1
|
Shi Q, Xia Y, Wang Q, Lv K, Yang H, Cui L, Sun Y, Wang X, Tao Q, Song X, Xu D, Xu W, Wang X, Wang X, Kong F, Zhang H, Li B, Li P, Wang H, Li G. Phytochrome B interacts with LIGULELESS1 to control plant architecture and density tolerance in maize. MOLECULAR PLANT 2024; 17:1255-1271. [PMID: 38946140 DOI: 10.1016/j.molp.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/02/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Over the past few decades, significant improvements in maize yield have been largely attributed to increased plant density of upright hybrid varieties rather than increased yield per plant. However, dense planting triggers shade avoidance responses (SARs) that optimize light absorption but impair plant vigor and performance, limiting yield improvement through increasing plant density. In this study, we demonstrated that high-density-induced leaf angle narrowing and stem/stalk elongation are largely dependent on phytochrome B (phyB1/B2), the primary photoreceptor responsible for perceiving red (R) and far-red (FR) light in maize. We found that maize phyB physically interacts with the LIGULELESS1 (LG1), a classical key regulator of leaf angle, to coordinately regulate plant architecture and density tolerance. The abundance of LG1 is significantly increased by phyB under high R:FR light (low density) but rapidly decreases under low R:FR light (high density), correlating with variations in leaf angle and plant height under various densities. In addition, we identified the homeobox transcription factor HB53 as a target co-repressed by both phyB and LG1 but rapidly induced by canopy shade. Genetic and cellular analyses showed that HB53 regulates plant architecture by controlling the elongation and division of ligular adaxial and abaxial cells. Taken together, these findings uncover the phyB-LG1-HB53 regulatory module as a key molecular mechanism governing plant architecture and density tolerance, providing potential genetic targets for breeding maize hybrid varieties suitable for high-density planting.
Collapse
Affiliation(s)
- Qingbiao Shi
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Ying Xia
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Qibin Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Kaiwen Lv
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Hengjia Yang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Lianzhe Cui
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yue Sun
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xiaofei Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Qing Tao
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xiehai Song
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Di Xu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Wenchang Xu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xingyun Wang
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Xianglan Wang
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Fanying Kong
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Haisen Zhang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Bosheng Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Pinghua Li
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Haiyang Wang
- Guandong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.
| | - Gang Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
2
|
Kim H, Lee N, Kim Y, Choi G. The phytochrome-interacting factor genes PIF1 and PIF4 are functionally diversified due to divergence of promoters and proteins. THE PLANT CELL 2024; 36:2778-2797. [PMID: 38593049 PMCID: PMC11289632 DOI: 10.1093/plcell/koae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/11/2024]
Abstract
Phytochrome-interacting factors (PIFs) are basic helix-loop-helix transcription factors that regulate light responses downstream of phytochromes. In Arabidopsis (Arabidopsis thaliana), 8 PIFs (PIF1-8) regulate light responses, either redundantly or distinctively. Distinctive roles of PIFs may be attributed to differences in mRNA expression patterns governed by promoters or variations in molecular activities of proteins. However, elements responsible for the functional diversification of PIFs have yet to be determined. Here, we investigated the role of promoters and proteins in the functional diversification of PIF1 and PIF4 by analyzing transgenic lines expressing promoter-swapped PIF1 and PIF4, as well as chimeric PIF1 and PIF4 proteins. For seed germination, PIF1 promoter played a major role, conferring dominance to PIF1 gene with a minor contribution from PIF1 protein. Conversely, for hypocotyl elongation under red light, PIF4 protein was the major element conferring dominance to PIF4 gene with the minor contribution from PIF4 promoter. In contrast, both PIF4 promoter and PIF4 protein were required for the dominant role of PIF4 in promoting hypocotyl elongation at high ambient temperatures. Together, our results support that the functional diversification of PIF1 and PIF4 genes resulted from contributions of both promoters and proteins, with their relative importance varying depending on specific light responses.
Collapse
Affiliation(s)
- Hanim Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Nayoung Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Yeojae Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Zhuang H, Guo Z, Wang J, Chen T. Genome-wide identification and comprehensive analysis of the phytochrome-interacting factor (PIF) gene family in wheat. PLoS One 2024; 19:e0296269. [PMID: 38181015 PMCID: PMC10769075 DOI: 10.1371/journal.pone.0296269] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024] Open
Abstract
Phytochrome-interacting factors (PIFs) are essential transcription factors for plant growth, development, and stress responses. Although PIF genes have been extensively studied in many plant species, they have not been thoroughly investigated in wheat. Here, we identified 18 PIF genes in cultivated hexaploid wheat (Triticum aestivum L). Phylogenetic analysis, exon-intron structures, and motif compositions revealed the presence of four distinct groups of TaPIFs. Genome-wide collinearity analysis of PIF genes revealed the evolutionary history of PIFs in wheat, Oryza sativa, and Brachypodium distachyon. Cis-regulatory element analysis suggested that TaPIF genes indicated participated in plant development and stress responses. Subcellular localization assays indicated that TaPIF2-1B and TaPIF4-5B were transcriptionally active. Both were found to be localized to the nucleus. Gene expression analyses demonstrated that TaPIFs were primarily expressed in the leaves and were induced by various biotic and abiotic stresses and phytohormone treatments. This study provides new insights into PIF-mediated stress responses and lays a strong foundation for future investigation of PIF genes in wheat.
Collapse
Affiliation(s)
- Hua Zhuang
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd, Xi’an, China
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd, Xi’an, China
| | - Zhen Guo
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd, Xi’an, China
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd, Xi’an, China
| | - Jian Wang
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd, Xi’an, China
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd, Xi’an, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi’an, China
| | - Tianqing Chen
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd, Xi’an, China
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd, Xi’an, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi’an, China
- Shaanxi Engineering Research Center of Land Consolidation, Xi’an, China
- Land Engineering Technology Innovation Center, Ministry of Natural Resources, Xi’an, China
| |
Collapse
|
4
|
Sharma A, Samtani H, Sahu K, Sharma AK, Khurana JP, Khurana P. Functions of Phytochrome-Interacting Factors (PIFs) in the regulation of plant growth and development: A comprehensive review. Int J Biol Macromol 2023:125234. [PMID: 37290549 DOI: 10.1016/j.ijbiomac.2023.125234] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
Transcription factors play important roles in governing plant responses upon changes in their ambient conditions. Any fluctuation in the supply of critical requirements for plants, such as optimum light, temperature, and water leads to the reprogramming of gene-signaling pathways. At the same time, plants also evaluate and shift their metabolism according to the various stages of development. Phytochrome-Interacting Factors are one of the most important classes of transcription factors that regulate both developmental and external stimuli-based growth of plants. This review focuses on the identification of PIFs in various organisms, regulation of PIFs by various proteins, functions of PIFs of Arabidopsis in diverse developmental pathways such as seed germination, photomorphogenesis, flowering, senescence, seed and fruit development, and external stimuli-induced plant responses such as shade avoidance response, thermomorphogenesis, and various abiotic stress responses. Recent advances related to the functional characterization of PIFs of crops such as rice, maize, and tomato have also been incorporated in this review, to ascertain the potential of PIFs as key regulators to enhance the agronomic traits of these crops. Thus, an attempt has been made to provide a holistic view of the function of PIFs in various processes in plants.
Collapse
Affiliation(s)
- Aishwarye Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Harsha Samtani
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Karishma Sahu
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Jitendra Paul Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
5
|
Zhang Z, Chen L, Yu J. Maize WRKY28 interacts with the DELLA protein D8 to affect skotomorphogenesis and participates in the regulation of shade avoidance and plant architecture. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3122-3141. [PMID: 36884355 DOI: 10.1093/jxb/erad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 05/21/2023]
Abstract
Competition for light from neighboring vegetation can trigger the shade-avoidance response (SAR) in plants, which is detrimental to their yield. The molecular mechanisms regulating SAR are well established in Arabidopsis, and some regulators of skotomorphogenesis have been found to be involved in the regulation of the SAR and plant architecture. However, the role of WRKY transcription factors in this process has rarely been reported, especially in maize (Zea mays). Here, we report that maize Zmwrky28 mutants exhibit shorter mesocotyls in etiolated seedlings. Molecular and biochemical analyses demonstrate that ZmWRKY28 directly binds to the promoter regions of the Small Auxin Up RNA (SAUR) gene ZmSAUR54 and the Phytochrome-Interacting Factor (PIF) gene ZmPIF4.1 to activate their expression. In addition, the maize DELLA protein Dwarf Plant8 (D8) interacts with ZmWRKY28 in the nucleus to inhibit its transcriptional activation activity. We also show that ZmWRKY28 participates in the regulation of the SAR, plant height, and leaf rolling and erectness in maize. Taken together, our results reveal that ZmWRKY28 is involved in GA-mediated skotomorphogenic development and can be used as a potential target to regulate SAR for breeding of high-density-tolerant cultivars.
Collapse
Affiliation(s)
- Ze Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Limei Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jingjuan Yu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Liu LY, Jia MZ, Wang SN, Han S, Jiang J. Identification and characterization of cotton PHYTOCHROME-INTERACTING FACTORs in temperature-dependent flowering. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad119. [PMID: 36988239 DOI: 10.1093/jxb/erad119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 06/19/2023]
Abstract
PHYTOCHROME INTERACTING FACTORs (PIFs) assimilate with light and temperature signs to control plant growth and development. However, little is known about PIFs in crop plants such as cotton. Here, we identified 68 PIF proteins and their coding genes from an allotetraploid and three diploid ancestors. Cotton PIFs contain typical APA and APB motifs by means of which they bind to phytochrome phyA and phyB, respectively, and have a bHLH domain and a nuclear localization sequence necessary for bHLH-type transcription factors. Bioinformatics analysis showed that the promoter of each PIF gene contains multiple cis-acting elements and that the evolution of cotton genomes likely underwent loss, recombination, and tandem replication. Further observations indicated that the sensitivity of cotton PIF expression to low or high temperature was significantly different, of which allotetraploid Gossypium hirsutum PIF4a (GhPIF4a) was induced by high temperature. GhPIF4a promotes flowering in cotton and Arabidopsis and binds to the promoter of GhFT (FLOWERING LOCUS T) increasing with temperature rise. In conclusion, our work identifies the evolutionary and structural characteristics and functions of PIF family members in cotton.
Collapse
Affiliation(s)
- Ling-Yun Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China
| | - Ming-Zhu Jia
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China
| | - Sheng-Nan Wang
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China
| | - Shuan Han
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China
| | - Jing Jiang
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China
| |
Collapse
|
7
|
Kong D, Li C, Xue W, Wei H, Ding H, Hu G, Zhang X, Zhang G, Zou T, Xian Y, Wang B, Zhao Y, Liu Y, Xie Y, Xu M, Wu H, Liu Q, Wang H. UB2/UB3/TSH4-anchored transcriptional networks regulate early maize inflorescence development in response to simulated shade. THE PLANT CELL 2023; 35:717-737. [PMID: 36472157 PMCID: PMC9940873 DOI: 10.1093/plcell/koac352] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 05/12/2023]
Abstract
Increasing planting density has been adopted as an effective means to increase maize (Zea mays) yield. Competition for light from neighbors can trigger plant shade avoidance syndrome, which includes accelerated flowering. However, the regulatory networks of maize inflorescence development in response to high-density planting remain poorly understood. In this study, we showed that shade-mimicking treatments cause precocious development of the tassels and ears. Comparative transcriptome profiling analyses revealed the enrichment of phytohormone-related genes and transcriptional regulators among the genes co-regulated by developmental progression and simulated shade. Network analysis showed that three homologous Squamosa promoter binding protein (SBP)-like (SPL) transcription factors, Unbranched2 (UB2), Unbranched3 (UB3), and Tasselsheath4 (TSH4), individually exhibited connectivity to over 2,400 genes across the V3-to-V9 stages of tassel development. In addition, we showed that the ub2 ub3 double mutant and tsh4 single mutant were almost insensitive to simulated shade treatments. Moreover, we demonstrated that UB2/UB3/TSH4 could directly regulate the expression of Barren inflorescence2 (BIF2) and Zea mays teosinte branched1/cycloidea/proliferating cell factor30 (ZmTCP30). Furthermore, we functionally verified a role of ZmTCP30 in regulating tassel branching and ear development. Our results reveal a UB2/UB3/TSH4-anchored transcriptional regulatory network of maize inflorescence development and provide valuable targets for breeding shade-tolerant maize cultivars.
Collapse
Affiliation(s)
- Dexin Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Changyu Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weicong Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Hongbin Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Hui Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Guizhen Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Guisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Ting Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yuting Xian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongping Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yurong Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miaoyun Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
8
|
Wang N, Shu X, Zhang F, Wang Z. Transcriptome-wide characterization of bHLH transcription factor genes in Lycoris radiata and functional analysis of their response to MeJA. FRONTIERS IN PLANT SCIENCE 2023; 13:975530. [PMID: 36704164 PMCID: PMC9872026 DOI: 10.3389/fpls.2022.975530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
As one of the biggest plant specific transcription factor (TF) families, basic helix-loop-helix (bHLH) protein, plays significant roles in plant growth, development, and abiotic stress responses. However, there has been minimal research about the effects of methyl jasmonate (MeJA) treatment on the bHLH gene family in Lycoris radiata (L'Her.) Herb. In this study, based on transcriptome sequencing data, 50 putative L. radiata bHLH (LrbHLH) genes with complete open reading frames (ORFs), which were divided into 20 bHLH subfamilies, were identified. The protein motif analyses showed that a total of 10 conserved motifs were found in LrbHLH proteins and motif 1 and motif 2 were the most highly conserved motifs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of LrbHLH genes revealed their involvement in regulation of plant growth, jasmonic acid (JA) mediated signaling pathway, photoperiodism, and flowering. Furthermore, subcellular localization revealed that most LrbHLHs were located in the nucleus. Expression pattern analysis of LrbHLH genes in different tissues and at flower developmental stages suggested that their expression differed across lineages and might be important for plant growth and organ development in Lycoris. In addition, all LrbHLH genes exhibited specific spatial and temporal expression patterns under MeJA treatment. Moreover, protein-protein interaction (PPI) network analysis and yeast two-hybrid assay showed that numerous LrbHLHs could interact with jasmonate ZIM (zinc-finger inflorescence meristem) domain (JAZ) proteins. This research provides a theoretical basis for further investigation of LrbHLHs to find their functions and insights for their regulatory mechanisms involved in JA signaling pathway.
Collapse
|
9
|
The modulation of light quality on carotenoids in maize (Zea mays L.) sprouts. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 5:100128. [PMID: 36035445 PMCID: PMC9399270 DOI: 10.1016/j.fochms.2022.100128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 11/22/2022]
Abstract
Red and blue light were associated with increased carotenoid biosynthesis. Lutein contents increased to 6.3 and 14 folds following red and blue light exposure. Blue light was associated with higher expression of HY5 and CHYB. ERF021 and MYB68 were negatively associated with carotenoid biosynthesis. Phytohormones (IAA, SL and GA) were related to carotenoid biosynthesis.
The present study aimed to identify the regulatory mechanisms of red, blue, and white light on carotenoid biosynthesis in maize sprouts. Determinations of carotenoid, chlorophyll and phytohormone profiles, as well as relative gene expression, were explored. The results identified enhancement of carotenoid and chlorophyll production as well as gene expression. Most notably, the expression levels of CRY, HY5, and beta-carotene 3-hydroxylase genes peaked under blue light. Photomorphogene-related hormone, auxins and strigolactone production was also altered under different lights and might have a role in carotenoid metabolism. Gibberellins competed with carotenoids for the precursor geranylgeranyl diphosphate and were hindered by certain light characteristics, probably via DELLA-PIF4 signalling. ERF021 and MYB68 were negative regulators of carotenoid biosynthesis in maize sprouts. These findings provide new insights into the light-regulated mechanism and biofortification of carotenoids in maize sprouts.
Collapse
|
10
|
Zhang YX, Niu YQ, Wang XF, Wang ZH, Wang ML, Yang J, Wang YG, Zhang WJ, Song ZP, Li LF. Phenotypic and transcriptomic responses of the shade-grown species Panax ginseng to variable light conditions. ANNALS OF BOTANY 2022; 130:749-762. [PMID: 35961674 PMCID: PMC9670753 DOI: 10.1093/aob/mcac105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Elucidating how plant species respond to variable light conditions is important to understand the ecological adaptation to heterogeneous natural habitats. Plant performance and its underlying gene regulatory network have been well documented in sun-grown plants. However, the phenotypic and molecular responses of shade-grown plants under variable light conditions have remained largely unclear. METHODS We assessed the differences in phenotypic performance between Panax ginseng (shade-grown) and Arabidopsis thaliana (sun-grown) under sunlight, shade and deep-shade conditions. To further address the molecular bases underpinning the phenotypic responses, we compared time-course transcriptomic expression profiling and candidate gene structures between the two species. KEY RESULTS Our results show that, compared with arabidopsis, ginseng plants not only possess a lower degree of phenotypic plasticity among the three light conditions, but also exhibit higher photosynthetic efficiency under shade and deep-shade conditions. Further comparisons of the gene expression and structure reveal that differential transcriptional regulation together with increased copy number of photosynthesis-related genes (e.g. electron transfer and carbon fixation) may improve the photosynthetic efficiency of ginseng plants under the two shade conditions. In contrast, the inactivation of phytochrome-interacting factors (i.e. absent and no upregulation of the PIF genes) are potentially associated with the observed low degree of phenotypic plasticity of ginseng plants under variable light conditions. CONCLUSIONS Our study provides new insights into how shade-grown plants respond to variable light conditions. Candidate genes related to shade adaptation in ginseng provide valuable genetic resources for future molecular breeding of high-density planting crops.
Collapse
Affiliation(s)
- Yu-Xin Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yu-Qian Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xin-Feng Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhen-Hui Wang
- Department of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Meng-Li Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ji Yang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yu-Guo Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wen-Ju Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhi-Ping Song
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lin-Feng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
11
|
Castro-Camba R, Sánchez C, Vidal N, Vielba JM. Plant Development and Crop Yield: The Role of Gibberellins. PLANTS (BASEL, SWITZERLAND) 2022; 11:2650. [PMID: 36235516 PMCID: PMC9571322 DOI: 10.3390/plants11192650] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/12/2023]
Abstract
Gibberellins have been classically related to a few key developmental processes, thus being essential for the accurate unfolding of plant genetic programs. After more than a century of research, over one hundred different gibberellins have been described. There is a continuously increasing interest in gibberellins research because of their relevant role in the so-called "Green Revolution", as well as their current and possible applications in crop improvement. The functions attributed to gibberellins have been traditionally restricted to the regulation of plant stature, seed germination, and flowering. Nonetheless, research in the last years has shown that these functions extend to many other relevant processes. In this review, the current knowledge on gibberellins homeostasis and mode of action is briefly outlined, while specific attention is focused on the many different responses in which gibberellins take part. Thus, those genes and proteins identified as being involved in the regulation of gibberellin responses in model and non-model species are highlighted. The present review aims to provide a comprehensive picture of the state-of-the-art perception of gibberellins molecular biology and its effects on plant development. This picture might be helpful to enhance our current understanding of gibberellins biology and provide the know-how for the development of more accurate research and breeding programs.
Collapse
Affiliation(s)
| | | | | | - Jesús Mª Vielba
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas, 15780 Santiago de Compostela, Spain
| |
Collapse
|
12
|
Patturaj M, Munusamy A, Kannan N, Ramasamy Y. Biologia Futura: progress and future perspectives of long non-coding RNAs in forest trees. Biol Futur 2021; 73:43-53. [PMID: 34843103 DOI: 10.1007/s42977-021-00108-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Forest trees are affected by climate change, anthropogenic pressure, as well as abiotic and biotic stresses. Conventional tree breeding has so far been limited to enhance overall productivity, and our understanding of the genetic basis of quantitative traits is still inadequate. Quantum leaps in next-generation sequencing technologies and bioinformatics have permitted the exploration and identification of various non-coding regions of the genome other than protein coding genes. These genomic regions produce various types of non-coding RNAs and regulate myriads of biological functions at epigenetic, transcriptional and translational levels. Recently, long non-coding RNAs (lncRNAs) which act as molecular switch have been identified to be pivotal molecules in forest trees. This review focuses on progress made in regulatory mechanisms in various developmental phases like wood formation, adventitious rooting and flowering and stress responses. It was predicted that complex regulatory interactions among lncRNA, miRNA and gene exist. LncRNAs can function as a sponge for miRNAs, reducing the suppressive effect of miRNAs on target mRNAs and perhaps adding a new layer of regulatory interactions among non-coding RNA classes in trees. Furthermore, network analysis revealed the interactions of lncRNA and genes during the expression of several important genes. The insights generated about lncRNAs in forest trees would enable improvement of economically important traits including the devastating abiotic and biotic stresses. In addition, solid understanding on the wide range of regulatory functions of lncRNAs on traits influencing biomass productivity and adaptation would aid the applications of biotechnology in genetic improvement of forest trees.
Collapse
Affiliation(s)
- Maheswari Patturaj
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, India
| | - Aiswarya Munusamy
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, India
| | - Nithishkumar Kannan
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, India
| | - Yasodha Ramasamy
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, India.
| |
Collapse
|
13
|
Identification, Molecular Characteristic, and Expression Analysis of PIFs Related to Chlorophyll Metabolism in Tea Plant ( Camellia sinensis). Int J Mol Sci 2021; 22:ijms222010949. [PMID: 34681609 PMCID: PMC8539375 DOI: 10.3390/ijms222010949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 02/01/2023] Open
Abstract
The phytochrome-interacting factors (PIFs) proteins belong to the subfamily of basic helix–loop–helix (bHLH) transcription factors and play important roles in chloroplast development and chlorophyll biosynthesis. Currently, knowledge about the PIF gene family in Camellia sinensis remains very limited. In this study, seven PIF members were identified in the C. sinensis genome and named based on homology with AtPIF genes in Arabidopsis thaliana. All C. sinensis PIF (CsPIF) proteins have both the conserved active PHYB binding (APB) and bHLH domains. Phylogenetic analysis revealed that CsPIFs were clustered into four groups—PIF1, PIF3, PIF7, and PIF8—and most CsPIFs were clustered in pairs with their corresponding orthologs in Populus tremula. CsPIF members in the same group tended to display uniform or similar exon–intron distribution patterns and motif compositions. CsPIF genes were differentially expressed in C. sinensis with various leaf colors and strongly correlated with the expression of genes involved in the chlorophyll metabolism pathway. Promoter analysis of structural genes related to chlorophyll metabolism found DNA-binding sites of PIFs were abundant in the promoter regions. Protein–protein interaction networks of CsPIFs demonstrated a close association with phytochrome, PIF4, HY5, TOC1, COP1, and PTAC12 proteins. Additionally, subcellular localization and transcriptional activity analysis suggested that CsPIF3b was nuclear localized protein and possessed transcriptional activity. We also found that CsPIF3b could activate the transcription of CsHEMA and CsPOR in Nicotiana benthamiana leaves. This work provides comprehensive research of CsPIFs and would be helpful to further promote the regulation mechanism of PIF on chlorophyll metabolism in C. sinensis.
Collapse
|
14
|
Light-Mediated Regulation of Leaf Senescence. Int J Mol Sci 2021; 22:ijms22073291. [PMID: 33804852 PMCID: PMC8037705 DOI: 10.3390/ijms22073291] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 01/21/2023] Open
Abstract
Light is the primary regulator of various biological processes during the plant life cycle. Although plants utilize photosynthetically active radiation to generate chemical energy, they possess several photoreceptors that perceive light of specific wavelengths and then induce wavelength-specific responses. Light is also one of the key determinants of the initiation of leaf senescence, the last stage of leaf development. As the leaf photosynthetic activity decreases during the senescence phase, chloroplasts generate a variety of light-mediated retrograde signals to alter the expression of nuclear genes. On the other hand, phytochrome B (phyB)-mediated red-light signaling inhibits the initiation of leaf senescence by repressing the phytochrome interacting factor (PIF)-mediated transcriptional regulatory network involved in leaf senescence. In recent years, significant progress has been made in the field of leaf senescence to elucidate the role of light in the regulation of nuclear gene expression at the molecular level during the senescence phase. This review presents a summary of the current knowledge of the molecular mechanisms underlying light-mediated regulation of leaf senescence.
Collapse
|
15
|
Li H, Ye W, Wang Y, Chen X, Fang Y, Sun G. RNA sequencing-based exploration of the effects of far-red light on lncRNAs involved in the shade-avoidance response of D. officinale. PeerJ 2021; 9:e10769. [PMID: 33614278 PMCID: PMC7883695 DOI: 10.7717/peerj.10769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/22/2020] [Indexed: 12/05/2022] Open
Abstract
Dendrobium officinale (D. officinale) is a valuable medicinal plant with a low natural survival rate, and its shade-avoidance response to far-red light is as an important strategy used by the plant to improve its production efficiency. However, the lncRNAs that play roles in the shade-avoidance response of D. officinale have not yet been investigated. This study found that an appropriate proportion of far-red light can have several effects, including increasing the leaf area and accelerating stem elongation, in D. officinale. The effects of different far-red light treatments on D. officinale were analysed by RNA sequencing technology, and a total of 69 and 78 lncRNAs were differentially expressed in experimental group 1 (FR1) versus the control group (CK) (FR1-CK) and in experimental group 4 (FR4) versus the CK (FR4-CK), respectively. According to GO and KEGG analyses, most of the differentially expressed lncRNA targets are involved in the membrane, some metabolic pathways, hormone signal transduction, and O-methyltransferase activity, among other functions. Physiological and biochemical analyses showed that far-red light promoted the accumulation of flavonoids, alkaloids, carotenoids and polysaccharides in D. officinale. The effect of far-red light on D. officinalemight be closely related to the cell membrane and Ca2+ transduction. Based on a Cytoscape analysis and previous research, this study also found that MSTRG.38867.1, MSTRG.69319.1, and MSTRG.66273.1, among other components, might participate in the far-red light signalling network through their targets and thus regulate the shade-avoidance response of D. officinale. These findings will provide new insights into the shade-avoidance response of D. officinale.
Collapse
Affiliation(s)
- Hansheng Li
- College of Resources and Chemical Engineering, Sanming University, Sanming, China
| | - Wei Ye
- The Institute of Medicinal Plant, Sanming Academy of Agricultural Science, Shaxian, China
| | - Yaqian Wang
- College of Resources and Chemical Engineering, Sanming University, Sanming, China
| | - Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Fang
- College of Resources and Chemical Engineering, Sanming University, Sanming, China
| | - Gang Sun
- College of Resources and Chemical Engineering, Sanming University, Sanming, China
| |
Collapse
|
16
|
Pierik R, Ballaré CL. Control of Plant Growth and Defense by Photoreceptors: From Mechanisms to Opportunities in Agriculture. MOLECULAR PLANT 2021; 14:61-76. [PMID: 33276158 DOI: 10.1016/j.molp.2020.11.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Plants detect and respond to the proximity of competitors using light signals perceived by photoreceptor proteins. A low ratio of red to far-red radiation (R:FR ratio) is a key signal of competition that is sensed by the photoreceptor phytochrome B (phyB). Low R:FR ratios increase the synthesis of growth-related hormones, including auxin and gibberellins, promoting stem elongation and other shade-avoidance responses. Other photoreceptors that help plants to optimize their developmental configuration and resource allocation patterns in the canopy include blue light photoreceptors, such as cryptochromes and phototropins, and UV receptors, such as UVR8. All photoreceptors act by directly or indirectly controlling the activity of two major regulatory nodes for growth and development: the COP1/SPA ubiquitin E3 ligase complex and the PIF transcription factors. phyB is also an important modulator of hormonal pathways that regulate plant defense against herbivores and pathogens, including the jasmonic acid signaling pathway. In this Perspective, we discuss recent advances on the studies of the mechanisms that link photoreceptors with growth and defense. Understanding these mechanisms is important to provide a functional platform for breeding programs aimed at improving plant productivity, stress tolerance, and crop health in species of agronomic interest, and to manipulate the light environments in protected agriculture.
Collapse
Affiliation(s)
- Ronald Pierik
- Plant Ecophysiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands.
| | - Carlos L Ballaré
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ave. San Martín 4453, C1417DSE, Buenos Aires, Argentina; IIBIO-INTECH, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, B1650HMP, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Gawarecka K, Ahn JH. Isoprenoid-Derived Metabolites and Sugars in the Regulation of Flowering Time: Does Day Length Matter? FRONTIERS IN PLANT SCIENCE 2021; 12:765995. [PMID: 35003159 PMCID: PMC8738093 DOI: 10.3389/fpls.2021.765995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/22/2021] [Indexed: 05/06/2023]
Abstract
In plants, a diverse set of pathways regulate the transition to flowering, leading to remarkable developmental flexibility. Although the importance of photoperiod in the regulation of flowering time is well known, increasing evidence suggests the existence of crosstalk among the flowering pathways regulated by photoperiod and metabolic pathways. For example, isoprenoid-derived phytohormones (abscisic acid, gibberellins, brassinosteroids, and cytokinins) play important roles in regulating flowering time. Moreover, emerging evidence reveals that other metabolites, such as chlorophylls and carotenoids, as well as sugar metabolism and sugar accumulation, also affect flowering time. In this review, we summarize recent findings on the roles of isoprenoid-derived metabolites and sugars in the regulation of flowering time and how day length affects these factors.
Collapse
|
18
|
Hoang QTN, Tripathi S, Cho JY, Choi DM, Shin AY, Kwon SY, Han YJ, Kim JI. Suppression of Phytochrome-Interacting Factors Enhances Photoresponses of Seedlings and Delays Flowering With Increased Plant Height in Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2021; 12:756795. [PMID: 34650585 PMCID: PMC8505764 DOI: 10.3389/fpls.2021.756795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/07/2021] [Indexed: 05/05/2023]
Abstract
Phytochromes are red and far-red photoreceptors that regulate plant growth and development under ambient light conditions. During phytochrome-mediated photomorphogenesis, phytochrome-interacting factors (PIFs) are the most important signaling partners that regulate the expression of light-responsive genes. However, the function of PIFs in monocots has not been studied well. In this study, using RNA interference (RNAi), we investigated the functions of BdPIL1 and BdPIL3, two PIF-like genes identified in Brachypodium distachyon, which are closely related to Arabidopsis PIF1 and PIF3. The expression of their genes is light-inducible, and both BdPIL1 and BdPIL3 proteins interact with phytochromes in an active form-specific manner. Transgenic Brachypodium seedlings with the RNAi constructs of BdPIL1 and BdPIL3 showed decreased coleoptile lengths and increased leaf growth when exposed to both red and far-red light. In addition, the transgenic plants were taller with elongated internodes than wild-type Bd21-3 plant, exhibiting late flowering. Moreover, RNA-seq analysis revealed downregulation of many genes in the transgenic plants, especially those related to the regulation of cell number, floral induction, and chlorophyll biosynthesis, which were consistent with the phenotypes of increased plant height, delayed flowering, and pale green leaves. Furthermore, we demonstrated the DNA-binding ability of BdPIL1 and BdPIL3 to the putative target promoters and that the DNA-binding was inhibited in the presence of phytochromes. Therefore, this study determines a molecular mechanism underlying phytochrome-mediated PIF regulation in Brachypodium, i.e., sequestration, and also elucidates the functions of BdPIL1 and BdPIL3 in the growth and development of the monocot plant.
Collapse
Affiliation(s)
- Quyen T. N. Hoang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Sharanya Tripathi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Jae-Yong Cho
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Da-Min Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Ah-Young Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Suk-Yoon Kwon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Yun-Jeong Han
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, South Korea
| | - Jeong-Il Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, South Korea
- *Correspondence: Jeong-Il Kim,
| |
Collapse
|
19
|
Zheng PF, Wang X, Yang YY, You CX, Zhang ZL, Hao YJ. Identification of Phytochrome-Interacting Factor Family Members and Functional Analysis of MdPIF4 in Malus domestica. Int J Mol Sci 2020; 21:ijms21197350. [PMID: 33027937 PMCID: PMC7582839 DOI: 10.3390/ijms21197350] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
Phytochrome-interacting factors (PIFs), members of the basic helix-loop-helix transcription factor family that have been extensively investigated in Arabidopsis thaliana, play essential roles in plant growth and development. However, PIF members have not been systematically investigated in apples, a worldwide perennial woody crop of economic importance. Here, seven PIF genes were identified from the Malus × domestica reference genome. Chromosomal locations, gene structures, and phylogenetic relationships of these members were analyzed. Analysis of cis-acting elements in promoter regions of MdPIF genes indicated that various elements were related to light, abiotic stress, and plant hormone responsiveness. Subsequently, subcellular localization and transcriptional activity analysis revealed that MdPIFs were typical nuclear transcription factors with transcriptional activation ability. Expression analysis demonstrated that MdPIF genes had different gene expression patterns for various abiotic factors. Moreover, overexpressed MdPIF4 reduced the sensitivity of apple calluses to abscisic acid (ABA). Our work lays foundations for further investigation of PIF functions in plant growth and development in apples.
Collapse
|
20
|
Huai J, Jing Y, Lin R. Functional analysis of ZmCOP1 and ZmHY5 reveals conserved light signaling mechanism in maize and Arabidopsis. PHYSIOLOGIA PLANTARUM 2020; 169:369-379. [PMID: 32208521 DOI: 10.1111/ppl.13099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/06/2020] [Accepted: 03/19/2020] [Indexed: 05/25/2023]
Abstract
Plants have evolved light signaling mechanisms to optimally adapt developmental patterns to the ambient light environments. CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) and LONG HYPOCOTYL5 (HY5) are two critical components in the light signaling pathway in Arabidopsis thaliana. COP1 acts as an E3 ubiquitin ligase that targets positive regulators, such as HY5, leading to their degradation in darkness. However, functional analysis of the COP1-HY5 module in maize (Zea mays) has not been reported. Here, we investigated the expression patterns and roles of the COP1 and HY5 orthologs, ZmCOP1 and ZmHY5, in regulating photomorphogenesis. These two genes have high amino acid identities with their Arabidopsis homolog and were both regulated by light. Subcellular localization assay showed that ZmCOP1 was distributed in the cytosol and ZmHY5 localized in the nucleus. Exogenous expression of ZmCOP1 rescued the physiological defects of the cop1-4 mutant, and expression of ZmHY5 complemented the long hypocotyl phenotype of the hy5-215 mutant in Arabidopsis. Yeast two-hybrid and fluorescence resonance energy transfer assays showed that ZmCOP1 interacted with ZmHY5. Our study gains insight into the conserved function and regulatory mechanism of the COP1-HY5 signaling pathway in maize and Arabidopsis.
Collapse
Affiliation(s)
- Junling Huai
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Chinese Academy of Sciences, CAS Center for Excellence in Molecular Plant Sciences, Beijing, 100093, China
| |
Collapse
|
21
|
Zhang Z, Li W, Gao X, Xu M, Guo Y. DEAR4, a Member of DREB/CBF Family, Positively Regulates Leaf Senescence and Response to Multiple Stressors in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:367. [PMID: 32296455 PMCID: PMC7136848 DOI: 10.3389/fpls.2020.00367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/13/2020] [Indexed: 05/25/2023]
Abstract
Leaf senescence is a programmed developmental process regulated by various endogenous and exogenous factors. Here we report the characterization of the senescence-regulating role of DEAR4 (AT4G36900) from the DREB1/CBF (dehydration-responsive element binding protein 1/C-repeat binding factor) family in Arabidopsis. The expression of DEAR4 is associated with leaf senescence and can be induced by ABA, JA, darkness, drought and salt stress. Transgenic plants over-expressing DEAR4 showed a dramatically enhanced leaf senescence phenotype under normal and dark conditions while the dear4 knock-down mutant displayed delayed senescence. DEAR4 over-expressing plants showed decreased seed germination rate under ABA and salt stress conditions as well as decreased drought tolerance, indicating that DEAR4 was involved in both senescence and stress response processes. Furthermore, we found that DEAR4 protein displayed transcriptional repressor activities in yeast cells. DEAR4 could directly repress the expression of a subset of COLD-REGULATED (COR) and RESPONSIVE TO DEHYDRATION (RD) genes which have been shown to be involved in leaf longevity and stress response. Also we found that DERA4 could induce the production of Reactive oxygen species (ROS), the common signal of senescence and stress responses, which gives us the clue that DEAR4 may play an integrative role in senescence and stress response via regulating ROS production.
Collapse
|
22
|
Wei H, Kong D, Yang J, Wang H. Light Regulation of Stomatal Development and Patterning: Shifting the Paradigm from Arabidopsis to Grasses. PLANT COMMUNICATIONS 2020; 1:100030. [PMID: 33367232 PMCID: PMC7747992 DOI: 10.1016/j.xplc.2020.100030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/30/2019] [Accepted: 02/06/2020] [Indexed: 05/22/2023]
Abstract
The stomatal pores of plant leaves control gas exchange with the environment. Stomatal development is prevised regulated by both internal genetic programs and environmental cues. Among various environmental factors, light regulation of stomata formation has been extensively studied in Arabidopsis. In this review, we summarize recent advances in the genetic control of stomata development and its regulation by light. We also present a comparative analysis of the conserved and diverged stomatal regulatory networks between Arabidopsis and cereal grasses. Lastly, we provide our perspectives on manipulation of the stomata density on plant leaves for the purpose of breeding crops that are better adapted to the adverse environment and high-density planting conditions.
Collapse
Affiliation(s)
- Hongbin Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Dexin Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Juan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Corresponding author
| |
Collapse
|
23
|
Ma L, Li Y, Li X, Xu D, Lin X, Liu M, Li G, Qin X. FAR-RED ELONGATED HYPOCOTYLS3 negatively regulates shade avoidance responses in Arabidopsis. PLANT, CELL & ENVIRONMENT 2019; 42:3280-3292. [PMID: 31351015 DOI: 10.1111/pce.13630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Light is a key limiting factor of plant growth and development under the canopy. Specific light signals, such as a low ratio of red : far-red (R:FR) light, trigger the shade avoidance response, which affects hypocotyl, stem, and leaf growth. Although multiple components mediating shade avoidance responses have been identified in the past few decades, the underlying regulatory mechanism remains unclear. In this study, we found that the far-red elongated hypocotyls 3 (fhy3) mutant exhibited longer hypocotyls and increased expression levels of core shade avoidance response genes under low R:FR shade conditions compared with the wild type No-0, suggesting that FHY3 negatively regulates shade avoidance responses. Yeast one-hybrid, chromatin immunoprecipitation, and RT-qPCR assays revealed that FHY3 directly binds to the promoters and gene body of PHYTOCHROME RAPIDLY REGULATED1 (PAR1) and PAR2 and activates their expression to inhibit shade responses. Furthermore, the overexpression of PAR1 or PAR2 rescued the enhanced shade avoidance responses of fhy3, indicating that both genes are direct downstream targets of FHY3 that mediate shade avoidance responses. Our findings demonstrate that the light-signalling protein FHY3 positively regulates the transcription of PAR1 and PAR2, which encode two key negative regulators of shade avoidance responses, thus repressing plant responses to shade signals.
Collapse
Affiliation(s)
- Lin Ma
- School of Biological Science and Technology, University of Jinan, Jinan, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yang Li
- Photobiological Industry Institute, Fujian Sanan Sino-Science Photobiotech Co., Ltd., Quanzhou, China
| | - Xiuxiu Li
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Di Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Xueqiao Lin
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Mingmei Liu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
24
|
Rosado D, Trench B, Bianchetti R, Zuccarelli R, Rodrigues Alves FR, Purgatto E, Segal Floh EI, Silveira Nogueira FT, Freschi L, Rossi M. Downregulation of PHYTOCHROME-INTERACTING FACTOR 4 Influences Plant Development and Fruit Production. PLANT PHYSIOLOGY 2019; 181:1360-1370. [PMID: 31519788 PMCID: PMC6836831 DOI: 10.1104/pp.19.00833] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/04/2019] [Indexed: 05/27/2023]
Abstract
Plant development is highly dependent on the ability to perceive and cope with environmental changes. In this context, PIF proteins are key players in the cellular hub controlling responses to fluctuating light and temperature conditions. Reports in various plant species show that manipulation of the PIF4 level affects important agronomical traits. In tomato (Solanum lycopersicum), SlPIF1a and SlPIF3 regulate fruit nutraceutical composition. However, the wider role of this protein family, and the potential of their manipulation for the improvement of other traits, has not been explored. Here we report the effects of constitutive silencing of tomato SlPIF4 on whole-plant physiology and development. Ripening anticipation and higher carotenoid levels observed in SlPIF4-silenced fruits revealed a redundant role of SlPIF4 in the accumulation of nutraceutical compounds. Furthermore, silencing triggered a significant reduction in plant size, flowering, fruit yield, and fruit size. This phenotype was most likely caused by reduced auxin levels and altered carbon partitioning. Impaired thermomorphogenesis and delayed leaf senescence were also observed in silenced plants, highlighting the functional conservation of PIF4 homologs in angiosperms. Overall, this work improves our understanding of the role of PIF proteins-and light signaling-in metabolic and developmental processes that affect yield and composition of fleshy fruits.
Collapse
Affiliation(s)
- Daniele Rosado
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Bruna Trench
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Ricardo Bianchetti
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Rafael Zuccarelli
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, SP, Brazil
| | | | - Eduardo Purgatto
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Eny Iochevet Segal Floh
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, SP, Brazil
| | | | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, SP, Brazil
| |
Collapse
|
25
|
Wu G, Zhao Y, Shen R, Wang B, Xie Y, Ma X, Zheng Z, Wang H. Characterization of Maize Phytochrome-Interacting Factors in Light Signaling and Photomorphogenesis. PLANT PHYSIOLOGY 2019; 181:789-803. [PMID: 31350363 PMCID: PMC6776846 DOI: 10.1104/pp.19.00239] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/18/2019] [Indexed: 05/07/2023]
Abstract
Increasing planting density has been an effective means of increasing maize (Zea mays ssp. mays) yield per unit of land area over the past few decades. However, high-density planting will cause a reduction in the ratio of red to far-red incident light, which could trigger the shade avoidance syndrome and reduce yield. The molecular mechanisms regulating the shade avoidance syndrome are well established in Arabidopsis (Arabidopsis thaliana) but poorly understood in maize. Here, we conducted an initial functional characterization of the maize Phytochrome-Interacting Factor (PIF) gene family in regulating light signaling and photomorphogenesis. The maize genome contains seven distinct PIF genes, which could be grouped into three subfamilies: ZmPIF3s, ZmPIF4s, and ZmPIF5s Similar to the Arabidopsis PIFs, all ZmPIF proteins are exclusively localized to the nucleus and most of them can form nuclear bodies upon light irradiation. We show that all of the ZmPIF proteins could interact with ZmphyB. Heterologous expression of each ZmPIF member could partially or fully rescue the phenotype of the Arabidopsis pifq mutant, and some of these proteins conferred enhanced shade avoidance syndrome in Arabidopsis. Interestingly, all ZmPIF proteins expressed in Arabidopsis are much more stable than their Arabidopsis counterparts upon exposure to red light. Moreover, the Zmpif3, Zmpif4, and Zmpif5 knockout mutants generated via CRISPR/Cas9 technology all showed severely suppressed mesocotyl elongation in dark-grown seedlings and were less responsive to simulated shade treatment. Taken together, our results reveal both conserved and distinct molecular properties of ZmPIFs in regulating light signaling and photomorphogenesis in maize.
Collapse
Affiliation(s)
- Guangxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongping Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rongxin Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yurong Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaojing Ma
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhigang Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
26
|
Niu X, Chen S, Li J, Liu Y, Ji W, Li H. Genome-wide identification of GRAS genes in Brachypodium distachyon and functional characterization of BdSLR1 and BdSLRL1. BMC Genomics 2019; 20:635. [PMID: 31387534 PMCID: PMC6683515 DOI: 10.1186/s12864-019-5985-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/19/2019] [Indexed: 12/02/2022] Open
Abstract
Background As one of the most important transcription factor families, GRAS proteins are involved in numerous regulatory processes, especially plant growth and development. However, they have not been systematically analyzed in Brachypodium distachyon, a new model grass. Results In this study, 48 BdGRAS genes were identified. Duplicated genes account for 41.7% of them and contribute to the expansion of this gene family. 33, 39, 35 and 35 BdGRAS genes were identified by synteny with their orthologs in rice, sorghum, maize and wheat genome, respectively, indicating close relationships among these species. Based on their phylogenic relationships to GRAS genes in rice and maize, BdGRAS genes can be divided into ten subfamilies in which members of the same subfamily showed similar protein sequences, conserved motifs and gene structures, suggesting possible conserved functions. Although expression variation is high, some BdGRAS genes are tissue-specific, phytohormones- or abiotic stresses-responsive, and they may play key roles in development, signal transduction pathways and stress responses. In addition, DELLA genes BdSLR1 and BdSLRL1 were functionally characterized to play a role in plant growth via the GA signal pathway, consistent with GO annotations and KEGG pathway analyses. Conclusions Systematic analyses of BdGRAS genes indicated that members of the same subfamily may play similar roles. This was supported by the conserved functions of BdSLR1 and BdSLRL1 in GA pathway. These results laid a foundation for further functional elucidation of BdGRAS genes, especially, BdSLR1 and BdSLRL1. Electronic supplementary material The online version of this article (10.1186/s12864-019-5985-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Shoukun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Jiawei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Yue Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China.
| | - Haifeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
27
|
Chen Q, Xu X, Xu D, Zhang H, Zhang C, Li G. WRKY18 and WRKY53 Coordinate with HISTONE ACETYLTRANSFERASE1 to Regulate Rapid Responses to Sugar. PLANT PHYSIOLOGY 2019; 180:2212-2226. [PMID: 31182557 PMCID: PMC6670108 DOI: 10.1104/pp.19.00511] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/01/2019] [Indexed: 05/18/2023]
Abstract
Sugars provide a source of energy; they also function as signaling molecules that regulate gene expression, affect metabolism, and alter growth in plants. Rapid responses to sugar signaling and metabolism are essential for optimal growth and fitness, but the regulatory mechanisms underlying these are largely unknown. In this study, we found that the rapid induction of sugar responses in Arabidopsis (Arabidopsis thaliana) requires the W-box cis-elements in the promoter region of GLC 6-PHOSPHATE/PHOSPHATE TRANSLOCATOR2, a well-studied sugar response marker gene. The transcription factors WRKY18 and WRKY53 directly bind to the W-Box cis-elements in the promoter region of sugar response genes and activate their expression. In addition, HISTONE ACETYLTRANSFERASE 1 (HAC1) is recruited to the WRKY18 and WRKY53 complex that resides on the promoters. In this complex, HAC1 facilitates the acetylation of histone 3 Lys 27 (H3K27ac) on the sugar-responsive genes. Taken together, our findings demonstrate a mechanism by which sugar regulates chromatin modification and gene expression, thus helping plants to adjust their growth in response to environmental changes.
Collapse
Affiliation(s)
- Qingshuai Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiyu Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Di Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Haisen Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Cankui Zhang
- Department of Agronomy, Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
28
|
Bouré N, Kumar SV, Arnaud N. The BAP Module: A Multisignal Integrator Orchestrating Growth. TRENDS IN PLANT SCIENCE 2019; 24:602-610. [PMID: 31076166 DOI: 10.1016/j.tplants.2019.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 05/22/2023]
Abstract
Coordination of cell proliferation, cell expansion, and differentiation underpins plant growth. To maximise reproductive success, growth needs to be fine-tuned in response to endogenous and environmental cues. This developmental plasticity relies on a cellular machinery that integrates diverse signals and coordinates the downstream responses. In arabidopsis, the BAP regulatory module, which includes the BRASSINAZOLE RESISTANT 1 (BZR1), AUXIN RESPONSE FACTOR 6 (ARF6), and PHYTOCHROME INTERACTING FACTOR 4 (PIF4) transcription factors (TFs), has been shown to coordinate growth in response to multiple growth-regulating signals. In this Opinion article, we provide an integrative view on the BAP module control of cell expansion and discuss whether its function is conserved or diversified, thus providing new insights into the molecular control of growth.
Collapse
Affiliation(s)
- Nathalie Bouré
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France; Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - S Vinod Kumar
- Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Nicolas Arnaud
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| |
Collapse
|
29
|
Shi Q, Kong F, Zhang H, Jiang Y, Heng S, Liang R, Ma L, Liu J, Lu X, Li P, Li G. Molecular mechanisms governing shade responses in maize. Biochem Biophys Res Commun 2019; 516:112-119. [PMID: 31200955 DOI: 10.1016/j.bbrc.2019.05.142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 11/16/2022]
Abstract
Light is one of the most important environmental factors affecting plant growth and development. Plants use shade avoidance or tolerance strategies to adjust their growth and development thus increase their success in the competition for incoming light. To investigate the mechanism of shade responses in maize (Zea mays), we examined the anatomical and transcriptional dynamics of the early shade response in seedlings of the B73 inbred line. Transcriptome analysis identified 912 differentially expressed genes, including genes involved in light signaling, auxin responses, and cell elongation pathways. Grouping transcription factor family genes and performing enrichment analysis identified multiple types of transcription factors that are differentially regulated by shade and predicted putative core genes responsible for regulating shade avoidance syndrome. For functional analyses, we ectopically over-expressed ZmHB53, a type II HD-ZIP transcription factor gene significantly induced by shade, in Arabidopsis thaliana. Transgenic Arabidopsis plants overexpressing ZmHB53 exhibited narrower leaves, earlier flowering, and enhanced expression of shade-responsive genes, suggesting that ZmHB53 might participates in the regulation of shade responses in maize. This study increases our understanding of the regulatory network of the shade response in maize and provides a useful resource for maize genetics and breeding.
Collapse
Affiliation(s)
- Qingbiao Shi
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Fanying Kong
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Haisen Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yu'e Jiang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Siqi Heng
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ran Liang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Lin Ma
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jisheng Liu
- College of Life Science, Qilu Normal University, Jinan, 250013, China
| | - Xiaoduo Lu
- College of Life Science, Qilu Normal University, Jinan, 250013, China
| | - Pinghua Li
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Gang Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
30
|
Wen J, Wang L, Wang J, Zeng Y, Xu Y, Li S. The transcription factor OsbHLH138 regulates thermosensitive genic male sterility in rice via activation of TMS5. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1721-1732. [PMID: 30778635 DOI: 10.1007/s00122-019-03310-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
Thermosensitive genic male sterile (TGMS) lines favored heterosis exploitation in two-line hybrid rice. TMS5, a member of RNase Z cleavages the UbL40 mRNAs, plays an important role in two-line hybrid rice. Here, we identified a new TGMS mutant 93-11s, which lost two amino acids in the first exon of TMS5 gene and caused thermosensitive genic male sterility in rice. The tms5-2 cannot process mRNAs of the ubiquitin fusion ribosomal protein L40 (UbL40) and hence cause the mRNAs accumulation in restrictive temperature. Further, we identified a nucleus-localized bHLH transcription factor OsbHLH138, which can form the basic helix-loop-helix structure and bind the core region of tms5-2 promoter sequences by bHLH domain, and activate expression of tms5-2 by the acidic amino acid-rich domain. These results indicate a novel mechanism for the tms5-2 regulating thermosensitive male sterility of rice. By altering expression of OsbHLH138, we can regulate the expression level of TMS5 and the accumulation of UbL40 mRNAs to command the male fertility in different temperatures. The identification of OsbHLH138 provides breeders a new choice for development of TGMS rice lines, which will favor the sustainable development of two-line hybrid rice.
Collapse
Affiliation(s)
- Jianyu Wen
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Liuting Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Jie Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Yafei Zeng
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Yanghong Xu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
31
|
Ma L, Li G. Auxin-Dependent Cell Elongation During the Shade Avoidance Response. FRONTIERS IN PLANT SCIENCE 2019; 10:914. [PMID: 31354778 PMCID: PMC6640469 DOI: 10.3389/fpls.2019.00914] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/27/2019] [Indexed: 05/18/2023]
Abstract
Plant uses multiple photoreceptors and downstream components to rapidly respond to dynamic changes in environmental light. Under shade conditions, many species exhibit shade avoidance responses that promote stem and petiole elongation, thus helping plants reach the sunlight. In the last few years, the regulatory molecular mechanisms by which plants respond to shade signals have been intensively studied. This review discusses the regulatory mechanisms underlying auxin-mediated cell elongation in the shade avoidance responses. In the early response to shade signals, auxin biosynthesis, transport, and sensitivity are all rapidly activated, thus promoting cell elongation of the hypocotyls and other organs. Under prolonged shade, increased auxin sensitivity-rather than increased auxin biosynthesis-plays a major role in cell elongation. In addition, we discuss the interaction network of photoreceptors and Phytochrome-Interacting Factors, and the antagonistic regulation of Auxin/Indole Acetic Acid proteins by auxin and light. This review provides perspectives to reframe how we think about shade responses in the natural environment.
Collapse
Affiliation(s)
- Lin Ma
- College of Life Science and Technology, Jinan University, Jinan, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- *Correspondence: Lin Ma,
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Gang Li,
| |
Collapse
|
32
|
Sessa G, Carabelli M, Possenti M, Morelli G, Ruberti I. Multiple Pathways in the Control of the Shade Avoidance Response. PLANTS 2018; 7:plants7040102. [PMID: 30453622 PMCID: PMC6313891 DOI: 10.3390/plants7040102] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 01/09/2023]
Abstract
To detect the presence of neighboring vegetation, shade-avoiding plants have evolved the ability to perceive and integrate multiple signals. Among them, changes in light quality and quantity are central to elicit and regulate the shade avoidance response. Here, we describe recent progresses in the comprehension of the signaling mechanisms underlying the shade avoidance response, focusing on Arabidopsis, because most of our knowledge derives from studies conducted on this model plant. Shade avoidance is an adaptive response that results in phenotypes with a high relative fitness in individual plants growing within dense vegetation. However, it affects the growth, development, and yield of crops, and the design of new strategies aimed at attenuating shade avoidance at defined developmental stages and/or in specific organs in high-density crop plantings is a major challenge for the future. For this reason, in this review, we also report on recent advances in the molecular description of the shade avoidance response in crops, such as maize and tomato, and discuss their similarities and differences with Arabidopsis.
Collapse
Affiliation(s)
- Giovanna Sessa
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy.
| | - Monica Carabelli
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy.
| | - Marco Possenti
- Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics (CREA), 00178 Rome, Italy.
| | - Giorgio Morelli
- Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics (CREA), 00178 Rome, Italy.
| | - Ida Ruberti
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy.
| |
Collapse
|
33
|
Zhang T, Lv W, Zhang H, Ma L, Li P, Ge L, Li G. Genome-wide analysis of the basic Helix-Loop-Helix (bHLH) transcription factor family in maize. BMC PLANT BIOLOGY 2018; 18:235. [PMID: 30326829 PMCID: PMC6192367 DOI: 10.1186/s12870-018-1441-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/24/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND In plants, the basic helix-loop-helix (bHLH) transcription factors play key roles in diverse biological processes. Genome-wide comprehensive and systematic analyses of bHLH proteins have been well conducted in Arabidopsis, rice, tomato and other plant species. However, only few of bHLH family genes have been functional characterized in maize. RESULTS In this study, our genome-wide analysis identified 208 putative bHLH family proteins (ZmbHLH proteins) in maize (Zea mays). We classified these proteins into 18 subfamilies by comparing the ZmbHLHs with Arabidopsis thaliana bHLH proteins. Phylogenetic analysis, conserved protein motifs, and exon-intron patterns further supported the evolutionary relationships among these bHLH proteins. Genome distribution analysis found that the 208 ZmbHLH loci were located non-randomly on the ten maize chromosomes. Further, analysis of conserved cis-elements in the promoter regions, protein interaction networks, and expression patterns in roots, leaves, and seeds across developmental stages, suggested that bHLH family proteins in maize are probably involved in multiple physiological processes in plant growth and development. CONCLUSION We performed a genome-wide, systematic analysis of bHLH proteins in maize. This comprehensive analysis provides a useful resource that enables further investigation of the physiological roles and molecular functions of the ZmbHLH transcription factors.
Collapse
Affiliation(s)
- Tingting Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Wei Lv
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Haisen Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Lin Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Pinghua Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 China
| | - Lei Ge
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| |
Collapse
|
34
|
Wei H, Zhao Y, Xie Y, Wang H. Exploiting SPL genes to improve maize plant architecture tailored for high-density planting. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4675-4688. [PMID: 29992284 DOI: 10.1093/jxb/ery258] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/09/2018] [Indexed: 05/04/2023]
Abstract
Maize (Zea mays ssp. mays) is an agronomically important crop and also a classical genetic model for studying the regulation of plant architecture formation, which is a critical determinant of grain yield. Since the 1930s, increasing planting density has been a major contributing factor to the >7-fold increase in maize grain yield per unit land area in the USA, which is accompanied by breeding and utilization of cultivars characterized by high-density-tolerant plant architecture, including decreased ear height, lodging resistance, more upright leaves, reduced tassel branch number, and reduced anthesis-silking interval (ASI). Recent studies demonstrated that phytochrome-mediated red/far-red light signaling pathway and the miR156/SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) regulatory module co-ordinately regulate the shade avoidance response and diverse aspects of plant architecture in responding to shading in Arabidopsis. The maize genome contains 30 ZmSPL genes, and 18 of them are predicted as direct targets of zma-miR156s. Accumulating evidence indicates that ZmSPL genes play important roles in regulating maize flowering time, plant/ear height, tilling, leaf angle, tassel and ear architecture, and grain size and shape. Finally, we discuss ways to exploit maize SPL genes and downstream targets for improving maize plant architecture tailored for high-density planting.
Collapse
Affiliation(s)
- Hongbin Wei
- School of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Yongping Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yurong Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiyang Wang
- School of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|