1
|
Wang W, Wang Y, Luo L, Kou J, Zhang L, Yang C, Yang N. Development and drought escape response in Arabidopsis thaliana are regulated by AtPLC1 in response to abscisic acid. PLANTA 2024; 260:121. [PMID: 39436424 DOI: 10.1007/s00425-024-04554-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Abstract
MAIN CONCLUSION AtPLC1 plays a critical role in plant growth, development, and response to drought stress. Phosphoinositide-specific phospholipase C (PI-PLC) hydrolyzes substrates to generate secondary messengers crucial for plant growth, development, and stress responses. Drought escape (DE) response is an adaptive strategy that plants employ under drought conditions. The expression levels of the flower meristem-specific gene APETALA 1 and flowering regulatory genes FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 were downregulated in plc1, and FLOWERING LOCUS C was upregulated. The flowering time of the plc1flc double mutant was earlier than that of the wild type. Transcriptome analysis revealed that the Gene Ontology of differentially expressed genes (DEGs) was enriched in abscisic acid (ABA) response signaling, and Kyoto Encyclopedia of Genes and Genomes analysis revealed differential gene expression annotated to plant hormone signaling pathways. Our experiments show that AtPLC1 is upregulated by ABA in Arabidopsis. Under ABA induction and water stress, wild-type plants exhibit a DE response, and the DE response in plc1 disappears. Expression levels of ABA signaling pathway transcription factors ABA-responsive element-binding factors 3 (ABF3) and ABF4 were downregulated in plc1. In conclusion, our study suggests that AtPLC1 participates in regulating plant growth and development and participates in the DE response through the regulation of ABA signaling pathway transcription factors ABF3/ABF4. The study enhances our comprehension of the role of AtPLC1 in plant development and drought stress, providing a theoretical foundation for further investigation into DE responses.
Collapse
Affiliation(s)
- Wei Wang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Yue Wang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Liping Luo
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Jiaying Kou
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Lulu Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Chen Yang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Ning Yang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
2
|
Singh C, Yadav S, Khare V, Gupta V, Kamble UR, Gupta OP, Kumar R, Saini P, Bairwa RK, Khobra R, Sheoran S, Kumar S, Kurhade AK, Mishra CN, Gupta A, Tyagi BS, Ahlawat OP, Singh G, Tiwari R. Unraveling the Secrets of Early-Maturity and Short-Duration Bread Wheat in Unpredictable Environments. PLANTS (BASEL, SWITZERLAND) 2024; 13:2855. [PMID: 39458802 PMCID: PMC11511103 DOI: 10.3390/plants13202855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024]
Abstract
In response to the escalating challenges posed by unpredictable environmental conditions, the pursuit of early maturation in bread wheat has emerged as a paramount research endeavor. This comprehensive review delves into the multifaceted landscape of strategies and implications surrounding the unlocking of early maturation in bread wheat varieties. Drawing upon a synthesis of cutting-edge research in genetics, physiology, and environmental science, this review elucidates the intricate mechanisms underlying early maturation and its potential ramifications for wheat cultivation in dynamic environments. By meticulously analyzing the genetic determinants, physiological processes, and environmental interactions shaping early maturation, this review offers valuable insights into the complexities of this trait and its relevance in contemporary wheat breeding programs. Furthermore, this review critically evaluates the trade-offs inherent in pursuing early maturation, navigating the delicate balance between accelerated development and optimal yield potential. Through a meticulous examination of both challenges and opportunities, this review provides a comprehensive framework for researchers, breeders, and agricultural stakeholders to advance our understanding and utilization of early maturation in bread wheat cultivars, ultimately fostering resilience and sustainability in wheat production systems worldwide.
Collapse
Affiliation(s)
- Charan Singh
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Sapna Yadav
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Vikrant Khare
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Vikas Gupta
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Umesh R. Kamble
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Om P. Gupta
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Ravindra Kumar
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Pawan Saini
- Central Sericultural Research and Training Institute, Pampore 192121, India
| | - Rakesh K. Bairwa
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Rinki Khobra
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Sonia Sheoran
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Satish Kumar
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Ankita K. Kurhade
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Chandra N. Mishra
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Arun Gupta
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Bhudeva S. Tyagi
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Om P. Ahlawat
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Gyanendra Singh
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Ratan Tiwari
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| |
Collapse
|
3
|
Zhu C, Zhao L, Zhao S, Niu X, Li L, Gao H, Liu J, Wang L, Zhang T, Cheng R, Shi Z, Zhang H, Wang G. Utilizing machine learning and bioinformatics analysis to identify drought-responsive genes affecting yield in foxtail millet. Int J Biol Macromol 2024; 277:134288. [PMID: 39079238 DOI: 10.1016/j.ijbiomac.2024.134288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024]
Abstract
Drought stress is a major constraint on crop development, potentially causing huge yield losses and threatening global food security. Improving Crop's stress tolerance is usually associated with a yield penalty. One way to balance yield and stress tolerance is modification specific gene by emerging precision genome editing technology. However, our knowledge of yield-related drought-tolerant genes is still limited. Foxtail millet (Setaria italica) has a remarkable tolerance to drought and is considered to be a model C4 crop that is easy to engineer. Here, we have identified 46 drought-responsive candidate genes by performing a machine learning-based transcriptome study on two drought-tolerant and two drought-sensitive foxtail millet cultivars. A total of 12 important drought-responsive genes were screened out by principal component analysis and confirmed experimentally by qPCR. Significantly, by investigating the haplotype of these genes based on 1844 germplasm resources, we found two genes (Seita.5G251300 and Seita.8G036300) exhibiting drought-tolerant haplotypes that possess an apparent advantage in 1000 grain weight and main panicle grain weight without penalty in grain weight per plant. These results demonstrate the potential of Seita.5G251300 and Seita.8G036300 for breeding drought-tolerant high-yielding foxtail millet. It provides important insights for the breeding of drought-tolerant high-yielding crop cultivars through genetic manipulation technology.
Collapse
Affiliation(s)
- Chunhui Zhu
- College of Physics, Hebei Normal University, Shijiazhuang 050024, China.
| | - Ling Zhao
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Shaoxing Zhao
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Xingfang Niu
- College of Physics, Hebei Normal University, Shijiazhuang 050024, China; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Lin Li
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Hui Gao
- Hebei Key Laboratory of Crop Stress Biology, Department of Life Science and Technology, College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Jiaxin Liu
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China; Hebei Key Laboratory of Crop Stress Biology, Department of Life Science and Technology, College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Litao Wang
- College of Physics, Hebei Normal University, Shijiazhuang 050024, China; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ting Zhang
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Ruhong Cheng
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Zhigang Shi
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Haoshan Zhang
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China.
| | - Genping Wang
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China.
| |
Collapse
|
4
|
Géron C, Lembrechts JJ, Fameree M, Taddei V, Nijs I, Monty A. Phenotypic plasticity as the main driver of alien plant trait variation in urban versus rural microclimate for the model species Veronica persica. Oecologia 2024; 205:643-654. [PMID: 39073568 DOI: 10.1007/s00442-024-05597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
Urban environments are warmer than the rural surroundings, impacting plant phenotypic traits. When plants are present over areas with contrasted conditions such as along urbanization gradients, their phenotypes may differ, and these differences depend on different processes, including phenotypic plasticity, maternal environmental effects and genetic differentiation (local adaptation and/or genetic drift). Successful establishment of alien species along environmental gradients has been linked to high phenotypic plasticity and rapid evolutionary responses, which are easier to track for species with a known residence time. The mechanisms explaining trait variation in plants in urban versus rural microclimatic conditions have received little attention. Using the alien Veronica persica as model species, we measured leaf traits in urban and rural populations and performed a reciprocal common-garden experiment to study how germination, leaf, growth, and flowering traits varied in response to experimental microclimate (rural or urban) and population origin environment (rural or urban). Veronica persica displayed phenotypic plasticity in all measured traits, with reduced germination, development, and flowering under urban microclimate which suggests more stressful growing conditions in the urban than in the rural microclimate. No significant effect of the rural or urban origin environment was detected, providing no evidence for local adaptation to urban or rural environments. Additionally, we found limited signs of maternal environmental effects. We noted the importance of the mother plant and the population identities suggesting genetically based differences. Our results indicate that urban environments are more hostile than rural ones, and that V. persica does not show any adaptation to urban environments despite genetic differences between populations.
Collapse
Affiliation(s)
- Charly Géron
- UMR 6553, University of Rennes, CNRS, ECOBIO (Écosystèmes, Biodiversité, Évolution), 263, Avenue du Général Leclerc, 35042, Rennes, France.
- Biodiversity and Landscape, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030, Gembloux, Belgium.
- PLEACO (Plants and Ecosystems), University of Antwerp, Universiteitsplein, 1, 2610, Wilrijk, Belgium.
| | - Jonas J Lembrechts
- PLEACO (Plants and Ecosystems), University of Antwerp, Universiteitsplein, 1, 2610, Wilrijk, Belgium
| | - Mathilde Fameree
- Biodiversity and Landscape, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030, Gembloux, Belgium
| | - Vanille Taddei
- Biodiversity and Landscape, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030, Gembloux, Belgium
- Faculté des Sciences et Technologies, Université de Lorraine et AgroParisTech de Nancy, Boulevard des Aiguillettes, 54506, Vandoeuvre Les Nancy, France
| | - Ivan Nijs
- PLEACO (Plants and Ecosystems), University of Antwerp, Universiteitsplein, 1, 2610, Wilrijk, Belgium
| | - Arnaud Monty
- Biodiversity and Landscape, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030, Gembloux, Belgium
| |
Collapse
|
5
|
Antonietta M, Martinez D, Guiamet JJ. Delayed senescence and crop performance under stress: always a functional couple? JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4244-4257. [PMID: 38635775 DOI: 10.1093/jxb/erae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
Exposure to abiotic stresses accelerates leaf senescence in most crop plant species, thereby reducing photosynthesis and other assimilatory processes. In some cases, genotypes with delayed leaf senescence (i.e. 'stay-green') show stress resistance, particularly in cases of water deficit, and this has led to the proposal that senescence delay improves crop performance under some abiotic stresses. In this review, we summarize the evidence for increased resistance to abiotic stress, mostly water deficit, in genotypes with delayed senescence, and specifically focus on the physiological mechanisms and agronomic conditions under which the stay-green trait may ameliorate grain yield under stress.
Collapse
Affiliation(s)
| | - Dana Martinez
- Instituto de Fisiología Vegetal, CONICET-UNLP, Argentina
| | - Juan J Guiamet
- Instituto de Fisiología Vegetal, CONICET-UNLP, Argentina
| |
Collapse
|
6
|
Sharma A, Dheer P, Rautela I, Thapliyal P, Thapliyal P, Bajpai AB, Sharma MD. A review on strategies for crop improvement against drought stress through molecular insights. 3 Biotech 2024; 14:173. [PMID: 38846012 PMCID: PMC11150236 DOI: 10.1007/s13205-024-04020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
The demand for food goods is rising along with the world population growth, which is directly related to the yield of agricultural crops around the world. However, a number of environmental factors, including floods, salinity, moisture, and drought, have a detrimental effect on agricultural production around the world. Among all of these stresses, drought stress (DS) poses a constant threat to agricultural crops and is a significant impediment to global agricultural productivity. Its potency and severity are expected to increase in the future years. A variety of techniques have been used to generate drought-resistant plants in order to get around this restriction. Different crop plants exhibit specific traits that contribute to drought resistance (DR), such as early flowering, drought escape (DE), and leaf traits. We are highlighting numerous methods that can be used to overcome the effects of DS in this review. Agronomic methods, transgenic methods, the use of sufficient fertilizers, and molecular methods such as clustered regularly interspaced short palindromic repeats (CRISPRs)-associated nuclease 9 (Cas9), virus-induced gene silencing (VIGS), quantitative trait loci (QTL) mapping, microRNA (miRNA) technology, and OMICS-based approaches make up the majority of these techniques. CRISPR technology has rapidly become an increasingly popular choice among researchers exploring natural tolerance to abiotic stresses although, only a few plants have been produced so far using this technique. In order to address the difficulties imposed by DS, new plants utilizing the CRISPR technology must be developed.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248001 India
| | - Pallavi Dheer
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001 India
| | - Indra Rautela
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, Uttarakhand 248001 India
| | - Preeti Thapliyal
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, Uttarakhand 248001 India
| | - Priya Thapliyal
- Department of Biochemistry, H.N.B. Garhwal (A Central) University, Srinagar, Uttarakhand 246174 India
| | - Atal Bihari Bajpai
- Department of Botany, D.B.S. (PG) College, Dehradun, Uttarakhand 248001 India
| | - Manish Dev Sharma
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001 India
| |
Collapse
|
7
|
Patan SSVK, Vallepu S, Shaik KB, Shaik N, Adi Reddy NRY, Terry RG, Sergeant K, Hausman JF. Drought resistance strategies in minor millets: a review. PLANTA 2024; 260:29. [PMID: 38879859 DOI: 10.1007/s00425-024-04427-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/26/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION The review discusses growth and drought-response mechanisms in minor millets under three themes: drought escape, drought avoidance and drought tolerance. Drought is one of the most prominent abiotic stresses impacting plant growth, performance, and productivity. In the context of climate change, the prevalence and severity of drought is expected to increase in many agricultural regions worldwide. Millets (coarse grains) are a group of small-seeded grasses cultivated in arid and semi-arid regions throughout the world and are an important source of food and feed for humans and livestock. Although minor millets, i.e., foxtail millet, finger millet, proso millet, barnyard millet, kodo millet and little millet are generally hardier and more drought-resistant than cereals and major millets (sorghum and pearl millet), understanding their responses, processes and strategies in response to drought is more limited. Here, we review drought resistance strategies in minor millets under three themes: drought escape (e.g., short crop cycle, short vegetative period, developmental plasticity and remobilization of assimilates), drought avoidance (e.g., root traits for better water absorption and leaf traits to control water loss), and drought tolerance (e.g., osmotic adjustment, maintenance of photosynthetic ability and antioxidant potential). Data from 'omics' studies are summarized to provide an overview of the molecular mechanisms important in drought tolerance. In addition, the final section highlights knowledge gaps and challenges to improving minor millets. This review is intended to enhance major cereals and millet per se in light of climate-related increases in aridity.
Collapse
Affiliation(s)
| | - Suneetha Vallepu
- Department of Botany, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India
| | - Khader Basha Shaik
- Department of Botany, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India
| | - Naseem Shaik
- Department of Botany, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India
| | | | | | - Kjell Sergeant
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, (LIST), Avenue Des Hauts Fourneaux 5, Esch-Sur-Alzette, Luxembourg
| | - Jean François Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, (LIST), Avenue Des Hauts Fourneaux 5, Esch-Sur-Alzette, Luxembourg
| |
Collapse
|
8
|
Shazadi K, Christopher JT, Chenu K. Does late water deficit induce root growth or senescence in wheat? FRONTIERS IN PLANT SCIENCE 2024; 15:1351436. [PMID: 38911974 PMCID: PMC11190305 DOI: 10.3389/fpls.2024.1351436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/20/2024] [Indexed: 06/25/2024]
Abstract
In crops like wheat, terminal drought is one of the principal stress factors limiting productivity in rain-fed systems. However, little is known about root development after heading, when water uptake can be critical to wheat crops. The impact of water-stress on root growth was investigated in two wheat cultivars, Scout and Mace, under well-watered and post-anthesis water stress in three experiments. Plants were grown outside in 1.5-m long pots at a density similar to local recommended farming practice. Differences in root development were observed between genotypes, especially for water stress conditions under which Scout developed and maintained a larger root system than Mace. While under well-watered conditions both genotypes had shallow roots that appeared to senesce after heading, a moderate water stress stimulated shallow-root growth in Scout but accelerated senescence in Mace. For deep roots, post-heading biomass growth was observed for both genotypes in well-watered conditions, while under moderate water stress, only Scout maintained net growth as Mace deep roots senesced. Water stress of severe intensity affected both genotypes similarly, with root senescence at all depths. Senescence was also observed above ground. Under well-watered conditions, Scout retained leaf greenness (i.e. stay-green phenotype) for slightly longer than Mace. The difference between genotypes accentuated under moderate water stress, with rapid post-anthesis leaf senescence in Mace while Scout leaf greenness was affected little if at all by the stress. As an overall result, grain biomass per plant ('yield') was similar in the two genotypes under well-watered conditions, but more affected by a moderate stress in Mace than Scout. The findings from this study will assist improvement in modelling root systems of crop models, development of relevant phenotyping methods and selection of cultivars with better adaptation to drought.
Collapse
|
9
|
Song H, Duan Z, Zhang J. WRKY transcription factors modulate flowering time and response to environmental changes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108630. [PMID: 38657548 DOI: 10.1016/j.plaphy.2024.108630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/30/2024] [Accepted: 04/13/2024] [Indexed: 04/26/2024]
Abstract
WRKY transcription factors (TFs), originating in green algae, regulate flowering time and responses to environmental changes in plants. However, the molecular mechanisms underlying the role of WRKY TFs in the correlation between flowering time and environmental changes remain unclear. Therefore, this review summarizes the association of WRKY TFs with flowering pathways to accelerate or delay flowering. WRKY TFs are implicated in phytohormone pathways, such as ethylene, auxin, and abscisic acid pathways, to modulate flowering time. WRKY TFs can modulate salt tolerance by regulating flowering time. WRKY TFs exhibit functional divergence in modulating environmental changes and flowering time. In summary, WRKY TFs are involved in complex pathways and modulate response to environmental changes, thus regulating flowering time.
Collapse
Affiliation(s)
- Hui Song
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China.
| | - Zhenquan Duan
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiancheng Zhang
- Key Laboratory of Biology and Genetic Improvement of Peanut, Ministry of Agriculture and Rural Affairs, PR China, Shandong Peanut Research Institute, Qingdao 266000, China
| |
Collapse
|
10
|
Tran NHT, Hoang DV, Phan LT. Drought stress induces early flowering and the stress tolerance of offspring in Petunia hybrida. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:53-63. [PMID: 39464867 PMCID: PMC11500584 DOI: 10.5511/plantbiotechnology.23.1220a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/20/2023] [Indexed: 10/29/2024]
Abstract
Petunia hybrida (Solanaceae) exhibits high sensitivity to water scarcity, especially during flowering. This study investigated changes in the flowering time of P. hybrida in response to water deficit over a 7-week period. Various levels of water stress-i.e., light, moderate, and severe-were imposed on plants grown in a greenhouse, and these were compared to a control group grown alongside. Remarkably, early flowering was observed under severe stress in P. hybrida for the first time, occurring 5.3 days earlier than in the control group. Furthermore, seeds collected from control and treatment plants were then used to assess drought stress memory in offspring. Seedlings were cultivated in a dehydration medium containing either PEG 8000 or a control MS medium. In the PEG 8000 medium, seedlings from parents exposed to moderate and severe drought stresses exhibited higher drought tolerance than those from well-watered conditions. Moreover, they also displayed significantly longer roots, more leaves, and a lower ion leakage rate. Taken together, these findings demonstrated the presence of positive transgenerational effects on progeny. Thus, while parental drought stress during reproduction stage may affect seed quality, it can enhance drought tolerance in the next generation via induction of stress memory.
Collapse
Affiliation(s)
- Ngoc-Ha Thi Tran
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Linh Trung, Thu Duc, Ho Chi Minh City 700000, Vietnam
| | - Duong Van Hoang
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Linh Trung, Thu Duc, Ho Chi Minh City 700000, Vietnam
| | - Loc Tuong Phan
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Linh Trung, Thu Duc, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
11
|
Středová H, Fukalová P, Chuchma F, Haberle J, Středa T. Nitrates directive restriction: To change or not to change in terms of climate change, that is the question. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170381. [PMID: 38280592 DOI: 10.1016/j.scitotenv.2024.170381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/14/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
The positive effect of nitrogen fertilization in agriculture inevitably increases residual nitrogen losses. Water pollution led to legal restrictions of some farm practices within the framework of the Nitrates Directive of the EU. Nevertheless, even several decades later, the situation has not improved significantly. We present a possible science-based explanation of such a state and provide it to farmers and government as a support for environmental management settings. This study aimed to compare an established approach to implementing the Nitrates Directive, specifically the climate-based zoning of nitrogen fertilization restrictions using data from the mid-20th century. We evaluated this approach by juxtaposing the initial climate data with more recent data spanning from 1991 to 2020. Subsequently, we examined this zoning framework from the perspective of the non-vegetative period, characterized by temperatures below 5 °C, which is widely acknowledged as a critical threshold for nitrogen intake by plants. We found out that i) the employed climate-born zoning does not correspond to recent climate data; ii) nonvegetation period is longer than nitrogen fertilization restrictions. Therefore, despite a noteworthy 22 day reduction in the nonvegetation period from 1961/1962 to 2019/2020, we cast doubt on the notion that the period limiting nitrogen fertilizer application should also be shortened, while admitting that there are other abiotic and biotic factors affecting nitrogen behaviour within the ecosystem.
Collapse
Affiliation(s)
- Hana Středová
- Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Petra Fukalová
- Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Filip Chuchma
- Czech Hydrometerological Institute, Kroftova 43, 616 67 Brno, Czech Republic
| | - Jan Haberle
- Crop Research Institute, Drnovská 507/73, 161 06 Praha 6, Ruzyně, Czech Republic
| | - Tomáš Středa
- Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
| |
Collapse
|
12
|
Taghvimi P, Mohsenzadeh Golfazani M, Taghvaei MM, Samizadeh Lahiji H. Investigating the effect of drought stress and methanol spraying on the influential genes in the Calvin cycle and photorespiration of rapeseed ( Brassica napus). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23280. [PMID: 38467163 DOI: 10.1071/fp23280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/21/2024] [Indexed: 03/13/2024]
Abstract
Due to global warming and changes in precipitation patterns, many regions are prone to permanent drought. Rapeseed (Brassica napus ) is one of the main sources of edible oils worldwide, and its production and yield are affected by drought. In this study, gene expression alterations under drought stress are investigated with bioinformatics studies to examine evolutionary relations of conserved motifs structure and interactions among Calvin cycle and photorespiration pathways key genes in drought-tolerant (SLM046) and drought-sensitive (Hayola308) genotypes of rapeseed. Investigating the conservation and evolutionary relationships revealed high conservation in motifs of FBPase, PRK, GlyK and NADP-ME enzymes. The analysis of protein interactions showed the correlation between FTRC, FBPase1, PRKX1, GlyKX2 and NADP-ME4 genes. Furthermore, in rapeseed, for the GlyKX2 and NADP-ME4 genes, four microRNAs of the miR172 family and four members of the miR167 family were identified as post-transcriptional regulators, respectively. The expression of ferredoxin thioredoxin reductase, fructose-1,6-bisphosphatase genes, phosphoribulokinase, glycerate kinase and malic enzyme 4 genes in the two rapeseed genotypes were evaluated by real-time qPCR method under 72h of drought stress and methanol foliar application. As a result, the highest expression levels of FTRC, PRKX1, GlyKX2, NADP-ME4 and FBPase1 were observed in methanol foliar application on the SLM046 genotype at 24h. In contrast, in methanol foliar application on the Hayola308 genotype, the highest expression levels of FTRC, PRKX1, GlyKX2, NADP-ME4 and FBPase1 were observed 8h after the treatment. Our study illustrated that methanol foliar application enhanced plant tolerance under drought stress.
Collapse
Affiliation(s)
- Parisa Taghvimi
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | - Mohammad Mahdi Taghvaei
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Habibollah Samizadeh Lahiji
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
13
|
Shavrukov Y. Pathway to the Molecular Origins of Drought Escape and Early Flowering Illuminated via the Phosphorylation of SnRK2-Substrate 1 in Arabidopsis. PLANT & CELL PHYSIOLOGY 2024; 65:179-180. [PMID: 38226498 DOI: 10.1093/pcp/pcae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Affiliation(s)
- Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
14
|
Singh A, Ramakrishna G, Singh NK, Abdin MZ, Gaikwad K. Genomic insight into variations associated with flowering-time and early-maturity in pigeonpea mutant TAT-10 and its wild type parent T21. Int J Biol Macromol 2024; 257:128559. [PMID: 38061506 DOI: 10.1016/j.ijbiomac.2023.128559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Pigeonpea [Cajanus cajan (L.) Millspaugh] is an important grain legume crop with a broad range of 90 to 300 days for maturity. To identify the genomic variations associated with the early maturity, we conducted whole-genome resequencing of an early-maturing pigeonpea mutant TAT-10 and its wild type parent T21. A total of 135.67 and 146.34 million sequencing reads were generated for T21 and TAT-10, respectively. From this resequencing data, 1,397,178 and 1,419,904 SNPs, 276,741 and 292,347 InDels, and 87,583 and 92,903 SVs were identified in T21 and TAT-10, respectively. We identified 203 genes in the pigeonpea genome that are homologs of flowering-related genes in Arabidopsis and found 791 genomic variations unique to TAT-10 linked to 94 flowering-related genes. We identified three candidate genes for early maturity in TAT-10; Suppressor of FRI 4 (SUF4), Early Flowering In Short Days (EFS), and Probable Lysine-Specific Demethylase ELF6. The variations in ELF6 were predicted to be possibly damaging and the expression profiles of EFS and ELF6 also supported their probable role during early flowering in TAT-10. The present study has generated information on genomic variations associated with candidate genes for early maturity, which can be further studied and exploited for developing the early-maturing pigeonpea cultivars.
Collapse
Affiliation(s)
- Anupam Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India; Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | | | | | - Malik Zainul Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India.
| |
Collapse
|
15
|
Manjunath KK, Krishna H, Devate NB, Sunilkumar VP, Patil SP, Chauhan D, Singh S, Kumar S, Jain N, Singh GP, Singh PK. QTL mapping: insights into genomic regions governing component traits of yield under combined heat and drought stress in wheat. Front Genet 2024; 14:1282240. [PMID: 38269367 PMCID: PMC10805833 DOI: 10.3389/fgene.2023.1282240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Drought and heat frequently co-occur during crop growth leading to devastating yield loss. The knowledge of the genetic loci governing component traits of yield under combined drought and heat stress is essential for enhancing the climate resilience. The present study employed a mapping population of 180 recombinant inbred lines (RILs) derived from a cross between GW322 and KAUZ to identify quantitative trait loci (QTLs) governing the component traits of yield under heat and combined stress conditions. Phenotypic evaluation was conducted across two consecutive crop seasons (2021-2022 and 2022-2023) under late sown irrigation (LSIR) and late sown restricted irrigation (LSRI) conditions at the Indian Council of Agricultural Research Institute-Indian Agricultural Research Institute (ICAR-IARI), New Delhi. Various physiological and agronomic traits of importance were measured. Genotyping was carried out with 35K SNP Axiom breeder's genotyping array. The linkage map spanned a length of 6769.45 cM, ranging from 2.28 cM/marker in 1A to 14.21 cM/marker in 5D. A total of 35 QTLs were identified across 14 chromosomes with 6B containing the highest (seven) number of QTLs. Out of 35 QTLs, 16 were major QTLs explaining the phenotypic variance greater than 10%. The study identified eight stable QTLs along with two hotspots on chromosomes 6B and 5B. Five QTLs associated with traits thousand-grain weight (TGW), normalized difference vegetation index (NDVI), and plant height (PH) were successfully validated. Candidate genes encoding antioxidant enzymes, transcription factors, and growth-related proteins were identified in the QTL regions. In silico expression analysis highlighted higher expression of transcripts TraesCS2D02G021000.1, TraesCS2D02G031000, TraesCS6A02G247900, and TraesCS6B02G421700 under stress conditions. These findings contribute to a deeper understanding of the genetic architecture underlying combined heat and drought tolerance in wheat, providing valuable insights for wheat improvement strategies under changing climatic conditions.
Collapse
Affiliation(s)
| | - Hari Krishna
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Narayana Bhat Devate
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - V. P. Sunilkumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sahana Police Patil
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Divya Chauhan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shweta Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sudhir Kumar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Pradeep Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
16
|
Bader ZE, Bae MJ, Ali A, Park J, Baek D, Yun DJ. GIGANTEA-ENHANCED EM LEVEL complex initiates drought escape response via dual function of ABA synthesis and flowering promotion. PLANT SIGNALING & BEHAVIOR 2023; 18:2180056. [PMID: 36814117 PMCID: PMC9980605 DOI: 10.1080/15592324.2023.2180056] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Plants use the regulation of their circadian clock to adapt to daily environmental challenges, particularly water scarcity. During drought, plants accelerate flowering through a process called drought escape (DE) response, which is promoted by the circadian clock component GIGANTEA (GI). GI up-regulates the flowering inducer gene FLOWERING LOCUS T (FT). Phytohormone Abscisic acid (ABA) is also required for drought escape, and both GIGANTEA and Abscisic acid are interdependent in the transition. Recent research has revealed a new mechanism by which GIGANTEA and the protein ENHANCED EM LEVEL form a heterodimer complex that turns on ABA biosynthesis during drought stress by regulating the transcription of 9-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3). This highlights the close connection between the circadian clock and ABA regulation and reveals a new adaptive strategy for plants to cope with drought and initiates the DE response.
Collapse
Affiliation(s)
- Zein Eddin Bader
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Min Jae Bae
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Akhtar Ali
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
- Institute of Global Disease Control, Konkuk University, Seoul, Republic of Korea
| | - Junghoon Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
- Institute of Global Disease Control, Konkuk University, Seoul, Republic of Korea
| | - Dongwon Baek
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Lee Z, Kim S, Choi SJ, Joung E, Kwon M, Park HJ, Shim JS. Regulation of Flowering Time by Environmental Factors in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3680. [PMID: 37960036 PMCID: PMC10649094 DOI: 10.3390/plants12213680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The timing of floral transition is determined by both endogenous molecular pathways and external environmental conditions. Among these environmental conditions, photoperiod acts as a cue to regulate the timing of flowering in response to seasonal changes. Additionally, it has become clear that various environmental factors also control the timing of floral transition. Environmental factor acts as either a positive or negative signal to modulate the timing of flowering, thereby establishing the optimal flowering time to maximize the reproductive success of plants. This review aims to summarize the effects of environmental factors such as photoperiod, light intensity, temperature changes, vernalization, drought, and salinity on the regulation of flowering time in plants, as well as to further explain the molecular mechanisms that link environmental factors to the internal flowering time regulation pathway.
Collapse
Affiliation(s)
- Zion Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
| | - Sohyun Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
| | - Su Jeong Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
| | - Eui Joung
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
| | - Moonhyuk Kwon
- Division of Life Science, ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Hee Jin Park
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
- Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
18
|
Appiah M, Abdulai I, Schulman AH, Moshelion M, Dewi ES, Daszkowska-Golec A, Bracho-Mujica G, Rötter RP. Drought response of water-conserving and non-conserving spring barley cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1247853. [PMID: 37941662 PMCID: PMC10628443 DOI: 10.3389/fpls.2023.1247853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/21/2023] [Indexed: 11/10/2023]
Abstract
Introduction Breeding barley cultivars adapted to drought requires in-depth knowledge on physiological drought responses. Methods We used a high-throughput functional phenotyping platform to examine the response of four high-yielding European spring barley cultivars to a standardized drought treatment imposed around flowering. Results Cv. Chanell showed a non-conserving water-use behavior with high transpiration and maximum productivity under well-watered conditions but rapid transpiration decrease under drought. The poor recovery upon re-irrigation translated to large yield losses. Cv. Baronesse showed the most water-conserving behavior, with the lowest pre-drought transpiration and the most gradual transpiration reduction under drought. Its good recovery (resilience) prevented large yield losses. Cv. Formula was less conserving than cv. Baronesse and produced low yet stable yields. Cv. RGT's dynamic water use with high transpiration under ample water supply and moderate transpiration decrease under drought combined with high resilience secured the highest and most stable yields. Discussion Such a dynamic water-use behavior combined with higher drought resilience and favorable root traits could potentially create an ideotype for intermediate drought. Prospective studies will examine these results in field experiments and will use the newly gained understanding on water use in barley to improve process descriptions in crop simulation models to support crop model-aided ideotype design.
Collapse
Affiliation(s)
- Mercy Appiah
- Department of Crop Sciences, Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, Göttingen, Germany
| | - Issaka Abdulai
- Department of Crop Sciences, Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, Göttingen, Germany
| | - Alan H. Schulman
- Production Systems, Natural Resources Institute Finland (LUKE), Helsinki, Finland
- Institute of Biotechnology and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Menachem Moshelion
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Elvira S. Dewi
- Department of Crop Sciences, Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, Göttingen, Germany
- Department of Agroecotechnology, Faculty of Agriculture, Universitas Malikussaleh, Aceh Utara, Indonesia
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Gennady Bracho-Mujica
- Department of Crop Sciences, Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, Göttingen, Germany
| | - Reimund P. Rötter
- Department of Crop Sciences, Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, Göttingen, Germany
- Centre for Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
| |
Collapse
|
19
|
Kim KH, Lee BM. Effects of Climate Change and Drought Tolerance on Maize Growth. PLANTS (BASEL, SWITZERLAND) 2023; 12:3548. [PMID: 37896012 PMCID: PMC10610049 DOI: 10.3390/plants12203548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Climate change is affecting all regions of the world with different climates, and the scale of damage is increasing due to the occurrence of various natural disasters. In particular, maize production is highly affected by abnormal climate events such as heat waves and droughts. Increasing temperatures can accelerate growth and shorten the growing season, potentially reducing productivity. Additionally, enhanced temperatures during the ripening period can accelerate the process, reducing crop yields. In addition, drought stress due to water deficit can greatly affect seedling formation, early plant growth, photosynthesis, reproductive growth, and yield, so proper water management is critical to maize growth. Maize, in particular, is tall and broad-leaved, so extreme drought stress at planting can cause leaves to curl and stunt growth. It is important to understand that severe drought can have a detrimental effect on the growth and reproduction of maize. In addition, high temperatures caused by drought stress can inhibit the induction of flowering in male flowers and cause factors that interfere with pollen development. It is therefore important to increase the productivity of all food crops, including maize, while maintaining them in the face of persistent drought caused by climate change. This requires a strategy to develop genetically modified crops and drought-tolerant maize that can effectively respond to climate change. The aim of this paper is to investigate the effects of climate change and drought tolerance on maize growth. We also reviewed molecular breeding techniques to develop drought-tolerant maize varieties in response to climate change.
Collapse
Affiliation(s)
| | - Byung-Moo Lee
- Department of Life Science, Dongguk University—Seoul, Seoul 04620, Republic of Korea;
| |
Collapse
|
20
|
Ji D, Luo M, Guo Y, Li Q, Kong L, Ge H, Wang Q, Song Q, Zeng X, Ma J, Wang Y, Meurer J, Chi W. Efficient scavenging of reactive carbonyl species in chloroplasts is required for light acclimation and fitness of plants. THE NEW PHYTOLOGIST 2023; 240:676-693. [PMID: 37545368 DOI: 10.1111/nph.19156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Reactive carbonyl species (RCS) derived from lipid peroxides can act as critical damage or signaling mediators downstream of reactive oxygen species by modifying target proteins. However, their biological effects and underlying mechanisms remain largely unknown in plants. Here, we have uncovered the mechanism by which the RCS 4-hydroxy-(E)-2-nonenal (HNE) participates in photosystem II (PSII) repair cycle of chloroplasts, a crucial process for maintaining PSII activity under high and changing light conditions. High Light Sensitive 1 (HLT1) is a potential NADPH-dependent reductase in chloroplasts. Deficiency of HLT1 had no impact on the growth of Arabidopsis plants under normal light conditions but increased sensitivity to high light, which resulted from a defective PSII repair cycle. In hlt1 plants, the accumulation of HNE-modified D1 subunit of PSII was observed, which did not affect D1 degradation but hampered the dimerization of repaired PSII monomers and reassembly of PSII supercomplexes on grana stacks. HLT1 is conserved in all photosynthetic organisms and has functions in overall growth and plant fitness in both Arabidopsis and rice under naturally challenging field conditions. Our work provides the mechanistic basis underlying RCS scavenging in light acclimation and suggests a potential strategy to improve plant productivity by manipulating RCS signaling in chloroplasts.
Collapse
Affiliation(s)
- Daili Ji
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Manfei Luo
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinjie Guo
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuxin Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingxi Kong
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haitao Ge
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Wang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Qiulai Song
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xiannan Zeng
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Jinfang Ma
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, D-82152, Planegg-Martinsried, Munich, Germany
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
21
|
Huang Y, Guo X, Zhang K, Mandáková T, Cheng F, Lysak MA. The meso-octoploid Heliophila variabilis genome sheds a new light on the impact of polyploidization and diploidization on the diversity of the Cape flora. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:446-466. [PMID: 37428465 DOI: 10.1111/tpj.16383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/05/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Although the South African Cape flora is one of the most remarkable biodiversity hotspots, its high diversity has not been associated with polyploidy. Here, we report the chromosome-scale genome assembly of an ephemeral cruciferous species Heliophila variabilis (~334 Mb, n = 11) adapted to South African semiarid biomes. Two pairs of differently fractionated subgenomes suggest an allo-octoploid origin of the genome at least 12 million years ago. The ancestral octoploid Heliophila genome (2n = 8x = ~60) has probably originated through hybridization between two allotetraploids (2n = 4x = ~30) formed by distant, intertribal, hybridization. Rediploidization of the ancestral genome was marked by extensive reorganization of parental subgenomes, genome downsizing, and speciation events in the genus Heliophila. We found evidence for loss-of-function changes in genes associated with leaf development and early flowering, and over-retention and sub/neofunctionalization of genes involved in pathogen response and chemical defense. The genomic resources of H. variabilis will help elucidate the role of polyploidization and genome diploidization in plant adaptation to hot arid environments and origin of the Cape flora. The sequenced H. variabilis represents the first chromosome-scale genome assembly of a meso-octoploid representative of the mustard family.
Collapse
Affiliation(s)
- Yile Huang
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- National Centre for Biomolecular Research (NCBR), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Xinyi Guo
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Kang Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Terezie Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Department of Experimental Biology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Feng Cheng
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Martin A Lysak
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- National Centre for Biomolecular Research (NCBR), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| |
Collapse
|
22
|
Tiwari LD, Kurtz-Sohn A, Bdolach E, Fridman E. Crops under past diversification and ongoing climate change: more than just selection of nuclear genes for flowering. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5431-5440. [PMID: 37480516 DOI: 10.1093/jxb/erad283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/21/2023] [Indexed: 07/24/2023]
Abstract
Diversification and breeding following domestication and under current climate change across the globe are the two most significant evolutionary events experienced by major crops. Diversification of crops from their wild ancestors has favored dramatic changes in the sensitivity of the plants to the environment, particularly significantly in transducing light inputs to the circadian clock, which has allowed the growth of major crops in the relatively short growing season experienced in the Northern Hemisphere. Historically, mutants and the mapping of quantitative trait loci (QTL) have facilitated the identification and the cloning of genes that underlie major changes of the clock and the regulation of flowering. Recent studies have suggested that the thermal plasticity of the circadian clock output, and not just the core genes that follow temperature compensation, has also been under selection during diversification and breeding. Wild alleles that accelerate output rhythmicity could be beneficial for crop resilience. Furthermore, wild alleles with beneficial and flowering-independent effects under stress indicate their possible role in maintaining a balanced source-sink relationship, thereby allowing productivity under climatic change. Because the chloroplast genome also regulates the plasticity of the clock output, mapping populations including cytonuclear interactions should be utilized within an integrated field and clock phenomics framework. In this review, we highlight the need to integrate physiological and developmental approaches (physio-devo) to gain a better understanding when re-domesticating wild gene alleles into modern cultivars to increase their robustness under abiotic heat and drought stresses.
Collapse
Affiliation(s)
- Lalit Dev Tiwari
- Plant Sciences institute, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
| | - Ayelet Kurtz-Sohn
- Plant Sciences institute, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Eyal Bdolach
- Plant Sciences institute, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
| | - Eyal Fridman
- Plant Sciences institute, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
| |
Collapse
|
23
|
Madaj A, Durka W, Michalski SG. Two common, often coexisting grassland plant species differ in their evolutionary potential in response to experimental drought. Ecol Evol 2023; 13:e10430. [PMID: 37664507 PMCID: PMC10469005 DOI: 10.1002/ece3.10430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
For terrestrial plant communities, the increase in frequency and intensity of drought events is considered as one of the most severe consequences of climate change. While single-species studies demonstrate that drought can lead to relatively rapid adaptive genetic changes, the evolutionary potential and constraints to selection need to be assessed in comparative approaches to draw more general conclusions. In a greenhouse experiment, we compare the phenotypic response and evolutionary potential of two co-occurring grassland plant species, Bromus erectus and Trifolium pratense, in two environments differing in water availability. We quantified variation in functional traits and reproductive fitness in response to drought and compared multivariate genetic variance-covariance matrices and predicted evolutionary responses between species. Species showed different drought adaptation strategies, reflected in both their species-specific phenotypic plasticity and predicted responses to selection indicating contrasting evolutionary potential under drought. In T. pratense we found evidence for stronger genetic constraints under drought compared to more favourable conditions, and for some traits plastic and predicted evolutionary responses to drought had opposing directions, likely limiting the potential for adaptive change. Our study contributes to a more detailed understanding of the evolutionary potential of species with different adaptive strategies in response to climate change and may help to inform future scenarios for semi-natural grassland ecosystems.
Collapse
Affiliation(s)
- Anna‐Maria Madaj
- Department of Community EcologyHelmholtz‐Centre for Environmental Research – UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Walter Durka
- Department of Community EcologyHelmholtz‐Centre for Environmental Research – UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Stefan G. Michalski
- Department of Community EcologyHelmholtz‐Centre for Environmental Research – UFZHalle (Saale)Germany
| |
Collapse
|
24
|
Robertson BC, Han Y, Li C. A Comparison of Different Stomatal Density Phenotypes of Hordeum vulgare under Varied Watering Regimes Reveals Superior Genotypes with Enhanced Drought Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:2840. [PMID: 37570994 PMCID: PMC10420674 DOI: 10.3390/plants12152840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Enhancing the water-use efficiency (WUE) of barley cultivars may safeguard yield deficits during periods of low rainfall. Reduced stomatal density is linked to enhanced WUE, leading to improved drought resistance across plant genera. In this study, 10 barley varieties exhibiting a range of stomatal density phenotypes were grown under differing soil water contents to determine whether stomatal density influences the capacity of genotypes to resist low water availability. The low-stomatal-density genotype Hindmarsh showed the least impact on biomass production during early development, with a 37.13% decrease in dry biomass during drought treatment. Low-stomatal-density genotypes additionally outcompeted high-stomatal-density genotypes under water-deprivation conditions during the reproductive phase of development, exhibiting 19.35% greater wilting resistance and generating 54.62% more heads relative to high-stomatal-density genotypes (p < 0.05). Finally, a correlation analysis revealed a strong negative linear relationship between stomatal density and the traits of head number (r = -0.71) and the number of days until wilting symptoms (r = -0.67) (p < 0.05). The combined results indicate that low-stomatal-density genotypes show promising attributes for high WUE, revealing novel barley varieties that may be useful to future breed improvement for drought tolerance.
Collapse
Affiliation(s)
- Brittany Clare Robertson
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (B.C.R.); (Y.H.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Yong Han
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (B.C.R.); (Y.H.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Department of Primary Industries and Regional Development, 3-Baron-Hay Court, South Perth, WA 6151, Australia
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (B.C.R.); (Y.H.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Department of Primary Industries and Regional Development, 3-Baron-Hay Court, South Perth, WA 6151, Australia
| |
Collapse
|
25
|
Afsharyan NP, Sannemann W, Ballvora A, Léon J. Identifying developmental QTL alleles with favorable effect on grain yield components under late-terminal drought in spring barley MAGIC population. PLANT DIRECT 2023; 7:e516. [PMID: 37538189 PMCID: PMC10394678 DOI: 10.1002/pld3.516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/27/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023]
Abstract
Barley is the fourth most cultivated cereal worldwide, and drought is a major cause of its yield loss by negatively affecting its development. Hence, better understanding developmental mechanisms that control complex polygenic yield-related traits under drought is essential to uncover favorable yield regulators. This study evaluated seven above-ground yield-related traits under well-watered (WW) and late-terminal drought (TD) treatment using 534 spring barley multiparent advanced generation intercross double haploid (DH) lines. The analysis of quantitative trait loci (QTL) for WW, TD, marker by treatment interaction, and drought stress tolerance identified 69, 64, 25, and 25 loci, respectively, for seven traits from which 15 loci were common for at least three traits and 17 were shared by TD and drought stress tolerance. Evaluation of allelic effects for a QTL revealed varying effect of parental alleles. Results showed prominent QTL located on major flowering time gene Ppd-H1 with favorable effects for grain weight under TD when flowering time was not significantly affected, suggesting that this gene might be linked with increasing grain weight by ways other than timing of flowering under late-terminal drought stress. Furthermore, a desirable novel QTL allele was identified on chromosome 5H for grain number under TD nearby sucrose transporter gene HvSUT2. The findings indicated that spring barley multiparent advanced generation intercross population can provide insights to improve yield under complex condition of drought.
Collapse
Affiliation(s)
- Nazanin P. Afsharyan
- Institute for Crop Science and Resource Conservation, Chair of Plant BreedingUniversity of BonnBonnGermany
- Department of Plant BreedingJustus Liebig University GiessenGiessenGermany
| | - Wiebke Sannemann
- Institute for Crop Science and Resource Conservation, Chair of Plant BreedingUniversity of BonnBonnGermany
- KWS Saat SE & Co. KGaAEinbeckGermany
| | - Agim Ballvora
- Institute for Crop Science and Resource Conservation, Chair of Plant BreedingUniversity of BonnBonnGermany
| | - Jens Léon
- Institute for Crop Science and Resource Conservation, Chair of Plant BreedingUniversity of BonnBonnGermany
| |
Collapse
|
26
|
Xu D, Tang Q, Xu P, Schäffner AR, Leister D, Kleine T. Response of the organellar and nuclear (post)transcriptomes of Arabidopsis to drought. FRONTIERS IN PLANT SCIENCE 2023; 14:1220928. [PMID: 37528975 PMCID: PMC10387551 DOI: 10.3389/fpls.2023.1220928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023]
Abstract
Plants have evolved sophisticated mechanisms to cope with drought, which involve massive changes in nuclear gene expression. However, little is known about the roles of post-transcriptional processing of nuclear or organellar transcripts and how meaningful these changes are. To address these issues, we used RNA-sequencing after ribosomal RNA depletion to monitor (post)transcriptional changes during different times of drought exposure in Arabidopsis Col-0. Concerning the changes detected in the organellar transcriptomes, chloroplast transcript levels were globally reduced, editing efficiency dropped, but splicing was not affected. Mitochondrial transcripts were slightly elevated, while editing and splicing were unchanged. Conversely, alternative splicing (AS) affected nearly 1,500 genes (9% of expressed nuclear genes). Of these, 42% were regulated solely at the level of AS, representing transcripts that would have gone unnoticed in a microarray-based approach. Moreover, we identified 927 isoform switching events. We provide a table of the most interesting candidates, and as proof of principle, increased drought tolerance of the carbonic anhydrase ca1 and ca2 mutants is shown. In addition, altering the relative contributions of the spliced isoforms could increase drought resistance. For example, our data suggest that the accumulation of a nonfunctional FLM (FLOWERING LOCUS M) isoform and not the ratio of FLM-ß and -δ isoforms may be responsible for the phenotype of early flowering under long-day drought conditions. In sum, our data show that AS enhances proteome diversity to counteract drought stress and represent a valuable resource that will facilitate the development of new strategies to improve plant performance under drought.
Collapse
Affiliation(s)
- Duorong Xu
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Qian Tang
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Ping Xu
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Anton R. Schäffner
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
27
|
Lakhneko O, Stasik O, Škultéty Ľ, Kiriziy D, Sokolovska-Sergiienko O, Kovalenko M, Danchenko M. Transient drought during flowering modifies the grain proteome of bread winter wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1181834. [PMID: 37441186 PMCID: PMC10333505 DOI: 10.3389/fpls.2023.1181834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023]
Abstract
Drought is among the most limiting factors for sustainable agricultural production. Water shortage at the onset of flowering severely affects the quality and quantity of grain yield of bread wheat (Triticum aestivum). Herein, we measured oxidative stress and photosynthesis-related parameters upon applying transient drought on contrasting wheat cultivars at the flowering stage of ontogenesis. The sensitive cultivar (Darunok Podillia) showed ineffective water management and a more severe decline in photosynthesis. Apparently, the tolerant genotype (Odeska 267) used photorespiration to dissipate excessive light energy. The tolerant cultivar sooner induced superoxide dismutase and showed less inhibited photosynthesis. Such a protective effect resulted in less affected yield and spectrum of seed proteome. The tolerant cultivar had a more stable gluten profile, which defines bread-making quality, upon drought. Water deficit caused the accumulation of medically relevant proteins: (i) components of gluten in the sensitive cultivar and (ii) metabolic proteins in the tolerant cultivar. We propose specific proteins for further exploration as potential markers of drought tolerance for guiding efficient breeding: thaumatin-like protein, 14-3-3 protein, peroxiredoxins, peroxidase, FBD domain protein, and Ap2/ERF plus B3 domain protein.
Collapse
Affiliation(s)
- Olha Lakhneko
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Institute of Plant Genetics and Biotechnology, Plant Science Biodiversity Centre, Slovak Academy of Sciences, Nitra, Slovakia
| | - Oleg Stasik
- Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ľudovit Škultéty
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dmytro Kiriziy
- Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | - Mariia Kovalenko
- Educational and Scientific Centre (ESC) “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Maksym Danchenko
- Institute of Plant Genetics and Biotechnology, Plant Science Biodiversity Centre, Slovak Academy of Sciences, Nitra, Slovakia
| |
Collapse
|
28
|
Ashwin R, Bagyaraj DJ, Mohan Raju B. Ameliorating the drought stress tolerance of a susceptible soybean cultivar, MAUS 2 through dual inoculation with selected rhizobia and AM fungus. Fungal Biol Biotechnol 2023; 10:10. [PMID: 37138367 PMCID: PMC10158380 DOI: 10.1186/s40694-023-00157-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/24/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Drought stress is currently the primary abiotic stress factor for crop loss worldwide. Although drought stress reduces the crop yield significantly, species and genotypes differ in their stress response; some tolerate the stress effect while others not. In several systems, it has been shown that, some of the beneficial soil microbes ameliorate the stress effect and thereby, minimizing yield losses under stress conditions. Realizing the importance of beneficial soil microbes, a field experiment was conducted to study the effect of selected microbial inoculants namely, N-fixing bacteria, Bradyrhizobium liaoningense and P-supplying arbuscular mycorrhizal fungus, Ambispora leptoticha on growth and performance of a drought susceptible and high yielding soybean cultivar, MAUS 2 under drought condition. RESULTS Drought stress imposed during flowering and pod filling stages showed that, dual inoculation consisting of B. liaoningense and A. leptoticha improved the physiological and biometric characteristics including nutrient uptake and yield under drought conditions. Inoculated plants showed an increased number of pods and pod weight per plant by 19% and 34% respectively, while the number of seeds and seed weight per plant increased by 17% and 32% respectively over un-inoculated plants under drought stress condition. Further, the inoculated plants showed higher chlorophyll and osmolyte content, higher detoxifying enzyme activity, and higher cell viability because of less membrane damage compared to un-inoculated plants under stress condition. In addition, they also showed higher water use efficiency coupled with more nutrients accumulation besides exhibiting higher load of beneficial microbes. CONCLUSION Dual inoculation of soybean plants with beneficial microbes would alleviate the drought stress effects, thereby allowing normal plants' growth under stress condition. The study therefore, infers that AM fungal and rhizobia inoculation seems to be necessary when soybean is to be cultivated under drought or water limiting conditions.
Collapse
Affiliation(s)
- Revanna Ashwin
- Centre for Natural Biological Resources and Community Development (CNBRCD), 41 RBI Colony, Anand Nagar, Bangalore, Karnataka, 560024, India
- Centre for Research and Development (CRD), PRIST University, Vallam, Thanjavur, Tamil Nadu, 613403, India
| | - Davis Joseph Bagyaraj
- Centre for Natural Biological Resources and Community Development (CNBRCD), 41 RBI Colony, Anand Nagar, Bangalore, Karnataka, 560024, India.
| | - Basavaiah Mohan Raju
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, Karnataka, 560065, India
| |
Collapse
|
29
|
Mukherjee A, Dwivedi S, Bhagavatula L, Datta S. Integration of light and ABA signaling pathways to combat drought stress in plants. PLANT CELL REPORTS 2023; 42:829-841. [PMID: 36906730 DOI: 10.1007/s00299-023-02999-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/17/2023] [Indexed: 05/06/2023]
Abstract
Drought is one of the most critical stresses, which causes an enormous reduction in crop yield. Plants develop various strategies like drought escape, drought avoidance, and drought tolerance to cope with the reduced availability of water during drought. Plants adopt several morphological and biochemical modifications to fine-tune their water-use efficiency to alleviate drought stress. ABA accumulation and signaling plays a crucial role in the response of plants towards drought. Here, we discuss how drought-induced ABA regulates the modifications in stomatal dynamics, root system architecture, and the timing of senescence to counter drought stress. These physiological responses are also regulated by light, indicating the possibility of convergence of light- and drought-induced ABA signaling pathways. In this review, we provide an overview of investigations reporting light-ABA signaling cross talk in Arabidopsis as well as other crop species. We have also tried to describe the potential role of different light components and their respective photoreceptors and downstream factors like HY5, PIFs, BBXs, and COP1 in modulating drought stress responses. Finally, we highlight the possibilities of enhancing the plant drought resilience by fine-tuning light environment or its signaling components in the future.
Collapse
Affiliation(s)
- Arpan Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Shubhi Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Lavanya Bhagavatula
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India.
| |
Collapse
|
30
|
Zali H, Barati A, Pour-Aboughadareh A, Gholipour A, Koohkan S, Marzoghiyan A, Bocianowski J, Bujak H, Nowosad K. Identification of Superior Barley Genotypes Using Selection Index of Ideal Genotype (SIIG). PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091843. [PMID: 37176901 PMCID: PMC10181048 DOI: 10.3390/plants12091843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
The main objective of the study was to evaluate and select the superior barley genotypes based on grain yield and some pheno-morphological traits using a new proposed selection index (SIIG). For this purpose, one-hundred-eight pure and four local cultivars (Norouz, Auxin, Nobahar, and WB-97-11) were evaluated as reference genotypes in four warm regions of Iran, including Ahvaz, Darab, Zabol, and Gonbad, during the 2020-2021 cropping seasons. The results of REML analysis showed that the heritability of all traits (except plant height) was higher in Gonbad than in other environments, while the lowest values were estimated in Ahvaz and Zabol environments. In addition, among the measured traits, the thousand kernel weight and grain filling period showed the highest and lowest values of heritability (0.83 and 0.01, respectively). The results showed that the seed yield of genotypes 1, 108, 3, 86, 5, 87, 19, 16, 15, 56, and 18 was higher than the four reference genotypes, and, on the other hand, the SIIG index of these genotypes was greater than or equal to 0.60. Based on the SIIG discriminator index, 4, 8, 31, and 28 genotypes with values greater than or equal to 0.60 were identified as superior for Darab, Ahvaz, Zabol, and Gonbad environments, respectively. As a conclusion, our results revealed that the SIIG index has ideal potential to identify genotypes with high yield and desirable traits. Therefore, the use of this index can be beneficial in screening better genotypes in the early stages of any breeding program for any crop.
Collapse
Affiliation(s)
- Hassan Zali
- Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Darab P.O. Box 71558-63511, Iran
| | - Ali Barati
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj P.O. Box 31587-77871, Iran
| | - Alireza Pour-Aboughadareh
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj P.O. Box 31587-77871, Iran
| | - Ahmad Gholipour
- Crop and Horticultural Science Research Department, Golestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Gonbad P.O. Box 49156-77555, Iran
| | - Shirali Koohkan
- Crop and Horticultural Science Research Department, Sistan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Zabol P.O. Box 98616-44534, Iran
| | - Akbar Marzoghiyan
- Crop and Horticultural Science Research Department, Khuzestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz P.O. Box 61335-3341, Iran
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
| | - Henryk Bujak
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Grunwaldzki 24A, 53-363 Wrocław, Poland
- Research Center for Cultivar Testing, Słupia Wielka 34, 63-022 Słupia Wielka, Poland
| | - Kamila Nowosad
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Grunwaldzki 24A, 53-363 Wrocław, Poland
| |
Collapse
|
31
|
Yadav AK, Singh CK, Kalia RK, Mittal S, Wankhede DP, Kakani RK, Ujjainwal S, Aakash, Saroha A, Nathawat NS, Rani R, Panchariya P, Choudhary M, Solanki K, Chaturvedi KK, Archak S, Singh K, Singh GP, Singh AK. Genetic diversity, population structure, and genome-wide association study for the flowering trait in a diverse panel of 428 moth bean (Vigna aconitifolia) accessions using genotyping by sequencing. BMC PLANT BIOLOGY 2023; 23:228. [PMID: 37120525 PMCID: PMC10148550 DOI: 10.1186/s12870-023-04215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Moth bean (Vigna aconitifolia) is an underutilized, protein-rich legume that is grown in arid and semi-arid areas of south Asia and is highly resistant to abiotic stresses such as heat and drought. Despite its economic importance, the crop remains unexplored at the genomic level for genetic diversity and trait mapping studies. To date, there is no report of SNP marker discovery and association mapping of any trait in this crop. Therefore, this study aimed to dissect the genetic diversity, population structure and marker-trait association for the flowering trait in a diversity panel of 428 moth bean accessions using genotyping by sequencing (GBS) approach. RESULTS A total of 9078 high-quality single nucleotide polymorphisms (SNPs) were discovered by genotyping of 428 moth bean accessions. Model-based structure analysis and PCA grouped the moth bean accessions into two subpopulations. Cluster analysis revealed accessions belonging to the Northwestern region of India had higher variability than accessions from the other regions suggesting that this region represents its center of diversity. AMOVA revealed more variations within individuals (74%) and among the individuals (24%) than among the populations (2%). Marker-trait association analysis using seven multi-locus models including mrMLM, FASTmrEMMA FASTmrEMMA, ISIS EM-BLASSO, MLMM, BLINK and FarmCPU revealed 29 potential genomic regions for the trait days to 50% flowering, which were consistently detected in three or more models. Analysis of the allelic effect of the major genomic regions explaining phenotypic variance of more than 10% and those detected in at least 2 environments showed 4 genomic regions with significant phenotypic effect on this trait. Further, we also analyzed genetic relationships among the Vigna species using SNP markers. The genomic localization of moth bean SNPs on genomes of closely related Vigna species demonstrated that maximum numbers of SNPs were getting localized on Vigna mungo. This suggested that the moth bean is most closely related to V. mungo. CONCLUSION Our study shows that the north-western regions of India represent the center of diversity of the moth bean. Further, the study revealed flowering-related genomic regions/candidate genes which can be potentially exploited in breeding programs to develop early-maturity moth bean varieties.
Collapse
Affiliation(s)
- Arvind Kumar Yadav
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - Chandan Kumar Singh
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - Rajwant K Kalia
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Shikha Mittal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| | | | - Rajesh K Kakani
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Shraddha Ujjainwal
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - Aakash
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - Ankit Saroha
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - N S Nathawat
- ICAR- Central Arid Zone Research Institute, Regional Research Station, Bikaner, Rajasthan, India
| | - Reena Rani
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Pooja Panchariya
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Manoj Choudhary
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Kantilal Solanki
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - K K Chaturvedi
- ICAR- Indian Agricultural Statistics Research Institute, New Delhi, Delhi, India
| | - Sunil Archak
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - Kuldeep Singh
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
| | | | - Amit Kumar Singh
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India.
| |
Collapse
|
32
|
Ali A, Ullah Z, Sher H, Abbas Z, Rasheed A. Water stress effects on stay green and chlorophyll fluorescence with focus on yield characteristics of diverse bread wheats. PLANTA 2023; 257:104. [PMID: 37115268 DOI: 10.1007/s00425-023-04140-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
MAIN CONCLUSION The study provided an insight toward better understanding of stay-green mechanisms for drought tolerance improvement and identified that synthetic-derived wheats proved as a promising germplasm for improved tolerance against water stress. Stay-green (SG) trait is considered to be related with the ability of wheat plants to maintain photosynthesis and CO2 assimilation. The present study explored the interaction of water stress with SG expression through physio-biochemical, agronomic and phenotypic responses among diverse wheat germplasm comprising of 200 synthetic hexaploids, 12 synthetic derivatives, 97 landraces and 16 conventional bread wheat varieties, for 2 years. The study established that variation of SG trait existed in the studied wheat germplasm and there was positive association between SG trait and tolerance to water stress. The relationship of SG trait with chlorophyll content (r = 0.97), ETR (r = 0.28), GNS (r = 0.44), BMP (r = 0.34) and GYP (r = 0.44) was particularly promising under water stress environment. Regarding chlorophyll fluorescence, the positive correlation of фPSII (r = 0.21), qP (r = 0.27) and ETR (r = 0.44) with grain yield per plant was noted. The improved ΦPSII and Fv/Fm of PSII photochemistry resulted in the high photosynthesis activity in SG wheat genotypes. Regarding relative water content and photochemical quenching coefficient, synthetic-derived wheats were better by maintaining 20.9, 9.8 and 16.1% more RWC and exhibiting 30.2, 13.5 and 17.9% more qP when compared with landraces, varieties and synthetic hexaploids, respectively, under water stress environment. Synthetic derived wheats also exhibited relatively more SG character with good yield and were more tolerant to water stress in terms of grain yield, grain weight per plant, better photosynthetic performance through chlorophyll fluorescence measurement, high leaf chlorophyll and proline content, and hence, may be used as novel sources for breeding drought tolerant materials. The study will further facilitate research on wheat leaf senescence and will add to better understanding of SG mechanisms for drought tolerance improvement.
Collapse
Affiliation(s)
- Ahmad Ali
- Center for Plant Sciences and Biodiversity, University of Swat, Charbagh, Swat, Pakistan.
| | - Zahid Ullah
- Center for Plant Sciences and Biodiversity, University of Swat, Charbagh, Swat, Pakistan
| | - Hassan Sher
- Center for Plant Sciences and Biodiversity, University of Swat, Charbagh, Swat, Pakistan
| | - Zaigham Abbas
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
33
|
Zhu Z, Esche F, Babben S, Trenner J, Serfling A, Pillen K, Maurer A, Quint M. An exotic allele of barley EARLY FLOWERING 3 contributes to developmental plasticity at elevated temperatures. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2912-2931. [PMID: 36449391 DOI: 10.1093/jxb/erac470] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/28/2022] [Indexed: 06/06/2023]
Abstract
Increase in ambient temperatures caused by climate change affects various morphological and developmental traits of plants, threatening crop yield stability. In the model plant Arabidopsis thaliana, EARLY FLOWERING 3 (ELF3) plays prominent roles in temperature sensing and thermomorphogenesis signal transduction. However, how crop species respond to elevated temperatures is poorly understood. Here, we show that the barley ortholog of AtELF3 interacts with high temperature to control growth and development. We used heterogeneous inbred family (HIF) pairs generated from a segregating mapping population and systematically studied the role of exotic ELF3 variants in barley temperature responses. An exotic ELF3 allele of Syrian origin promoted elongation growth in barley at elevated temperatures, whereas plant area and estimated biomass were drastically reduced, resulting in an open canopy architecture. The same allele accelerated inflorescence development at high temperature, which correlated with early transcriptional induction of MADS-box floral identity genes BM3 and BM8. Consequently, barley plants carrying the exotic ELF3 allele displayed stable total grain number at elevated temperatures. Our findings therefore demonstrate that exotic ELF3 variants can contribute to phenotypic and developmental acclimation to elevated temperatures, providing a stimulus for breeding of climate-resilient crops.
Collapse
Affiliation(s)
- Zihao Zhu
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
| | - Finn Esche
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
| | - Steve Babben
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
| | - Jana Trenner
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
| | - Albrecht Serfling
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Erwin-Baur-Str. 27, D-06484, Quedlinburg, Germany
| | - Klaus Pillen
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120, Halle (Saale), Germany
| | - Andreas Maurer
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120, Halle (Saale), Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Puschstrasse 4, D-04103, Leipzig, Germany
| |
Collapse
|
34
|
Ogrodowicz P, Kuczyńska A, Krajewski P, Kempa M. The effects of heading time on yield performance and HvGAMYB expression in spring barley subjected to drought. J Appl Genet 2023; 64:289-302. [PMID: 36897474 PMCID: PMC10076406 DOI: 10.1007/s13353-023-00755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023]
Abstract
In the lifetime of a plant, flowering is not only an essential part of the reproductive process but also a critical developmental stage that can be vulnerable to environmental stresses. To ensure survival during drought, plants accelerate the flowering process, and this response is known as "drought escape." HvGAMYB-transcription factor associated, among others, with flowering process and anther development in barley-has also an important role in developmental modification and yield performance in plants subjected to stressed conditions. Due to the fact that information about the mechanisms associated both with the flowering acceleration and the anther or pollen disruption is limited, the exploration of the potential HvGAMYB role in flower development may shed light on pollen and spike morphology formations in plants grown under unfavorable water conditions. The aim of this study was to characterize differences in responses to drought among early- and late-heading barley genotypes. These two subgroups of plants-differentiated in terms of phenology-were analyzed, and traits linked to plant phenotype, physiology, and yield were investigated. In our study, the drought stress reactions of two barley subgroups showed a wide range of diversity in terms of yield performance, anther morphology, chlorophyll fluorescence kinetics, and pollen viability. The studied plants exhibited different yield performances under control and drought conditions. Moreover, the random distribution of genotypes on the biplot showing variability of OJIP parameters in the second developmental point of our investigation revealed that prolonged drought stress caused that among early- and late-heading plants, the studied genotypes exhibited different responses to applied stress conditions. The results of this study also showed that the HvGAMYB expression level was correlated positively with traits associated with lateral spike morphology in the second developmental point of this investigation, which showed that this association occurred only under prolonged drought and highlighted the drought stress duration effect on the HvGAMYB expression level.
Collapse
Affiliation(s)
- Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszynska street, 60-479, Poznan, Poland.
| | - Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszynska street, 60-479, Poznan, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszynska street, 60-479, Poznan, Poland
| | - Michał Kempa
- Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszynska street, 60-479, Poznan, Poland
| |
Collapse
|
35
|
Shrestha N, Hu H, Shrestha K, Doust AN. Pearl millet response to drought: A review. FRONTIERS IN PLANT SCIENCE 2023; 14:1059574. [PMID: 36844091 PMCID: PMC9955113 DOI: 10.3389/fpls.2023.1059574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The C4 grass pearl millet is one of the most drought tolerant cereals and is primarily grown in marginal areas where annual rainfall is low and intermittent. It was domesticated in sub-Saharan Africa, and several studies have found that it uses a combination of morphological and physiological traits to successfully resist drought. This review explores the short term and long-term responses of pearl millet that enables it to either tolerate, avoid, escape, or recover from drought stress. The response to short term drought reveals fine tuning of osmotic adjustment, stomatal conductance, and ROS scavenging ability, along with ABA and ethylene transduction. Equally important are longer term developmental plasticity in tillering, root development, leaf adaptations and flowering time that can both help avoid the worst water stress and recover some of the yield losses via asynchronous tiller production. We examine genes related to drought resistance that were identified through individual transcriptomic studies and through our combined analysis of previous studies. From the combined analysis, we found 94 genes that were differentially expressed in both vegetative and reproductive stages under drought stress. Among them is a tight cluster of genes that are directly related to biotic and abiotic stress, as well as carbon metabolism, and hormonal pathways. We suggest that knowledge of gene expression patterns in tiller buds, inflorescences and rooting tips will be important for understanding the growth responses of pearl millet and the trade-offs at play in the response of this crop to drought. Much remains to be learnt about how pearl millet's unique combination of genetic and physiological mechanisms allow it to achieve such high drought tolerance, and the answers to be found may well be useful for crops other than just pearl millet.
Collapse
Affiliation(s)
- Nikee Shrestha
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, United States
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Hao Hu
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, United States
| | - Kumar Shrestha
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, United States
| | - Andrew N. Doust
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
36
|
Yang Z, Qin F. The battle of crops against drought: Genetic dissection and improvement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:496-525. [PMID: 36639908 DOI: 10.1111/jipb.13451] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
With ongoing global climate change, water scarcity-induced drought stress remains a major threat to agricultural productivity. Plants undergo a series of physiological and morphological changes to cope with drought stress, including stomatal closure to reduce transpiration and changes in root architecture to optimize water uptake. Combined phenotypic and multi-omics studies have recently identified a number of drought-related genetic resources in different crop species. The functional dissection of these genes using molecular techniques has enriched our understanding of drought responses in crops and has provided genetic targets for enhancing resistance to drought. Here, we review recent advances in the cloning and functional analysis of drought resistance genes and the development of technologies to mitigate the threat of drought to crop production.
Collapse
Affiliation(s)
- Zhirui Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Feng Qin
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
37
|
Chirivì D, Betti C. Molecular Links between Flowering and Abiotic Stress Response: A Focus on Poaceae. PLANTS (BASEL, SWITZERLAND) 2023; 12:331. [PMID: 36679044 PMCID: PMC9866591 DOI: 10.3390/plants12020331] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Extreme temperatures, drought, salinity and soil pollution are the most common types of abiotic stresses crops can encounter in fields; these variations represent a general warning to plant productivity and survival, being more harmful when in combination. Plant response to such conditions involves the activation of several molecular mechanisms, starting from perception to signaling, transcriptional reprogramming and protein modifications. This can influence the plant's life cycle and development to different extents. Flowering developmental transition is very sensitive to environmental stresses, being critical to reproduction and to agricultural profitability for crops. The Poacee family contains some of the most widespread domesticated plants, such as wheat, barley and rice, which are commonly referred to as cereals and represent a primary food source. In cultivated Poaceae, stress-induced modifications of flowering time and development cause important yield losses by directly affecting seed production. At the molecular level, this reflects important changes in gene expression and protein activity. Here, we present a comprehensive overview on the latest research investigating the molecular pathways linking flowering control to osmotic and temperature extreme conditions in agronomically relevant monocotyledons. This aims to provide hints for biotechnological strategies that can ensure agricultural stability in ever-changing climatic conditions.
Collapse
|
38
|
Rasheed A, Ilyas M, Khan TN, Mahmood A, Riaz U, Chattha MB, Al Kashgry NAT, Binothman N, Hassan MU, Wu Z, Qari SH. Study of genetic variability, heritability, and genetic advance for yield-related traits in tomato ( Solanum lycopersicon MILL.). Front Genet 2023; 13:1030309. [PMID: 36685955 PMCID: PMC9845701 DOI: 10.3389/fgene.2022.1030309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
Tomato is one of the most significant vegetable crops, which provides several important dietary components. Pakistan has a significant low tomato yield compared to other countries because of low genetic diversity and the absence of improved cultivars. The present study aimed to investigate the genetic variability, heritability, and genetic advance for yield and yield-related traits in tomato. For this purpose, eight tomato parents and their 15 crosses or hybrids were evaluated to study the relevant traits. Significant variation was observed for all studied traits. Higher values of the genotypic coefficient of variability (GCV) and phenotypic coefficient of variability (PCV) were recorded for yield per plant (YP) (kg) (37.62% and 37.79%), as well as the number of fruits per cluster (NFRC) (31.52% and 31.71%), number of flowers per cluster (24.63 and 24.67), and single fruit weight (g) (23.49 and 23.53), which indicated that the selection for these traits would be fruitful. Higher heritability (h2) estimates were observed for the number of flowers per cluster (NFC) (0.99%), single fruit weight (SFW) (g) (0.99%), and yield per plant (YP) (kg) (0.99%). Single fruit weight (SFW) (g) exhibited higher values for all components of variability. High genetic advance as a % of the mean (GAM) coupled with higher heritability (h2) was noted for the yield per plant (YP) (kg) (52.58%) and the number of fruits per cluster (NFRC) (43.91). NFRC and SFW (g) had a highly significant correlation with YP (kg), while FSPC had a significant positive association with YP (kg), and these traits can be selected to enhance YP (kg). Among the 15 hybrids, Nagina × Continental, Pakit × Continental, and Roma × BSX-935 were selected as high-yielding hybrids for further evaluation and analysis. These findings revealed that the best performing hybrids could be used to enhance seed production and to develop high-yielding varieties. The parents could be further tested to develop hybrids suitable for changing climatic conditions. The selection of YP (kg), SFW (g), NFC, and NFRC would be ideal for selecting the best hybrids.
Collapse
Affiliation(s)
- Adnan Rasheed
- Key Laboratory of Plant Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China,Department of Plant Breeding and Molecular Genetics, Faculty of Agriculture, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan,Vegetable Crops Research Programme, Horticultural Research Institute, National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Muhammad Ilyas
- Department of Plant Breeding and Molecular Genetics, Faculty of Agriculture, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Taj Naseeb Khan
- Vegetable Crops Research Programme, Horticultural Research Institute, National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Usama Riaz
- Department Entomology, Faculty of Agriculture, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Muhammad Bilal Chattha
- Department of Agronomy, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Najat Binothman
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Ziming Wu
- Key Laboratory of Plant Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China,*Correspondence: Ziming Wu,
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
39
|
Ying S, Scheible WR, Lundquist PK. A stress-inducible protein regulates drought tolerance and flowering time in Brachypodium and Arabidopsis. PLANT PHYSIOLOGY 2023; 191:643-659. [PMID: 36264121 PMCID: PMC9806587 DOI: 10.1093/plphys/kiac486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
To cope with environmental stresses and ensure maximal reproductive success, plants have developed strategies to adjust the timing of their transition to reproductive growth. This has a substantial impact on the stress resilience of crops and ultimately on agricultural productivity. Here, we report a previously uncharacterized, plant-specific gene family designated as Regulator of Flowering and Stress (RFS). Overexpression of the BdRFS gene in Brachypodium distachyon delayed flowering, increased biomass accumulation, and promoted drought tolerance, whereas clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated knockout mutants exhibited opposite phenotypes. A double T-DNA insertional mutant in the two Arabidopsis (Arabidopsis thaliana) homologs replicated the effects on flowering and water deprivation seen in the B. distachyon CRISPR knockout lines, highlighting the functional conservation of the family between monocots and dicots. Lipid analysis of B. distachyon and Arabidopsis revealed that digalactosyldiacylglycerol (DGDG) and phosphatidylcholine (PC) contents were significantly, and reciprocally, altered in overexpressor and knockout mutants. Importantly, alteration of C16:0-containing PC, a Flowering Locus T-interacting lipid, associated with flowering phenotype, with elevated levels corresponding to earlier flowering. Co-immunoprecipitation analysis suggested that BdRFS interacts with phospholipase Dα1 as well as several other abscisic acid-related proteins. Furthermore, reduction of C18:3 fatty acids in DGDG corresponded with reduced jasmonic acid metabolites in CRISPR mutants. Collectively, we suggest that stress-inducible RFS proteins represent a regulatory component of lipid metabolism that impacts several agronomic traits of biotechnological importance.
Collapse
Affiliation(s)
- Sheng Ying
- Authors for correspondence: (P.K.L.) and (S.Y.)
| | | | | |
Collapse
|
40
|
Poggi GM, Corneti S, Aloisi I, Ventura F. Environment-oriented selection criteria to overcome controversies in breeding for drought resistance in wheat. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153895. [PMID: 36529076 DOI: 10.1016/j.jplph.2022.153895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Wheat is one of the most important cereal crops, representing a fundamental source of calories and protein for the global human population. Drought stress (DS) is a widespread phenomenon, already affecting large wheat-growing areas worldwide, and a major threat for cereal productivity, resulting in consistent losses in average grain yield (GY). Climate change is projected to exacerbate DS incidence and severity by increasing temperatures and changing rainfall patterns. Estimating that wheat production has to substantially increase to guarantee food security to a demographically expanding human population, the need for breeding programs focused on improving wheat drought resistance is manifest. Drought occurrence, in terms of time of appearance, duration, frequency, and severity, along the plant's life cycle varies significantly among different environments and different agricultural years, making it difficult to identify reliable phenological, morphological, and functional traits to be used as effective breeding tools. The situation is further complicated by the presence of confounding factors, e.g., other concomitant abiotic stresses, in an open-field context. Consequently, the relationship between morpho-functional traits and GY under water deficit is often contradictory; moreover, controversies have emerged not only on which traits are to be preferred, but also on how one specific trait should be desired. In this review, we attempt to identify the possible causes of these disputes and propose the most suitable selection criteria in different target environments and, thus, the best trait combinations for breeders in different drought contexts. In fact, an environment-oriented approach could be a valuable solution to overcome controversies in identifying the proper selection criteria for improving wheat drought resistance.
Collapse
Affiliation(s)
- Giovanni Maria Poggi
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum, University of Bologna, Bologna, Italy; Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Simona Corneti
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum, University of Bologna, Bologna, Italy.
| | - Francesca Ventura
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
41
|
Feng X, Zhou L, Sheng A, Lin L, Liu H. Comparative transcriptome analysis on drought stress-induced floral formation of Curcuma kwangsiensis. PLANT SIGNALING & BEHAVIOR 2022; 17:2114642. [PMID: 36189888 PMCID: PMC9542783 DOI: 10.1080/15592324.2022.2114642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
The rhizomes and tubers of Curcuma kwangsiensis have extensive medicinal value in China. However, the inflorescences of C. kwangsiensis are rarely known in horticulture, because of its low field flowering rate. In order to improve the flowering rate of C. kwangsiensis, we conducted drought stress treatment on the rhizome of C. kwangsiensis. The flowering rate of rhizome was the highest after 4d of drought stress treatment, and the buds on the rhizome could be obviously swell on the 4th day of rehydration culture. In order to identify the genes regulating the flowering time of Curcuma kwangsiensis, comparative transcriptome analysis was performed on the buds on rhizomes before drought stress treatment, 4 d after drought stress treatment and 4 d after rehydration culture. During this process, a total of 20 DEGs controlling flowering time and 23 DEGs involved in ABA synthesis and signal transduction were identified, which might regulate the flowering of C. kwangsiensis under drought stress. Some floral integration factors, such as SOC1 and FTIP, were up-regulated under drought stress for 4 d, indicating that C. kwangsiensis had flowering trend under drought stress. The results of the present study will provide theoretical support for the application of Curcuma kwangsiensis in gardening.
Collapse
Affiliation(s)
- Xin Feng
- Department of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Liying Zhou
- Department of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Aiwu Sheng
- Department of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ling Lin
- Department of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Huicheng Liu
- Department of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
42
|
Diversity matters in wheat mixtures: A genomic survey of the impact of genetic diversity on the performance of 12 way durum wheat mixtures grown in two contrasted and controlled environments. PLoS One 2022; 17:e0276223. [PMID: 36490260 PMCID: PMC9733896 DOI: 10.1371/journal.pone.0276223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 10/04/2022] [Indexed: 12/13/2022] Open
Abstract
In ecology, an increase in genetic diversity within a community in natural ecosystems increases its productivity, while in evolutionary biology, kinship selection predicts that relatedness on social traits improves fitness. Varietal mixtures, where different genotypes are grown together, show contrasting results, especially for grain yield where both positive and negative effects of mixtures have been reported. To understand the effect of diversity on field performance, we grew 96 independent mixtures each composed with 12 durum wheat (Triticum turgidum ssp. durum Thell.) inbred lines, under two contrasting environmental conditions for water availability. Using dense genotyping, we imputed allelic frequencies and a genetic diversity index on more than 96000 loci for each mixture. We then analyzed the effect of genetic diversity on agronomic performance using a genome-wide approach. We explored the stress gradient hypothesis, which proposes that the greater the unfavourable conditions, the more beneficial the effect of diversity on mixture performance. We found that diversity on average had a negative effect on yield and its components while it was beneficial on grain weight. There was little support for the stress gradient theory. We discuss how to use genomic data to improve the assembly of varietal mixtures.
Collapse
|
43
|
Wang Z, Dhakal S, Cerit M, Wang S, Rauf Y, Yu S, Maulana F, Huang W, Anderson JD, Ma XF, Rudd JC, Ibrahim AMH, Xue Q, Hays DB, Bernardo A, St. Amand P, Bai G, Baker J, Baker S, Liu S. QTL mapping of yield components and kernel traits in wheat cultivars TAM 112 and Duster. FRONTIERS IN PLANT SCIENCE 2022; 13:1057701. [PMID: 36570880 PMCID: PMC9768232 DOI: 10.3389/fpls.2022.1057701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
In the Southern Great Plains, wheat cultivars have been selected for a combination of outstanding yield and drought tolerance as a long-term breeding goal. To understand the underlying genetic mechanisms, this study aimed to dissect the quantitative trait loci (QTL) associated with yield components and kernel traits in two wheat cultivars `TAM 112' and `Duster' under both irrigated and dryland environments. A set of 182 recombined inbred lines (RIL) derived from the cross of TAM 112/Duster were planted in 13 diverse environments for evaluation of 18 yield and kernel related traits. High-density genetic linkage map was constructed using 5,081 single nucleotide polymorphisms (SNPs) from genotyping-by-sequencing (GBS). QTL mapping analysis detected 134 QTL regions on all 21 wheat chromosomes, including 30 pleiotropic QTL regions and 21 consistent QTL regions, with 10 QTL regions in common. Three major pleiotropic QTL on the short arms of chromosomes 2B (57.5 - 61.6 Mbps), 2D (37.1 - 38.7 Mbps), and 7D (66.0 - 69.2 Mbps) colocalized with genes Ppd-B1, Ppd-D1, and FT-D1, respectively. And four consistent QTL associated with kernel length (KLEN), thousand kernel weight (TKW), plot grain yield (YLD), and kernel spike-1 (KPS) (Qklen.tamu.1A.325, Qtkw.tamu.2B.137, Qyld.tamu.2D.3, and Qkps.tamu.6A.113) explained more than 5% of the phenotypic variation. QTL Qklen.tamu.1A.325 is a novel QTL with consistent effects under all tested environments. Marker haplotype analysis indicated the QTL combinations significantly increased yield and kernel traits. QTL and the linked markers identified in this study will facilitate future marker-assisted selection (MAS) for pyramiding the favorable alleles and QTL map-based cloning.
Collapse
Affiliation(s)
- Zhen Wang
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Smit Dhakal
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Mustafa Cerit
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Shichen Wang
- Genomics and Bioinformatics Service Center, Texas A&M AgriLife Research, College Station, TX, United States
| | - Yahya Rauf
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Shuhao Yu
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Frank Maulana
- Noble Research Institute, Ardmore, OK, United States
| | - Wangqi Huang
- Noble Research Institute, Ardmore, OK, United States
| | | | - Xue-Feng Ma
- Noble Research Institute, Ardmore, OK, United States
| | - Jackie C. Rudd
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Amir M. H. Ibrahim
- Department of Soil and Crop Science, Texas A&M University, College Station, TX, United States
| | - Qingwu Xue
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Dirk B. Hays
- Department of Soil and Crop Science, Texas A&M University, College Station, TX, United States
| | - Amy Bernardo
- Central Small Grain Genotyping Lab and Hard Winter Wheat Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Manhattan, KS, United States
| | - Paul St. Amand
- Central Small Grain Genotyping Lab and Hard Winter Wheat Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Manhattan, KS, United States
| | - Guihua Bai
- Central Small Grain Genotyping Lab and Hard Winter Wheat Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Manhattan, KS, United States
| | - Jason Baker
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Shannon Baker
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Shuyu Liu
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| |
Collapse
|
44
|
Rozas P, Kessi-Pérez EI, Martínez C. Genetically modified organisms: adapting regulatory frameworks for evolving genome editing technologies. Biol Res 2022; 55:31. [PMID: 36266673 DOI: 10.1186/s40659-022-00399-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/06/2022] [Indexed: 12/26/2022] Open
Abstract
Genetic modification of living organisms has been a prosperous activity for research and development of agricultural, industrial and biomedical applications. Three decades have passed since the first genetically modified products, obtained by transgenesis, become available to the market. The regulatory frameworks across the world have not been able to keep up to date with new technologies, monitoring and safety concerns. New genome editing techniques are opening new avenues to genetic modification development and uses, putting pressure on these frameworks. Here we discuss the implications of definitions of living/genetically modified organisms, the evolving genome editing tools to obtain them and how the regulatory frameworks around the world have taken these technologies into account, with a focus on agricultural crops. Finally, we expand this review beyond commercial crops to address living modified organism uses in food industry, biomedical applications and climate change-oriented solutions.
Collapse
Affiliation(s)
- Pablo Rozas
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo I Kessi-Pérez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Claudio Martínez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile. .,Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.
| |
Collapse
|
45
|
Lauterberg M, Saranga Y, Deblieck M, Klukas C, Krugman T, Perovic D, Ordon F, Graner A, Neumann K. Precision phenotyping across the life cycle to validate and decipher drought-adaptive QTLs of wild emmer wheat ( Triticum turgidum ssp. dicoccoides) introduced into elite wheat varieties. FRONTIERS IN PLANT SCIENCE 2022; 13:965287. [PMID: 36311121 PMCID: PMC9598872 DOI: 10.3389/fpls.2022.965287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Drought events or the combination of drought and heat conditions are expected to become more frequent due to global warming, and wheat yields may fall below their long-term average. One way to increase climate-resilience of modern high-yielding varieties is by their genetic improvement with beneficial alleles from crop wild relatives. In the present study, the effect of two beneficial QTLs introgressed from wild emmer wheat and incorporated in the three wheat varieties BarNir, Zahir and Uzan was studied under well-watered conditions and under drought stress using non-destructive High-throughput Phenotyping (HTP) throughout the life cycle in a single pot-experiment. Plants were daily imaged with RGB top and side view cameras and watered automatically. Further, at two time points, the quantum yield of photosystem II was measured with a top view FluorCam. The QTL carrying near isogenic lines (NILs) were compared with their corresponding parents by t-test for all non-invasively obtained traits and for the manually determined agronomic and yield parameters. Data quality of phenotypic traits (repeatability) in the controlled HTP experiment was above 85% throughout the life cycle and at maturity. Drought stress had a strong effect on growth in all wheat genotypes causing biomass reduction from 2% up to 70% at early and late points in the drought period, respectively. At maturity, the drought caused 47-55% decreases in yield-related traits grain weight, straw weight and total biomass and reduced TKW by 10%, while water use efficiency (WUE) increased under drought by 29%. The yield-enhancing effect of the introgressed QTLs under drought conditions that were previously demonstrated under field/screenhouse conditions in Israel, could be mostly confirmed in a greenhouse pot experiment using HTP. Daily precision phenotyping enabled to decipher the mode of action of the QTLs in the different genetic backgrounds throughout the entire wheat life cycle. Daily phenotyping allowed a precise determination of the timing and size of the QTLs effect (s) and further yielded information about which image-derived traits are informative at which developmental stage of wheat during the entire life cycle. Maximum height and estimated biovolume were reached about a week after heading, so experiments that only aim at exploring these traits would not need a longer observation period. To obtain information on different onset and progress of senescence, the CVa curves represented best the ongoing senescence of plants. The QTL on 7A in the BarNir background was found to improve yield under drought by increased biomass growth, a higher photosynthetic performance, a higher WUE and a "stay green effect."
Collapse
Affiliation(s)
- Madita Lauterberg
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Yehoshua Saranga
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mathieu Deblieck
- Institute for Resistance Research and Stress Tolerance, Julius Kühn-Institute, Quedlinburg, Germany
| | - Christian Klukas
- Digitalization in Research and Development (ROM), BASF SE, Ludwigshafen am Rhein, Germany
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kühn-Institute, Quedlinburg, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kühn-Institute, Quedlinburg, Germany
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
46
|
Ahmad N, Javed A, Gohar S, Ahmed J, Sher A, Abdullah M, Asghar S, Javed K, Iqbal J, Kumar S, Qayyum A. Estimation of drought effects on different bread wheat genotypes using morpho-physiological traits. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
47
|
Poggi GM, Aloisi I, Corneti S, Esposito E, Naldi M, Fiori J, Piana S, Ventura F. Climate change effects on bread wheat phenology and grain quality: A case study in the north of Italy. FRONTIERS IN PLANT SCIENCE 2022; 13:936991. [PMID: 36017264 PMCID: PMC9396297 DOI: 10.3389/fpls.2022.936991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Increasing temperatures, heat waves, and reduction of annual precipitation are all the expressions of climate change (CC), strongly affecting bread wheat (Triticum aestivum L.) grain yield in Southern Europe. Being temperature the major driving force of plants' phenological development, these variations also have effects on wheat phenology, with possible consequences on grain quality, and gluten protein accumulation. Here, through a case study in the Bolognese Plain (North of Italy), we assessed the effects of CC in the area, the impacts on bread wheat phenological development, and the consequences on grain gluten quality. The increasing trend in mean annual air temperature in the area since 1952 was significant, with a breakpoint identified in 1989, rising from 12.7 to 14.1°C, accompanied by the signals of increasing aridity, i.e., increase in water table depth. Bread wheat phenological development was compared in two 15-year periods before and after the breakpoint, i.e., 1952-1966 (past period), and 2006-2020 (present period), the latest characterized by aridity and increased temperatures. A significant shortening of the chronological time necessary to reach the main phenological phases was observed for the present period compared to the past period, finally shortening the whole life cycle. This reduction, as well as the higher temperature regime, affected gluten accumulation during the grain-filling process, as emerged analyzing gluten composition in grain samples of the same variety harvested in the area both before and after the breakpoint in temperature. In particular, the proportion of gluten polymers (i.e., gliadins, high and low molecular weight glutenins, and their ratio) showed a strong and significant correlation with cumulative growing degree days (CGDDs) accumulated during the grain filling. Higher CGDD values during the period, typical of CC in Southern Europe, accounting for higher temperature and faster grain filling, correlated with gliadins, high molecular weight glutenins, and their proportion with low molecular weight glutenins. In summary, herein reported, data might contribute to assessing the effects of CC on wheat phenology and quality, representing a tool for both predictive purposes and decision supporting systems for farmers, as well as can guide future breeding choices for varietal innovation.
Collapse
Affiliation(s)
- Giovanni Maria Poggi
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum—University of Bologna, Bologna, Italy
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Simona Corneti
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Erika Esposito
- Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Institute of Neurological Sciences of Bologna (ISNB), Bologna, Italy
| | - Marina Naldi
- Department of Pharmacy and Biotechnology (FaBit), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Jessica Fiori
- Department of Chemistry “G. Ciamician”, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Stefano Piana
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Francesca Ventura
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| |
Collapse
|
48
|
Bandara WW, Wijesundera WSS, Hettiarachchi C. Rice and Arabidopsis BBX proteins: toward genetic engineering of abiotic stress resistant crops. 3 Biotech 2022; 12:164. [PMID: 36092969 PMCID: PMC9452616 DOI: 10.1007/s13205-022-03228-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 06/17/2022] [Indexed: 11/01/2022] Open
Abstract
Productivity of crop plants are enormously affected by biotic and abiotic stresses. The co-occurrence of several abiotic stresses may lead to death of crop plants. Hence, it is the responsibility of plant scientists to develop crop plants equipped with multistress tolerance pathways. A subgroup of zinc finger transcription factor family, known as B-box (BBX) proteins, play a key role in light and hormonal regulation pathways. In addition, BBX proteins act as key regulatory proteins in many abiotic stress regulatory pathways, including Ultraviolet-B (UV-B), salinity, drought, heat and cold, and heavy metal stresses. Most of the BBX proteins identified in Arabidopsis and rice respond to more than one abiotic stress. Considering the requirement of improving rice for multistress tolerance, this review discusses functionally characterized Arabidopsis and rice BBX proteins in the development of abiotic stress responses. Furthermore, it highlights the participation of BBX proteins in multistress regulation and crop improvement through genetic engineering.
Collapse
|
49
|
Suguiyama VF, Rodriguez JDP, Dos Santos TCN, Lira BS, de Haro LA, Silva JPN, Borba EL, Purgatto E, da Silva EA, Bellora N, Carrari F, Centeno DDC, Bermúdez LF, Rossi M, de Setta N. Regulatory mechanisms behind the phenotypic plasticity associated with Setaria italica water deficit tolerance. PLANT MOLECULAR BIOLOGY 2022; 109:761-780. [PMID: 35524936 DOI: 10.1007/s11103-022-01273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Drought is one of the main environmental stresses that negatively impacts vegetative and reproductive yield. Water deficit responses are determined by the duration and intensity of the stress, which, together with plant genotype, will define the chances of plant survival. The metabolic adjustments in response to water deficit are complex and involve gene expression modulation regulated by DNA-binding proteins and epigenetic modifications. This last mechanism may also regulate the activity of transposable elements, which in turn impact the expression of nearby loci. Setaria italica plants submitted to five water deficit regimes were analyzed through a phenotypical approach, including growth, physiological, RNA-seq and sRNA-seq analyses. The results showed a progressive reduction in yield as a function of water deficit intensity associated with signaling pathway modulation and metabolic adjustments. We identified a group of loci that were consistently associated with drought responses, some of which were related to water deficit perception, signaling and regulation. Finally, an analysis of the transcriptome and sRNAome allowed us to identify genes putatively regulated by TE- and sRNA-related mechanisms and an intriguing positive correlation between transcript levels and sRNA accumulation in gene body regions. These findings shed light on the processes that allow S. italica to overcome drought and survive under water restrictive conditions.
Collapse
Affiliation(s)
- Vanessa Fuentes Suguiyama
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | | | | | - Bruno Silvestre Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luis Alejandro de Haro
- Departament of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - João Paulo Naldi Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Eduardo Leite Borba
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eduardo Purgatto
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Emerson Alves da Silva
- Instituto de Botânica da Secretaria do Meio Ambiente do Estado de São Paulo, São Paulo, SP, Brazil
| | - Nicolas Bellora
- Institute of Nuclear Technologies for Health (Intecnus), National Scientific and Technical Research Council (CONICET), 8400, Bariloche, Argentina
| | - Fernando Carrari
- Instituto de Agrobiotecnología Y Biología Molecular (IABIMO), CICVYA, INTA-CONICET, Hurlingham, Argentina
- Cátedra de Genética, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Danilo da Cruz Centeno
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Luisa Fernanda Bermúdez
- Instituto de Agrobiotecnología Y Biología Molecular (IABIMO), CICVYA, INTA-CONICET, Hurlingham, Argentina
- Cátedra de Genética, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Nathalia de Setta
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil.
| |
Collapse
|
50
|
Hickey K, Wood M, Sexton T, Sahin Y, Nazarov T, Fisher J, Sanguinet KA, Cousins A, Kirchhoff H, Smertenko A. Drought Tolerance Strategies and Autophagy in Resilient Wheat Genotypes. Cells 2022; 11:1765. [PMID: 35681460 PMCID: PMC9179661 DOI: 10.3390/cells11111765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 01/18/2023] Open
Abstract
Drought resiliency strategies combine developmental, physiological, cellular, and molecular mechanisms. Here, we compare drought responses in two resilient spring wheat (Triticum aestivum) genotypes: a well-studied drought-resilient Drysdale and a resilient genotype from the US Pacific North-West Hollis. While both genotypes utilize higher water use efficiency through the reduction of stomatal conductance, other mechanisms differ. First, Hollis deploys the drought escape mechanism to a greater extent than Drysdale by accelerating the flowering time and reducing root growth. Second, Drysdale uses physiological mechanisms such as non-photochemical quenching (NPQ) to dissipate the excess of harvested light energy and sustain higher Fv/Fm and ϕPSII, whereas Hollis maintains constant NPQ but lower Fv/Fm and ϕPSII values. Furthermore, more electron donors of the electron transport chain are in the oxidized state in Hollis than in Drysdale. Third, many ROS homeostasis parameters, including peroxisome abundance, transcription of peroxisome biogenesis genes PEX11 and CAT, catalase protein level, and enzymatic activity, are higher in Hollis than in Drysdale. Fourth, transcription of autophagy flux marker ATG8.4 is upregulated to a greater degree in Hollis than in Drysdale under drought, whereas relative ATG8 protein abundance under drought stress is lower in Hollis than in Drysdale. These data demonstrate the activation of autophagy in both genotypes and a greater autophagic flux in Hollis. In conclusion, wheat varieties utilize different drought tolerance mechanisms. Combining these mechanisms within one genotype offers a promising strategy to advance crop resiliency.
Collapse
Affiliation(s)
- Kahleen Hickey
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Magnus Wood
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Tom Sexton
- School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, WA 99164, USA; (T.S.); (A.C.)
| | - Yunus Sahin
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Taras Nazarov
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Jessica Fisher
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Karen A. Sanguinet
- Department of Crop and Soil Sciences, Washington State University, P.O. Box 646420, Pullman, WA 99164, USA;
| | - Asaph Cousins
- School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, WA 99164, USA; (T.S.); (A.C.)
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| |
Collapse
|