1
|
Teshigawara Y, Sato S, Asada T, Nojiri M, Suzuki S, Aoki Y. Anthocyanin Accumulation in Grape Berry Skin Promoted by Endophytic Microbacterium sp. che218 Isolated from Wine Grape Shoot Xylem. Microorganisms 2024; 12:1906. [PMID: 39338581 PMCID: PMC11434312 DOI: 10.3390/microorganisms12091906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Grape berry skin coloration is a key determinant of the commercial value of red wines. Global warming caused by climate change has inhibited anthocyanin biosynthesis in berry skins, leading to poor coloration. Through two-year field experiments, the endophyte che218 isolated from grape shoot xylem promoted anthocyanin accumulation in berry skins. The che218 enhanced anthocyanin biosynthesis in grapevine cultured cells. In the 2022 growing season, applying che218 to grape bunches enhanced anthocyanin accumulation in berry skins on day 20 post-treatment. However, the anthocyanin accumulation enhancing effect of che218 became negligible at harvest. In the 2023 growing season, che218 enhanced anthocyanin accumulation in berry skins on day 15 post-treatment and at harvest (day 30 post-treatment) and also upregulated the transcription of mybA1 and UFGT, two genes that regulate anthocyanin biosynthesis in berry skins. Whole genome sequencing demonstrated that che218 is an unidentified Microbacterium species. However, it remains unknown how che218 is involved in the biosynthesis of anthocyanin in berry skins. This study provides insights into the development of an eco-friendly endophyte-mediated technique for improving grape berry skin coloration, thereby mitigating the effects of global warming on berry skin coloration.
Collapse
Affiliation(s)
- Yuka Teshigawara
- Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1, Kofu 400-0005, Yamanashi, Japan
| | - Shiori Sato
- Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1, Kofu 400-0005, Yamanashi, Japan
| | - Takayuki Asada
- Agri-Bio Research Center, Kaneka Corporation, Iwata-shi 438-0802, Shizuoka, Japan
| | - Masutoshi Nojiri
- Agri-Bio Research Center, Kaneka Corporation, Iwata-shi 438-0802, Shizuoka, Japan
| | - Shunji Suzuki
- Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1, Kofu 400-0005, Yamanashi, Japan
| | - Yoshinao Aoki
- Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1, Kofu 400-0005, Yamanashi, Japan
| |
Collapse
|
2
|
Murcia G, Alonso R, Berli F, Arias L, Bianchimano L, Pontin M, Fontana A, Casal JJ, Piccoli P. Quantitative Proteomics Analysis of ABA- and GA 3-Treated Malbec Berries Reveals Insights into H 2O 2 Scavenging and Anthocyanin Dynamics. PLANTS (BASEL, SWITZERLAND) 2024; 13:2366. [PMID: 39273850 PMCID: PMC11396855 DOI: 10.3390/plants13172366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Abscisic acid (ABA) and gibberellic acid (GA3) are regulators of fruit color and sugar levels, and the application of these hormones is a common practice in commercial vineyards dedicated to the production of table grapes. However, the effects of exogenous ABA and GA3 on wine cultivars remain unclear. We investigated the impact of ABA and GA3 application on Malbec grapevine berries across three developmental stages. We found similar patterns of berry total anthocyanin accumulation induced by both treatments, closely associated with berry H2O2 levels. Quantitative proteomics from berry skins revealed that ABA and GA3 positively modulated antioxidant defense proteins, mitigating H2O2. Consequently, proteins involved in phenylpropanoid biosynthesis were downregulated, leading to decreased anthocyanin content at the almost ripe stage, particularly petunidin-3-G and peonidin-3-G. Additionally, we noted increased levels of the non-anthocyanins E-viniferin and quercetin in the treated berries, which may enhance H2O2 scavenging at the almost ripe stage. Using a linear mixed-effects model, we found statistical significance for fixed effects including the berry H2O2 and sugar contents, demonstrating their roles in anthocyanin accumulation. In conclusion, our findings suggest a common molecular mechanism by which ABA and GA3 influence berry H2O2 content, ultimately impacting anthocyanin dynamics during ripening.
Collapse
Affiliation(s)
- Germán Murcia
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires C1405, Argentina
| | - Rodrigo Alonso
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Mendoza M5507, Argentina
| | - Federico Berli
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Mendoza M5507, Argentina
| | - Leonardo Arias
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Mendoza M5507, Argentina
| | - Luciana Bianchimano
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires C1405, Argentina
| | | | - Ariel Fontana
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Mendoza M5507, Argentina
| | - Jorge José Casal
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires C1405, Argentina
- Facultad de Agronomía, CONICET, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Universidad de Buenos Aires, Buenos Aires C1053, Argentina
| | - Patricia Piccoli
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Mendoza M5507, Argentina
| |
Collapse
|
3
|
Li H, Jiang X, Mashiguchi K, Yamaguchi S, Lu S. Biosynthesis and signal transduction of plant growth regulators and their effects on bioactive compound production in Salvia miltiorrhiza (Danshen). Chin Med 2024; 19:102. [PMID: 39049014 PMCID: PMC11267865 DOI: 10.1186/s13020-024-00971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Plant growth regulators (PGRs) are involved in multiple aspects of plant life, including plant growth, development, and response to environmental stimuli. They are also vital for the formation of secondary metabolites in various plants. Salvia miltiorrhiza is a famous herbal medicine and has been used commonly for > 2000 years in China, as well as widely used in many other countries. S. miltiorrhiza is extensively used to treat cardiovascular and cerebrovascular diseases in clinical practices and has specific merit against various diseases. Owing to its outstanding medicinal and commercial potential, S. miltiorrhiza has been extensively investigated as an ideal model system for medicinal plant biology. Tanshinones and phenolic acids are primary pharmacological constituents of S. miltiorrhiza. As the growing market for S. miltiorrhiza, the enhancement of its bioactive compounds has become a research hotspot. S. miltiorrhiza exhibits a significant response to various PGRs in the production of phenolic acids and tanshinones. Here, we briefly review the biosynthesis and signal transduction of PGRs in plants. The effects and mechanisms of PGRs on bioactive compound production in S. miltiorrhiza are systematically summarized and future research is discussed. This article provides a scientific basis for further research, cultivation, and metabolic engineering in S. miltiorrhiza.
Collapse
Affiliation(s)
- Heqin Li
- College of Agronomy, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Xuwen Jiang
- College of Agronomy, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
- Shandong Bairuijia Food Co., Ltd, No. 8008, Yi Road, Laizhou, Yantai, 261400, Shandong, People's Republic of China
| | - Kiyoshi Mashiguchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Shinjiro Yamaguchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
4
|
Abbey L, Asiedu SK, Chada S, Ofoe R, Amoako PO, Owusu-Nketia S, Ajeethan N, Kumar AP, Nutsukpo EB. Photosynthetic Activities, Phytohormones, and Secondary Metabolites Induction in Plants by Prevailing Compost Residue. Metabolites 2024; 14:400. [PMID: 39195496 DOI: 10.3390/metabo14080400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Compost residue enriches soil health with the potential to enhance plant metabolism and hormonal balance, but has not yet been studied. A study was performed to determine how prevailing compost residue induces tomato (Solanum lycopersicum 'Scotia') plant morpho-physiology, phytohormones, and secondary metabolites. Plants were grown in soils with a previous history of annual (AN) and biennial (BI) compost amendments. The controls were soil without compost (C) amendment and municipal solid waste compost (MSWC) alone. The MSWC- and AN-plants had similar and significantly (p < 0.05) highest growth and photosynthetic activities compared to the BI- or C-plants. Total phenolics and lipid peroxidase activity were significantly (p < 0.001) high in BI-plants, while hydrogen peroxide and antioxidant capacity were significantly (p < 0.001) high in AN-plants. MSWC-plants recorded the highest cis-abscisic acid, followed by AN-, and then BI- and C-plants. Cis-zeatin, trans-zeatin, and isopentenyladenine ribosides were detected in the MSWC- and AN-plants but not in the BI- or C-plants. Furthermore, gibberellins GA53, GA19, and GA8 were high in the MSWC-plants, but only GA8 was detected in the AN plants and none in the others. Besides, MSWC plants exhibited the highest content of 1-aminocyclopropane-1-carboxylic acid. Conjugated salicylic acid was highest in the BI-plants, while jasmonic acid-isoleucine was highest in MSWC-plants and C plants. In conclusion, prevailing compost chemical residues upregulate plant growth, phytohormones, and metabolic compounds that can potentially increase plant growth and abiotic stress defense. Future work should investigate the flow of these compounds in plants under abiotic stress.
Collapse
Affiliation(s)
- Lord Abbey
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Samuel Kwaku Asiedu
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Sparsha Chada
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Raphael Ofoe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Peter Ofori Amoako
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Stella Owusu-Nketia
- Biotechnology Centre, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 25 Legon, Ghana
| | - Nivethika Ajeethan
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Anagha Pradeep Kumar
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Efoo Bawa Nutsukpo
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| |
Collapse
|
5
|
Nguyen-Hoang A, Sandell FL, Himmelbauer H, Dohm JC. Spinach genomes reveal migration history and candidate genes for important crop traits. NAR Genom Bioinform 2024; 6:lqae034. [PMID: 38633427 PMCID: PMC11023180 DOI: 10.1093/nargab/lqae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
Spinach (Spinacia oleracea) is an important leafy crop possessing notable economic value and health benefits. Current genomic resources include reference genomes and genome-wide association studies. However, the worldwide genetic relationships and the migration history of the crop remained uncertain, and genome-wide association studies have produced extensive gene lists related to agronomic traits. Here, we re-analysed the sequenced genomes of 305 cultivated and wild spinach accessions to unveil the phylogeny and history of cultivated spinach and to explore genetic variation in relation to phenotypes. In contrast to previous studies, we employed machine learning methods (based on Extreme Gradient Boosting, XGBoost) to detect variants that are collectively associated with agronomic traits. Variant-based cluster analyses revealed three primary spinach groups in the Middle East, Asia and Europe/US. Combining admixture analysis and allele-sharing statistics, migration routes of spinach from the Middle East to Europe and Asia are presented. Using XGBoost machine learning models we predict genomic variants influencing bolting time, flowering time, petiole color, and leaf surface texture and propose candidate genes for each trait. This study enhances our understanding of the history and phylogeny of domesticated spinach and provides valuable information on candidate genes for future genetic improvement of the crop.
Collapse
Affiliation(s)
- An Nguyen-Hoang
- Institute of Computational Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Felix L Sandell
- Institute of Computational Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Heinz Himmelbauer
- Institute of Computational Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Juliane C Dohm
- Institute of Computational Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
6
|
Suzuki M, Kimura A, Suzuki S, Enoki S. Application of Synephrine to Grape Increases Anthocyanin via Production of Hydrogen Peroxide, Not Phytohormones. Int J Mol Sci 2024; 25:5912. [PMID: 38892099 PMCID: PMC11173245 DOI: 10.3390/ijms25115912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Global warming has caused such problems as the poor coloration of grape skin and the decreased production of high-quality berries. We investigated the effect of synephrine (Syn) on anthocyanin accumulation. Anthocyanin accumulation in cultured grape cells treated with Syn at concentrations of 1 mM or higher showed no significant difference, indicating that the accumulation was concentration-independent. On the other hand, anthocyanin accumulation was dependent on the compound used for treatment. The sugar/acid ratio of the juice from berries treated with Syn did not differ from the control. The expression of anthocyanin-biosynthesis-related genes, but not phytohormones, was increased by the treatment with Syn at 24 h or later. The Syn treatment of cultured cells increased SOD3 expression and hydrogen peroxide (H2O2) production from 3 to 24 h after treatment. Subsequently, the expression of CAT and APX6 encoding H2O2-scavenging enzymes was also increased. Treatment of cultured cells with Syn and H2O2 increased the expression of the H2O2-responsive gene Chit4 and the anthocyanin-biosynthesis-related genes mybA1 and UFGT 4 days after the treatment and increased anthocyanin accumulation 7 days after the treatment. On the other hand, the treatment of berries with Syn and H2O2 increased anthocyanin accumulation after 9 days. These results suggest that Syn increases anthocyanin accumulation through H2O2 production without changing phytohormone biosynthesis. Syn is expected to improve grape skin coloration and contribute to high-quality berry production.
Collapse
Affiliation(s)
| | | | - Shunji Suzuki
- Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kofu, Yamanashi 400-0005, Japan; (M.S.); (A.K.)
| | - Shinichi Enoki
- Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kofu, Yamanashi 400-0005, Japan; (M.S.); (A.K.)
| |
Collapse
|
7
|
Monteiro E, De Lorenzis G, Ricciardi V, Baltazar M, Pereira S, Correia S, Ferreira H, Alves F, Cortez I, Gonçalves B, Castro I. Exploring Seaweed and Glycine Betaine Biostimulants for Enhanced Phenolic Content, Antioxidant Properties, and Gene Expression of Vitis vinifera cv. "Touriga Franca" Berries. Int J Mol Sci 2024; 25:5335. [PMID: 38791373 PMCID: PMC11121377 DOI: 10.3390/ijms25105335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Climate change will pose a challenge for the winemaking sector worldwide, bringing progressively drier and warmer conditions and increasing the frequency and intensity of weather extremes. The short-term adaptation strategy of applying biostimulants through foliar application serves as a crucial measure in mitigating the detrimental effects of environmental stresses on grapevine yield and berry quality. The aim of this study was to evaluate the effect of foliar application of a seaweed-based biostimulant (A. nodosum-ANE) and glycine betaine (GB) on berry quality, phenolic compounds, and antioxidant activity and to elucidate their action on the secondary metabolism. A trial was installed in a commercial vineyard (cv. "Touriga Franca") in the Cima Corgo (Upper Corgo) sub-region of the Douro Demarcated Region, Portugal. A total of four foliar sprayings were performed during the growing season: at flowering, pea size, bunch closer, and veraison. There was a positive effect of GB in the berry quality traits. Both ANE and GB increased the synthesis of anthocyanins and other phenolics in berries and influenced the expression of genes related to the synthesis and transport of anthocyanins (CHS, F3H, UFGT, and GST). So, they have the potential to act as elicitors of the secondary metabolism, leading to improved grape quality, and also to set the foundation for sustainable agricultural practices in the long run.
Collapse
Affiliation(s)
- Eliana Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gabriella De Lorenzis
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan (UNIMI), Via G. Celoria 2, 20133 Milan, Italy
| | - Valentina Ricciardi
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan (UNIMI), Via G. Celoria 2, 20133 Milan, Italy
| | - Miguel Baltazar
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Sandra Pereira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Sofia Correia
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Helena Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Fernando Alves
- Symington Family Estates, Vinhos SA, Travessa Barão de Forrester 86, 4431-901 Vila Nova de Gaia, Portugal
| | - Isabel Cortez
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Agronomy, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Isaura Castro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
8
|
Bennett J, Meiyalaghan S, Nguyen HM, Boldingh H, Cooney J, Elborough C, Araujo LD, Barrell P, Lin-Wang K, Plunkett BJ, Martin D, Espley RV. Exogenous abscisic acid and sugar induce a cascade of ripening events associated with anthocyanin accumulation in cultured Pinot Noir grape berries. FRONTIERS IN PLANT SCIENCE 2023; 14:1324675. [PMID: 38186606 PMCID: PMC10768192 DOI: 10.3389/fpls.2023.1324675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024]
Abstract
Fruit quality is dependent on various factors including flavour, texture and colour. These factors are determined by the ripening process, either climacteric or non-climacteric. In grape berry, which is non-climacteric, the process is signalled by a complex set of hormone changes. Abscisic acid (ABA) is one of the key hormones involved in ripening, while sugar availability also plays a significant role in certain ripening aspects such as anthocyanin production. To understand the relative influence of hormone and sugar signalling in situ can prove problematic due to the physiological and environmental (abiotic and biotic) factors at play in vineyards. Here we report on the use of in vitro detached berry culture to investigate the comparative significance of ABA and sugar in the regulation of Pinot noir berry anthocyanin production under controlled conditions. Using a factorial experimental design, pre-véraison berries were cultured on media with various concentrations of sucrose and ABA. After 15 days of in vitro culture, the berries were analysed for changes in metabolites, hormones and gene expression. Results illustrated a stimulatory effect of sucrose and ABA on enhancing berry colour and a corresponding increase in anthocyanins. Increased ABA concentration was able to boost anthocyanin production in berries when sucrose supply was low. The sucrose and ABA effects on berry anthocyanins were primarily manifested through the up-regulation of transcription factors and other genes in the phenylpropanoid pathway, while in other parts of the pathway a down-regulation of key proanthocyanindin transcription factors and genes corresponded to sharp reduction in berry proanthocyanidins, irrespective of sucrose supply. Similarly, increased ABA was correlated with a significant reduction in berry malic acid and associated regulatory genes. These findings suggest a predominance of berry ABA over berry sugar in coordinating the physiological and genetic regulation of anthocyanins and proanthocyanins in Pinot noir grape berries.
Collapse
Affiliation(s)
- Jeffrey Bennett
- Tree Crops, The New Zealand Institute for Plant & Food Research Limited, Motueka, New Zealand
| | - Sathiyamoorthy Meiyalaghan
- Premium Crops & Technology, The New Zealand Institute for Plant & Food Research Limited, Christchurch, New Zealand
| | - Han M. Nguyen
- Tree Crops, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Helen Boldingh
- Fruit Crops Physiology, Biological Chemistry & Bioactives, The New Zealand Institute for Plant & Food Research Limited, Waikato Mail Centre, Hamilton, New Zealand
| | - Janine Cooney
- Fruit Crops Physiology, Biological Chemistry & Bioactives, The New Zealand Institute for Plant & Food Research Limited, Waikato Mail Centre, Hamilton, New Zealand
| | - Caitlin Elborough
- Tree Crops, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Leandro Dias Araujo
- Department of Wine Food & Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Philippa Barrell
- Premium Crops & Technology, The New Zealand Institute for Plant & Food Research Limited, Christchurch, New Zealand
| | - Kui Lin-Wang
- Tree Crops, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Blue J. Plunkett
- Tree Crops, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Damian Martin
- Viticulture & Oenology, The New Zealand Institute for Plant & Food Research Limited, Blenheim, New Zealand
| | - Richard V. Espley
- Tree Crops, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| |
Collapse
|
9
|
Zhan Z, Wang N, Chen Z, Zhang Y, Geng K, Li D, Wang Z. Effects of water stress on endogenous hormones and free polyamines in different tissues of grapevines ( Vitis vinifera L. cv. 'Merlot'). FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:993-1009. [PMID: 37788830 DOI: 10.1071/fp22225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 08/30/2023] [Indexed: 10/05/2023]
Abstract
Water stress can affect plant ecological distribution, crop growth and carbohydrate distribution, impacting berry quality. However, previous studies mainly focused on short-term water stress or osmotic stress and few studies paid attention to the responses of grape to long-term water stresses. Grapevines were subjected to no water stress (CK), mild water stress (T1) and moderate water stress (T2). Hundred-berry weight and malic acid content were reduced under T1 and T2; however, glucose and fructose content showed the opposite trend. Endogenous hormones and polyamines (PAs) can regulate plant growth and development as well as physiological metabolic processes. T1 and T2 could increase abscisic acid content, however, indole-3-acetic acid, jasmonate, gibberellins 3 and 4, cytokinin and trans -zeatin contents were slightly decreased. Three species of PAs (putrescine, spermidine and spermine) were detected, presenting obvious tissue specificity. Furthermore, there was a statistically positive correlation relating spermidine content in the pulp with glucose and fructose contents of grape berries; and a negative correlation with organic acid. In summary, water stress had a profound influence on hormonally-driven changes in physiology and berry quality, indicating that endogenous hormones and the PAs play a critical role in the development and ripening of grape berries under water stress.
Collapse
Affiliation(s)
- Zhennan Zhan
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Ning Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Zumin Chen
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Yanxia Zhang
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Kangqi Geng
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Dongmei Li
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Zhenping Wang
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China; and School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| |
Collapse
|
10
|
Wei X, Li L, Xu L, Zeng L, Xu J. Genome-wide identification of the AOMT gene family in wax apple and functional characterization of SsAOMTs to anthocyanin methylation. FRONTIERS IN PLANT SCIENCE 2023; 14:1213642. [PMID: 37822338 PMCID: PMC10562569 DOI: 10.3389/fpls.2023.1213642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023]
Abstract
Introduction Anthocyanins are major pigments in the peels of red-series wax apple fruits, and two principal components of them, namely, the cyanin and the peonidin, are non-methoxylated and methoxylated anthocyanins, respectively. Anthocyanin O-methyltransferases (AOMTs) are an important group of enzymes that have the ability to catalyze anthocyanins methylation to promote the solubility, stability, and bioactivity of anthocyanins. Although AOMT genes have been studied in a variety of plants, the function of them in wax apple is generally not well understood. Methods The anthocyanin composition in peels of two wax apple cultivars was determined by High Performance Liquid Chromatography Tandem Mass Spectrometry (HPLS-MS). The genome-wide analysis of the AOMT genes was performed with bioinformatics technology, and the expression patterns of different plant tissues, cultivars, fruit ripening stages, and exogenous abscisic acid (ABA) treatments were analyzed by transcriptome sequencing analysis and real-time quantitative PCR verification. An initial functional evaluation was carried out in vitro using recombinant the Anthocyanin O-methyltransferase Gene 5 of S. samarangense (SsAOMT5) protein. Results Only two main compositions of anthocyanin were found in peels of two wax apple cultivars, and it was worth noting that Tub Ting Jiang cultivar contained non-methoxylated anthocyanin (Cy3G) only, whereas Daye cultivar contained both non-methoxylated and methoxylated (Pn3G) anthocyanins. A total of six SsAOMT genes were identified in the whole genome of wax apple, randomly distributing on three chromosomes. A phylogenic analysis of the protein sequences divided the SsAOMT gene family into three subgroups, and all SsAOMTs had highly conserved domains of AOMT family. In total, four types of stress- related and five types of hormone- related cis-elements were discovered in the promoter region of the SsAOMTs. Expression pattern analysis showed that SsAOMT5 and SsAOMT6 were expressed in all tissues to varying degrees; notably, the expression of SsAOMT5 was high in the flower and fruit and significantly higher in Daye peels than those of other cultivars in the fruit ripening period. Exogenous ABA treatment significantly increased anthocyanin accumulation, but the increase of methoxylated anthocyanin content did not reach significant level compared with those without ABA treatment, whereas the expression of SsAOMT5 upregulated under ABA treatment. We identified two homologous SsAOMT5 genes from Daye cultivar (DSsAOMT5) and Tub Ting Jiang cultivar (TSsAOMT5); the results of functional analyses to two SsAOMT5 recombinant proteins in vitro demonstrated that DSsAOMT5 showed methylation modification activity, but TSsAOMT5 did not. Conclusion In conclusion, SsAOMT5 was responsible for methylated anthocyanin accumulation in the peels of wax apple and played an important role in red coloration in wax apple peels.
Collapse
Affiliation(s)
- Xiuqing Wei
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Liang Li
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Ling Xu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Lihui Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiahui Xu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Fujimori ASS, Ribeiro APD, Pereira AG, Dias-Audibert FL, Tonon CR, dos Santos PP, Dantas D, Zanati SG, Catharino RR, Zornoff LAM, Azevedo PS, de Paiva SAR, Okoshi MP, Lima EO, Polegato BF. Effects of Pera Orange Juice and Moro Orange Juice in Healthy Rats: A Metabolomic Approach. Metabolites 2023; 13:902. [PMID: 37623846 PMCID: PMC10456557 DOI: 10.3390/metabo13080902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Cardiovascular disease is a leading cause of death worldwide. Heart failure is a cardiovascular disease with high prevalence, morbidity, and mortality. Several natural compounds have been studied for attenuating pathological cardiac remodeling. Orange juice has been associated with cardiovascular disease prevention by attenuating oxidative stress. However, most studies have evaluated isolated phytochemicals rather than whole orange juice and usually under pathological conditions. In this study, we evaluated plasma metabolomics in healthy rats receiving Pera or Moro orange juice to identify possible metabolic pathways and their effects on the heart. METHODS Sixty male Wistar rats were allocated into 3 groups: control (C), Pera orange juice (PO), and Moro orange juice (MO). PO and MO groups received Pera orange juice or Moro orange juice, respectively, and C received water with maltodextrin (100 g/L). Echocardiogram and euthanasia were performed after 4 weeks. Plasma metabolomic analysis was performed by high-resolution mass spectrometry. Type I collagen was evaluated in picrosirius red-stained slides and matrix metalloproteinase (MMP)-2 activity by zymography. MMP-9, tissue inhibitor of metalloproteinase (TIMP)-2, TIMP-4, type I collagen, and TNF-α protein expression were evaluated by Western blotting. RESULTS We differentially identified three metabolites in PO (N-docosahexaenoyl-phenylalanine, diglyceride, and phosphatidylethanolamine) and six in MO (N-formylmaleamic acid, N2-acetyl-L-ornithine, casegravol isovalerate, abscisic alcohol 11-glucoside, cyclic phosphatidic acid, and torvoside C), compared to controls, which are recognized for their possible roles in cardiac remodeling, such as extracellular matrix regulation, inflammation, oxidative stress, and membrane integrity. Cardiac function, collagen level, MMP-2 activity, and MMP-9, TIMP-2, TIMP-4, type I collagen, and TNF-α protein expression did not differ between groups. CONCLUSION Ingestion of Pera and Moro orange juice induces changes in plasma metabolites related to the regulation of extracellular matrix, inflammation, oxidative stress, and membrane integrity in healthy rats. Moro orange juice induces a larger number of differentially expressed metabolites than Pera orange juice. Alterations in plasma metabolomics induced by both orange juice are not associated with modifications in cardiac extracellular matrix components. Our results allow us to postulate that orange juice may have beneficial effects on pathological cardiac remodeling.
Collapse
Affiliation(s)
- Anderson S. S. Fujimori
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Ana P. D. Ribeiro
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Amanda G. Pereira
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Flávia L. Dias-Audibert
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas 13083-970, Brazil; (F.L.D.-A.); (R.R.C.)
| | - Carolina R. Tonon
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Priscila P. dos Santos
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Danielle Dantas
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Silmeia G. Zanati
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Rodrigo R. Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas 13083-970, Brazil; (F.L.D.-A.); (R.R.C.)
| | - Leonardo A. M. Zornoff
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Paula S. Azevedo
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Sergio A. R. de Paiva
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Marina P. Okoshi
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Estela O. Lima
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Bertha F. Polegato
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| |
Collapse
|
12
|
Li Z, Ahammed GJ. Hormonal regulation of anthocyanin biosynthesis for improved stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107835. [PMID: 37348389 DOI: 10.1016/j.plaphy.2023.107835] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Due to unprecedented climate change, rapid industrialization and increasing use of agrochemicals, abiotic stress, such as drought, low temperature, high salinity and heavy metal pollution, has become an increasingly serious problem in global agriculture. Anthocyanins, an important plant pigment, are synthesized through the phenylpropanoid pathway and have a variety of physiological and ecological functions, providing multifunctional and effective protection for plants under stress. Foliar anthocyanin accumulation often occurs under abiotic stress including high light, cold, drought, salinity, nutrient deficiency and heavy metal stress, causing leaf reddening or purpling in many plant species. Anthocyanins are used as sunscreens and antioxidants to scavenge reactive oxygen species (ROS), as metal(loid) chelators to mitigate heavy metal stress, and as crucial molecules with a role in delaying leaf senescence. In addition to environmental factors, anthocyanin synthesis is affected by various endogenous factors. Plant hormones such as abscisic acid, jasmonic acid, ethylene and gibberellin have been shown to be involved in regulating anthocyanin synthesis either positively or negatively. Particularly when plants are under abiotic stress, several plant hormones can induce foliar anthocyanin synthesis to enhance plant stress resistance. In this review, we revisit the role of plant hormones in anthocyanin biosynthesis and the mechanism of plant hormone-mediated anthocyanin accumulation and abiotic stress tolerance. We conclude that enhancing anthocyanin content with plant hormones could be a prospective management strategy for improving plant stress resistance, but extensive further research is essentially needed to provide future guidance for practical crop production.
Collapse
Affiliation(s)
- Zhe Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, PR China; Henan Engineering Technology Research Center for Horticultural Crop Safety and Disease Control, Luoyang, 471023, PR China.
| |
Collapse
|
13
|
Seng S, Ponce GE, Andreas P, Kisiala A, De Clerck-Floate R, Miller DG, Chen MS, Price PW, Tooker JF, Emery RJN, Connor EF. Abscisic Acid: A Potential Secreted Effector Synthesized by Phytophagous Insects for Host-Plant Manipulation. INSECTS 2023; 14:489. [PMID: 37367305 PMCID: PMC10299484 DOI: 10.3390/insects14060489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023]
Abstract
Abscisic acid (ABA) is an isoprenoid-derived plant signaling molecule involved in a wide variety of plant processes, including facets of growth and development as well as responses to abiotic and biotic stress. ABA had previously been reported in a wide variety of animals, including insects and humans. We used high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-(ESI)-MS/MS) to examine concentrations of ABA in 17 species of phytophagous insects, including gall- and non-gall-inducing species from all insect orders with species known to induce plant galls: Thysanoptera, Hemiptera, Lepidoptera, Coleoptera, Diptera, and Hymenoptera. We found ABA in insect species in all six orders, in both gall-inducing and non-gall-inducing species, with no tendency for gall-inducing insects to have higher concentrations. The concentrations of ABA in insects often markedly exceeded those typically found in plants, suggesting it is highly improbable that insects obtain all their ABA from their host plant via consumption and sequestration. As a follow-up, we used immunohistochemistry to determine that ABA localizes to the salivary glands in the larvae of the gall-inducing Eurosta solidaginis (Diptera: Tephritidae). The high concentrations of ABA, combined with its localization to salivary glands, suggest that insects are synthesizing and secreting ABA to manipulate their host plants. The pervasiveness of ABA among both gall- and non-gall-inducing insects and our current knowledge of the role of ABA in plant processes suggest that insects are using ABA to manipulate source-sink mechanisms of nutrient allocation or to suppress host-plant defenses. ABA joins the triumvirate of phytohormones, along with cytokinins (CKs) and indole-3-acetic acid (IAA), that are abundant, widespread, and localized to glandular organs in insects and used to manipulate host plants.
Collapse
Affiliation(s)
- Stephannie Seng
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA;
| | - Gabriela E. Ponce
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA; (G.E.P.); (J.F.T.)
| | - Peter Andreas
- Department of Biology, Trent University, Peterborough, ON K9J 7B8, Canada; (P.A.); (A.K.); (R.J.N.E.)
| | - Anna Kisiala
- Department of Biology, Trent University, Peterborough, ON K9J 7B8, Canada; (P.A.); (A.K.); (R.J.N.E.)
| | | | - Donald G. Miller
- Department of Biological Sciences, California State University, Chico, CA 95929, USA;
| | - Ming-Shun Chen
- USDA-ARS and Department of Entomology, Kansas State University, Manhattan, KS 66506, USA;
| | - Peter W. Price
- Department of Ecology and Evolutionary Biology, Northern Arizona University, Flagstaff, AZ 86001, USA;
| | - John F. Tooker
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA; (G.E.P.); (J.F.T.)
| | - R. J. Neil Emery
- Department of Biology, Trent University, Peterborough, ON K9J 7B8, Canada; (P.A.); (A.K.); (R.J.N.E.)
| | - Edward F. Connor
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA;
| |
Collapse
|
14
|
Liu Z, Zhu C, Sun J, Zhang Z, Zhao S, Shi W, Wang W, Zhao B. Influence of rootstock on endogenous hormones and color change in Cabernet Sauvignon grapes. Sci Rep 2023; 13:6608. [PMID: 37095085 PMCID: PMC10125983 DOI: 10.1038/s41598-023-33089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
Different rootstocks for grapes can significantly affect fruit color and quality, possibly by affecting hormone contents, related genetic pathways, and fruit coloring mechanisms in skin. 'Cabernet Sauvignon' was grafted to '5BB', 'SO4', '140R', 'CS', '3309M' and 'Vitis riparia' rootstocks, with self-rooting seedlings as the control (CS/CS), and sampled from the early stage of veraison to the ripening stage. The effects of rootstock on the contents of gibberellin (GA3), auxin (IAA), and abscisic acid (ABA) in grape skin were determined alongside the expression levels of eight anthocyanin synthesis related genes using real-time fluorescence quantitative PCR methods. The rootstock cultivars exhibited accelerated fruit color change, and the CS/140R combination resulted in grapes with more color than the control group in the same period. With the development of fruit, the IAA and GA3 contents in the skin of different rootstock combinations showed trends of increasing initially, then decreasing, while the ABA content decreased initially and then increased. During the verasion (28 July), the various 'Cabernet Sauvignon' rootstock combinations exhibited varying degrees of increases in GA3, ABA, and IAA contents; correlation analysis showed that, at the start of veraison, the expression levels of the anthocyanin synthesis-related genes VvCHS, VvDFR, and VvUFGT had strong positive correlations with hormone contents, which indicated they are key genes involved in the endogenous hormone responsive anthocyanin biosynthesis pathway. The results of this study showed that rootstock regulates the fruit coloring process by influencing the metabolism level of peel hormones in the 'Cabernet Sauvignon' grape.
Collapse
Affiliation(s)
- Zhiyu Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003, China
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Xinjiang, China
| | - Chunmei Zhu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003, China
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Xinjiang, China
| | - Junli Sun
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003, China
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Xinjiang, China
| | - Zhijun Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003, China
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Xinjiang, China
| | - Shucheng Zhao
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003, China
| | - Wenchao Shi
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003, China
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Xinjiang, China
| | - Wei Wang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003, China
| | - Baolong Zhao
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003, China.
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Xinjiang, China.
| |
Collapse
|
15
|
Miliordos DE, Alatzas A, Kontoudakis N, Unlubayir M, Hatzopoulos P, Lanoue A, Kotseridis Y. Benzothiadiazole Affects Grape Polyphenol Metabolism and Wine Quality in Two Greek Cultivars: Effects during Ripening Period over Two Years. PLANTS (BASEL, SWITZERLAND) 2023; 12:1179. [PMID: 36904039 PMCID: PMC10005230 DOI: 10.3390/plants12051179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Grape berries are one of the most important sources of phenolic compounds, either consumed fresh or as wine. A pioneer practice aiming to enrich grape phenolic content has been developed based on the application of biostimulants such as agrochemicals initially designed to induce resistance against plant pathogens. A field experiment was conducted in two growing seasons (2019-2020) to investigate the effect of benzothiadiazole on polyphenol biosynthesis during grape ripening in Mouhtaro (red-colored) and Savvatiano (white-colored) varieties. Grapevines were treated at the stage of veraison with 0.3 mM and 0.6 mM benzothiadiazole. The phenolic content of grapes, as well as the expression level of genes involved in the phenylpropanoid pathway were evaluated and showed an induction of genes specifically engaged in anthocyanins and stilbenoids biosynthesis. Experimental wines deriving from benzothiadiazole-treated grapes exhibited increased amounts of phenolic compounds in both varietal wines, as well as an enhancement in anthocyanin content of Mouhtaro wines. Taken together, benzothiadiazole can be utilized to induce the biosynthesis of secondary metabolites with oenological interest and to improve the quality characteristics of grapes produced under organic conditions.
Collapse
Affiliation(s)
- Dimitrios-Evangelos Miliordos
- Laboratory of Oenology and Alcoholic Beverage Drinks, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
- EA 2106 Biomolécules et Biotechnologie Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, 31 Av. Monge, F37200 Tours, France
| | - Anastasios Alatzas
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Nikolaos Kontoudakis
- Laboratory of Oenology and Alcoholic Beverage Drinks, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
- Department of Agricultural Biotechnology and Oenology, International Hellenic University, 1st Km Drama-Mikrochori, 66100 Drama, Greece
| | - Marianne Unlubayir
- EA 2106 Biomolécules et Biotechnologie Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, 31 Av. Monge, F37200 Tours, France
| | - Polydefkis Hatzopoulos
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Arnaud Lanoue
- EA 2106 Biomolécules et Biotechnologie Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, 31 Av. Monge, F37200 Tours, France
| | - Yorgos Kotseridis
- Laboratory of Oenology and Alcoholic Beverage Drinks, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| |
Collapse
|
16
|
Targeting ripening regulators to develop fruit with high quality and extended shelf life. Curr Opin Biotechnol 2023; 79:102872. [PMID: 36621222 DOI: 10.1016/j.copbio.2022.102872] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/26/2022] [Accepted: 11/04/2022] [Indexed: 01/07/2023]
Abstract
Fruit quality directly impacts fruit marketability and consumer acceptance. Breeders have focused on fruit quality traits to extend shelf life, primarily through fruit texture, but, in some cases, have neglected other qualities such as flavor and nutrition. In recent years, integrative biotechnology and consumer-minded approaches have surfaced, aiding in the development of flavorful, long-lasting fruit. Here, we discussed how specific transcription factors and hormones involved in fruit ripening can be targeted to generate high-quality fruit through traditional breeding and bioengineering. We highlight regulators that can be used to generate novel-colored fruit or biofortify fresh produce with health-promoting nutrients, such as vitamin C. Overall, we argue that addressing grower and industry needs must be balanced with consumer-based traits.
Collapse
|
17
|
Yan J, Zeng H, Chen W, Zheng S, Luo J, Jiang H, Yang B, Farag MA, Lou H, Song L, Wu J. Effects of tree age on flavonoids and antioxidant activity in
Torreya grandis
nuts via integrated metabolome and transcriptome analyses. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Jingwei Yan
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Hao Zeng
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Weijie Chen
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Shan Zheng
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Jiali Luo
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin China
- National Center of Technology Innovation for Synthetic Biology Tianjin China
| | - Baoru Yang
- Food Sciences, Department of Life Technologies University of Turku Turku Finland
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy Cairo University Cairo P.B Egypt
| | - Heqiang Lou
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| |
Collapse
|
18
|
Mhetre VB, Patel V, Singh S, Mishra GP, Verma M, Kumar C, Dahuja A, Kumar S, Singh R, Wasim Siddiqui M. Unraveling the pathways influencing the berry color and firmness of grapevine cv. Flame Seedless treated with bioregulators using biochemical and RNA-Seq analysis under semi-arid subtropics. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 5:100116. [PMID: 35818381 PMCID: PMC9270244 DOI: 10.1016/j.fochms.2022.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/11/2022] [Accepted: 06/18/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Vishal B. Mhetre
- Division of Fruits and Horticultural Technology, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
| | - V.B. Patel
- Division of Fruits and Horticultural Technology, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
- Corresponding author.
| | - S.K. Singh
- Division of Fruits and Horticultural Technology, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
| | - Gyan P. Mishra
- Division of Genetics, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
| | - M.K. Verma
- Division of Fruits and Horticultural Technology, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
| | - Chavlesh Kumar
- Division of Fruits and Horticultural Technology, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
| | - Anil Dahuja
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sanjeev Kumar
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Rakesh Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - M. Wasim Siddiqui
- Department of Food Science and Postharvest Technology, Bihar Agricultural University, Sabour 813210, Bhagalpur, Bihar, India
| |
Collapse
|
19
|
Integrated Transcriptomic and Metabolomic Analysis of the Mechanism of Foliar Application of Hormone-Type Growth Regulator in the Improvement of Grape (Vitis vinifera L.) Coloration in Saline-Alkaline Soil. PLANTS 2022; 11:plants11162115. [PMID: 36015418 PMCID: PMC9416415 DOI: 10.3390/plants11162115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 12/18/2022]
Abstract
(1) Background: To solve the problems of incomplete coloration and quality decline caused by unreasonable use of regulators in grapes, this study clarified the differences in the effects of a hormone-type growth regulator (AUT) and two commercial regulators on grape coloration and quality through field experiments. (2) Methods: The color indexes (brightness (L*), red/green color difference (a*), yellow/blue color difference (b*), and color index for red grapes (CIRG)) of grape fruit were measured using a CR-400 handheld color difference meter. The titratable acid content, total phenol content, and total sugar content were measured using anthrone colorimetry, folinol colorimetry, and NaOH titration, respectively, and the chalcone isomerase activity, phenylalanine ammoniase activity, dihydroflavol reductase activity, and anthocyanin content were measured using a UV spectrophotometer. (3) Results: The a*, total sugar and total phenol contents, and chalcone isomerase (CHI) and phenylalanine ammoniase (PAL) activities of grape fruit in the AUT treatment significantly increased, while the titratable acid content significantly decreased, compared to those in the CK treatment. The expressions of the differentially expressed genes (DEGs) trpB and argJ in AUT treatment were significantly up-regulated. The expressions of the differentially expressed metabolites (DEMs) phenylalanine and 4-oxoproline were significantly up-regulated, while those of 3,4-dihydroxybenzaldehyde and N-acetyl glutamate were significantly down-regulated. The CIRG significantly increased by 36.4% compared to that in the CK, indicating improved fruit coloration. (4) Conclusion: The AUT could shorten the color conversion period of grape fruit and improve the coloration, taste, and tolerance to saline and alkaline stresses.
Collapse
|
20
|
Guo X, Luo Z, Zhang M, Huang L, Wang H, Li Y, Qiao X, Li A, Wu B. The spatiotemporal regulations of epicatechin biosynthesis under normal flowering and the continuous inflorescence removal treatment in Fagopyrum dibotrys. BMC PLANT BIOLOGY 2022; 22:379. [PMID: 35906545 PMCID: PMC9336051 DOI: 10.1186/s12870-022-03761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Flowering is a critical physiological change that interferes with not only biomass yield but also secondary metabolism, such as the biosynthesis of flavonoids, in rhizome/root plants. The continuous inflorescence removal (CIR) treatment is frequently conducted to weaken this effect. Fagopyrum dibotrys (D.Don) H.Hara (Golden buckwheat) is a kind of rhizome medicinal plant rich in flavonoids and is widely used for the treatment of lung diseases. The CIR treatment is usually conducted in F. dibotrys because of its excessive reproductive growth. To uncover the molecular mechanisms, comprehensive analysis was performed using metabolome and transcriptome data obtained from normally bloomed and the CIR treated plants. RESULTS Metabolome results demonstrated that in the rhizomes of F. dibotrys, its bioactive compound called epicatechin has higher amount than most of the detected precursors. Compared with the normally bloomed plants, the level of epicatechin in the rhizomes of the CIR group increased by 25% at the withering stage. Based on 96 samples of the control and the CIR groups at 4 flowering stages for 4 tissues, RNA-Seq results revealed a 3 ~ 5 times upregulations of all the key enzyme genes involved in the biosynthesis of epicatechin in both time (from the bud stage to the withering stage) and spatial dimensions (from the top of branch to rhizome) under the CIR treatment compared to normal flowering. Integrated analysis of LC-MS/MS and transcriptome revealed the key roles of several key enzyme genes besides anthocyanidin reductase (ANR). A total of 93 transcription factors were identified to co-expressed with the genes in epicatechin biosynthetic pathway. The flowering activator SQUAMOSA promoter-binding protein like (SPLs) exhibited opposite spatiotemporal expression patterns to that of the epicatechin pathway genes; SPL3 could significantly co-express with all the key enzyme genes rather than the flowering repressor DELLA. Weighted gene co-expression network analysis (WGCNA) further confirmed the correlations among chalcone synthases (CHSs), chalcone isomerases (CHIs), ANRs, SPLs and other transcription factors. CONCLUSIONS SPL3 might dominantly mediate the effect of normal flowering and the CIR treatment on the biosynthesis of epicatechin in rhizomes mainly through the negative regulations of its key enzyme genes including CHS, CHI and ANR.
Collapse
Affiliation(s)
- Xinwei Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zuliang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Min Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Linfang Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Hui Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
- Institute of Sericulture, Chengde Medical University, Chengde, 067000, China
| | - Yuting Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xu Qiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Ailian Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Bin Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
21
|
Abscisic Acid and Chitosan Modulate Polyphenol Metabolism and Berry Qualities in the Domestic White-Colored Cultivar Savvatiano. PLANTS 2022; 11:plants11131648. [PMID: 35807600 PMCID: PMC9269509 DOI: 10.3390/plants11131648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/27/2022]
Abstract
During the last decade, several studies demonstrated the effect of biostimulants on the transcriptional and metabolic profile of grape berries, suggesting their application as a useful viticultural practice to improve grape and wine quality. Herein, we investigated the impact of two biostimulants—abscisic acid (0.04% w/v and 0.08% w/v) and chitosan (0.3% w/v and 0.6% w/v)—on the polyphenol metabolism of the Greek grapevine cultivar, Savvatiano, in order to determine the impact of biostimulants’ application in the concentration of phenolic compounds. The applications were performed at the veraison stage and the impact on yield, berry quality traits, metabolome and gene expression was examined at three phenological stages (veraison, middle veraison and harvest) during the 2019 and 2020 vintages. Results showed that anthocyanins increased during veraison after treatment with chitosan and abscisic acid. Additionally, stilbenoids were recorded in higher amount following the chitosan and abscisic acid treatments at harvest. Both of the abscisic acid and chitosan applications induced the expression of genes involved in stilbenoids and anthocyanin biosynthesis and resulted in increased accumulation, regardless of the vintage. Alterations in other phenylpropanoid gene expression profiles and phenolic compound concentrations were observed as well. Nevertheless, they were mostly restricted to the first vintage. Therefore, the application of abscisic acid and chitosan on the Greek cultivar Savvatiano showed promising results to induce stilbenoid metabolism and potentially increase grape defense and quality traits.
Collapse
|
22
|
Regulation of anthocyanin and sugar accumulation in grape berry through carbon limitation and exogenous ABA application. Food Res Int 2022; 160:111478. [DOI: 10.1016/j.foodres.2022.111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/24/2022]
|
23
|
Bouyahya A, Omari NE, EL Hachlafi N, Jemly ME, Hakkour M, Balahbib A, El Menyiy N, Bakrim S, Naceiri Mrabti H, Khouchlaa A, Mahomoodally MF, Catauro M, Montesano D, Zengin G. Chemical Compounds of Berry-Derived Polyphenols and Their Effects on Gut Microbiota, Inflammation, and Cancer. Molecules 2022; 27:3286. [PMID: 35630763 PMCID: PMC9146061 DOI: 10.3390/molecules27103286] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022] Open
Abstract
Berry-derived polyphenols are bioactive compounds synthesized and secreted by several berry fruits. These polyphenols feature a diversity of chemical compounds, including phenolic acids and flavonoids. Here, we report the beneficial health effects of berry-derived polyphenols and their therapeutical application on gut-microbiota-related diseases, including inflammation and cancer. Pharmacokinetic investigations have confirmed the absorption, availability, and metabolism of berry-derived polyphenols. In vitro and in vivo tests, as well as clinical trials, showed that berry-derived polyphenols can positively modulate the gut microbiota, inhibiting inflammation and cancer development. Indeed, these compounds inhibit the growth of pathogenic bacteria and also promote beneficial bacteria. Moreover, berry-derived polyphenols exhibit therapeutic effects against different gut-microbiota-related disorders such as inflammation, cancer, and metabolic disorders. Moreover, these polyphenols can manage the inflammation via various mechanisms, in particular the inhibition of the transcriptional factor Nf-κB. Berry-derived polyphenols have also shown remarkable effects on different types of cancer, including colorectal, breast, esophageal, and prostate cancer. Moreover, certain metabolic disorders such as diabetes and atherosclerosis were also managed by berry-derived polyphenols through different mechanisms. These data showed that polyphenols from berries are a promising source of bioactive compounds capable of modulating the intestinal microbiota, and therefore managing cancer and associated metabolic diseases. However, further investigations should be carried out to determine the mechanisms of action of berry-derived polyphenol bioactive compounds to validate their safety and examinate their clinical uses.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco;
| | - Naoufal EL Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Imouzzer Road Fez, Fez 30003, Morocco;
| | - Meryem El Jemly
- Faculty of Pharmacy, University Mohammed VI for Health Science, Casablanca 82403, Morocco;
| | - Maryam Hakkour
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (M.H.); (A.B.)
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (M.H.); (A.B.)
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco;
| | - Saad Bakrim
- Molecular Engineering, Valorization and Environment Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco;
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10000, Morocco;
| | - Aya Khouchlaa
- Laboratory of Biochemistry, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco;
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius;
| | - Michelina Catauro
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, Italy
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| |
Collapse
|
24
|
Pessenti IL, Ayub RA, Filho JLM, Clasen FC, Rombaldi CV, Botelho RV. Influence of abscisic acid, Ascophyllum nodosum and Aloe vera on the phenolic composition and color of grape berry and wine of 'Cabernet Sauvignon' variety. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2022. [DOI: 10.1051/ctv/ctv202237011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In viticulture, various techniques can be used to improve productivity, tolerance to biotic or abiotic stress, the quality of grapes and wines such as the use of plant regulators and biostimulants. Thus, the objective of this work was to evaluate the effect of application of abscisic acid (S-ABA), Ascophyllum nodosum (A. nodosum) seaweed extract and Aloe vera (A. vera) gel on phenolic composition and chromatic characteristics of grapes from the 'Cabernet Sauvignon' variety. The experiment was conducted in a commercial vineyard in Campo Largo - Paraná, in two consecutive seasons, 2017/18 and 2018/19, involving the following treatments: 1) control; 2) (S-ABA) 400 mg/L; 3) S- ABA 600 mg/L; 4) A. vera gel 200 mL/L; 5) A. vera gel 400 mL/L; 6) seaweed extract 0.2 mL/L; 7) seaweed extract 0.4 mL/L. Two applications were performed with the seaweed extract and A. gel when the bunches were at veraison stage (50 and 75% of grape berries with coloration). Total anthocyanins content, total polyphenols content and activity of phenylalanine ammonia-lyase (PAL), polyphenoloxidase and peroxidase enzymes were assessed in the berries skin. Total anthocyanins, individual anthocyanins and total polyphenol contents as well as lightness, chroma and hue angle were analyzed in the corresponding wines. S-ABA increased the content of anthocyanins and total polyphenols, as well as the activity of PAL in the first season. A. nodosum (AN) seaweed extract increased the total polyphenol content, total anthocyanins content and PAL in the berry skin of 'Cabernet Sauvignon' variety. S-ABA increased the total polyphenol content and anthocyanins in wine, as well as the A. nodosum, in at least one of the evaluated seasons.
Collapse
|
25
|
Ranjbaran E, Gholami M, Jensen M. Near-harvest application of methyl jasmonate affected phenolic content and antioxidant properties in "Thompson Seedless" grape. Food Sci Nutr 2022; 10:477-486. [PMID: 35154684 PMCID: PMC8825739 DOI: 10.1002/fsn3.2697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/11/2022] Open
Abstract
The influence of methyl jasmonate (MJ) preharvest treatment was investigated on some polyphenols and antioxidant systems in the "Thompson Seedless" table grape. The clusters were sprayed in the vineyard 2 days before harvest with 0, 1, 5, and 10 mM MJ. After picking, berries were stored for 6 days at 15°C, simulating marketing conditions. Total phenols and flavonoids were affected by MJ treatment, especially at 10 mM concentration, whereas total tannins were found to be unchanged. Antioxidant activity of the treated skin was noticeably higher compared with the control, together with PAL and POD activity. Although MJ had little effect on catechin and epicatechin, the levels of quercetin and rutin were noticeable. In addition, 5 and 10 mM MJ exerted a pronounced effect on transresveratrol content. These data showed that a single preharvest application close to the harvest time could be an effective treatment to promote the antioxidant properties of the grape.
Collapse
Affiliation(s)
- Ehsan Ranjbaran
- Department of Horticultural Science, Faculty of AgricultureBu‐Ali Sina UniversityHamedanIran
- Department of Food ScienceAarhus UniversityAarhus NDenmark
| | - Mansour Gholami
- Department of Horticultural Science, Faculty of AgricultureBu‐Ali Sina UniversityHamedanIran
| | - Martin Jensen
- Department of Food ScienceAarhus UniversityAarhus NDenmark
| |
Collapse
|
26
|
Wang P, Ge M, Yu A, Song W, Fang J, Leng X. Effects of ethylene on berry ripening and anthocyanin accumulation of 'Fujiminori' grape in protected cultivation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1124-1136. [PMID: 34329497 DOI: 10.1002/jsfa.11449] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/19/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Although the grape berries are deliberated as a non-climacteric fruit, ethylene seems to be involved in grape berry ripening. However, the precise role of ethylene in regulating the ripening of non-climacteric fruits is poorly understood. RESULTS Exogenous ethephon (ETH) can stimulate the concentration of internal ethylene and accelerate the accumulation of anthocyanins in berries of 'Fujiminori', including malvidin-, delphinidin-, and petunidin-derivatives (3',4',5'-trihydroxylated anthocyanins) and cyanidin-derivatives (3',4'-dihydroxylated anthocyanins). The content of 3',4',5'-trihydroxylated anthocyanins was extremely higher than 3',4'-dihydroxylated anthocyanins, and ethylene did not affect the composition of anthocyanins in grape. Furthermore, we observed the expression of anthocyanin structural and regulatory genes as well as ethylene biosynthesis and response genes in response to ETH treatment. The anthocyanins accumulation is significantly associated with increased expression of anthocyanin structural (VvPAL, Vv4CH, VvCHS, VvCHI, VvF3H, and VvUFGT) and regulatory genes (VvMYBA1, VvMYBA2, and VvMYBA3), which persisted over the 12 days. In addition, exogenous ETH affected the endogenous ethylene biosynthesis (VvACO2 and VvACO4) and the downstream ethylene regulatory network (VvERS1, VvETR2, VvCTR1, and VvERF005). CONCLUSIONS These findings bring new insights into the physiological and molecular function of ethylene during berry development and ripening in grapes. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peipei Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Mengqing Ge
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Aishui Yu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Wei Song
- Fruit Industry Development and Service Center of Qixia, Yantai, China
| | - Jinggui Fang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Xiangpeng Leng
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
27
|
Monteiro E, Gonçalves B, Cortez I, Castro I. The Role of Biostimulants as Alleviators of Biotic and Abiotic Stresses in Grapevine: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030396. [PMID: 35161376 PMCID: PMC8839214 DOI: 10.3390/plants11030396] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 06/01/2023]
Abstract
The viticulture and wine industry contribute to the economy and reputation of many countries all over the world. With the predicted climate change, a negative impact on grapevine physiology, growth, production, and quality of berries is expected. On the other hand, the impact of these changes in phytopathogenic fungi development, survival rates, and host susceptibility is unpredictable. Grapevine fungal diseases control has been a great challenge to winegrowers worldwide. The use of chemicals in viticulture is high, which can result in the development of pathogen resistance, increasingly raising concerns regarding residues in wine and effects on human and environmental health. Promoting sustainable patterns of production is one of the overarching objectives and essential requirements for sustainable development. Alternative holistic approaches, such as those making use of biostimulants, are emerging in order to reduce the consequences of biotic and abiotic stresses in the grapevine, namely preventing grape fungal diseases, improving grapevine resistance to water stress, and increasing yield and berry quality.
Collapse
Affiliation(s)
- Eliana Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (B.G.); (I.C.); (I.C.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (B.G.); (I.C.); (I.C.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Isabel Cortez
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (B.G.); (I.C.); (I.C.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Agronomy, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Isaura Castro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (B.G.); (I.C.); (I.C.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
28
|
Cheng X, Wang P, Chen Q, Ma T, Wang R, Gao Y, Zhu H, Liu Y, Liu B, Sun X, Fang Y. Enhancement of anthocyanin and chromatic profiles in 'Cabernet Sauvignon' (Vitis vinifera L.) by foliar nitrogen fertilizer during veraison. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:383-395. [PMID: 34143902 DOI: 10.1002/jsfa.11368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/14/2021] [Accepted: 06/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The influence of foliar nitrogen fertilizer during veraison (FNFV) on anthocyanin accumulation and chromatic characteristics of 'Cabernet Sauvignon' grapes over two seasons was investigated. RESULTS Urea and phenylalanine fertilizers (TU and TP, respectively) and a control were sprayed three times at veraison. In 2018, TU displayed a significant enhancement in total individual anthocyanin content and a* and Cab * profiles. In 2019, FNAV significantly improved the content of total non-acylated, acylated anthocyanin and total individual anthocyanin, and the profiles of L*, a* and Cab *, except a* in TU. The whole process from phenylalanine variation to anthocyanin accumulation in grape skins was analyzed. On the whole, after the first FNFV to harvest, the increase in phenylalanine metabolism, abscisic acid content, effects of PAL (Phenylalanine ammonia lyase), UFGT (UDP glucose-flavonoid 3-O-glucosyltransferase) and transcript concentrations of VvPAL and VvUFGT involved in anthocyanin biosynthesis were also strong evidence explaining the increased anthocyanin and chromatic profiles in 2019. CONCLUSION Overall, FNFV for nitrogen-deficient grapevines could significantly improve grape color, especially in the 2019 veraison with a proper climate. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xianghan Cheng
- College of Enology, College of Food Science and Engineering, College of Natural Resources and Environment, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, China
| | - Panpan Wang
- College of Enology, College of Food Science and Engineering, College of Natural Resources and Environment, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, China
| | - Qianyi Chen
- College of Enology, College of Food Science and Engineering, College of Natural Resources and Environment, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, China
| | - Tingting Ma
- College of Enology, College of Food Science and Engineering, College of Natural Resources and Environment, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, China
| | - Rui Wang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Yajun Gao
- College of Enology, College of Food Science and Engineering, College of Natural Resources and Environment, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, China
| | - Hongda Zhu
- College of Enology, College of Food Science and Engineering, College of Natural Resources and Environment, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, China
| | - Yuan Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Buchun Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangyu Sun
- College of Enology, College of Food Science and Engineering, College of Natural Resources and Environment, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, China
| | - Yulin Fang
- College of Enology, College of Food Science and Engineering, College of Natural Resources and Environment, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, China
| |
Collapse
|
29
|
Nakajima N, Inoue H, Koshita Y. Effects of exogenous methyl jasmonate and light condition on grape berry coloration and endogenous abscisic acid content. JOURNAL OF PESTICIDE SCIENCE 2021; 46:322-332. [PMID: 34908892 PMCID: PMC8640711 DOI: 10.1584/jpestics.d21-027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/28/2021] [Indexed: 06/14/2023]
Abstract
Suitable postharvest treatment methods were investigated to improve the color of grape berries. Culture solutions containing jasmonic acid (JA), methyl jasmonate (MeJA), and prohydrojasmon (PDJ) enhanced the skin coloration of grape berries ('Pione') harvested at the initial stage of coloration. MeJA vapor treatment under sealed conditions increased anthocyanin accumulation in grape berries ('AkiQueen' and 'Pione') harvested at the early stage of skin coloration. Furthermore, promoting skin coloration by MeJA vapor treatment was as effective in mature clusters as it was in detached berries. These effects were confirmed in light conditions but not in constant darkness. Our results showed that postharvest MeJA vapor treatment improved skin coloration in grapes. In addition, postharvest treatment with MeJA was found to have no effect on the endogenous abscisic acid content of grape berry skins. Therefore, we suggest that MeJA vapor treatment can be a useful and labor-saving method for the horticultural industry.
Collapse
Affiliation(s)
- Naoko Nakajima
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Hiromichi Inoue
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Yoshiko Koshita
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
- NARO Headquarters, Kannondai, Tsukuba, Ibaraki 305-8517, Japan
| |
Collapse
|
30
|
Methyl Jasmonate Applications in Viticulture: A Tool to Increase the Content of Flavonoids and Stilbenes in Grapes and Wines. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7060133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, the interest in methyl jasmonate (MeJ) has increased in viticulture due to its effects on the synthesis of phenolic secondary metabolites in grapes, especially of anthocyanins, flavonols, and stilbenes derivatives, naturally occurring or synthesized, in berries in response to MeJ application to grapevines. These metabolites help to define sensory characteristics of wines by contributing to their color, flavor and mouthfeel properties, and to derive potential beneficial health effects due to their consumption. This review offers an overview of the importance of these phenolic compounds in grape and wine quality, in association with the MeJ supplementation to grapevines, and also considers their natural biosynthesis in grapes. On the other hand, this review describes the adaptation mechanisms induced after the grapevine elicitation. In addition, this report addresses the effects of MeJ over other aspects of Vitis immunity and its association with phenolic compounds and summarizes the recently published reports about the effects of exogenous MeJ applications to grapevines on grape and wine quality.
Collapse
|
31
|
Ribalta-Pizarro C, Muñoz P, Munné-Bosch S. Tissue-Specific Hormonal Variations in Grapes of Irrigated and Non-irrigated Grapevines ( Vitis vinifera cv. "Merlot") Growing Under Mediterranean Field Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:621587. [PMID: 33597962 PMCID: PMC7882616 DOI: 10.3389/fpls.2021.621587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/07/2021] [Indexed: 05/10/2023]
Abstract
Agricultural practices in grapevines management include water restrictions due to its positive effect on wine quality, especially when applied at fruit ripening. Although the effects of water stress in some groups of phytohormones have already been described in leaves and whole grapes, information regarding tissue-specific variations in hormones during ripening in grapes is scarce. Field-grown grapevines from the cv. "Merlot" were subjected to two differential water supplies, including only rainfed, non-irrigated vines (T0) and vines additionally irrigated with 25Lweek-1 vine-1 (T1). Tissue-specific variations in the hormonal profiling of grapes [including changes in the contents of abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), the ethylene precursor 1-amino-cyclopropane-1-carboxylic acid (ACC), the auxin indole-3-acetic acid, gibberellins 1, 3, 4, and 7 (GA1, GA3, GA4, and GA7), the cytokinins trans-zeatin, and 2-isopentenyl adenine, including as well their respective ribosylated forms] were periodically evaluated from veraison to harvest. The hormonal profiling in leaves was also measured at the beginning and end of the season for comparison. Results showed that grape growth dynamics were transiently affected by the differences in water regimes, the increased water supply leading to an accelerated growth, slightly reduced accumulation of sugars, and transiently lowered pH, although grape quality did not differ between treatments at harvest. Hormonal profiling of whole berries did not reveal any difference in the endogenous contents of phytohormones between treatments, except for a transient decrease in GA4 contents in T1 compared to T0 vines, which was not confirmed at the tissular level. Hormonal profiling at the tissue level highlighted a differential accumulation of phytohormones during ripening in berry tissues, with pulps being particularly poor in ABA, JA, and SA contents, seeds particularly accumulating ACC, gibberellins, and zeatin-type cytokinins, and the skin being particularly rich in auxin and active cytokinins. Changes in water supply led to very small and transient changes in the endogenous contents of phytohormones in the seeds, pulp, and skin of berries, the most remarkable variations being observed in cytokinin contents, which increased earlier [between 5 and 12days after veraison (DAV)] but later kept more constant in the skin from T1 compared to T0 vines and were also 3-fold higher at 40 DAV in seeds of T1 compared to T0 vines. It is concluded that small changes in water supply can trigger hormonal-driven physiological adjustments at the tissular level affecting the evolution of fruit growth and quality throughout grape berry ripening.
Collapse
Affiliation(s)
- Camila Ribalta-Pizarro
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
- *Correspondence: Sergi Munné-Bosch,
| |
Collapse
|
32
|
Cheng X, Wang X, Zhang A, Wang P, Chen Q, Ma T, Li W, Liang Y, Sun X, Fang Y. Foliar Phenylalanine Application Promoted Antioxidant Activities in Cabernet Sauvignon by Regulating Phenolic Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15390-15402. [PMID: 33319992 DOI: 10.1021/acs.jafc.0c05565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The effects of foliar phenylalanine application during veraison (FPV) on phenolic biosynthesis and correlation between phenolic compositions and antioxidant activities in Cabernet Sauvignon grown in field and greenhouse were investigated. Solutions with 69 and 138 mg N/vine phenylalanine (Pe1 and Pe2, respectively) and an aqueous solution without nitrogen (CK) were sprayed three times during veraison. FPV significantly improved antioxidant activities in grapes using the two culture methods. The most contributory phenolic compositions to antioxidant activities were anthocyanins and stilbenes following FPV compared with CK. Phenylalanine metabolism, abscisic acid content, and expression levels of VvPAL, VvCHS, VvF3H, VvUFGT, and VvSTS in the phenolic synthesis pathway were increased from the first FPV to harvest. Although Pe2 significantly increased total phenolic contents than Pe1, antioxidant parameters were not markedly affected by the phenylalanine dose. Our finding revealed that FPV was a useful fertilization method to enhance antioxidant activities in grapes in nitrogen-deficient vineyards.
Collapse
Affiliation(s)
- Xianghan Cheng
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Xuefei Wang
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Ang Zhang
- Technology Centre of Qinhuangdao Customs, Qinhuangdao, Hebei 066004, China
| | - Panpan Wang
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Qianyi Chen
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Tingting Ma
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Wanping Li
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Yanying Liang
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Xiangyu Sun
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Yulin Fang
- College of Enology, College of Food Science and Engineering, Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
33
|
Biostimulant-Treated Seedlings under Sustainable Agriculture: A Global Perspective Facing Climate Change. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy11010014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The primary objectives of modern agriculture includes the environmental sustainability, low production costs, improved plants’ resilience to various biotic and abiotic stresses, and high sowing seed value. Delayed and inconsistent field emergence poses a significant threat in the production of agri-crop, especially during drought and adverse weather conditions. To open new routes of nutrients’ acquisition and revolutionizing the adapted solutions, stewardship plans will be needed to address these questions. One approach is the identification of plant based bioactive molecules capable of altering plant metabolism pathways which may enhance plant performance in a brief period of time and in a cost-effective manner. A biostimulant is a plant material, microorganism, or any other organic compound that not only improves the nutritional aspects, vitality, general health but also enhances the seed quality performance. They may be effectively utilized in both horticultural and cereal crops. The biologically active substances in biostimulant biopreparations are protein hydrolysates (PHs), seaweed extracts, fulvic acids, humic acids, nitrogenous compounds, beneficial bacterial, and fungal agents. In this review, the state of the art and future prospects for biostimulant seedlings are reported and discussed. Biostimulants have been gaining interest as they stimulate crop physiology and biochemistry such as the ratio of leaf photosynthetic pigments (carotenoids and chlorophyll), enhanced antioxidant potential, tremendous root growth, improved nutrient use efficiency (NUE), and reduced fertilizers consumption. Thus, all these properties make the biostimulants fit for internal market operations. Furthermore, a special consideration has been given to the application of biostimulants in intensive agricultural systems that minimize the fertilizers’ usage without affecting quality and yield along with the limits imposed by European Union (EU) regulations.
Collapse
|
34
|
Wang X, Cao X, Shang Y, Bu H, Wang T, Lyu D, Du G. Preharvest application of prohydrojasmon affects color development, phenolic metabolism, and pigment-related gene expression in red pear (Pyrus ussuriensis). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4766-4775. [PMID: 32458515 DOI: 10.1002/jsfa.10535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/04/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Peel color is an economically relevant trait that influences the appearance and quality of red pear, whose red color is due to anthocyanin accumulation. Prohydrojasmon (PDJ), which has similar effects to endogenous jasmonates, was developed as a commercial bioregulator, particularly to improve fruits coloring. However, little information is available about the effect of PDJ on pears. This study investigated the effects of preharvest PDJ treatments on color development, phenolic compounds accumulation, and related gene expression in the red pear cultivar 'Nanhong'. The treatments were performed during the pre-color-change period by spraying 50 or 100 mg L-1 of PDJ on fruits. RESULTS Preharvest PDJ treatments had a significant effect on color development, without affecting other quality parameters such as total soluble solids and fruit acidity. Liquid chromatography-mass spectrometry analysis showed that concentrations of anthocyanins and flavonols were enhanced in the peel after PDJ treatments, particularly when a concentration of 100 mg L-1 was used, whereas those of hydroxycinnamates and flavanols were decreased. After PDJ application, the transcription levels of anthocyanin biosynthesis genes PAL, CHS, CHI, ANS, F3H, and UFGT were enhanced, especially under the higher PDJ concentration tested. In addition, anthocyanin accumulation in the peels of PDJ-treated fruits was found to be positively correlated with the upregulation of the regulatory gene MYB114. CONCLUSION Preharvest treatments with PDJ could be a useful tool to improve fruits coloring and increase phenolic content in pear. These findings also improve our understanding of the molecular mechanisms associated with PDJ-regulated anthocyanin accumulation in pear fruits.
Collapse
Affiliation(s)
- Xiaoqian Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, China
| | - Xiaoyun Cao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Ye Shang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Haidong Bu
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, China
| | - Tianye Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Deguo Lyu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, China
| | - Guodong Du
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, China
| |
Collapse
|
35
|
Lama K, Harlev G, Shafran H, Peer R, Flaishman MA. Anthocyanin accumulation is initiated by abscisic acid to enhance fruit color during fig (Ficus carica L.) ripening. JOURNAL OF PLANT PHYSIOLOGY 2020; 251:153192. [PMID: 32554070 DOI: 10.1016/j.jplph.2020.153192] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Fig fruit is well-known for its attractive flavor, color, and nutritional and medicinal value. Anthocyanin contributes to the fruit's color and constitutes a high percentage of the total antioxidant content of the fig fruit. We quantified the major anthocyanins and characterized the expression levels of anthocyanin-biosynthesis and transcription factor genes in fruit treated on-tree with exogenous abscisic acid (ABA) or ethephon, or the ABA inhibitors nordihydroguaiaretic acid (NDGA) or fluridone. The major anthocyanins cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside were found in significantly higher quantities in exogenous ABA- and ethephon-treated fruit, with early dark purple color compared to the controls. On the other hand, NDGA- and fluridone-treated fruit had significantly lower amounts of anthocyanins, with less purple color coverage than controls. Expression levels of the anthocyanin-biosynthesis genes FcPAL, FcCHS2, FcCHI, FcF3H, FcDFR, FcANS, FcUFGT and Fc3RT were upregulated by exogenous ABA and ethephon treatment, and downregulated by NDGA and fluridone treatment. The MYB-bHLH-WD40 complex-related genes of ripe fig fruit were identified. In particular, FcMYB113 was strongly upregulated by exogenous ABA and ethephon, and strongly downregulated by NDGA and fluridone. In addition, moderate upregulation of FcGL3 and FcWD40 was observed with exogenous ABA and ethephon treatment, and moderate downregulation in NDGA- and fluridone-treated fruit. These results indicate that ABA can initiate anthocyanin biosynthesis, which ultimately improves the color and nutritional value of fig fruit, enhancing their attractiveness to consumers.
Collapse
Affiliation(s)
- Kumar Lama
- Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan 50250, Israel; The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot, 76100, Israel.
| | - Guy Harlev
- Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan 50250, Israel.
| | - Hadas Shafran
- Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan 50250, Israel.
| | - Reut Peer
- Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan 50250, Israel.
| | - Moshe A Flaishman
- Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan 50250, Israel.
| |
Collapse
|
36
|
Zhao S, Mi X, Guo R, Xia X, Liu L, An Y, Yan X, Wang S, Guo L, Wei C. The Biosynthesis of Main Taste Compounds Is Coordinately Regulated by miRNAs and Phytohormones in Tea Plant ( Camellia sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6221-6236. [PMID: 32379968 DOI: 10.1021/acs.jafc.0c01833] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Based on the abundance of taste compounds in leaves at different leaf positions on the same shoot, green tea made from one bud and one leaf, or even just one bud, has the best quality. To elucidate the mechanism underlying the regulation of the biosynthesis of these compounds, we profiled the metabolome, transcriptome, sRNA, degradome, and WGCNA using leaves from five leaf positions of shoots. Through this analysis, we found 139 miRNA-target pairs related to taste compound biosynthesis and 96 miRNA-target pairs involved in phytohormone synthesis or signal transduction. Moreover, miR166-HD-ZIP, miR169-NF-YA, IAA, ZA, ABA, and JA were positively related to the accumulation of gallated catechin, caffeine, and theanine. However, miR396-GRF, miR393-bHLH, miR156-SBP, and SA were negatively correlated with these compounds. Among these important pairs, the miR396-GRF and miR156-SBP pairs were further validated by using qRT-PCR, Northern blots, and cotransformation. This is the first report describing that miRNA-TF pairs and phytohormones might synergistically regulate the biosynthesis of taste compounds in the leaves of tea plants.
Collapse
Affiliation(s)
- Shiqi Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, People's Republic of China
| | - Xiaozeng Mi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, People's Republic of China
| | - Rui Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, People's Republic of China
| | - Xiaobo Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, People's Republic of China
| | - Lu Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, People's Republic of China
| | - Yanlin An
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, People's Republic of China
| | - Xiaomei Yan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, People's Republic of China
| | - Shuangshuang Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, People's Republic of China
| | - Lingxiao Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, People's Republic of China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui, People's Republic of China
| |
Collapse
|
37
|
Moro L, Da Ros A, da Mota RV, Purgatto E, Mattivi F, Arapitsas P. LC-MS untargeted approach showed that methyl jasmonate application on Vitis labrusca L. grapes increases phenolics at subtropical Brazilian regions. Metabolomics 2020; 16:18. [PMID: 31974665 DOI: 10.1007/s11306-020-1641-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/18/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Vitis labrusca L. grapes are largely cultivated in Brazil, but the tropical climate negatively affects the phenols content, especially anthocyanin. According to the projections of the incoming climatic changes, the climate of several viticulture zone might change to tropical. Therefore, researches are focusing on increasing grape phenols content; with methyl jasmonate application (MeJa) is considered a good alternative. OBJECTIVES The aim was to investigate with an untargeted approach the metabolic changes caused by the MeJa pre-harvest application on two Vitis labrusca L. cultivars grapes, both of them grown in two Brazilian regions. METHODS Isabel Precoce and Concord grapes cultivated under subtropical climate, in the south and southeast of Brazil, received MeJa pre-harvest treatment. Grape metabolome was extracted and analyzed with a MS based metabolomics protocol by UPLC-HRMS-QTOF. RESULTS Unsupervised data analysis revealed a clear separation between the two regions and the two cultivars, while supervised data analysis revealed biomarkers between the MeJa treatment group and the control group. Among the metabolites positively affected by MeJa were (a) flavonoids with a high degree of methylation at the B-ring (malvidin and peonidin derivatives and isorhamentin) for Isabel Precoce grapes; (b) glucosides of hydroxycinnamates, gallocatechin, epigallocatechin and cis-piceid for Concord grapes; and (c) hydroxycinnamates esters with tartaric acid, and procyanidins for the Southeast region grapes. CONCLUSION These results suggest that MeJa can be used as elicitor to secondary metabolism in grapes grown even under subtropical climate, affecting phenolic biosynthesis.
Collapse
Affiliation(s)
- Laís Moro
- Deptartment of Food Science and Experimental Nutrition/FORC - Food Research Center, University of São Paulo, São Paulo, Brazil.
| | - Alessio Da Ros
- Department of Food Quality and Nutrition, Research and Innovation Centre Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Renata Vieira da Mota
- Empresa de Pesquisa Agropecuária de Minas Gerais - EPAMIG, Núcleo Tecnológico Uva e Vinho, Caldas, Minas Gerais, Brazil
| | - Eduardo Purgatto
- Deptartment of Food Science and Experimental Nutrition/FORC - Food Research Center, University of São Paulo, São Paulo, Brazil
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Centre Fondazione Edmund Mach, San Michele all'Adige, Italy
- Center Agriculture Food Environment, University of Trento, Trento, Italy
| | - Panagiotis Arapitsas
- Department of Food Quality and Nutrition, Research and Innovation Centre Fondazione Edmund Mach, San Michele all'Adige, Italy
| |
Collapse
|
38
|
Crupi P, Alba V, Masi G, Caputo AR, Tarricone L. Effect of two exogenous plant growth regulators on the color and quality parameters of seedless table grape berries. Food Res Int 2019; 126:108667. [PMID: 31732072 DOI: 10.1016/j.foodres.2019.108667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/04/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022]
Abstract
Some red-pink table grape varieties, cultivated in warm climates, can fail in achieving the right level of anthocyanins responsible for the intense and uniform red color of berries. Nowadays, this is becoming an important technological issue in the Mediterranean area, which may result in decreasing market acceptance and potential economic value of table grape. Usually, plant growth regulators or phytohormones, such as S-ABA, can overcome this problem because they drive the accumulation of anthocyanins over the ripening season. Harpin proteins (HrP), which enhance the plant disease resistance, may be supposed to stimulate the anthocyanins biosynthesis in grape skin if applied close to veraison. Therefore, this research aimed at comparing the effect of HrP and S-ABA over the anthocyanin and color improvement of Crimson Seedless table grape grown in Southern Italy. For the first time, the exogenous treatment with HrP showed as effective as the less sustainable S-ABA one in favoring the anthocyanin accumulation, leading to peonidin-3-O-glucoside, cyanidin-3-O-glucoside, and malvidin-3-O-glucoside values up to 4 folds higher than control grapes and giving rise to a greater concentration of the more stable acylated anthocyanins. Overall, the color of berries was improved but keeping high the other quality characteristics.
Collapse
Affiliation(s)
- Pasquale Crupi
- CREA-VE, Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via Casamassima, 148, 70010 Turi, BA, Italy.
| | - Vittorio Alba
- CREA-VE, Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via Casamassima, 148, 70010 Turi, BA, Italy
| | - Gianvito Masi
- CREA-VE, Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via Casamassima, 148, 70010 Turi, BA, Italy
| | - Angelo Raffaele Caputo
- CREA-VE, Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via Casamassima, 148, 70010 Turi, BA, Italy
| | - Luigi Tarricone
- CREA-VE, Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via Casamassima, 148, 70010 Turi, BA, Italy
| |
Collapse
|
39
|
Transcriptional regulation of abscisic acid biosynthesis and signal transduction, and anthocyanin biosynthesis in 'Bluecrop' highbush blueberry fruit during ripening. PLoS One 2019; 14:e0220015. [PMID: 31318958 PMCID: PMC6638965 DOI: 10.1371/journal.pone.0220015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/05/2019] [Indexed: 11/19/2022] Open
Abstract
Highbush blueberry (Vaccinium corymbosum) fruit accumulate high levels of anthocyanins during ripening, which might be controlled by abscisic acid (ABA), a signal molecule in non-climacteric fruits. For an integrated view of the ripening process from ABA to anthocyanin biosynthesis, we analyzed the transcriptomes of ‘Bluecrop’ highbush blueberry fruit using RNA-Seq at three ripening stages, categorized based on fruit skin coloration: pale green at ca. 30 days after full bloom (DAFB), reddish purple at ca. 40 DAFB, and dark purple at ca. 50 DAFB. Mapping the trimmed reads against the reference sequences yielded 25,766 transcripts. Of these, 143 transcripts were annotated to encode five ABA biosynthesis enzymes, four ABA signal transduction regulators, four ABA-responsive transcription factors, and 12 anthocyanin biosynthesis enzymes. The analysis of differentially expressed genes between the ripening stages revealed that 11 transcripts, including those encoding nine-cis-epoxycarotenoid dioxygenase, SQUAMOSA-class MADS box transcription factor, and flavonoid 3′,5′-hydroxylase, were significantly up-regulated throughout the entire ripening stages. In fruit treated with 1 g L−1 ABA, at least nine transcripts of these 11 transcripts as well as one transcript encoding flavonoid 3′-hydroxylase were up-regulated, presumably promoting anthocyanin accumulation and fruit skin coloration. These results will provide fundamental information demonstrating that ABA biosynthesis and signal transduction, and anthocyanin biosynthesis are closely associated with anthocyanin accumulation and skin coloration in highbush blueberry fruit during ripening.
Collapse
|
40
|
Gao-Takai M, Katayama-Ikegami A, Matsuda K, Shindo H, Uemae S, Oyaizu M. A low temperature promotes anthocyanin biosynthesis but does not accelerate endogenous abscisic acid accumulation in red-skinned grapes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:165-176. [PMID: 31128686 DOI: 10.1016/j.plantsci.2019.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
The effect of temperature on the concentrations of anthocyanins and endogenous plant hormones [abscisic acid (ABA), auxin, and cytokinin] were investigated using the detached berries of two related red-skinned cultivars cv. 'Aki Queen' and 'Ruby Roman' of the table grape Vitis labrusca L. × Vitis vinifera L. The total anthocyanin concentration of both cultivars was lower when exposed to high rather than low temperatures after véraison (the onset of ripening). However, the responses to temperature differed between the two cultivars, and anthocyanin accumulation could occur in 'Ruby Roman' at a higher temperature than in 'Aki Queen'. High temperatures increased the expression of VlMybA1-2 and VlMybA1-3, which encode myeloblastosis (MYB)-related transcription factors; however, the expression of the anthocyanin biosynthesis-related structural genes uridine diphosphate-d-glucose: flavonoid 3-O-glucosyltransferase, flavonoid 3'5' hydroxylase, and flavonoid O-methyltransferase at different temperatures did not correspond with that of the expression of MybAs. The concentration of ABA and its derivatives increased under high temperatures, but that of auxin and cytokinin decreased. The observation that high temperatures induced the accumulation of ABA and expression of VlMybA1s but not the expression of anthocyanin biosynthesis-related structural genes implied the operation of a mechanism different from up-regulation of anthocyanin synthesis by VlMybA1s in the temperature response of grape berries.
Collapse
Affiliation(s)
- Mei Gao-Takai
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan.
| | - Ayako Katayama-Ikegami
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Kenichi Matsuda
- Ishikawa Agriculture and Forestry Research Center, Agricultural Experiment Station, Sand Hill Place Agriculture Research Center, Kahoku 929-1126, Japan
| | - Hibiki Shindo
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Shintaro Uemae
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Miku Oyaizu
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| |
Collapse
|