1
|
Tao Z, Zhu L, Li H, Sun B, Liu X, Li D, Hu W, Wang S, Miao X, Shi Z. ACL1-ROC4/5 complex reveals a common mechanism in rice response to brown planthopper infestation and drought. Nat Commun 2024; 15:8107. [PMID: 39285171 PMCID: PMC11405696 DOI: 10.1038/s41467-024-52436-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 09/05/2024] [Indexed: 09/20/2024] Open
Abstract
Brown planthopper (BPH) is the most destructive insect pest of rice. Drought is the most detrimental environmental stress. BPH infestation causes adaxial leaf-rolling and bulliform cells (BCs) shrinkage similar to drought. The BC-related abaxially curled leaf1 (ACL1) gene negatively regulates BPH resistance and drought tolerance, with decreased cuticular wax in the gain-of-function mutant ACL1-D. ACL1 shows an epidermis-specific expression. The TurboID system and multiple biochemical assays reveal that ACL1 interacts with the epidermal-characteristic rice outermost cell-specific (ROC) proteins. ROC4 and ROC5 positively regulate BPH resistance and drought tolerance through modulating cuticular wax and BCs, respectively. Overexpression of ROC4 and ROC5 both rescue ACL1-D mutant in various related phenotypes. ACL1 competes with ROC4/ROC5 in homo-dimer and hetero-dimer formation, and interacts with the repressive TOPLESS-related proteins. Altogether, we illustrate that ACL1-ROC4/5 complexes synergistically mediate drought tolerance and BPH resistance through regulating cuticular wax content and BC development in rice, a mechanism that might facilitate BPH-resistant breeding.
Collapse
Affiliation(s)
- Zhihuan Tao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Zhu
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haichao Li
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Bo Sun
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Liu
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, P. R. China
| | - Dayong Li
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, P. R. China
| | - Wenli Hu
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Shanshan Wang
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xuexia Miao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Zhenying Shi
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Tao Z, Miao X, Shi Z. HD-ZIP IV Gene ROC1 Regulates Leaf Rolling and Drought Response Through Formation of Heterodimers with ROC5 and ROC8 in Rice. RICE (NEW YORK, N.Y.) 2024; 17:45. [PMID: 39060652 PMCID: PMC11282044 DOI: 10.1186/s12284-024-00717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/21/2024] [Indexed: 07/28/2024]
Abstract
Leaf morphology is a crucial agronomic characteristic of rice that influences crop yield directly. One primary cause of rice leaf rolling can be attributed to alterations in bulliform cells. Several HD-ZIP IV genes have been identified to be epidemical characterized and function in leaf rolling in rice. Still others need to be studied to fully understand the overall function of HD-ZIP IV family. Among the nine ROC genes encoding HD-ZIP IV family transcription factors in rice, ROC1 exhibits the highest expression in the leaves. Overexpression of ROC1 decreased the size of bulliform cells, and thus resulted in adaxially rolled leaves. To the contrary, knockout of ROC1 (ROC1KO) through Crispr-cas9 system enlarged bulliform cells, and thus led to abaxially rolled leaves. Moreover, ROC1KO plants were sensitive to drought. ROC1 could form homodimers on its own, and heterodimers with ROC5 and ROC8 respectively. Compared to ROC1KO plants, leaves of the ROC1 and ROC8 double knocked out plants (ROC1/8DKO) were more severely rolled abaxially due to enlarged bulliform cells, and ROC1/8DKO plants were more drought sensitive. However, overexpression of ROC8 could not restore the abaxial leaf phenotype of ROC1KO plants. Therefore, we proved that ROC1, a member of the HD-ZIP IV family, regulated leaf rolling and drought stress response through tight association with ROC5 and ROC8.
Collapse
Affiliation(s)
- Zhihuan Tao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuexia Miao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Zhenying Shi
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
3
|
Zang Y, Xu C, Yu L, Ma L, Xuan L, Yan S, Zhang Y, Cao Y, Li X, Si Z, Deng J, Zhang T, Hu Y. GHCU, a Molecular Chaperone, Regulates Leaf Curling by Modulating the Distribution of KNGH1 in Cotton. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402816. [PMID: 38666376 PMCID: PMC11234424 DOI: 10.1002/advs.202402816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Indexed: 07/11/2024]
Abstract
Leaf shape is considered to be one of the most significant agronomic traits in crop breeding. However, the molecular basis underlying leaf morphogenesis in cotton is still largely unknown. In this study, through genetic mapping and molecular investigation using a natural cotton mutant cu with leaves curling upward, the causal gene GHCU is successfully identified as the key regulator of leaf flattening. Knockout of GHCU or its homolog in cotton and tobacco using CRISPR results in abnormal leaf shape. It is further discovered that GHCU facilitates the transport of the HD protein KNOTTED1-like (KNGH1) from the adaxial to the abaxial domain. Loss of GHCU function restricts KNGH1 to the adaxial epidermal region, leading to lower auxin response levels in the adaxial boundary compared to the abaxial. This spatial asymmetry in auxin distribution produces the upward-curled leaf phenotype of the cu mutant. By analysis of single-cell RNA sequencing and spatiotemporal transcriptomic data, auxin biosynthesis genes are confirmed to be expressed asymmetrically in the adaxial-abaxial epidermal cells. Overall, these findings suggest that GHCU plays a crucial role in the regulation of leaf flattening through facilitating cell-to-cell trafficking of KNGH1 and hence influencing the auxin response level.
Collapse
Affiliation(s)
- Yihao Zang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310058, China
| | - Chenyu Xu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310058, China
| | - Lishan Yu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310058, China
| | - Longen Ma
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310058, China
| | - Lisha Xuan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310058, China
| | - Sunyi Yan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310058, China
| | - Yayao Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310058, China
| | - Yiwen Cao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310058, China
| | - Xiaoran Li
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310058, China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310058, China
| | - Jieqiong Deng
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Sichuan, 610066, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572025, China
| |
Collapse
|
4
|
Wang J, Xu J, Wang L, Zhou M, Nian J, Chen M, Lu X, Liu X, Wang Z, Cen J, Liu Y, Zhang Z, Zeng D, Hu J, Zhu L, Dong G, Ren D, Gao Z, Shen L, Zhang Q, Li Q, Guo L, Yu S, Qian Q, Zhang G. SEMI-ROLLED LEAF 10 stabilizes catalase isozyme B to regulate leaf morphology and thermotolerance in rice (Oryza sativa L.). PLANT BIOTECHNOLOGY JOURNAL 2023; 21:819-838. [PMID: 36597711 PMCID: PMC10037157 DOI: 10.1111/pbi.13999] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 12/18/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Plant architecture and stress tolerance play important roles in rice breeding. Specific leaf morphologies and ideal plant architecture can effectively improve both abiotic stress resistance and rice grain yield. However, the mechanism by which plants simultaneously regulate leaf morphogenesis and stress resistance remains elusive. Here, we report that SRL10, which encodes a double-stranded RNA-binding protein, regulates leaf morphology and thermotolerance in rice through alteration of microRNA biogenesis. The srl10 mutant had a semi-rolled leaf phenotype and elevated sensitivity to high temperature. SRL10 directly interacted with catalase isozyme B (CATB), and the two proteins mutually increased one other's stability to enhance hydrogen peroxide (H2 O2 ) scavenging, thereby contributing to thermotolerance. The natural Hap3 (AGC) type of SRL10 allele was found to be present in the majority of aus rice accessions, and was identified as a thermotolerant allele under high temperature stress in both the field and the growth chamber. Moreover, the seed-setting rate was 3.19 times higher and grain yield per plant was 1.68 times higher in near-isogenic line (NIL) carrying Hap3 allele compared to plants carrying Hap1 allele under heat stress. Collectively, these results reveal a new locus of interest and define a novel SRL10-CATB based regulatory mechanism for developing cultivars with high temperature tolerance and stable yield. Furthermore, our findings provide a theoretical basis for simultaneous breeding for plant architecture and stress resistance.
Collapse
Affiliation(s)
- Jiajia Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene ResearchCollege of Plant Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Jing Xu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang ProvinceResearch Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhouChina
| | - Li Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Mengyu Zhou
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Jinqiang Nian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Minmin Chen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Xueli Lu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Xiong Liu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Zian Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Jiangsu Cen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Yiting Liu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Zhihai Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Dali Zeng
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Jiang Hu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Li Zhu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Guojun Dong
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Deyong Ren
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Zhenyu Gao
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Lan Shen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Qiang Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Qing Li
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Longbiao Guo
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene ResearchCollege of Plant Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Qian Qian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural SciencesSanyaChina
| | - Guangheng Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural SciencesSanyaChina
| |
Collapse
|
5
|
Vuong UT, Iswanto ABB, Nguyen Q, Kang H, Lee J, Moon J, Kim SH. Engineering plant immune circuit: walking to the bright future with a novel toolbox. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:17-45. [PMID: 36036862 PMCID: PMC9829404 DOI: 10.1111/pbi.13916] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant pathogens destroy crops and cause severe yield losses, leading to an insufficient food supply to sustain the human population. Apart from relying on natural plant immune systems to combat biological agents or waiting for the appropriate evolutionary steps to occur over time, researchers are currently seeking new breakthrough methods to boost disease resistance in plants through genetic engineering. Here, we summarize the past two decades of research in disease resistance engineering against an assortment of pathogens through modifying the plant immune components (internal and external) with several biotechnological techniques. We also discuss potential strategies and provide perspectives on engineering plant immune systems for enhanced pathogen resistance and plant fitness.
Collapse
Affiliation(s)
- Uyen Thi Vuong
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Quang‐Minh Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Hobin Kang
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jihyun Lee
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
- Division of Life ScienceGyeongsang National UniversityJinjuRepublic of Korea
| |
Collapse
|
6
|
Ali Z, Merrium S, Habib-Ur-Rahman M, Hakeem S, Saddique MAB, Sher MA. Wetting mechanism and morphological adaptation; leaf rolling enhancing atmospheric water acquisition in wheat crop-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30967-30985. [PMID: 35102510 PMCID: PMC9054867 DOI: 10.1007/s11356-022-18846-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/20/2022] [Indexed: 05/10/2023]
Abstract
Several plant species such as grasses are dominant in many habitats including arid and semi-arid areas. These species survive in these regions by developing exclusive structures, which helps in the collection of atmospheric water. Before the collected water evaporates, these structures have unique canopy structure for water transportation that plays an equivalent share in the fog-harvesting mechanism. In this review, the atmospheric gaseous water harvesting mechanisms and their affinity of measurements were discussed. Morphological adaptations and their role in the capturing of atmospheric gaseous water of various species were also discussed. The key factor for the water collection and its conduction in the wheat plant is the information of contact angle hysteresis. In wheat, leaf rolling and its association with wetting property help the plant in water retention. Morphological adaptations, i.e., leaf erectness, grooves, and prickle hairs, also help in the collection and acquisition of water droplets by stem flows in directional guide toward the base of the plant and allow its rapid uptake. Morphological adaptation strengthens the harvesting mechanism by preventing the loss of water through shattering. Thus, wheat canopy architecture can be modified to harvest the atmospheric water and directional movement of water towards the root zone for self-irrigation. Moreover, these morphological adaptations are also linked with drought avoidance and corresponding physiological processes to resist water stress. The combination of these traits together with water use efficiency in wheat contributes to a highly efficient atmospheric water harvesting system that enables the wheat plants to reduce the cost of production. It also increases the yielding potential of the crop in arid and semi-arid environments. Further investigating the ecophysiology and molecular pathways of these morphological adaptations in wheat may have significant applications in varying climatic scenarios.
Collapse
Affiliation(s)
- Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan, 60000, Pakistan.
| | - Sabah Merrium
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan, 60000, Pakistan
| | - Muhammad Habib-Ur-Rahman
- Institute of Crop Science and Resource Conservation (INRES), Crop Science Group, University of Bonn, Bonn, Germany.
- Department of Agronomy, MNS-University of Agriculture, Multan, 60000, Pakistan.
| | - Sadia Hakeem
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan, 60000, Pakistan
| | | | - Muhammad Ali Sher
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan, 60000, Pakistan
| |
Collapse
|
7
|
Shen W, Zhang X, Liu J, Tao K, Li C, Xiao S, Zhang W, Li J. Plant elicitor peptide signalling confers rice resistance to piercing-sucking insect herbivores and pathogens. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:991-1005. [PMID: 35068048 PMCID: PMC9055822 DOI: 10.1111/pbi.13781] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Rice is a staple food crop worldwide, and its production is severely threatened by phloem-feeding insect herbivores, particularly the brown planthopper (BPH, Nilaparvata lugens), and destructive pathogens. Despite the identification of many BPH resistance genes, the molecular basis of rice resistance to BPH remains largely unclear. Here, we report that the plant elicitor peptide (Pep) signalling confers rice resistance to BPH. Both rice PEP RECEPTORs (PEPRs) and PRECURSORs of PEP (PROPEPs), particularly OsPROPEP3, were transcriptionally induced in leaf sheaths upon BPH infestation. Knockout of OsPEPRs impaired rice resistance to BPH, whereas exogenous application of OsPep3 improved the resistance. Hormone measurement and co-profiling of transcriptomics and metabolomics in OsPep3-treated rice leaf sheaths suggested potential contributions of jasmonic acid biosynthesis, lipid metabolism and phenylpropanoid metabolism to OsPep3-induced rice immunity. Moreover, OsPep3 elicitation also strengthened rice resistance to the fungal pathogen Magnaporthe oryzae and bacterial pathogen Xanthamonas oryzae pv. oryzae and provoked immune responses in wheat. Collectively, this work demonstrates a previously unappreciated importance of the Pep signalling in plants for combating piercing-sucking insect herbivores and promises exogenous application of OsPep3 as an eco-friendly immune stimulator in agriculture for crop protection against a broad spectrum of insect pests and pathogens.
Collapse
Affiliation(s)
- Wenzhong Shen
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xue Zhang
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jiuer Liu
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Kehan Tao
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Chong Li
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Shi Xiao
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Wenqing Zhang
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jian‐Feng Li
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
8
|
Ling Y, Ang L, Weilin Z. Current understanding of the molecular players involved in resistance to rice planthoppers. PEST MANAGEMENT SCIENCE 2019; 75:2566-2574. [PMID: 31095858 DOI: 10.1002/ps.5487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 05/24/2023]
Abstract
Rice planthoppers are the most widespread and destructive pest of rice. Planthopper control depends greatly on the understanding of molecular players involved in resistance to planthoppers. This paper summarizes the recent progress in the understanding of some molecular players involved in resistance to planthoppers and the mechanisms involved. Recent researches showed that host-plant resistance is the most promising sustainable approach for controlling planthoppers. Planthopper-resistant varieties with a host-plant resistance gene have been released for rice products. Integrated planthopper management is a proposed strategy to prolong the durability of host-plant resistance. Bacillus spp. and their gene products or insect pathogenic fungi have great potential for application in the biological control of planthoppers. Enhancement of the activity of the natural enemies of planthoppers would be more cost-effective and environmentally friendly. Various molecular processes regulate rice-planthopper interactions. Rice encounters planthopper attacks via transcription factors, secondary metabolites, and signaling networks in which phytohormones have central roles. Maintenance of cell wall integrity and lignification act as physical barriers. Indirect defenses of rice are regulated via chemical elicitors, honeydew-associated elicitor, amendment with silicon and biochar, and salivary protein of BPH as elicitor or effector. Further research directions on planthopper control and rice defense against planthoppers are also put forward. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Ling
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
- Department of Environmental Engineering, Quzhou University, Quzhou, P.R. China
| | - Li Ang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Zhang Weilin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| |
Collapse
|
9
|
Yang M, Huang C, Wang M, Fan H, Wan S, Wang Y, He J, Guan R. Fine mapping of an up-curling leaf locus (BnUC1) in Brassica napus. BMC PLANT BIOLOGY 2019; 19:324. [PMID: 31324149 PMCID: PMC6642557 DOI: 10.1186/s12870-019-1938-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/11/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Leaf shape development research is important because leaf shapes such as moderate curling can help to improve light energy utilization efficiency. Leaf growth and development includes initiation of the leaf primordia and polar differentiation of the proximal-distal, adaxial-abaxial, and centrolateral axes. Changes in leaf adaxial-abaxial polarity formation, auxin synthesis and signaling pathways, and development of sclerenchyma and cuticle can cause abnormal leaf shapes such as up-curling leaf. Although many genes related to leaf shape development have been reported, the detailed mechanism of leaf development is still unclear. Here, we report an up-curling leaf mutant plant from our Brassica napus germplasm. We studied its inheritance, mapped the up-curling leaf locus BnUC1, built near-isogenic lines for the Bnuc1 mutant, and evaluated the effect of the dominant leaf curl locus on leaf photosynthetic efficiency and agronomic traits. RESULTS The up-curling trait was controlled by one dominant locus in a progeny population derived from NJAU5734 and Zhongshuang 11 (ZS11). This BnUC1 locus was mapped in an interval of 2732.549 kb on the A05 chromosome of B. napus using Illumina Brassica 60 K Bead Chip Array. To fine map BnUC1, we designed 201 simple sequence repeat (SSR) primers covering the mapping interval. Among them, 16 polymorphic primers that narrowed the mapping interval to 54.8 kb were detected using a BC6F2 family population with 654 individuals. We found six annotated genes in the mapping interval using the B. napus reference genome, including BnaA05g18250D and BnaA05g18290D, which bioinformatics and gene expression analyses predicted may be responsible for leaf up-curling. The up-curling leaf trait had negative effects on the agronomic traits of 30 randomly selected individuals from the BC6F2 population. The near-isogenic line of the up-curling leaf (ZS11-UC1) was constructed to evaluate the effect of BnUC1 on photosynthetic efficiency. The results indicated that the up-curling leaf trait locus was beneficial to improve the photosynthetic efficiency. CONCLUSIONS An up-curling leaf mutant Bnuc1 was controlled by one dominant locus BnUC1. This locus had positive effects on photosynthetic efficiency, negative effects on some agronomic traits, and may help to increase planting density in B. napus.
Collapse
Affiliation(s)
- Mao Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chengwei Huang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Mingming Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hao Fan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shubei Wan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yangming Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jianbo He
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Rongzhan Guan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
10
|
Rong F, Chen F, Huang L, Zhang J, Zhang C, Hou D, Cheng Z, Weng Y, Chen P, Li Y. A mutation in class III homeodomain-leucine zipper (HD-ZIP III) transcription factor results in curly leaf (cul) in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:113-123. [PMID: 30334067 DOI: 10.1007/s00122-018-3198-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/28/2018] [Indexed: 05/23/2023]
Abstract
We identified two curly-leaf (cul) mutants in cucumber. Map-based cloning revealed that both mutants are due to allelic mutations in the CsPHB gene, a homolog of the Arabidopsis PHABULOSA which encodes a class III homeodomain-leucine zipper (HD-ZIP III) transcription factor. Leaf rolling is an important agronomic trait in crop breeding. Moderate leaf rolling minimizes shadowing between leaves, leading to improved photosynthetic efficiency. Although a number of genes controlling rolled leaf have been identified from rice and other plant species, none have been mapped or cloned in cucurbit crops. In this study, we identified and characterized two curly leaf (cul) mutants, cul-1 and cul-2 in cucumber. With map-based cloning, we show that cul-1 and cul-2 are allelic mutations and CsPHB (Csa6G525430) was the candidate gene for both mutants. The CsPHB gene encoded a class III homeodomain-leucine zipper (HD-ZIP III) transcription factor. A single non-synonymous mutation in the fourth and fifth exons of the CsPHB was responsible for the cul-1 and cul-2 mutant phenotypes, respectively. The single-nucleotide substitutions in cul-1 and cul-2 were both located in cs-miRNA165/166 complementary sites of CsPHB. The expression level of CsPHB gene in multiple organs of cul-1 and cul-2 mutants was higher than that in the wild type, while the expression of cs-miRNA165/166 in the two genotypes showed the opposite trend. We speculate that disruption of the binding between the mutant allele of CsPHB and cs-miRNA165/166 leads to the curly-leaf phenotype. This is the first report to clone and characterize the CsPHB gene in the family Cucurbitaceae. Taken together, these results support CsPHB as an important player in the modulation of leaf shape development in cucumber.
Collapse
Affiliation(s)
- Fuxi Rong
- College of Horticulture, Northwest A&F University, 712100, Yangling, Shanxi, China
| | - Feifan Chen
- College of Horticulture, Northwest A&F University, 712100, Yangling, Shanxi, China
| | - Li Huang
- College of Horticulture, Northwest A&F University, 712100, Yangling, Shanxi, China
| | - Jiayu Zhang
- College of Horticulture, Northwest A&F University, 712100, Yangling, Shanxi, China
| | - Chaowen Zhang
- College of Horticulture, Northwest A&F University, 712100, Yangling, Shanxi, China
| | - Dong Hou
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, 730070, Lanzhou, Gansu, China
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, 712100, Yangling, Shanxi, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
- Vegetable Crops Research Unit, USDA-ARS, 1575 Linden Drive, Madison, WI, 53706, USA
| | - Peng Chen
- College of Life Science, Northwest A&F University, 712100, Yangling, Shanxi, China.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, 712100, Yangling, Shanxi, China.
| |
Collapse
|
11
|
Xu P, Ali A, Han B, Wu X. Current Advances in Molecular Basis and Mechanisms Regulating Leaf Morphology in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:1528. [PMID: 30405666 PMCID: PMC6206276 DOI: 10.3389/fpls.2018.01528] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/28/2018] [Indexed: 05/03/2023]
Abstract
Yield is majorly affected by photosynthetic efficiency. Leaves are essential structure for photosynthesis and their morphology especially size and shape in a plant canopy can affect the rate of transpiration, carbon fixation and photosynthesis. Leaf rolling and size are considered key agronomic traits in plant architecture that can subsidize yield parameters. In last era, a number of genes controlling leaf morphology have been molecularly characterized. Despite of several findings, our understanding toward molecular mechanism of leaf rolling and size are under-developed. Here, we proposed a model to apprehend the physiological basis of different genes organized in a complex fashion and govern the final phenotype of leaf morphology. According to this leaf rolling is mainly controlled by regulation of bulliform cells by SRL1, ROC5, OsRRK1, SLL2, CLD1, OsZHD1/2, and NRL1, structure and processes of sclerenchyma cells by SLL1 and SRL2, leaf polarity by ADL1, RFS and cuticle formation by CFL1, and CLD1. Many of above mentioned and several other genes interact in a complex manner in order to sustain cellular integrity and homeostasis for optimum leaf rolling. While, leaf size is synchronized by multifarious interaction of PLA1, PLA2, OsGASR1, and OsEXPA8 in cell division, NAL1, NAL9, NRL1, NRL2 in regulation of number of veins, OsCOW1, OsPIN1, OsARF19, OsOFP2, D1 and GID in regulation of phytohormones and HDT702 in epigenetic aspects. In this review, we curtailed recent advances engrossing regulation and functions of those genes that directly or indirectly can distress leaf rolling or size by encoding different types of proteins and genic expression. Moreover, this effort could be used further to develop comprehensive learning and directing our molecular breeding of rice.
Collapse
Affiliation(s)
- Peizhou Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Chengdu, China
| | - Asif Ali
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Chengdu, China
| | - Baolin Han
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Chengdu, China
| | - Xianjun Wu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Chengdu, China
| |
Collapse
|