasiliensis by regulating transcriptional activity of HbICE2.
Collapse
Affiliation(s)
- Xue Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China; (X.W.); (X.-W.Z.); (S.Y.); (Y.-M.Q.); (J.-B.W.); (X.H.)
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China;
| | - Xue-Wei Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China; (X.W.); (X.-W.Z.); (S.Y.); (Y.-M.Q.); (J.-B.W.); (X.H.)
| | - Sa Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China; (X.W.); (X.-W.Z.); (S.Y.); (Y.-M.Q.); (J.-B.W.); (X.H.)
| | - Yi-Min Qiu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China; (X.W.); (X.-W.Z.); (S.Y.); (Y.-M.Q.); (J.-B.W.); (X.H.)
| | - Jin-Bo Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China; (X.W.); (X.-W.Z.); (S.Y.); (Y.-M.Q.); (J.-B.W.); (X.H.)
| | - Xi Huang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China; (X.W.); (X.-W.Z.); (S.Y.); (Y.-M.Q.); (J.-B.W.); (X.H.)
| | - Hong-Mei Yuan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China; (X.W.); (X.-W.Z.); (S.Y.); (Y.-M.Q.); (J.-B.W.); (X.H.)
| |
Collapse
|
49
|
Yan C, Zhang N, Wang Q, Fu Y, Wang F, Su Y, Xue B, Zhou L, Liao H. The Effect of Low Temperature Stress on the Leaves and MicroRNA Expression of Potato Seedlings. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.727081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In recent years, with the wanton destruction of the ecological environment by humans and the frequent occurrence of extreme bad weather, many places that should have been warm and blooming in spring have instead experienced the phenomenon of the “April blizzard,” which has seriously affected China's crops, especially spring potato production in most areas. Potato cultivars, especially potato seedlings, are sensitive to frost, and low temperature frost has become one of the most important abiotic stresses affecting potato production. Potato cold tolerance is regulated by a complex gene network. Although some low temperature resistant microRNAs have been identified, little is known about the role of miRNAs in response to low temperature stress in potato. Therefore, the objective of this study is to clarify the influence of low temperature stress on the miRNA expression of potato by comparing the expression differences of miRNA in potato which was treated with different low temperatures. For the study, 307 known miRNAs belonging to 73 small RNA families and 211 novel miRNAs were obtained. When the temperature decreased, the number of both known and novel miRNA decreased, and the minimum temperature was −2°C. Most of the miRNAs respond to low temperature, drought, and disease stress; some conserved miRNAs were first found to respond to low temperature stress in potato, such as stu-miR530, stu-miR156d, and stu-miR167b. The Gene Ontology, Kyoto Encyclopedia of Genes, and Genomes pathway enrichment analysis of 442 different expression miRNAs target genes indicated that there existed diversified low temperature responsive pathways, but Abscisic Acid was found likely to play a central coordinating role in response to low temperature stress in many metabolism pathways. Quantitative real-time PCR assays indicated that the related targets were negatively regulated by the tested different expression miRNAs during low temperature stress. The results indicated that miRNAs may play an important coordination role in response to low temperature stress in many metabolic pathways by regulating abscisic acid and gibberellin, which provided insight into the roles of miRNAs during low temperature stress and would be helpful for alleviating low temperature stress and promoting low temperature resistant breeding in potatoes.
Collapse
|
50
|
Wei J, Zheng G, Yu X, Liu S, Dong X, Cao X, Fang X, Li H, Jin J, Mi W, Liu Z. Comparative Transcriptomics and Proteomics Analyses of Leaves Reveals a Freezing Stress-Responsive Molecular Network in Winter Rapeseed ( Brassica rapa L.). FRONTIERS IN PLANT SCIENCE 2021; 12:664311. [PMID: 33995460 PMCID: PMC8113625 DOI: 10.3389/fpls.2021.664311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Winter rapeseed is susceptible to low temperature during winter in Northwest China, which could lead to a severe reduction of crop production. The freezing temperature could stress the whole plant, especially the leaf, and ultimately harm the survival rate of winter rapeseed. However, the molecular mechanism underlying freezing tolerance is still unclear in winter rapeseed. In this study, a comprehensive investigation of winter rapeseed freezing tolerance was conducted at the levels of transcript, protein, and physiology and biochemistry, using a pair of freezing-sensitive and freezing-resistant cultivars NQF24 and 17NTS57. There were 4,319 unique differentially expressed genes (DEGs) and 137 unique differentially abundant proteins (DAPs) between two cultivars identified in leaf under freezing stress. Function enrichment analysis showed that most of the enriched DEGs and DAPs were involved in plant hormone signal transduction, alpha-linolenic/linoleic acid metabolism, peroxisome, glutathione metabolism, fatty acid degradation, and secondary metabolite biosynthesis pathways. Based on our findings, it was speculated that freezing tolerance formation is caused by increased signal transduction, enhanced biosynthesis of protein, secondary metabolites, and plant hormones, elevated energy supply, greater reactive oxygen species scavenging, and lower lipid peroxidation as well as stronger cell stability in leaf under freezing stress. These results provide a comprehensive profile of leaf response under freezing stress, which have potential to be used as selection indicators of breeding programs to improve freezing tolerance in rapeseed.
Collapse
Affiliation(s)
- Jiaping Wei
- Gansu Province Key Laboratory of Aridland Crop Sciences, Lanzhou, China
| | - Guoqiang Zheng
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xingwang Yu
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
| | - Sushuang Liu
- Department of Life Sciences and Health, Huzhou University, Huzhou, China
| | - Xiaoyun Dong
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xiaodong Cao
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xinling Fang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Hui Li
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Jiaojiao Jin
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Wenbo Mi
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zigang Liu
- Gansu Province Key Laboratory of Aridland Crop Sciences, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|