1
|
Quan R, Wang J, Qin H, Chen L, Xiao D, Zhao Z, Zhang Z, Zhu X, Li Z, Huang R. Improving grain yield and salt tolerance by optimizing plant height with beneficial haplotypes in rice (Oryza sativa). J Adv Res 2024:S2090-1232(24)00563-0. [PMID: 39674500 DOI: 10.1016/j.jare.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/21/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024] Open
Abstract
INTRODUCTION Rice (Oryza sativa L.), a staple food for billions worldwide, is challenged by salt stress. Owing to the limited understanding of the physiological and genetic basis of rice salt tolerance, few genes have been identified as valuable in rice breeding, causing a major bottleneck in the development of high-yield, salt-tolerant rice varieties. OBJECTIVE This study aims to identify salt tolerance genes/quantitative trait loci (QTLs) with breeding potential in rice. METHODS Field trials were conducted with 166 Chinese rice cultivars from saline-affected regions and 412 global rice accessions to assess salt tolerance. Genome-wide association study (GWAS) was performed to identify key loci related to high yield and salt tolerance. Additionally, the impact of introducing beneficial haplotypes on grain yield and salt tolerance was assessed. RESULTS The optimal rice plant height of 100-120 cm was crucial for sustaining high yield under both normal and salt stress conditions. GWAS revealed 6 novel QTLs/genes associated with rice plant growth and grain yield across various environments, distinct from previously recognized salt stress-related genes. Notably, the gene PHS10.1, encoding a serine/threonine protein kinase, may regulate carbon metabolism, starch and sucrose metabolism, influencing plant growth and grain yield. Certain haplotypes of the genes regulating plant height and grain yield, including SD1, Ghd7.1, GH3.5, and PHS10.1, were selected in traditional breeding. Moreover, optimizing plant height through the introgression of beneficial alleles of these genes increased grain yield in recipient lines under both normal and saline conditions. CONCLUSION We propose that utilizing beneficial haplotypes to optimize plant height can effectively balance the growth-stress trade-offs in rice plants. This represents a promising breeding strategy for the development of crop varieties that are both high-yielding and salt-tolerant.
Collapse
Affiliation(s)
- Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China.
| | - Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Hua Qin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Liang Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Dinglin Xiao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Zihan Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Zhanying Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiaoyang Zhu
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zichao Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China.
| |
Collapse
|
2
|
Zheng X, Peng Y, Qiao J, Henry R, Qian Q. Wild rice: unlocking the future of rice breeding. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3218-3226. [PMID: 39150344 PMCID: PMC11501002 DOI: 10.1111/pbi.14443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Germplasm resources serve as the foundations of advancements in breeding and are crucial for maintaining food security. Wild rice species of the genus Oryza include rich sources of genetic diversity and high adaptability, making them a substantial resource for rice breeding. The discovery of wild-type cytoplasmic male sterility resources enabled the achievement of the 'three lines' goal in hybrid rice, significantly increasing rice yields. The application of resistance alleles from wild rice enables rice production to withstand losses caused by stress. Reduced genetic diversity due to rice breeding poses a significant limitation to further advances and can be alleviated through a systematic use of wild genetic resources that integrate geographic, climatic and environmental data of the original habitat, along with extensive germplasm collection and identification using advanced methods. Leveraging technological advancements in plant genomics, the understanding of genetic mechanisms and the application of artificial intelligence and gene editing can further enhance the efficiency and accuracy of this process. These advancements facilitate rapid isolation and functional studies of genes, and precise genome manipulation. This review systematically summarizes the utilization of superior genes and germplasm resources derived from wild rice sources, while also exploring the collection, conservation, identification and utilization of further wild rice germplasm resources. A focus on genome sequencing and biotechnology developments is leading to new breeding and biotechnology opportunities. These new opportunities will not only promote the development of rice varieties that exhibit high yields, superior stress resistance and high quality but also expand the genetic diversity among rice cultivars.
Collapse
Affiliation(s)
- Xiaoming Zheng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
- Sanya National Research Institute of Breeding in HainanChinese Academy of Agricultural SciencesBeijingChina
- International Rice Research InstituteMetro ManilaPhilippines
| | | | | | - Robert Henry
- University of QueenslandBrisbaneQueenslandAustralia
| | - Qian Qian
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
- Sanya National Research Institute of Breeding in HainanChinese Academy of Agricultural SciencesBeijingChina
- Yazhouwan National LaboratorySanyaChina
| |
Collapse
|
3
|
Zhou Y, Feng C, Wang Y, Yun C, Zou X, Cheng N, Zhang W, Jing Y, Li H. Understanding of Plant Salt Tolerance Mechanisms and Application to Molecular Breeding. Int J Mol Sci 2024; 25:10940. [PMID: 39456729 PMCID: PMC11507592 DOI: 10.3390/ijms252010940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Soil salinization is a widespread hindrance that endangers agricultural production and ecological security. High salt concentrations in saline soils are primarily caused by osmotic stress, ionic toxicity and oxidative stress, which have a negative impact on plant growth and development. In order to withstand salt stress, plants have developed a series of complicated physiological and molecular mechanisms, encompassing adaptive changes in the structure and function of various plant organs, as well as the intricate signal transduction networks enabling plants to survive in high-salinity environments. This review summarizes the recent advances in salt perception under different tissues, physiological responses and signaling regulations of plant tolerance to salt stress. We also examine the current knowledge of strategies for breeding salt-tolerant plants, including the applications of omics technologies and transgenic approaches, aiming to provide the basis for the cultivation of salt-tolerant crops through molecular breeding. Finally, future research on the application of wild germplasm resources and muti-omics technologies to discover new tolerant genes as well as investigation of crosstalk among plant hormone signaling pathways to uncover plant salt tolerance mechanisms are also discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yan Jing
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.Z.); (C.F.); (Y.W.); (C.Y.); (X.Z.); (N.C.); (W.Z.)
| | - Haiyan Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.Z.); (C.F.); (Y.W.); (C.Y.); (X.Z.); (N.C.); (W.Z.)
| |
Collapse
|
4
|
Khunsanit P, Jitsamai N, Thongsima N, Chadchawan S, Pongpanich M, Henry IM, Comai L, Suriya-Arunroj D, Budjun I, Buaboocha T. QTL-Seq identified a genomic region on chromosome 1 for soil-salinity tolerance in F 2 progeny of Thai salt-tolerant rice donor line "Jao Khao". FRONTIERS IN PLANT SCIENCE 2024; 15:1424689. [PMID: 39258300 PMCID: PMC11385611 DOI: 10.3389/fpls.2024.1424689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/22/2024] [Indexed: 09/12/2024]
Abstract
Introduction Owing to advances in high-throughput genome sequencing, QTL-Seq mapping of salt tolerance traits is a major platform for identifying soil-salinity tolerance QTLs to accelerate marker-assisted selection for salt-tolerant rice varieties. We performed QTL-BSA-Seq in the seedling stage of rice from a genetic cross of the extreme salt-sensitive variety, IR29, and "Jao Khao" (JK), a Thai salt-tolerant variety. Methods A total of 462 F2 progeny grown in soil and treated with 160 mM NaCl were used as the QTL mapping population. Two high- and low-bulk sets, based on cell membrane stability (CMS) and tiller number at the recovery stage (TN), were equally sampled. The genomes of each pool were sequenced, and statistical significance of QTL was calculated using QTLseq and G prime (G') analysis, which is based on calculating the allele frequency differences or Δ(SNP index). Results Both methods detected the overlapping interval region, wherein CMS-bulk was mapped at two loci in the 38.41-38.85 Mb region with 336 SNPs on chromosome 1 (qCMS1) and the 26.13-26.80 Mb region with 1,011 SNPs on chromosome 3 (qCMS3); the Δ(SNP index) peaks were -0.2709 and 0.3127, respectively. TN-bulk was mapped at only one locus in the overlapping 38.26-38.95 Mb region on chromosome 1 with 575 SNPs (qTN1) and a Δ(SNP index) peak of -0.3544. These identified QTLs in two different genetic backgrounds of segregating populations derived from JK were validated. The results confirmed the colocalization of the qCMS1 and qTN1 traits on chromosome 1. Based on the CMS trait, qCMS1/qTN1 stably expressed 6%-18% of the phenotypic variance in the two validation populations, while qCMS1/qTN1 accounted for 16%-20% of the phenotypic variance in one validation population based on the TN trait. Conclusion The findings confirm that the CMS and TN traits are tightly linked to the long arm of chromosome 1 rather than to chromosome 3. The validated qCMS-TN1 QTL can be used for gene/QTL pyramiding in marker-assisted selection to expedite breeding for salt resistance in rice at the seedling stage.
Collapse
Affiliation(s)
- Prasit Khunsanit
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Navarit Jitsamai
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Nattana Thongsima
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Monnat Pongpanich
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Isabelle M Henry
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, United States
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, United States
| | | | - Itsarapong Budjun
- Rice Department, Ministry of Agriculture and Cooperation, Bangkok, Thailand
| | - Teerapong Buaboocha
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Padmavathi G, Bangale U, Rao K, Balakrishnan D, Arun M, Singh RK, Sundaram RM. Progress and prospects in harnessing wild relatives for genetic enhancement of salt tolerance in rice. FRONTIERS IN PLANT SCIENCE 2024; 14:1253726. [PMID: 38371332 PMCID: PMC10870985 DOI: 10.3389/fpls.2023.1253726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/13/2023] [Indexed: 02/20/2024]
Abstract
Salt stress is the second most devastating abiotic stress after drought and limits rice production globally. Genetic enhancement of salinity tolerance is a promising and cost-effective approach to achieve yield gains in salt-affected areas. Breeding for salinity tolerance is challenging because of the genetic complexity of the response of rice plants to salt stress, as it is governed by minor genes with low heritability and high G × E interactions. The involvement of numerous physiological and biochemical factors further complicates this complexity. The intensive selection and breeding efforts targeted towards the improvement of yield in the green-revolution era inadvertently resulted in the gradual disappearance of the loci governing salinity tolerance and a significant reduction in genetic variability among cultivars. The limited utilization of genetic resources and narrow genetic base of improved cultivars have resulted in a plateau in response to salinity tolerance in modern cultivars. Wild species are an excellent genetic resource for broadening the genetic base of domesticated rice. Exploiting novel genes of underutilized wild rice relatives to restore salinity tolerance loci eliminated during domestication can result in significant genetic gain in rice cultivars. Wild species of rice, Oryza rufipogon and Oryza nivara, have been harnessed in the development of a few improved rice varieties like Jarava and Chinsura Nona 2. Furthermore, increased access to sequence information and enhanced knowledge about the genomics of salinity tolerance in wild relatives has provided an opportunity for the deployment of wild rice accessions in breeding programs, while overcoming the cross-incompatibility and linkage drag barriers witnessed in wild hybridization. Pre-breeding is another avenue for building material that are ready for utilization in breeding programs. Efforts should be directed towards systematic collection, evaluation, characterization, and deciphering salt tolerance mechanisms in wild rice introgression lines and deploying untapped novel loci to improve salinity tolerance in rice cultivars. This review highlights the potential of wild relatives of Oryza to enhance tolerance to salinity, track the progress of work, and provide a perspective for future research.
Collapse
Affiliation(s)
- Guntupalli Padmavathi
- Crop Improvement Section, Plant Breeding, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| | - Umakanth Bangale
- Crop Improvement Section, Plant Breeding, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| | - K. Nagendra Rao
- Genetics and Plant Breeding, Sugarcane Research Station, Vuyyuru, India
| | - Divya Balakrishnan
- Crop Improvement Section, Plant Breeding, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| | - Melekote Nagabhushan Arun
- Crop Production Section, Agronomy, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| | - Rakesh Kumar Singh
- Crop Diversification and Genetics Section, International Center for Biosaline Agriculture (ICBA), Dubai, United Arab Emirates
| | - Raman Meenakshi Sundaram
- Crop Improvement Section, Plant Breeding, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| |
Collapse
|
6
|
Yao Q, Zheng X, Zhou G, Zhang J. SGR-YOLO: a method for detecting seed germination rate in wild rice. FRONTIERS IN PLANT SCIENCE 2024; 14:1305081. [PMID: 38322421 PMCID: PMC10844399 DOI: 10.3389/fpls.2023.1305081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/26/2023] [Indexed: 02/08/2024]
Abstract
Seed germination rate is one of the important indicators in measuring seed quality and seed germination ability, and it is also an important basis for evaluating the growth potential and planting effect of seeds. In order to detect seed germination rates more efficiently and achieve automated detection, this study focuses on wild rice as the research subject. A novel method for detecting wild rice germination rates is introduced, leveraging the SGR-YOLO model through deep learning techniques. The SGR-YOLO model incorporates the convolutional block attention module (efficient channel attention (ECA)) in the Backbone, adopts the structure of bi-directional feature pyramid network (BiFPN) in the Neck part, adopts the generalized intersection over union (GIOU) function as the loss function in the Prediction part, and adopts the GIOU function as the loss function by setting the weighting coefficient to accelerate the detection of the seed germination rate. In the Prediction part, the GIOU function is used as the loss function to accelerate the learning of high-confidence targets by setting the weight coefficients to further improve the detection accuracy of seed germination rate. The results showed that the accuracy of the SGR-YOLO model for wild rice seed germination discrimination was 94% for the hydroponic box and 98.2% for the Petri dish. The errors of germination potential, germination index, and average germination days detected by SGR-YOLO using the manual statistics were 0.4%, 2.2, and 0.9 days, respectively, in the hydroponic box and 0.5%, 0.5, and 0.24 days, respectively, in the Petri dish. The above results showed that the SGR-YOLO model can realize the rapid detection of germination rate, germination potential, germination index, and average germination days of wild rice seeds, which can provide a reference for the rapid detection of crop seed germination rate.
Collapse
Affiliation(s)
- Qiong Yao
- College of Agriculture, Henan University, Zhengzhou, China
- National Academy of Southern Breeding, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Xiaoming Zheng
- National Academy of Southern Breeding, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Guomin Zhou
- National Academy of Southern Breeding, Chinese Academy of Agricultural Sciences, Sanya, China
- Agricultural Information Institute of Chinese Academy of Agricultural Sciences/National Agricultural Science Data Center, Beijing, China
| | - Jianhua Zhang
- National Academy of Southern Breeding, Chinese Academy of Agricultural Sciences, Sanya, China
- Agricultural Information Institute of Chinese Academy of Agricultural Sciences/National Agricultural Science Data Center, Beijing, China
| |
Collapse
|
7
|
Gao Q, Yin X, Wang F, Zhang C, Xiao F, Wang H, Hu S, Liu W, Zhou S, Chen L, Dai X, Liang M. Jacalin-related lectin 45 (OsJRL45) isolated from 'sea rice 86' enhances rice salt tolerance at the seedling and reproductive stages. BMC PLANT BIOLOGY 2023; 23:553. [PMID: 37940897 PMCID: PMC10634080 DOI: 10.1186/s12870-023-04533-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the most widely cultivated grain crops in the world that meets the caloric needs of more than half the world's population. Salt stress seriously affects rice production and threatens food security. Therefore, mining salt tolerance genes in salt-tolerant germplasm and elucidating their molecular mechanisms in rice are necessary for the breeding of salt tolerant cultivars. RESULTS In this study, a salt stress-responsive jacalin-related lectin (JRL) family gene, OsJRL45, was identified in the salt-tolerant rice variety 'sea rice 86' (SR86). OsJRL45 showed high expression level in leaves, and the corresponding protein mainly localized to the endoplasmic reticulum. The knockout mutant and overexpression lines of OsJRL45 revealed that OsJRL45 positively regulates the salt tolerance of rice plants at all growth stages. Compared with the wild type (WT), the OsJRL45 overexpression lines showed greater salt tolerance at the reproductive stage, and significantly higher seed setting rate and 1,000-grain weight. Moreover, OsJRL45 expression significantly improved the salt-resistant ability and yield of a salt-sensitive indica cultivar, L6-23. Furthermore, OsJRL45 enhanced the antioxidant capacity of rice plants and facilitated the maintenance of Na+-K+ homeostasis under salt stress conditions. Five proteins associated with OsJRL45 were screened by transcriptome and interaction network analysis, of which one, the transmembrane transporter Os10g0210500 affects the salt tolerance of rice by regulating ion transport-, salt stress-, and hormone-responsive proteins. CONCLUSIONS The OsJRL45 gene isolated from SR86 positively regulated the salt tolerance of rice plants at all growth stages, and significantly increased the yield of salt-sensitive rice cultivar under NaCl treatment. OsJRL45 increased the activity of antioxidant enzyme of rice and regulated Na+/K+ dynamic equilibrium under salinity conditions. Our data suggest that OsJRL45 may improve the salt tolerance of rice by mediating the expression of ion transport-, salt stress response-, and hormone response-related genes.
Collapse
Affiliation(s)
- Qinmei Gao
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, China
| | - Xiaolin Yin
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Feng Wang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Congzhi Zhang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Feicui Xiao
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hongyan Wang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Shuchang Hu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Weihao Liu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Shiqi Zhou
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Liangbi Chen
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xiaojun Dai
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Manzhong Liang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
8
|
Li P, Li Z, Liu X, Zhang H, Zhang S, Liu F, Li N, Yang Y, Xie K, Ding H, Yao F. Haplotype analysis and marker development of five salt-tolerant-related genes in rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1259462. [PMID: 37727858 PMCID: PMC10505798 DOI: 10.3389/fpls.2023.1259462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/10/2023] [Indexed: 09/21/2023]
Abstract
Salinity stress is a great threat to the growth and productivity of crops, and development of salt-tolerant crops is of great necessity to ensure food security. Although a few genes with natural variations that confer salt tolerance at germination and seedling stage in rice have been cloned, effective intragenic markers for these genes are awaited to be developed, which hinder the use of these genes in genetic improvement of salt tolerance in rice. In this study, we first performed haplotype analysis of five rice salt-tolerant-related genes using 38 rice accessions with reference genome and 4,726 rice germplasm accessions with imputed genotypes and classified main haplotype groups and haplotypes. Subsequently, we identified unique variations for elite haplotypes reported in previous studies and developed 11 effective intragenic makers. Finally, we conducted genotyping of 533 of the 4,726 rice accessions from worldwide and 70 approved temperate geng/japonica cultivars in China using the developed markers. These results could provide effective donors and markers of salt-tolerant-related genes and thus could be of great use in genetic improvement of salt tolerance in rice.
Collapse
Affiliation(s)
- Pingbo Li
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhen Li
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xu Liu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hua Zhang
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shuyong Zhang
- Agriculture and Rural Affairs Bureau of Yutai County, Jining, China
| | - Fang Liu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Nana Li
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yongyi Yang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Kun Xie
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hanfeng Ding
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fangyin Yao
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
9
|
Reyes VP. Fantastic genes: where and how to find them? Exploiting rice genetic resources for the improvement of yield, tolerance, and resistance to a wide array of stresses in rice. Funct Integr Genomics 2023; 23:238. [PMID: 37439874 DOI: 10.1007/s10142-023-01159-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
Rice production is a critical component of global food security. To date, rice is grown in over 100 countries and is the primary source of food for more than 3 billion people. Despite its importance, rice production is facing numerous challenges that threaten its future viability. One of the primary problems is the advent of climate change. The changing climatic conditions greatly affect the growth and productivity of rice crop and the quality of rice yield. Similarly, biotic stresses brought about by pathogen and pest infestations are greatly affecting the productivity of rice. To address these issues, the utilization of rice genetic resources is necessary to map, identify, and understand the genetics of important agronomic traits. This review paper highlights the role of rice genetic resources for developing high-yielding and stress-tolerant rice varieties. The integration of genetic, genomic, and phenomic tools in rice breeding programs has led to the development of high-yielding and stress-tolerant rice varieties. The collaboration of multidisciplinary teams of experts, sustainable farming practices, and extension services for farmers is essential for accelerating the development of high-yielding and stress-tolerant rice varieties.
Collapse
|
10
|
Zhang G, Bi Z, Jiang J, Lu J, Li K, Bai D, Wang X, Zhao X, Li M, Zhao X, Wang W, Xu J, Li Z, Zhang F, Shi Y. Genome-wide association and epistasis studies reveal the genetic basis of saline-alkali tolerance at the germination stage in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1170641. [PMID: 37251777 PMCID: PMC10213895 DOI: 10.3389/fpls.2023.1170641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/10/2023] [Indexed: 05/31/2023]
Abstract
Introduction Saline-alkali stress is one of the main abiotic factors limiting rice production worldwide. With the widespread use of rice direct seeding technology, it has become increasingly important to improve rice saline-alkali tolerance at the germination stage. Methods To understand the genetic basis of saline-alkali tolerance and facilitate breeding efforts for developing saline-alkali tolerant rice varieties, the genetic basis of rice saline-alkali tolerance was dissected by phenotyping seven germination-related traits of 736 diverse rice accessions under the saline-alkali stress and control conditions using genome-wide association and epistasis analysis (GWAES). Results Totally, 165 main-effect quantitative trait nucleotides (QTNs) and 124 additional epistatic QTNs were identified as significantly associated with saline-alkali tolerance, which explained a significant portion of the total phenotypic variation of the saline-alkali tolerance traits in the 736 rice accessions. Most of these QTNs were located in genomic regions either harboring saline-alkali tolerance QTNs or known genes for saline-alkali tolerance reported previously. Epistasis as an important genetic basis of rice saline-alkali tolerance was validated by genomic best linear unbiased prediction in which inclusion of both main-effect and epistatic QTNs showed a consistently better prediction accuracy than either main-effect or epistatic QTNs alone. Candidate genes for two pairs of important epistatic QTNs were suggested based on combined evidence from the high-resolution mapping plus their reported molecular functions. The first pair included a glycosyltransferase gene LOC_Os02g51900 (UGT85E1) and an E3 ligase gene LOC_Os04g01490 (OsSIRP4), while the second pair comprised an ethylene-responsive transcriptional factor, AP59 (LOC_Os02g43790), and a Bcl-2-associated athanogene gene, OsBAG1 (LOC_Os09g35630) for salt tolerance. Detailed haplotype analyses at both gene promoter and CDS regions of these candidate genes for important QTNs identified favorable haplotype combinations with large effects on saline-alkali tolerance, which can be used to improve rice saline-alkali tolerance by selective introgression. Discussion Our findings provided saline-alkali tolerant germplasm resources and valuable genetic information to be used in future functional genomic and breeding efforts of rice saline-alkali tolerance at the germination stage.
Collapse
Affiliation(s)
- Guogen Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyuan Bi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Jiang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingbing Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Keyang Li
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Di Bai
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Xinchen Wang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Xueyu Zhao
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Min Li
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiuqin Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhikang Li
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Yingyao Shi
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
11
|
Rathnasamy SA, Kambale R, Elangovan A, Mohanavel W, Shanmugavel P, Ramasamy G, Alagarsamy S, Marimuthu R, Rajagopalan VR, Manickam S, Ramanathan V, Muthurajan R, Vellingiri G. Altering Stomatal Density for Manipulating Transpiration and Photosynthetic Traits in Rice through CRISPR/Cas9 Mutagenesis. Curr Issues Mol Biol 2023; 45:3801-3814. [PMID: 37232714 DOI: 10.3390/cimb45050245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/12/2023] [Accepted: 02/28/2023] [Indexed: 05/27/2023] Open
Abstract
Stomata regulates conductance, transpiration and photosynthetic traits in plants. Increased stomatal density may contribute to enhanced water loss and thereby help improve the transpirational cooling process and mitigate the high temperature-induced yield losses. However, genetic manipulation of stomatal traits through conventional breeding still remains a challenge due to problems involved in phenotyping and the lack of suitable genetic materials. Recent advances in functional genomics in rice identified major effect genes determining stomatal traits, including its number and size. Widespread applications of CRISPR/Cas9 in creating targeted mutations paved the way for fine tuning the stomatal traits for enhancing climate resilience in crops. In the current study, attempts were made to create novel alleles of OsEPF1 (Epidermal Patterning Factor), a negative regulator of stomatal frequency/density in a popular rice variety, ASD 16, using the CRISPR/Cas9 approach. Evaluation of 17 T0 progenies identified varying mutations (seven multiallelic, seven biallelic and three monoallelic mutations). T0 mutant lines showed a 3.7-44.3% increase in the stomatal density, and all the mutations were successfully inherited into the T1 generation. Evaluation of T1 progenies through sequencing identified three homozygous mutants for one bp insertion. Overall, T1 plants showed 54-95% increased stomatal density. The homozygous T1 lines (# E1-1-4, # E1-1-9 and # E1-1-11) showed significant increase in the stomatal conductance (60-65%), photosynthetic rate (14-31%) and the transpiration rate (58-62%) compared to the nontransgenic ASD 16. Results demonstrated that the genetic alterations in OsEPF1 altered the stomatal density, stomatal conductance and photosynthetic efficiency in rice. Further experiments are needed to associate this technology with canopy cooling and high temperature tolerance.
Collapse
Affiliation(s)
- Sakthi Ambothi Rathnasamy
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Rohit Kambale
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Allimuthu Elangovan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Williams Mohanavel
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Priyanka Shanmugavel
- Agro-Climatology Research Centre, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Gowtham Ramasamy
- Agro-Climatology Research Centre, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Senthil Alagarsamy
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Rajavel Marimuthu
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Veera Ranjani Rajagopalan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Sudha Manickam
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | | | - Raveendran Muthurajan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Geethalakshmi Vellingiri
- Agro-Climatology Research Centre, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| |
Collapse
|
12
|
Shen R, Yao Q, Zhong D, Zhang X, Li X, Cao X, Dong C, Tian Y, Zhu JK, Lu Y. Targeted insertion of regulatory elements enables translational enhancement in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1134209. [PMID: 37063194 PMCID: PMC10102426 DOI: 10.3389/fpls.2023.1134209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
In-locus editing of agronomically-important genes to optimize their spatiotemporal expression is becoming an important breeding approach. Compared to intensive studies on mRNA transcription, manipulating protein translation by genome editing has not been well exploited. Here, we found that precise knock-in of a regulating element into the 5'UTR of a target gene could efficiently increase its protein abundance in rice. We firstly screened a translational enhancer (AMVE) from alfalfa mosaic virus using protoplast-based luciferase assays with an 8.5-folds enhancement. Then the chemically modified donor of AMVE was synthesized and targeted inserted into the 5'UTRs of two genes (WRKY71 and SKC1) using CRISPR/Cas9. Following the in-locus AMVE knock-in, we observed up to a 2.8-fold increase in the amount of WRKY71 protein. Notably, editing of SKC1, a sodium transporter, significantly increased salt tolerance in T2 seedlings, indicating the expected regulation of AMVE knock-in. These data demonstrated the feasibility of such in-locus editing to enhance protein expression, providing a new approach to manipulating protein translation for crop breeding.
Collapse
Affiliation(s)
- Rundong Shen
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Advanced Bioindustry Technologies, and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
| | - Qi Yao
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Dating Zhong
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuening Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinbo Li
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Advanced Bioindustry Technologies, and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
| | - Xuesong Cao
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chao Dong
- Center for Advanced Bioindustry Technologies, and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
| | - Yifu Tian
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Advanced Bioindustry Technologies, and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
| | - Jian-Kang Zhu
- Center for Advanced Bioindustry Technologies, and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Advanced Biotechnology, and School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuming Lu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Lopez AJ, Narvaez-Ortiz HY, Rincon-Benavides MA, Pulido DC, Fuentes Suarez LE, Zimmermann BH. New Insights into rice pyrimidine catabolic enzymes. FRONTIERS IN PLANT SCIENCE 2023; 14:1079778. [PMID: 36818891 PMCID: PMC9930899 DOI: 10.3389/fpls.2023.1079778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Rice is a primary global food source, and its production is affected by abiotic stress, caused by climate change and other factors. Recently, the pyrimidine reductive catabolic pathway, catalyzed by dihydropyrimidine dehydrogenase (DHPD), dihydropyrimidinase (DHP) and β-ureidopropionase (β-UP), has emerged as a potential participant in the abiotic stress response of rice. METHODS The rice enzymes were produced as recombinant proteins, and two were kinetically characterized. Rice dihydroorotate dehydrogenase (DHODH), an enzyme of pyrimidine biosynthesis often confused with DHPD, was also characterized. Salt-sensitive and salt-resistant rice seedlings were subjected to salt stress (24 h) and metabolites in leaves were determined by mass spectrometry. RESULTS The OsDHPD sequence was homologous to the C-terminal half of mammalian DHPD, conserving FMN and uracil binding sites, but lacked sites for Fe/S clusters, FAD, and NADPH. OsDHPD, truncated to eliminate the chloroplast targeting peptide, was soluble, but inactive. Database searches for polypeptides homologous to the N-terminal half of mammalian DHPD, that could act as co-reductants, were unsuccessful. OsDHODH exhibited kinetic parameters similar to those of other plant DHODHs. OsDHP, truncated to remove a signal sequence, exhibited a kcat/Km = 3.6 x 103 s-1M-1. Osb-UP exhibited a kcat/Km = 1.8 x 104 s-1M-1. Short-term salt exposure caused insignificant differences in the levels of the ureide intermediates dihydrouracil and ureidopropionate in leaves of salt-sensitive and salt-resistant plants. Allantoin, a ureide metabolite of purine catabolism, was found to be significantly higher in the resistant cultivar compared to one of the sensitive cultivars. DISCUSSION OsDHP, the first plant enzyme to be characterized, showed low kinetic efficiency, but its activity may have been affected by truncation. Osb-UP exhibited kinetic parameters in the range of enzymes of secondary metabolism. Levels of two pathway metabolites were similar in sensitive and resistant cultivars and appeared to be unaffected by short-term salt exposure."
Collapse
|
14
|
Jayabalan S, Rajakani R, Kumari K, Pulipati S, Hariharan RVG, Venkatesan SD, Jaganathan D, Kancharla PK, Raju K, Venkataraman G. Morpho-physiological, biochemical and molecular characterization of coastal rice landraces to identify novel genetic sources of salinity tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 187:50-66. [PMID: 35952550 DOI: 10.1016/j.plaphy.2022.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/01/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Soil salinity is a leading cause for yield losses in rice, affecting nearly 6% of global rice cultivable area. India is host to a rich diversity of coastal rice landraces that are naturally tolerant to salinity and an untapped source to identify novel determinants of salinity tolerance. In the present study, we have assessed the relative salinity tolerance of 43 previously genotyped rice landraces at seedling stage, using thirteen morpho-physiological and biochemical parameters using a hydroponics system. Among 43 rice varieties, 25 were tolerant, 15 were moderately tolerant, 1 was moderately susceptible and 2 sensitive checks were found to be highly susceptible based on standard salinity scoring methods. In addition to previously known saline tolerant genotypes (Pokkali, FL478 and Nona Bokra), the present study has novel genotypes such as Katrangi, Orkyma, Aduisen 1, Orumundakan 1, Hoogla, and Talmugur 2 as potential sources of salinity tolerance through measurement of morpho-physiological and biochemical parameters including Na+, K+ estimations and Na+/K+ ratios. Further, Pallipuram Pokkali may be an important source of the tissue tolerance trait under salinity. Four marker trait associations (RM455-root Na+; RM161-shoot and root Na+/K+ ratios; RM237-salinity tolerance index) accounted for phenotypic variations in the range of 20.97-39.82%. A significant increase in root endodermal and exodermal suberization was observed in selected rice landraces under salinity. For the first time, variation in the number of suberized sclerenchymatous layers as well as passage cells is reported, in addition to expression level changes in suberin biosynthetic genes (CYP86A2, CYP81B1, CYP86A8 and PERL).
Collapse
Affiliation(s)
- Shilpha Jayabalan
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Taramani, Chennai, 600113, Tamil Nadu, India; Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Raja Rajakani
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Taramani, Chennai, 600113, Tamil Nadu, India
| | - Kumkum Kumari
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Taramani, Chennai, 600113, Tamil Nadu, India
| | - Shalini Pulipati
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Taramani, Chennai, 600113, Tamil Nadu, India
| | - Raj V Ganesh Hariharan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, 603203, Tamil Nadu, India
| | - Sowmiya Devi Venkatesan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, 603203, Tamil Nadu, India
| | - Deepa Jaganathan
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Taramani, Chennai, 600113, Tamil Nadu, India; Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Pavan Kumar Kancharla
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Kalaimani Raju
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Taramani, Chennai, 600113, Tamil Nadu, India
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Taramani, Chennai, 600113, Tamil Nadu, India.
| |
Collapse
|
15
|
Rekha G, Abhilash Kumar V, Gokulan CG, Koushik MBVN, Laxmi Prasanna B, Kulkarni S, Aleena D, Harika G, Hajira SK, Pranathi K, Punniakoti E, Kale RR, Dilip Kumar T, Ayyappa D, Anila M, Sinha P, Manohara KK, Padmavathi G, Subba Rao LV, Laha GS, Srinivas Prasad MS, Fiyaz RA, Suneetha K, Balachandran SM, Patel HK, Sonti RV, Senguttuvel P, Sundaram RM. DRR Dhan 58, a Seedling Stage Salinity Tolerant NIL of Improved Samba Mahsuri Shows Superior Performance in Multi-location Trials. RICE (NEW YORK, N.Y.) 2022; 15:45. [PMID: 35976520 PMCID: PMC9385912 DOI: 10.1186/s12284-022-00591-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Improved Samba Mahsuri (ISM) is an elite, high-yielding, bacterial blight resistant, fine-grained rice variety with low glycaemic index. It is highly sensitive to salt stress, particularly at seedling stage, which significantly reduces its yield potential in coastal areas. A salinity tolerant QTL, Saltol, associated with seedling stage tolerance was previously mapped on chromosome 1 (10.6-11.5 Mb) from the Indian landrace, Pokkali and is effective in different genetic backgrounds. The objective of this study was to enhance salinity tolerance of ISM by incorporating the Saltol QTL through marker-assisted backcross breeding using the breeding line, FL478 (Pokkali/IR29). RESULTS Foreground selection was carried out at each generation using five Saltol-specific markers and three bacterial blight resistance genes, Xa21, xa13 and xa5. Background selection was conducted using 66 well distributed polymorphic SSR markers and at the BC3F2 generation, a single plant with maximum recurrent parent genome recovery (95.3%) was identified and advanced to the BC3F4 generation. Based on bacterial blight resistance, seedling stage salinity tolerance and resemblance to ISM, four advanced breeding lines were selected for testing in replicated experiments near Hyderabad, India. A promising near-isogenic line, DRR Dhan 58, was evaluated in multi-location trials-coastal salinity and it showed significant salinity tolerance, resistance to bacterial blight disease, high yield and excellent grain quality during the 2019 and 2020 trials. DRR Dhan 58 was 95.1% similar to ISM based on genotyping with the 90 K SNP chip. Whole genome resequencing analysis of Pokkali and FL478 which were salinity tolerant checks, ISM and DRR Dhan 58 showed a high degree of relatedness with respect to the candidate gene loci for Saltol and OsSKC1 (Shoot K+ Concentration 1). CONCLUSION DRR Dhan 58, possessing Saltol and three bacterial blight resistance genes (Xa21, xa13 and xa5) in the genetic background of the Indian mega-variety of rice, Samba Mahsuri, was developed for potential cultivation in areas prone to seedling stage salinity, as well as areas with endemic bacterial blight disease. This entry had a 24% yield advantage over the recurrent parent ISM under coastal saline conditions in multi-location trials and was recently released for commercial cultivation in India.
Collapse
Affiliation(s)
- G Rekha
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - V Abhilash Kumar
- Rallis India Limited, Seeds/Biotech R&D Division, Bangalore, India
| | - C G Gokulan
- Crop Improvement Section, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - M B V N Koushik
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | | | - Swapnil Kulkarni
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - D Aleena
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - G Harika
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - S K Hajira
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - K Pranathi
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - E Punniakoti
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - R R Kale
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - T Dilip Kumar
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - D Ayyappa
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - M Anila
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - Pragya Sinha
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - K K Manohara
- Genetics and Plant Breeding, ICAR- Central Coastal Agricultural Research Institute, Ella, Goa, India
| | - G Padmavathi
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - L V Subba Rao
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - G S Laha
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - M S Srinivas Prasad
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - R A Fiyaz
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - K Suneetha
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - S M Balachandran
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - Hitendra Kumar Patel
- Crop Improvement Section, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Ramesh V Sonti
- Crop Improvement Section, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - P Senguttuvel
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - R M Sundaram
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India.
| |
Collapse
|
16
|
Blanco Pastor JL. Alternative modes of introgression-mediated selection shaped crop adaptation to novel climates. Genome Biol Evol 2022; 14:6647590. [PMID: 35859297 PMCID: PMC9348624 DOI: 10.1093/gbe/evac107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Recent plant genomic studies provide fine-grained details on the evolutionary consequences of adaptive introgression during crop domestication. Modern genomic approaches and analytical methods now make it possible to better separate the introgression signal from the demographic signal thus providing a more comprehensive and complex picture of the role of introgression in local adaptation. Adaptive introgression has been fundamental for crop expansion and has involved complex patterns of gene flow. In addition to providing new and more favorable alleles of large effect, introgression during the early stages of domestication also increased allelic diversity at adaptive loci. Previous studies have largely underestimated the effect of such increased diversity following introgression. Recent genomic studies in wheat, potato, maize, grapevine, and ryegrass show that introgression of multiple genes, of as yet unknown effect, increased the effectiveness of purifying selection, and promoted disruptive or fluctuating selection in early cultivars and landraces. Historical selection processes associated with introgression from crop wild relatives provide an instructive analog for adaptation to current climate change and offer new avenues for crop breeding research that are expected to be instrumental for strengthening food security in the coming years.
Collapse
|
17
|
Thummala SR, Guttikonda H, Tiwari S, Ramanan R, Baisakh N, Neelamraju S, Mangrauthia SK. Whole-Genome Sequencing of KMR3 and Oryza rufipogon-Derived Introgression Line IL50-13 (Chinsurah Nona 2/Gosaba 6) Identifies Candidate Genes for High Yield and Salinity Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:810373. [PMID: 35712577 PMCID: PMC9197125 DOI: 10.3389/fpls.2022.810373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
The genomes of an elite rice restorer line KMR3 (salinity-sensitive) and its salinity-tolerant introgression line IL50-13, a popular variety of coastal West Bengal, India, were sequenced. High-quality paired-end reads were obtained for KMR3 (147.6 million) and IL50-13 (131.4 million) with a sequencing coverage of 30X-39X. Scaffolds generated from the pre-assembled contigs of each sequenced genome were mapped separately onto the reference genome of Oryza sativa ssp. japonica cultivar Nipponbare to identify genomic variants in terms of SNPs and InDels. The SNPs and InDels identified for KMR3 and IL50-13 were then compared with each other to identify polymorphic SNPs and InDels unique and common to both the genomes. Functional enrichment analysis of the protein-coding genes with unique InDels identified GO terms involved in protein modification, ubiquitination, deubiquitination, peroxidase activity, and antioxidant activity in IL50-13. Linoleic acid metabolism, circadian rhythm, and alpha-linolenic acid metabolism pathways were enriched in IL50-13. These GO terms and pathways are involved in reducing oxidative damage, thus suggesting their role in stress responses. Sequence analysis of QTL markers or genes known to be associated with grain yield and salinity tolerance showed polymorphism in 20 genes, out of which nine were not previously reported. These candidate genes encoded Nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 (NB-ARC) domain-containing protein, cyclase, receptor-like kinase, topoisomerase II-associated protein PAT1 domain-containing protein, ion channel regulatory protein, UNC-93 domain-containing protein, subunit A of the heteromeric ATP-citrate lyase, and three conserved hypothetical genes. Polymorphism was observed in the coding, intron, and untranslated regions of the genes on chromosomes 1, 2, 4, 7, 11, and 12. Genes showing polymorphism between the two genomes were considered as sequence-based new candidates derived from Oryza rufipogon for conferring high yield and salinity tolerance in IL50-13 for further functional studies.
Collapse
Affiliation(s)
| | | | - Shrish Tiwari
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | | | - Niranjan Baisakh
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | | | | |
Collapse
|
18
|
Ding G, Hu B, Zhou Y, Yang W, Zhao M, Xie J, Zhang F. Development and Characterization of Chromosome Segment Substitution Lines Derived from Oryza rufipogon in the Background of the Oryza sativa indica Restorer Line R974. Genes (Basel) 2022; 13:genes13050735. [PMID: 35627119 PMCID: PMC9140843 DOI: 10.3390/genes13050735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Dongxiang wild rice (DXWR) (O. rufipogon Griff.), which has the northernmost worldwide distribution of a wild rice species, is a valuable genetic resource with respect to improving stress tolerance in cultivated rice (Oryza sativa L.). In the three-line hybrid rice breeding system, restorer lines play important roles in enhancing the tolerance of hybrid rice. However, restorer lines have yet to be used as a genomic background for development of substitution lines carrying DXWR chromosome segments. We developed a set of 84 chromosome segment substitution lines (CSSLs) from a donor parent DXWR × recurrent parent restorer line R974 (Oryza sativa indica) cross. On average, each CSSL carried 6.27 introgressed homozygous segments, with 93.37% total genome coverage. Using these CSSLs, we identified a single QTL, qDYST-1, associated with salt stress tolerance on chromosome 3. Furthermore, five CSSLs showing strong salt stress tolerance were subjected to whole-genome single-nucleotide polymorphism chip analyses, during which we detected a common substitution segment containing qDYST-1 in all five CSSLs, thereby implying the validity and efficacy of qDYST-1. These novel CSSLs could make a significant contribution to detecting valuable DXWR QTLs, and provide important germplasm resources for breeding novel restorer lines for use in hybrid rice breeding systems.
Collapse
Affiliation(s)
- Gumu Ding
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (G.D.); (Y.Z.); (M.Z.)
| | - Biaolin Hu
- Rice National Engineering Laboratory, Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330022, China;
| | - Yi Zhou
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (G.D.); (Y.Z.); (M.Z.)
| | - Wanling Yang
- Jiangxi Provincial Key Laboratory of Protection and Utilization of Subtropical Plant Resources, Nanchang 330022, China;
| | - Minmin Zhao
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (G.D.); (Y.Z.); (M.Z.)
| | - Jiankun Xie
- Jiangxi Provincial Key Laboratory of Protection and Utilization of Subtropical Plant Resources, Nanchang 330022, China;
- Correspondence: (J.X.); (F.Z.)
| | - Fantao Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (G.D.); (Y.Z.); (M.Z.)
- Correspondence: (J.X.); (F.Z.)
| |
Collapse
|
19
|
Omics: a tool for resilient rice genetic improvement strategies. Mol Biol Rep 2022; 49:5075-5088. [PMID: 35298758 DOI: 10.1007/s11033-022-07189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/24/2022] [Indexed: 10/18/2022]
Abstract
Rice is pivotal pyramid of about half of the world population. Bearing small genome size and worldwide utmost food crop rice has been known as ideal cereal crop for genome research. Currently, decreasing water table and soil fatigue are big challenges and intense consequences in changing climate. Whole sequenced genome of rice sized 389 Mb of which 95% is covered with excellent mapping order. Sequenced rice genome helps in molecular biology and transcriptomics of cereals as it provides whole genome sequence of indica and japonica sub species. Through rice genome sequencing and functional genomics, QTLs or genes, genetic variability and halophyte blocks for agronomic characters were identified which have proved much more useful in molecular breeding and direct selection. There are different numbers of genes or QTLs identified for yield related traits i.e., 6 QTLs/genes for plant architecture, 6 for panicle characteristics, 4 for grain number, 1 gene/QTL for tiller, HGW, grain filling and shattering. QTLS/genes for grain quality, biotic stresses and for abiotic stresses are 7, 23 and 13 respectively. Low yield, inferior quality and susceptibility to biotic and abiotic stresses of a crop is due to narrow genetic background of new evolving rice verities. Wild rice provides genetic resources for improvement of these characters, molecular and genomics tool at different stages can overcome these stresses and improve yield and quality of rice crop.
Collapse
|
20
|
Ondrasek G, Rathod S, Manohara KK, Gireesh C, Anantha MS, Sakhare AS, Parmar B, Yadav BK, Bandumula N, Raihan F, Zielińska-Chmielewska A, Meriño-Gergichevich C, Reyes-Díaz M, Khan A, Panfilova O, Seguel Fuentealba A, Romero SM, Nabil B, Wan C(C, Shepherd J, Horvatinec J. Salt Stress in Plants and Mitigation Approaches. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060717. [PMID: 35336599 PMCID: PMC8950276 DOI: 10.3390/plants11060717] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 02/07/2023]
Abstract
Salinization of soils and freshwater resources by natural processes and/or human activities has become an increasing issue that affects environmental services and socioeconomic relations. In addition, salinization jeopardizes agroecosystems, inducing salt stress in most cultivated plants (nutrient deficiency, pH and oxidative stress, biomass reduction), and directly affects the quality and quantity of food production. Depending on the type of salt/stress (alkaline or pH-neutral), specific approaches and solutions should be applied to ameliorate the situation on-site. Various agro-hydrotechnical (soil and water conservation, reduced tillage, mulching, rainwater harvesting, irrigation and drainage, control of seawater intrusion), biological (agroforestry, multi-cropping, cultivation of salt-resistant species, bacterial inoculation, promotion of mycorrhiza, grafting with salt-resistant rootstocks), chemical (application of organic and mineral amendments, phytohormones), bio-ecological (breeding, desalination, application of nano-based products, seed biopriming), and/or institutional solutions (salinity monitoring, integrated national and regional strategies) are very effective against salinity/salt stress and numerous other constraints. Advances in computer science (artificial intelligence, machine learning) provide rapid predictions of salinization processes from the field to the global scale, under numerous scenarios, including climate change. Thus, these results represent a comprehensive outcome and tool for a multidisciplinary approach to protect and control salinization, minimizing damages caused by salt stress.
Collapse
Affiliation(s)
- Gabrijel Ondrasek
- Faculty of Agriculture, The University of Zagreb, Svetosimunska c. 25, 10000 Zagreb, Croatia; (J.S.); (J.H.)
- Correspondence:
| | - Santosha Rathod
- ICAR—Indian Institute of Rice Research, Hyderabad 500030, India; (S.R.); (C.G.); (M.S.A.); (A.S.S.); (B.P.); (N.B.)
| | | | - Channappa Gireesh
- ICAR—Indian Institute of Rice Research, Hyderabad 500030, India; (S.R.); (C.G.); (M.S.A.); (A.S.S.); (B.P.); (N.B.)
| | | | - Akshay Sureshrao Sakhare
- ICAR—Indian Institute of Rice Research, Hyderabad 500030, India; (S.R.); (C.G.); (M.S.A.); (A.S.S.); (B.P.); (N.B.)
| | - Brajendra Parmar
- ICAR—Indian Institute of Rice Research, Hyderabad 500030, India; (S.R.); (C.G.); (M.S.A.); (A.S.S.); (B.P.); (N.B.)
| | | | - Nirmala Bandumula
- ICAR—Indian Institute of Rice Research, Hyderabad 500030, India; (S.R.); (C.G.); (M.S.A.); (A.S.S.); (B.P.); (N.B.)
| | - Farzana Raihan
- Department of Forestry and Environmental Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh;
| | - Anna Zielińska-Chmielewska
- Department of Business Activity and Economic Policy, Institute of Economics, Poznań University of Economics and Business, Al. Niepodległości 10, 61-875 Poznań, Poland;
| | - Cristian Meriño-Gergichevich
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Marjorie Reyes-Díaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Amanullah Khan
- Department of Agronomy, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar 25130, Pakistan;
| | - Olga Panfilova
- Russian Research Institute of Fruit Crop Breeding (VNIISPK), 302530 Zhilina, Orel District, Orel Region, Russia;
| | - Alex Seguel Fuentealba
- Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4780000, Chile;
| | | | - Beithou Nabil
- Mechanical and Industrial Engineering Department, Applied Science Private University, Amman 11931, Jordan;
| | - Chunpeng (Craig) Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Jonti Shepherd
- Faculty of Agriculture, The University of Zagreb, Svetosimunska c. 25, 10000 Zagreb, Croatia; (J.S.); (J.H.)
| | - Jelena Horvatinec
- Faculty of Agriculture, The University of Zagreb, Svetosimunska c. 25, 10000 Zagreb, Croatia; (J.S.); (J.H.)
| |
Collapse
|
21
|
Marriboina S, Sekhar KM, Subramanyam R, Reddy AR. Physiological, Biochemical, and Root Proteome Networks Revealed New Insights Into Salt Tolerance Mechanisms in Pongamia pinnata (L.) Pierre. FRONTIERS IN PLANT SCIENCE 2022; 12:771992. [PMID: 35140728 PMCID: PMC8818674 DOI: 10.3389/fpls.2021.771992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Cultivation of potential biofuel tree species such as Pongamia pinnata would rehabilitate saline marginal lands toward economic gains. We carried out a physiological, biochemical, and proteomic analysis to identify key regulatory responses which are associated with salt tolerance mechanisms at the shoot and root levels. Pongamia seedlings were grown at 300 and 500 mM NaCl (∼3% NaCl; sea saline equivalent) concentrations for 15 and 30 days, gas exchange measurements including leaf net photosynthetic rate (A sat ), stomatal conductance (g s ), and transpiration rate (E), and varying chlorophyll a fluorescence kinetics were recorded. The whole root proteome was quantified using the free-labeled nanoLC-MS/MS technique to investigate crucial proteins involved in signaling pathways associated with salt tolerance. Pongamia showed no visible salt-induced morphological symptoms. However, Pongamia showed about 50% decline in gas exchange parameters including A sat , E, and g s 15 and 30 days after salt treatment (DAS). The maximum potential quantum efficiency of photosystem (PS) II (Fv/Fm) was maintained at approximately 0.8 in salt-treated plants. The thermal component of PSII (DIo) was increased by 1.6-fold in the salt-treated plants. A total of 1,062 protein species were identified with 130 commonly abundant protein species. Our results also elucidate high abundance of protein species related to flavonoid biosynthesis, seed storage protein species, and carbohydrate metabolism under salt stress. Overall, these analyses suggest that Pongamia exhibited sustained leaf morphology by lowering net photosynthetic rates and emitting most of its light energy as heat. Our root proteomic results indicated that these protein species were most likely recruited from secondary and anaerobic metabolism, which could provide defense for roots against Na+ toxicity under salt stress conditions.
Collapse
|
22
|
Jha S, Maity S, Singh J, Chouhan C, Tak N, Ambatipudi K. Integrated physiological and comparative proteomics analysis of contrasting genotypes of pearl millet reveals underlying salt-responsive mechanisms. PHYSIOLOGIA PLANTARUM 2022; 174:e13605. [PMID: 34837239 DOI: 10.1111/ppl.13605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/11/2021] [Indexed: 05/20/2023]
Abstract
Salinity stress poses a significant risk to plant development and agricultural yield. Therefore, elucidation of stress-response mechanisms has become essential to identify salt-tolerance genes in plants. In the present study, two genotypes of pearl millet (Pennisetum glaucum L.) with contrasting tolerance for salinity exhibited differential morpho-physiological and proteomic responses under 150 mM NaCl. The genotype IC 325825 was shown to withstand the stress better than IP 17224. The salt-tolerance potential of IC 325825 was associated with its ability to maintain intracellular osmotic, ionic, and redox homeostasis and membrane integrity under stress. The IC 325825 genotype exhibited a higher abundance of C4 photosynthesis enzymes, efficient enzymatic and non-enzymatic antioxidant system, and lower Na+ /K+ ratio compared with IP 17224. Comparative proteomics analysis revealed greater metabolic perturbation in IP 17224 under salinity, in contrast to IC 325825 that harbored pro-active stress-responsive machinery, allowing its survival and better adaptability under salt stress. The differentially abundant proteins were in silico characterized for their functions, subcellular-localization, associated pathways, and protein-protein interaction. These proteins were mainly involved in photosynthesis/response to light stimulus, carbohydrate and energy metabolism, and stress responses. Proteomics data were validated through expression profiling of the selected genes, revealing a poor correlation between protein abundance and their relative transcript levels. This study has provided novel insights into salt adaptive mechanisms in P. glaucum, demonstrating the power of proteomics-based approaches. The critical proteins identified in the present study could be further explored as potential objects for engineering stress tolerance in salt-sensitive major crops.
Collapse
Affiliation(s)
- Shweta Jha
- Plant Functional Genomics Lab, Biotechnology Unit, Department of Botany (UGC-Centre of Advanced Study), Jai Narain Vyas University, Jodhpur, Rajasthan, India
| | - Sudipa Maity
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Jawahar Singh
- Plant Functional Genomics Lab, Biotechnology Unit, Department of Botany (UGC-Centre of Advanced Study), Jai Narain Vyas University, Jodhpur, Rajasthan, India
| | - Chaya Chouhan
- Plant Functional Genomics Lab, Biotechnology Unit, Department of Botany (UGC-Centre of Advanced Study), Jai Narain Vyas University, Jodhpur, Rajasthan, India
| | - Nisha Tak
- BNF and Microbial Genomics Lab, Department of Botany (UGC-Centre of Advanced Study), Jai Narain Vyas University, Jodhpur, Rajasthan, India
| | - Kiran Ambatipudi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
23
|
Xing J, Zhang D, Yin F, Zhong Q, Wang B, Xiao S, Ke X, Wang L, Zhang Y, Zhao C, Lu Y, Chen L, Cheng Z, Chen L. Identification and Fine-Mapping of a New Bacterial Blight Resistance Gene, Xa47(t), in G252, an Introgression Line of Yuanjiang Common Wild Rice ( Oryza rufipogon). PLANT DISEASE 2021; 105:4106-4112. [PMID: 34261357 DOI: 10.1094/pdis-05-21-0939-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae is a common, widespread, and highly devastating disease that affects rice yield. Breeding resistant cultivars is considered the most effective measure for controlling this disease. The introgression line G252 derived from Yuanjiang common wild rice (Oryza rufipogon) was highly resistant to all tested strains, including C5, C9, PXO99, PB, T7147Y8, Hzhj19, YM1, YM187, YJdp-2, and YJws-2. To identify the BB resistance gene(s) of G252, we developed an F2 population from the cross between G252 and 02428. A linkage analysis was performed for the phenotype and genotype of the population. A segregation ratio of 3:1 was observed between the resistant and susceptible individuals in the F2 progeny, indicating a dominant resistance gene, Xa47(t), in G252. The resistance gene was mapped within an approximately 26.24-kb physical region on chromosome 11 between two InDel markers, R13I14 and 13rbq-71. Moreover, one InDel marker, Hxjy-1, co-segregated with Xa47(t). Three genes were predicted within the target region, including a promising candidate gene encoding a nucleotide-binding domain and leucine-rich repeat (NLR) protein (LOC_Os11g46200) by combining the structure and expression analysis. Physical mapping data suggested that Xa47(t) is a new broad-spectrum BB resistance gene without identified allelic genes.
Collapse
Affiliation(s)
- Jiaxin Xing
- Rice Research Institute, Yunnan Agricultural University, Kunming, Yunnan 650201, P.R. China
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan 650205, P.R. China
| | - Dunyu Zhang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan 650205, P.R. China
| | - Fuyou Yin
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan 650205, P.R. China
| | - Qiaofang Zhong
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan 650205, P.R. China
| | - Bo Wang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan 650205, P.R. China
| | - Suqin Xiao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan 650205, P.R. China
| | - Xue Ke
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan 650205, P.R. China
| | - Lingxian Wang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan 650205, P.R. China
| | - Yun Zhang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan 650205, P.R. China
| | - Caimei Zhao
- College of Life Science, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Yuanda Lu
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan 650201, P.R. China
| | - Ling Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan 650205, P.R. China
| | - Zaiquan Cheng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan 650205, P.R. China
| | - Lijuan Chen
- Rice Research Institute, Yunnan Agricultural University, Kunming, Yunnan 650201, P.R. China
| |
Collapse
|
24
|
Saradadevi GP, Das D, Mangrauthia SK, Mohapatra S, Chikkaputtaiah C, Roorkiwal M, Solanki M, Sundaram RM, Chirravuri NN, Sakhare AS, Kota S, Varshney RK, Mohannath G. Genetic, Epigenetic, Genomic and Microbial Approaches to Enhance Salt Tolerance of Plants: A Comprehensive Review. BIOLOGY 2021; 10:biology10121255. [PMID: 34943170 PMCID: PMC8698797 DOI: 10.3390/biology10121255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Globally, soil salinity, which refers to salt-affected soils, is increasing due to various environmental factors and human activities. Soil salinity poses one of the most serious challenges in the field of agriculture as it significantly reduces the growth and yield of crop plants, both quantitatively and qualitatively. Over the last few decades, several studies have been carried out to understand plant biology in response to soil salinity stress with a major emphasis on genetic and other hereditary components. Based on the outcome of these studies, several approaches are being followed to enhance plants’ ability to tolerate salt stress while still maintaining reasonable levels of crop yields. In this manuscript, we comprehensively list and discuss various biological approaches being followed and, based on the recent advances in the field of molecular biology, we propose some new approaches to improve salinity tolerance of crop plants. The global scientific community can make use of this information for the betterment of crop plants. This review also highlights the importance of maintaining global soil health to prevent several crop plant losses. Abstract Globally, soil salinity has been on the rise owing to various factors that are both human and environmental. The abiotic stress caused by soil salinity has become one of the most damaging abiotic stresses faced by crop plants, resulting in significant yield losses. Salt stress induces physiological and morphological modifications in plants as a result of significant changes in gene expression patterns and signal transduction cascades. In this comprehensive review, with a major focus on recent advances in the field of plant molecular biology, we discuss several approaches to enhance salinity tolerance in plants comprising various classical and advanced genetic and genetic engineering approaches, genomics and genome editing technologies, and plant growth-promoting rhizobacteria (PGPR)-based approaches. Furthermore, based on recent advances in the field of epigenetics, we propose novel approaches to create and exploit heritable genome-wide epigenetic variation in crop plants to enhance salinity tolerance. Specifically, we describe the concepts and the underlying principles of epigenetic recombinant inbred lines (epiRILs) and other epigenetic variants and methods to generate them. The proposed epigenetic approaches also have the potential to create additional genetic variation by modulating meiotic crossover frequency.
Collapse
Affiliation(s)
- Gargi Prasad Saradadevi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Satendra K. Mangrauthia
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Sridev Mohapatra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Manish Roorkiwal
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Manish Solanki
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Raman Meenakshi Sundaram
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Neeraja N. Chirravuri
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Akshay S. Sakhare
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Suneetha Kota
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Gireesha Mohannath
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| |
Collapse
|
25
|
Singh RK, Kota S, Flowers TJ. Salt tolerance in rice: seedling and reproductive stage QTL mapping come of age. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3495-3533. [PMID: 34287681 PMCID: PMC8519845 DOI: 10.1007/s00122-021-03890-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/09/2021] [Indexed: 05/15/2023]
Abstract
Reproductive stage salinity tolerance is most critical for rice as it determines the yield under stress. Few studies have been undertaken for this trait as phenotyping was cumbersome, but new methodology outlined in this review seeks to redress this deficiency. Sixty-three meta-QTLs, the most important genomic regions to target for enhancing salinity tolerance, are reported. Although rice has been categorized as a salt-sensitive crop, it is not equally affected throughout its growth, being most sensitive at the seedling and reproductive stages. However, a very poor correlation exists between sensitivity at these two stages, which suggests that the effects of salt are determined by different mechanisms and sets of genes (QTLs) in seedlings and during flowering. Although tolerance at the reproductive stage is arguably the more important, as it translates directly into grain yield, more than 90% of publications on the effects of salinity on rice are limited to the seedling stage. Only a few studies have been conducted on tolerance at the reproductive stage, as phenotyping is cumbersome. In this review, we list the varieties of rice released for salinity tolerance traits, those being commercially cultivated in salt-affected soils and summarize phenotyping methodologies. Since further increases in tolerance are needed to maintain future productivity, we highlight work on phenotyping for salinity tolerance at the reproductive stage. We have constructed an exhaustive list of the 935 reported QTLs for salinity tolerance in rice at the seedling and reproductive stages. We illustrate the chromosome locations of 63 meta-QTLs (with 95% confidence interval) that indicate the most important genomic regions for salt tolerance in rice. Further study of these QTLs should enhance our understanding of salt tolerance in rice and, if targeted, will have the highest probability of success for marker-assisted selections.
Collapse
Affiliation(s)
- Rakesh Kumar Singh
- Crop Diversification and Genetics, International Center for Biosaline Agriculture (ICBA), Dubai, UAE
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Banos, Philippines
| | - Suneetha Kota
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Banos, Philippines
- Genetics and Plant Breeding Department, Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Timothy J Flowers
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|
26
|
Fan X, Jiang H, Meng L, Chen J. Gene Mapping, Cloning and Association Analysis for Salt Tolerance in Rice. Int J Mol Sci 2021; 22:11674. [PMID: 34769104 PMCID: PMC8583862 DOI: 10.3390/ijms222111674] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Soil salinization caused by the accumulation of sodium can decrease rice yield and quality. Identification of rice salt tolerance genes and their molecular mechanisms could help breeders genetically improve salt tolerance. We studied QTL mapping of populations for rice salt tolerance, period and method of salt tolerance identification, salt tolerance evaluation parameters, identification of salt tolerance QTLs, and fine-mapping and map cloning of salt tolerance QTLs. We discuss our findings as they relate to other genetic studies of salt tolerance association.
Collapse
Affiliation(s)
- Xiaoru Fan
- School of Chemistry and Life Science, Anshan Normal University, Anshan 114007, China;
| | - Hongzhen Jiang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| | - Lijun Meng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528200, China
| | - Jingguang Chen
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| |
Collapse
|
27
|
Santiago‐Rosario LY, Harms KE, Elderd BD, Hart PB, Dassanayake M. No escape: The influence of substrate sodium on plant growth and tissue sodium responses. Ecol Evol 2021; 11:14231-14249. [PMID: 34707851 PMCID: PMC8525147 DOI: 10.1002/ece3.8138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 01/21/2023] Open
Abstract
As an essential micronutrient for many organisms, sodium plays an important role in ecological and evolutionary dynamics. Although plants mediate trophic fluxes of sodium, from substrates to higher trophic levels, relatively little comparative research has been published about plant growth and sodium accumulation in response to variation in substrate sodium. Accordingly, we carried out a systematic review of plants' responses to variation in substrate sodium concentrations.We compared biomass and tissue-sodium accumulation among 107 cultivars or populations (67 species in 20 plant families), broadly expanding beyond the agricultural and model taxa for which several generalizations previously had been made. We hypothesized a priori response models for each population's growth and sodium accumulation as a function of increasing substrate NaCl and used Bayesian Information Criterion to choose the best model. Additionally, using a phylogenetic signal analysis, we tested for phylogenetic patterning of responses across taxa.The influence of substrate sodium on growth differed across taxa, with most populations experiencing detrimental effects at high concentrations. Irrespective of growth responses, tissue sodium concentrations for most taxa increased as sodium concentration in the substrate increased. We found no strong associations between the type of growth response and the type of sodium accumulation response across taxa. Although experiments often fail to test plants across a sufficiently broad range of substrate salinities, non-crop species tended toward higher sodium tolerance than domesticated species. Moreover, some phylogenetic conservatism was apparent, in that evolutionary history helped predict the distribution of total-plant growth responses across the phylogeny, but not sodium accumulation responses.Our study reveals that saltier plants in saltier soils proves to be a broadly general pattern for sodium across plant taxa. Regardless of growth responses, sodium accumulation mostly followed an increasing trend as substrate sodium levels increased.
Collapse
Affiliation(s)
| | - Kyle E. Harms
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Bret D. Elderd
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Pamela B. Hart
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Maheshi Dassanayake
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
28
|
Chen Y, Huang W, Zhang F, Luo X, Hu B, Xie J. Metabolomic Profiling of Dongxiang Wild Rice Under Salinity Demonstrates the Significant Role of Amino Acids in Rice Salt Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:729004. [PMID: 34630473 PMCID: PMC8494129 DOI: 10.3389/fpls.2021.729004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Dongxiang common wild rice is a precious rice germplasm resource for the study and improvement of salt tolerance in rice.The metabolism profile of Dongxiang wild rice (DXWR) under salinity was determined by high performance liquid chromatography-mass spectrometry (HPLC-MS) to find differential metabolites and screen potential biomarkers for salt-tolerant rice varieties. A global untargeted metabolism analysis showed 4,878 metabolites accumulated in seedlings of Dongxiang wild rice. Principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) results provided a clear metabolism discrimination between DXWR under control and DXWR under salinity. A total of 90 metabolites were significantly changed (49 upregulated and 41 downregulated) under salinity, of which the largest increase was in DL-2-Aminoadipic acid (27.08-fold) and the largest decrease was in L-Carnitine (0.014-fold). Amino acids and nuclear glycosides were mainly upregulated, while carbohydrates and organic acids were mainly downregulated in the salt-treated group. Among the top 10 upregulated metabolites, five kinds of differential metabolites were amino acids. According to the survival rates of the seedlings under salinity, we selected three backcross inbred lines of DXWR with survival rates above 80% as salt-tolerant progenies (pro-DS) and three backcross inbred lines with survival rates below 10% as non-salt-tolerant progenies (pro-NDS) for an amino acid change analysis. This analysis found that the change in L-Asparagine (2.59-fold) was the biggest between pro-DS and pro-NDS under salinity, revealing that the contents of L-Asparagine may be one of the indices we can use to evaluate the salt tolerance of rice varieties.
Collapse
Affiliation(s)
- Yaling Chen
- Laboratory of Plant Genetic Improvement and Biotechnology, Jiangxi Normal University, Nanchang, China
| | - Wenxue Huang
- Laboratory of Plant Genetic Improvement and Biotechnology, Jiangxi Normal University, Nanchang, China
| | - Fantao Zhang
- Laboratory of Plant Genetic Improvement and Biotechnology, Jiangxi Normal University, Nanchang, China
| | - Xiangdong Luo
- Laboratory of Plant Genetic Improvement and Biotechnology, Jiangxi Normal University, Nanchang, China
| | - Biaolin Hu
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Rice National Engineering Laboratory, Nanchang, China
| | - Jiankun Xie
- Laboratory of Plant Genetic Improvement and Biotechnology, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
29
|
Xiong E, Zhang C, Ye C, Jiang Y, Zhang Y, Chen F, Dong G, Zeng D, Yu Y, Wu L. iTRAQ-based proteomic analysis provides insights into the molecular mechanisms of rice formyl tetrahydrofolate deformylase in salt response. PLANTA 2021; 254:76. [PMID: 34533642 DOI: 10.1007/s00425-021-03723-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
A new molecular mechanism of tetrahydrofolate deformylase involved in the salt response presumably affects mitochondrial and chloroplast function by regulating energy metabolism and accumulation of reactive oxygen species. High salinity severely restrains plant growth and development, consequently leading to a reduction in grain yield. It is therefore critical to identify the components involved in plant salt resistance. In our previous study, we identified a rice leaf early-senescence mutant hpa1, which encodes a formyl tetrahydrofolate deformylase (Xiong et al. in Sci China Life Sci 64(5):720-738, 2021). Here, we report that HPA1 also plays a role in the salt response. To explore the molecular mechanism of HPA1 in salt resistance, we attempted to identify the differentially expressed proteins between wild type and hpa1 mutant for salinity treatment using an iTRAQ-based comparative protein quantification approach. A total of 4598 proteins were identified, of which 279 were significantly altered, including 177 up- and 102 down-regulated proteins. A functional analysis suggested that the 279 differentially expressed proteins are involved mainly in the regulation of oxidative phosphorylation, phenylpropanoid biosynthesis, photosynthesis, posttranslational modifications, protein turnover and energy metabolism. Moreover, a deficiency in HPA1 impaired chlorophyll metabolism and photosynthesis in chloroplasts and affected the electron flow of the electron transport chain in mitochondria. These changes led to abnormal energy metabolism and accumulation of reactive oxygen species, which may affect the permeability and integrity of cell membranes, leading to cell death. In addition, the results were verified by transcriptional or physiological experiments. Our results provide an insight into a new molecular mechanism of the tetrahydrofolate cycle protein formyl tetrahydrofolate deformylase, which is involved in the salt response, presumably by affecting mitochondrial and chloroplast function regulating energy metabolism and accumulation of reactive oxygen species under salt stress.
Collapse
Affiliation(s)
- Erhui Xiong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chen Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chenxi Ye
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yaohuang Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Dali Zeng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
30
|
Razzaq A, Saleem F, Wani SH, Abdelmohsen SAM, Alyousef HA, Abdelbacki AMM, Alkallas FH, Tamam N, Elansary HO. De-novo Domestication for Improving Salt Tolerance in Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:681367. [PMID: 34603347 PMCID: PMC8481614 DOI: 10.3389/fpls.2021.681367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/12/2021] [Indexed: 05/21/2023]
Abstract
Global agriculture production is under serious threat from rapidly increasing population and adverse climate changes. Food security is currently a huge challenge to feed 10 billion people by 2050. Crop domestication through conventional approaches is not good enough to meet the food demands and unable to fast-track the crop yields. Also, intensive breeding and rigorous selection of superior traits causes genetic erosion and eliminates stress-responsive genes, which makes crops more prone to abiotic stresses. Salt stress is one of the most prevailing abiotic stresses that poses severe damages to crop yield around the globe. Recent innovations in state-of-the-art genomics and transcriptomics technologies have paved the way to develop salinity tolerant crops. De novo domestication is one of the promising strategies to produce superior new crop genotypes through exploiting the genetic diversity of crop wild relatives (CWRs). Next-generation sequencing (NGS) technologies open new avenues to identifying the unique salt-tolerant genes from the CWRs. It has also led to the assembly of highly annotated crop pan-genomes to snapshot the full landscape of genetic diversity and recapture the huge gene repertoire of a species. The identification of novel genes alongside the emergence of cutting-edge genome editing tools for targeted manipulation renders de novo domestication a way forward for developing salt-tolerance crops. However, some risk associated with gene-edited crops causes hurdles for its adoption worldwide. Halophytes-led breeding for salinity tolerance provides an alternative strategy to identify extremely salt tolerant varieties that can be used to develop new crops to mitigate salinity stress.
Collapse
Affiliation(s)
- Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Fozia Saleem
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Shabir Hussain Wani
- Division of Genetics and Plant Breeding, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Shaimaa A. M. Abdelmohsen
- Physics Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Haifa A. Alyousef
- Physics Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Fatemah H. Alkallas
- Physics Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nissren Tamam
- Physics Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hosam O. Elansary
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Moin M, Saha A, Bakshi A, Madhav MS, Kirti PB. Constitutive expression of Ribosomal Protein L6 modulates salt tolerance in rice transgenic plants. Gene 2021; 789:145670. [PMID: 33892070 DOI: 10.1016/j.gene.2021.145670] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/14/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022]
Abstract
We have functionally characterized the RPL6, a Ribosomal Protein Large subunit gene for salt stress tolerance in rice. The overexpression of RPL6 resulted in tolerance to moderate (150 mM) to high (200 mM) levels of salt (NaCl). The transgenic rice plants expressing RPL6 constitutively showed better phenotypic and physiological responses with high quantum efficiency, accumulation of higher chlorophyll and proline contents, and an overall increase in seed yield compared with the wild type in salt stress treatments. An iTRAQ-based comparative proteomic analysis revealed the high expression of about 333 proteins among the 4378 DAPs in a selected overexpression line of RPL6 treated with 200 mM of NaCl. The functional analysis showed that these highly accumulated proteins (HAPs) are involved in photosynthesis, ribosome and chloroplast biogenesis, ion transportation, transcription and translation regulation, phytohormone and secondary metabolite signal transduction. An in silico network analysis of HAPs predicted that RPL6 binds with translation-related proteins and helicases, which coordinately affect the activities of a comprehensive signaling network, thereby inducing tolerance and promoting growth and productivity in response to salt stress. Our overall findings identified a novel candidate, RPL6, whose characterization contributed to the existing knowledge on the complexity of salt tolerance mechanism in plants.
Collapse
Affiliation(s)
- Mazahar Moin
- Biotechnology Division, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad 500030, India.
| | - Anusree Saha
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Achala Bakshi
- Biotechnology Division, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad 500030, India
| | - M S Madhav
- Biotechnology Division, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad 500030, India
| | - P B Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India; Agri-Biotech Foundation, PJTS Agricultural University, Hyderabad 500030, India
| |
Collapse
|
32
|
Ganie SA, Wani SH, Henry R, Hensel G. Improving rice salt tolerance by precision breeding in a new era. CURRENT OPINION IN PLANT BIOLOGY 2021; 60:101996. [PMID: 33444976 DOI: 10.1016/j.pbi.2020.101996] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 05/03/2023]
Abstract
Rice is a premier staple food that constitutes the bulk of the daily diet of the majority of people in Asia. Agricultural productivity must be boosted to support this huge demand for rice. However, production is jeopardized by soil salinity. Advances in whole-genome sequencing, marker-assisted breeding strategies, and targeted mutagenesis have substantially improved the toolbox of today's breeders. Given that salinity has a major influence on rice at both the seedling and reproductive stages, understanding and manipulating this trait will have an enormous impact on sustainable production. This article summarizes recent developments in the understanding of the mechanisms of salt tolerance and how state-of-the-art tools such as RNA guided CRISPR endonuclease technology including targeted mutagenesis or base and prime editing can help in gene discovery and functional analysis as well as in transferring favorable alleles into elite breeding material to speed the breeding of salt-tolerant rice cultivars.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Department of Biotechnology, Visva-Bharati, Santiniketan 731235, West Bengal, India.
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Khudwani - 192101, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, J&K, India
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, OT Gatersleben, 06466 Seeland, Germany; Division of Molecular Biology, Centre of Region Haná for Biotechnological and Agriculture Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic.
| |
Collapse
|
33
|
Jasmonates and Plant Salt Stress: Molecular Players, Physiological Effects, and Improving Tolerance by Using Genome-Associated Tools. Int J Mol Sci 2021; 22:ijms22063082. [PMID: 33802953 PMCID: PMC8002660 DOI: 10.3390/ijms22063082] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
Soil salinity is one of the most limiting stresses for crop productivity and quality worldwide. In this sense, jasmonates (JAs) have emerged as phytohormones that play essential roles in mediating plant response to abiotic stresses, including salt stress. Here, we reviewed the mechanisms underlying the activation and response of the JA-biosynthesis and JA-signaling pathways under saline conditions in Arabidopsis and several crops. In this sense, molecular components of JA-signaling such as MYC2 transcription factor and JASMONATE ZIM-DOMAIN (JAZ) repressors are key players for the JA-associated response. Moreover, we review the antagonist and synergistic effects between JA and other hormones such as abscisic acid (ABA). From an applied point of view, several reports have shown that exogenous JA applications increase the antioxidant response in plants to alleviate salt stress. Finally, we discuss the latest advances in genomic techniques for the improvement of crop tolerance to salt stress with a focus on jasmonates.
Collapse
|
34
|
Pandey M, Paladi RK, Srivastava AK, Suprasanna P. Thiourea and hydrogen peroxide priming improved K + retention and source-sink relationship for mitigating salt stress in rice. Sci Rep 2021; 11:3000. [PMID: 33542250 PMCID: PMC7862675 DOI: 10.1038/s41598-020-80419-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
Plant bioregulators (PBRs) represent low-cost chemicals for boosting plant defense, especially under stress conditions. In the present study, redox based PBRs such as thiourea (TU; a non-physiological thiol-based ROS scavenger) and hydrogen peroxide (H2O2; a prevalent biological ROS) were assessed for their ability to mitigate NaCl stress in rice variety IR 64. Despite their contrasting redox chemistry, TU or H2O2 supplementation under NaCl [NaCl + TU (NT) or NaCl + H2O2 (NH)] generated a reducing redox environment in planta, which improved the plant growth compared with those of NaCl alone treatment. This was concomitant with better K+ retention and upregulated expression of NaCl defense related genes including HAK21, LEA1, TSPO and EN20 in both NT and NH treated seedlings. Under field conditions, foliar applications of TU and H2O2, at vegetative growth, pre-flowering and grain filling stages, increased growth and yield attributes under both control and NaCl stress conditions. Principal component analysis revealed glutathione reductase dependent reduced ROS accumulation in source (flag leaves) and sucrose synthase mediated sucrose catabolism in sink (developing inflorescence), as the key variables associated with NT and NH mediated effects, respectively. In addition, photosystem-II efficiency, K+ retention and source-sink relationship were also improved in TU and H2O2 treated plants. Taken together, our study highlights that reducing redox environment acts as a central regulator of plant's tolerance responses to salt stress. In addition, TU and H2O2 are proposed as potential redox-based PBRs for boosting rice productivity under the realistic field conditions.
Collapse
Affiliation(s)
- Manish Pandey
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Radha Krishna Paladi
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India.
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
35
|
Ondrasek G, Rengel Z. Environmental salinization processes: Detection, implications & solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142432. [PMID: 33254867 DOI: 10.1016/j.scitotenv.2020.142432] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 05/27/2023]
Abstract
A great portion of Earth's freshwater and land resources are salt-affected and thus have restricted use or may become unsuitable for most human activities. Some of the recent scenarios warn that environmental salinization processes will continue to be exacerbated due to global climate change. The most relevant implications and side-effects in ecosystems under excessive salinity are destructive and long lasting (e.g. soil dispersion, water/soil hypersalinity, desertification, ruined biodiversity), often with non-feasible on site remediation, especially at larger scales. Agro-ecosystems are very sensitive to salinization; after a certain threshold is reached, yields and food quality start to deteriorate sharply. Additionally, salinity often coincides with numerous other environmental constrains (drought, waterlogging, pollution, acidity, nutrient deficiency, etc.) that progressively aggravate the threat to food security and general ecosystem resilience. Some well-proven, widely-used and cost-effective traditional ameliorative strategies (e.g. conservation agriculture, application of natural conditioners) help against salinity and other constraints, especially in developing countries. Remotely-sensed and integrated data of salt-affected areas combined with in situ and lab-based observations have never been so easy and rapid to acquire, precise and applicable on huge scales, representing a valuable tool for policy-makers and other stakeholders in implementing targeted measures to control and prevent ecosystem degradation (top-to-bottom approach). Continued progress in biotechnology and ecoengineering offers some of the most advanced and effective solutions against salinity (e.g. nanomaterials, marker-assisted breeding, genome editing, plant-microbial associations), albeit many knowledge gaps and ethical frontiers remain to be overcome before a successful transfer of these potential solutions to the industrial-scale food production can be effective.
Collapse
Affiliation(s)
- Gabrijel Ondrasek
- The University of Zagreb, Faculty of Agriculture, Svetosimunska c. 25, Croatia.
| | - Zed Rengel
- The University of Western Australia, UWA School of Agriculture and Environment, Stirling Highway 35, Perth, W. Australia, Australia; Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, Split, Croatia
| |
Collapse
|
36
|
Identification of QTLs Controlling Salt Tolerance in Cucumber ( Cucumis sativus L.) Seedlings. PLANTS 2021; 10:plants10010085. [PMID: 33401544 PMCID: PMC7823655 DOI: 10.3390/plants10010085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 11/17/2022]
Abstract
Cucumber is very sensitive to salt stress, and excessive salt content in soils seriously affects normal growth and development, posing a serious threat to commercial production. In this study, the recombinant inbred line (RIL) population (from a cross between the salt tolerant line CG104 and salt sensitive line CG37) was used to study the genetic mechanism of salt tolerance in cucumber seedlings. At the same time, the candidate genes within the mapping region were cloned and analyzed. The results showed that salt tolerance in cucumber seedlings is a quantitative trait controlled by multiple genes. In experiments carried out in April and July 2019, qST6.2 on chromosome six was repeatedly detected. It was delimited into a 1397.1 kb region, and nine genes related to salt tolerance were identified. Among these genes, Csa6G487740 and Csa6G489940 showed variations in amino acid sequence between lines CG104 and CG37. Subsequent qRT-PCR showed that the relative expression levels of both genes during salt treatment were significantly different between the two parents. These results provide a basis for the fine mapping of salt tolerant genes and further study of the molecular mechanism of salt tolerance in cucumber seedlings.
Collapse
|
37
|
Cao J, Shang Y, Xu D, Xu K, Cheng X, Pan X, Liu X, Liu M, Gao C, Yan S, Yao H, Gao W, Lu J, Zhang H, Chang C, Xia X, Xiao S, Ma C. Identification and Validation of New Stable QTLs for Grain Weight and Size by Multiple Mapping Models in Common Wheat. Front Genet 2020; 11:584859. [PMID: 33262789 PMCID: PMC7686802 DOI: 10.3389/fgene.2020.584859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/21/2020] [Indexed: 11/13/2022] Open
Abstract
Improvement of grain weight and size is an important objective for high-yield wheat breeding. In this study, 174 recombinant inbred lines (RILs) derived from the cross between Jing 411 and Hongmangchun 21 were used to construct a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq). Three mapping methods, including inclusive composite interval mapping (ICIM), genome-wide composite interval mapping (GCIM), and a mixed linear model performed with forward-backward stepwise (NWIM), were used to identify QTLs for thousand grain weight (TGW), grain width (GW), and grain length (GL). In total, we identified 30, 15, and 18 putative QTLs for TGW, GW, and GL that explain 1.1-33.9%, 3.1%-34.2%, and 1.7%-22.8% of the phenotypic variances, respectively. Among these, 19 (63.3%) QTLs for TGW, 10 (66.7%) for GW, and 7 (38.9%) for GL were consistent with those identified by genome-wide association analysis in 192 wheat varieties. Five new stable QTLs, including 3 for TGW (Qtgw.ahau-1B.1, Qtgw.ahau-4B.1, and Qtgw.ahau-4B.2) and 2 for GL (Qgl.ahau-2A.1 and Qgl.ahau-7A.2), were detected by the three aforementioned mapping methods across environments. Subsequently, five cleaved amplified polymorphic sequence (CAPS) markers corresponding to these QTLs were developed and validated in 180 Chinese mini-core wheat accessions. In addition, 19 potential candidate genes for Qtgw.ahau-4B.2 in a 0.31-Mb physical interval were further annotated, of which TraesCS4B02G376400 and TraesCS4B02G376800 encode a plasma membrane H+-ATPase and a serine/threonine-protein kinase, respectively. These new QTLs and CAPS markers will be useful for further marker-assisted selection and map-based cloning of target genes.
Collapse
Affiliation(s)
- Jiajia Cao
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yaoyao Shang
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Dongmei Xu
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Kangle Xu
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xinran Cheng
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xu Pan
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xue Liu
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Mingli Liu
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Chang Gao
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Shengnan Yan
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Hui Yao
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Wei Gao
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jie Lu
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Haiping Zhang
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Cheng Chang
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shihe Xiao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chuanxi Ma
- KeyLaboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, China
| |
Collapse
|
38
|
Advances and Challenges in the Breeding of Salt-Tolerant Rice. Int J Mol Sci 2020; 21:ijms21218385. [PMID: 33182265 PMCID: PMC7664944 DOI: 10.3390/ijms21218385] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/16/2022] Open
Abstract
Soil salinization and a degraded ecological environment are challenging agricultural productivity and food security. Rice (Oryza sativa), the staple food of much of the world’s population, is categorized as a salt-susceptible crop. Improving the salt tolerance of rice would increase the potential of saline-alkali land and ensure food security. Salt tolerance is a complex quantitative trait. Biotechnological efforts to improve the salt tolerance of rice hinge on a detailed understanding of the molecular mechanisms underlying salt stress tolerance. In this review, we summarize progress in the breeding of salt-tolerant rice and in the mapping and cloning of genes and quantitative trait loci (QTLs) associated with salt tolerance in rice. Furthermore, we describe biotechnological tools that can be used to cultivate salt-tolerant rice, providing a reference for efforts aimed at rapidly and precisely cultivating salt-tolerance rice varieties.
Collapse
|
39
|
Solis CA, Yong MT, Vinarao R, Jena K, Holford P, Shabala L, Zhou M, Shabala S, Chen ZH. Back to the Wild: On a Quest for Donors Toward Salinity Tolerant Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:323. [PMID: 32265970 PMCID: PMC7098918 DOI: 10.3389/fpls.2020.00323] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/05/2020] [Indexed: 05/20/2023]
Abstract
Salinity stress affects global food producing areas by limiting both crop growth and yield. Attempts to develop salinity-tolerant rice varieties have had limited success due to the complexity of the salinity tolerance trait, high variation in the stress response and a lack of available donors for candidate genes for cultivated rice. As a result, finding suitable donors of genes and traits for salinity tolerance has become a major bottleneck in breeding for salinity tolerant crops. Twenty-two wild Oryza relatives have been recognized as important genetic resources for quantitatively inherited traits such as resistance and/or tolerance to abiotic and biotic stresses. In this review, we discuss the challenges and opportunities of such an approach by critically analyzing evolutionary, ecological, genetic, and physiological aspects of Oryza species. We argue that the strategy of rice breeding for better Na+ exclusion employed for the last few decades has reached a plateau and cannot deliver any further improvement in salinity tolerance in this species. This calls for a paradigm shift in rice breeding and more efforts toward targeting mechanisms of the tissue tolerance and a better utilization of the potential of wild rice where such traits are already present. We summarize the differences in salinity stress adaptation amongst cultivated and wild Oryza relatives and identify several key traits that should be targeted in future breeding programs. This includes: (1) efficient sequestration of Na+ in mesophyll cell vacuoles, with a strong emphasis on control of tonoplast leak channels; (2) more efficient control of xylem ion loading; (3) efficient cytosolic K+ retention in both root and leaf mesophyll cells; and (4) incorporating Na+ sequestration in trichrome. We conclude that while amongst all wild relatives, O. rufipogon is arguably a best source of germplasm at the moment, genes and traits from the wild relatives, O. coarctata, O. latifolia, and O. alta, should be targeted in future genetic programs to develop salt tolerant cultivated rice.
Collapse
Affiliation(s)
- Celymar A. Solis
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Miing T. Yong
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Ricky Vinarao
- International Rice Research Institute, Metro Manila, Philippines
| | - Kshirod Jena
- International Rice Research Institute, Metro Manila, Philippines
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
40
|
Huang R, Li Z, Mao C, Zhang H, Sun Z, Li H, Huang C, Feng Y, Shen X, Bucher M, Zhang Z, Lin Y, Cao Y, Duanmu D. Natural variation at OsCERK1 regulates arbuscular mycorrhizal symbiosis in rice. THE NEW PHYTOLOGIST 2020; 225:1762-1776. [PMID: 31484206 DOI: 10.1111/nph.16158] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
The symbiotic interaction between arbuscular mycorrhizal fungi (AMF) and land plants is essential for efficient nutrient acquisition and utilisation. Our understanding of key processes controlling the AMF colonisation in rice is still limited. Dongxiang wild rice (DY) exhibited a stronger colonisation with Rhizophagus irregularis than the rice cultivar Zhongzao 35 (ZZ35). Chromosome segment substitution lines were constructed and the OsCERK1 gene from DY was mapped. Transgenic plants in the japonica rice Zhonghua 11 (ZZ11) were constructed to compare root colonisation by AMF. Chromosome single-segment substitution lines containing OsCERK1DY showed higher phosphorus content and grain yield relative to ZZ35. Four amino acids substitutions were identified among the OsCERK1 haplotypes of DY, ZZ35 and ZH11 and two of these were in the second lysine-motif domain, which is essential for the differences of AMF colonisation level among rice varieties. Heterologous expression of OsCERK1DY in ZH11 significantly enhanced AMF colonisation and increased resistance against the pathogenic fungi Magnaporthe oryzae. Notably, the OsCERK1DY haplotype was absent from 4660 cultivated rice varieties. We conclude that OsCERK1 is a key gene affecting the symbiotic interaction with AMF and OsCERK1DY has the biotechnological potential to increase rice phosphorus acquisition and utilisation efficiency for sustainable agriculture.
Collapse
Affiliation(s)
- Renliang Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Nanchang Subcenter of Rice National Engineering Laboratory, Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Zheng Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cui Mao
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongfeng Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Congcong Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yong Feng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianhua Shen
- Nanchang Subcenter of Rice National Engineering Laboratory, Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Marcel Bucher
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| | - Zhongming Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yangrong Cao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
41
|
Li Q, Pan Z, Gao Y, Li T, Liang J, Zhang Z, Zhang H, Deng G, Long H, Yu M. Quantitative Trait Locus (QTLs) Mapping for Quality Traits of Wheat Based on High Density Genetic Map Combined With Bulked Segregant Analysis RNA-seq (BSR-Seq) Indicates That the Basic 7S Globulin Gene Is Related to Falling Number. FRONTIERS IN PLANT SCIENCE 2020; 11:600788. [PMID: 33424899 PMCID: PMC7793810 DOI: 10.3389/fpls.2020.600788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/11/2020] [Indexed: 05/14/2023]
Abstract
Numerous quantitative trait loci (QTLs) have been identified for wheat quality; however, most are confined to low-density genetic maps. In this study, based on specific-locus amplified fragment sequencing (SLAF-seq), a high-density genetic map was constructed with 193 recombinant inbred lines derived from Chuanmai 42 and Chuanmai 39. In total, 30 QTLs with phenotypic variance explained (PVE) up to 47.99% were identified for falling number (FN), grain protein content (GPC), grain hardness (GH), and starch pasting properties across three environments. Five NAM genes closely adjacent to QGPC.cib-4A probably have effects on GPC. QGH.cib-5D was the only one detected for GH with high PVE of 33.31-47.99% across the three environments and was assumed to be related to the nearest pina-D1 and pinb-D1genes. Three QTLs were identified for FN in at least two environments, of which QFN.cib-3D had relatively higher PVE of 16.58-25.74%. The positive effect of QFN.cib-3D for high FN was verified in a double-haploid population derived from Chuanmai 42 × Kechengmai 4. The combination of these QTLs has a considerable effect on increasing FN. The transcript levels of Basic 7S globulin and Basic 7S globulin 2 in QFN.cib-3D were significantly different between low FN and high FN bulks, as observed through bulk segregant RNA-seq (BSR). These QTLs and candidate genes based on the high-density genetic map would be beneficial for further understanding of the genetic mechanism of quality traits and molecular breeding of wheat.
Collapse
Affiliation(s)
- Qiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- *Correspondence: Zhifen Pan, ; orcid.org/0000-0002-1692-5425
| | - Yuan Gao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junjun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zijin Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Haili Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Maoqun Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
42
|
Jaiswal S, Gautam RK, Singh RK, Krishnamurthy SL, Ali S, Sakthivel K, Iquebal MA, Rai A, Kumar D. Harmonizing technological advances in phenomics and genomics for enhanced salt tolerance in rice from a practical perspective. RICE (NEW YORK, N.Y.) 2019; 12:89. [PMID: 31802312 PMCID: PMC6892996 DOI: 10.1186/s12284-019-0347-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/06/2019] [Indexed: 05/12/2023]
Abstract
Half of the global human population is dependent on rice as a staple food crop and more than 25% increase in rice productivity is required to feed the global population by 2030. With increase in irrigation, global warming and rising sea level, rising salinity has become one of the major challenges to enhance the rice productivity. Since the loss on this account is to the tune of US$12 billion per annum, it necessitates the global attention. In the era of technological advancement, substantial progress has been made on phenomics and genomics data generation but reaping benefit of this in rice salinity variety development in terms of cost, time and precision requires their harmonization. There is hardly any comprehensive holistic review for such combined approach. Present review describes classical salinity phenotyping approaches having morphological, physiological and biochemical components. It also gives a detailed account of invasive and non-invasive approaches of phenomic data generation and utilization. Classical work of rice salinity QLTs mapping in the form of chromosomal atlas has been updated. This review describes how QTLs can be further dissected into QTN by GWAS and transcriptomic approaches. Opportunities and progress made by transgenic, genome editing, metagenomics approaches in combating rice salinity problems are discussed. Major aim of this review is to provide a comprehensive over-view of hitherto progress made in rice salinity tolerance research which is required to understand bridging of phenotype based breeding with molecular breeding. This review is expected to assist rice breeders in their endeavours by fetching greater harmonization of technological advances in phenomics and genomics for better pragmatic approach having practical perspective.
Collapse
Affiliation(s)
- Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistical Research Institute, PUSA, New Delhi, 110012, India
| | - R K Gautam
- Division of Field Crop Improvement & Protection, ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, 744105, India.
| | - R K Singh
- Division of Plant Breeding Genetics and Biotechnology, International Rice Research Institute, DAPO Box 7777, Los Banos, Metro Manila, Philippines
| | - S L Krishnamurthy
- Division of Crop Improvement, ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India
| | - S Ali
- Division of Crop Improvement, ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India
| | - K Sakthivel
- Division of Field Crop Improvement & Protection, ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, 744105, India
| | - M A Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistical Research Institute, PUSA, New Delhi, 110012, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistical Research Institute, PUSA, New Delhi, 110012, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistical Research Institute, PUSA, New Delhi, 110012, India.
| |
Collapse
|
43
|
Ye Y, Medina-Velo IA, Cota-Ruiz K, Moreno-Olivas F, Gardea-Torresdey JL. Can abiotic stresses in plants be alleviated by manganese nanoparticles or compounds? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109671. [PMID: 31539809 DOI: 10.1016/j.ecoenv.2019.109671] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 05/04/2023]
Abstract
Abiotic stress has become one of the most challenging problems for agriculture as the world population keeps increasing dramatically. Crop stress management using manganese (Mn) compounds has been recently employed to reduce the negative effects caused by drought, harsh temperature, and salinity. In response to abiotic stress, an adequate supply of Mn has shown to remediate plant manganese deficiency, induce Mn superoxide dismutase at the transcriptional level to face reactive oxygen species production, and stimulate manganese-dependent proteins to maintain cell integrity. Lately, nanoparticles (NPs) have been explored in agriculture applications. Recent studies have implied that Mn NPs may help plants to overcome abiotic stresses at higher efficiency and lower toxicity, compared to their bulk or ionic counterparts. Although studies have shown that Mn compounds promote crop growth and alleviate abiotic stress, many questions related to Mn-plant networking, their mode of signaling, and the Mn-dependent regulation processes need to be answered.
Collapse
Affiliation(s)
- Yuqing Ye
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, United States
| | - Illya A Medina-Velo
- Department of Natural Sciences, Western New Mexico University, 1000 W College Ave., Silver City, NM, 88062, United States
| | - Keni Cota-Ruiz
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, United States
| | - Fabiola Moreno-Olivas
- Department of Biomedical Engineering, Binghamton University, 4400 Vestal Pkwy., Binghamton, NY, 13902, United States
| | - Jorge L Gardea-Torresdey
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, United States; Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, United States.
| |
Collapse
|
44
|
Shohan MUS, Sinha S, Nabila FH, Dastidar SG, Seraj ZI. HKT1;5 Transporter Gene Expression and Association of Amino Acid Substitutions With Salt Tolerance Across Rice Genotypes. FRONTIERS IN PLANT SCIENCE 2019; 10:1420. [PMID: 31749823 PMCID: PMC6843544 DOI: 10.3389/fpls.2019.01420] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/14/2019] [Indexed: 05/20/2023]
Abstract
Plants need to maintain a low Na+/K+ ratio for their survival and growth when there is high sodium concentration in soil. Under these circumstances, the high affinity K+ transporter (HKT) and its homologs are known to perform a critical role with HKT1;5 as a major player in maintaining Na+ concentration. Preferential expression of HKT1;5 in roots compared to shoots was observed in rice and rice-like genotypes from real time PCR, microarray, and RNAseq experiments and data. Its expression trend was generally higher under increasing salt stress in sensitive IR29, tolerant Pokkali, both glycophytes; as well as the distant wild rice halophyte, Porteresia coarctata, indicative of its importance during salt stress. These results were supported by a low Na+/K+ ratio in Pokkali, but a much lower one in P. coarctata. HKT1;5 has functional variability among salt sensitive and tolerant varieties and multiple sequence alignment of sequences of HKT1;5 from Oryza species and P. coarctata showed 4 major amino acid substitutions (140 P/A/T/I, 184 H/R, D332H, V395L), with similarity amongst the tolerant genotypes and the halophyte but in variance with sensitive ones. The best predicted 3D structure of HKT1;5 was generated using Ktrab potassium transporter as template. Among the four substitutions, conserved presence of aspartate (332) and valine (395) in opposite faces of the membrane along the Na+/K+ channel was observed only for the tolerant and halophytic genotypes. A model based on above, as well as molecular dynamics simulation study showed that valine is unable to generate strong hydrophobic network with its surroundings in comparison to leucine due to reduced side chain length. The resultant alteration in pore rigidity increases the likelihood of Na+ transport from xylem sap to parenchyma and further to soil. The model also proposes that the presence of aspartate at the 332 position possibly leads to frequent polar interactions with the extracellular loop polar residues which may shift the loop away from the opening of the constriction at the pore and therefore permit easy efflux of the Na+. These two substitutions of the HKT1;5 transporter probably help tolerant varieties maintain better Na+/K+ ratio for survival under salt stress.
Collapse
Affiliation(s)
- Mohammad Umer Sharif Shohan
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Souvik Sinha
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Fahmida Habib Nabila
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | | | - Zeba I. Seraj
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
45
|
Rana MM, Takamatsu T, Baslam M, Kaneko K, Itoh K, Harada N, Sugiyama T, Ohnishi T, Kinoshita T, Takagi H, Mitsui T. Salt Tolerance Improvement in Rice through Efficient SNP Marker-Assisted Selection Coupled with Speed-Breeding. Int J Mol Sci 2019; 20:ijms20102585. [PMID: 31130712 PMCID: PMC6567206 DOI: 10.3390/ijms20102585] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/30/2022] Open
Abstract
Salinity critically limits rice metabolism, growth, and productivity worldwide. Improvement of the salt resistance of locally grown high-yielding cultivars is a slow process. The objective of this study was to develop a new salt-tolerant rice germplasm using speed-breeding. Here, we precisely introgressed the hst1 gene, transferring salinity tolerance from “Kaijin” into high-yielding “Yukinko-mai” (WT) rice through single nucleotide polymorphism (SNP) marker-assisted selection. Using a biotron speed-breeding technique, we developed a BC3F3 population, named “YNU31-2-4”, in six generations and 17 months. High-resolution genotyping by whole-genome sequencing revealed that the BC3F2 genome had 93.5% similarity to the WT and fixed only 2.7% of donor parent alleles. Functional annotation of BC3F2 variants along with field assessment data indicated that “YNU31-2-4” plants carrying the hst1 gene had similar agronomic traits to the WT under normal growth condition. “YNU31-2-4” seedlings subjected to salt stress (125 mM NaCl) had a significantly higher survival rate and increased shoot and root biomasses than the WT. At the tissue level, quantitative and electron probe microanalyzer studies indicated that “YNU31-2-4” seedlings avoided Na+ accumulation in shoots under salt stress. The “YNU31-2-4” plants showed an improved phenotype with significantly higher net CO2 assimilation and lower yield decline than WT under salt stress at the reproductive stage. “YNU31-2-4” is a potential candidate for a new rice cultivar that is highly tolerant to salt stress at the seedling and reproductive stages, and which might maintain yields under a changing global climate.
Collapse
Affiliation(s)
- Md Masud Rana
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
- Agronomy Division, Bangladesh Rice Research Institute, Gazipur-1701, Bangladesh.
| | - Takeshi Takamatsu
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan.
| | - Marouane Baslam
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan.
| | - Kentaro Kaneko
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
| | - Kimiko Itoh
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan.
| | - Naoki Harada
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan.
| | - Toshie Sugiyama
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan.
| | - Takayuki Ohnishi
- Center for Education and Research of Community Collaboration, Utsunomiya University, Utsunomiya 321-8505, Japan.
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan.
| | - Hiroki Takagi
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Ishikawa 921-8836, Japan.
| | - Toshiaki Mitsui
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan.
| |
Collapse
|
46
|
Mirdar Mansuri R, Shobbar ZS, Babaeian Jelodar N, Ghaffari MR, Nematzadeh GA, Asari S. Dissecting molecular mechanisms underlying salt tolerance in rice: a comparative transcriptional profiling of the contrasting genotypes. RICE (NEW YORK, N.Y.) 2019; 12:13. [PMID: 30830459 PMCID: PMC6399358 DOI: 10.1186/s12284-019-0273-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/22/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Salinity expansion in arable land is a threat to crop plants. Rice is the staple food crop across several countries worldwide; however, its salt sensitive nature severely affects its growth under excessive salinity. FL478 is a salt tolerant indica recombinant inbred line, which can be a good source of salt tolerance at the seedling stage in rice. To learn about the genetic basis of its tolerance to salinity, we compared transcriptome profiles of FL478 and its sensitive parent (IR29) using RNA-seq technique. RESULTS A total of 1714 and 2670 genes were found differentially expressed (DEGs) under salt stress compared to normal conditions in FL478 and IR29, respectively. Gene ontology analysis revealed the enrichment of transcripts involved in salinity response, regulation of gene expression, and transport in both genotypes. Comparative transcriptome analysis revealed that 1063 DEGs were co-expressed, while 338/252 and 572/908 DEGs were exclusively up/down-regulated in FL478 and IR29, respectively. Further, some biological processes (e.g. iron ion transport, response to abiotic stimulus, and oxidative stress) and molecular function terms (e.g. zinc ion binding and cation transmembrane transporter activity) were specifically enriched in FL478 up-regulated transcripts. Based on the metabolic pathways analysis, genes encoding transport and major intrinsic proteins transporter superfamily comprising aquaporin subfamilies and genes involved in MAPK signaling and signaling receptor kinases were specifically enriched in FL478. A total of 1135 and 1894 alternative splicing events were identified in transcripts of FL478 and IR29, respectively. Transcripts encoding two potassium transporters and two major facilitator family transporters were specifically up-regulated in FL478 under salt stress but not in the salt sensitive genotype. Remarkably, 11 DEGs were conversely regulated in the studied genotypes; for example, OsZIFL, OsNAAT, OsGDSL, and OsELIP genes were up-regulated in FL478, while they were down-regulated in IR29. CONCLUSIONS The achieved results suggest that FL478 employs more efficient mechanisms (especially in signal transduction of salt stress, influx and transport of k+, ionic and osmotic homeostasis, as well as ROS inhibition) to respond to the salt stress compared to its susceptible parent.
Collapse
Affiliation(s)
- Raheleh Mirdar Mansuri
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), PO Box 31535-1897, Karaj, Iran
- Department of Plant breeding and Biotechnology, Faculty of Crop Science, Sari Agricultural Science and Natural Resources University, Sari, Mazandaran, 578, Iran
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), PO Box 31535-1897, Karaj, Iran.
| | - Nadali Babaeian Jelodar
- Department of Plant breeding and Biotechnology, Faculty of Crop Science, Sari Agricultural Science and Natural Resources University, Sari, Mazandaran, 578, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), PO Box 31535-1897, Karaj, Iran
| | - Ghorban-Ali Nematzadeh
- Department of Plant breeding and Biotechnology, Faculty of Crop Science, Sari Agricultural Science and Natural Resources University, Sari, Mazandaran, 578, Iran
| | - Saeedeh Asari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), PO Box 31535-1897, Karaj, Iran
| |
Collapse
|
47
|
Proteomic Analysis of a Rice Mutant sd58 Possessing a Novel d1 Allele of Heterotrimeric G Protein Alpha Subunit (RGA1) in Salt Stress with a Focus on ROS Scavenging. Int J Mol Sci 2019; 20:ijms20010167. [PMID: 30621186 PMCID: PMC6337198 DOI: 10.3390/ijms20010167] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/26/2018] [Accepted: 12/29/2018] [Indexed: 12/14/2022] Open
Abstract
High salinity severely restrains plant growth and results in decrease of crop yield in agricultural production. Thus, it is of great significance to discover the crucial regulators involved in plant salt resistance. Here, we report a novel mutant, sd58, which displays enhanced salt tolerance and dwarf phenotype, by screening from ethyl methane sulfonate (EMS) mutagenized rice mutant library. Genetic analysis showed that sd58 was caused by a single recessive locus. Map-based cloning and allelic test revealed that the phenotypes of sd58 were due to the mutation of RGA1, encoding the alpha subunit of heterotrimeric G protein (Gα). A point mutation (G to A) was identified at the splicing site (GT-AG) of the first intron in RGA1, which gives rise to the generation of abnormal mRNA splicing forms. Furthermore, 332 differentially abundant proteins (DAPs) were identified by using an Isobaric Tags for Relative and Absolute Quantitation(iTRAQ)-based proteomic technique from seedlings of sd58 and Kitaake in response to salt treatment. Gene Ontology (GO) and KEGG pathway enrichment analysis revealed these proteins were mainly involved in regulation of the processes such as metabolic pathways, photosynthesis and reactive oxygen species (ROS) homeostasis. Under salt stress, sd58 displayed lower ROS accumulation than Kitaake, which is consistent with the higher enzyme activities involved in ROS scavenging. Taken together, we propose that RGA1 is one of the regulators in salt response partially through ROS scavenging, which might be helpful in elucidating salt tolerant mechanisms of heterotrimeric G protein in rice.
Collapse
|