1
|
He J, Zhong J, Jin L, Long Y, Situ J, He C, Kong G, Jiang Z, Li M. A virulent milRNA inhibits host immunity by silencing a host receptor-like kinase MaLYK3 and facilitates infection by Fusarium oxysporum f. sp. cubense. MOLECULAR PLANT PATHOLOGY 2024; 25:e70016. [PMID: 39394779 PMCID: PMC11470196 DOI: 10.1111/mpp.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/19/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024]
Abstract
MicroRNA-like RNAs (milRNAs) play a significant role in the infection process by plant-pathogenic fungi. However, the specific functions and regulatory mechanisms of fungal milRNAs remain insufficiently elucidated. This study investigated the function of Foc-milR138, an infection-induced milRNA secreted by Fusarium oxysporum f. sp. cubense (Foc), which is the causal agent of Fusarium wilt of banana. Initially, through precursor gene knockout and phenotypic assessments, we confirmed that Foc-milR138 acts as a virulent milRNA prominently upregulated during the early stages of Foc infection. Subsequent bioinformatic analyses and transient expression assays in Nicotiana benthamiana leaves identified a host receptor-like kinase gene, MaLYK3, as the direct target of Foc-milR138. Functional investigations of MaLYK3 revealed its pivotal role in triggering immune responses of N. benthamiana by upregulating a suite of resistance genes, bolstering reactive oxygen species (ROS) accumulation and callose deposition, thereby fortifying disease resistance. This response was markedly subdued upon co-expression with Foc-milR138. Expression pattern analysis further verified the specific suppression of MaLYK3 by Foc-milR138 during the early root infection by Foc. In conclusion, Foc secretes a virulent milRNA (Foc-milR138) to enter the host banana cells and inhibit the expression of the plant surface receptor-like kinase MaLYK3, subverting the disease resistance activated by MaLYK3, and ultimately facilitating pathogen invasion. These findings shed light on the roles of fungal milRNAs and their targets in resistance and pathogenicity, offering promising avenues for the development of disease-resistant banana cultivars.
Collapse
Affiliation(s)
- Jiahui He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Jiaqi Zhong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Longqi Jin
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Yike Long
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Junjian Situ
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Chengcheng He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Guanghui Kong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Minhui Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
2
|
He J, Huang R, Xie X. A gap in the recognition of two mycorrhizal factors: new insights into two LysM-type mycorrhizal receptors. FRONTIERS IN PLANT SCIENCE 2024; 15:1418699. [PMID: 39372858 PMCID: PMC11452846 DOI: 10.3389/fpls.2024.1418699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/26/2024] [Indexed: 10/08/2024]
Abstract
Arbuscular mycorrhizal (AM) fungi are crucial components of the plant microbiota and can form symbioses with 72% of land plants. Researchers have long known that AM symbioses have dramatic effects on plant performance and also provide multiple ecological services in terrestrial environments. The successful establishment of AM symbioses relies on the host plant recognition of the diffusible mycorrhizal (Myc) factors, lipo-chitooligosaccharides (LCOs) and chitooligosaccharides (COs). Among them, the short-chain COs such as CO4/5 secreted by AM fungi are the major Myc factors in COs. In this review, we summarize current advances, develop the concept of mycorrhizal biceptor complex (double receptor complexes for Myc-LCOs and CO4/5 in the same plant), and provide a perspective on the future development of mycorrhizal receptors. First, we focus on the distinct perception of two Myc factors by different host plant species, highlighting the essential role of Lysin-Motif (LysM)-type mycorrhizal receptors in perceiving them. Second, we propose the underlying molecular mechanisms by which LysM-type mycorrhizal receptors in various plants recognize both the Myc-LCOs and -COs. Finally, we explore future prospects for studies on the biceptor complex (Myc-LCO and -CO receptors) in dicots to facilitate the utilization of them in cereal crops (particularly in modern cultivated rice). In conclusion, our understanding of the precise perception processes during host plant interacting with AM fungi, where LysM-type mycorrhizal receptors act as recruiters, provides the tools to design biotechnological applications addressing agricultural challenges.
Collapse
Affiliation(s)
- Junliang He
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Renliang Huang
- National Engineering Research Center of Rice, Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agriculture Science, Nanchang, China
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Landry D, Lefebvre B. Ubiquitination-mediated regulation of receptor-like kinases in symbiosis and immunity. MOLECULAR PLANT 2024; 17:1335-1337. [PMID: 39080994 DOI: 10.1016/j.molp.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/26/2024]
Affiliation(s)
- David Landry
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, 31326 Castanet-Tolosan, France
| | - Benoit Lefebvre
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, 31326 Castanet-Tolosan, France.
| |
Collapse
|
4
|
Ding Y, Wang T, Gasciolli V, Reyt G, Remblière C, Marcel F, François T, Bendahmane A, He G, Bono JJ, Lefebvre B. The LysM Receptor-Like Kinase SlLYK10 Controls Lipochitooligosaccharide Signaling in Inner Cell Layers of Tomato Roots. PLANT & CELL PHYSIOLOGY 2024; 65:1149-1159. [PMID: 38581668 DOI: 10.1093/pcp/pcae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Establishment of arbuscular mycorrhiza relies on a plant signaling pathway that can be activated by fungal chitinic signals such as short-chain chitooligosaccharides and lipo-chitooligosaccharides (LCOs). The tomato LysM receptor-like kinase SlLYK10 has high affinity for LCOs and is involved in root colonization by arbuscular mycorrhizal fungi (AMF); however, its role in LCO responses has not yet been studied. Here, we show that SlLYK10 proteins produced by the Sllyk10-1 and Sllyk10-2 mutant alleles, which both cause decreases in AMF colonization and carry mutations in LysM1 and 2, respectively, have similar LCO-binding affinities compared to the WT SlLYK10. However, the mutant forms were no longer able to induce cell death in Nicotiana benthamiana when co-expressed with MtLYK3, a Medicago truncatula LCO co-receptor, while they physically interacted with MtLYK3 in co-purification experiments. This suggests that the LysM mutations affect the ability of SlLYK10 to trigger signaling through a potential co-receptor rather than its ability to bind LCOs. Interestingly, tomato lines that contain a calcium (Ca2+) concentration reporter [genetically encoded Ca2+ indicators (GECO)], showed Ca2+ spiking in response to LCO applications, but this occurred only in inner cell layers of the roots, while short-chain chitooligosaccharides also induced Ca2+ spiking in the epidermis. Moreover, LCO-induced Ca2+ spiking was decreased in Sllyk10-1*GECO plants, suggesting that the decrease in AMF colonization in Sllyk10-1 is due to abnormal LCO signaling.
Collapse
Affiliation(s)
- Yi Ding
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Tongming Wang
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Virginie Gasciolli
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Guilhem Reyt
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Céline Remblière
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Fabien Marcel
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Gif sur Yvette 91190, France
| | - Tracy François
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Gif sur Yvette 91190, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Gif sur Yvette 91190, France
| | - Guanghua He
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jean Jacques Bono
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Benoit Lefebvre
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| |
Collapse
|
5
|
Castell-Miller CV, Kono TJ, Ranjan A, Schlatter DC, Samac DA, Kimball JA. Interactive transcriptome analyses of Northern Wild Rice ( Zizania palustris L.) and Bipolaris oryzae show convoluted communications during the early stages of fungal brown spot development. FRONTIERS IN PLANT SCIENCE 2024; 15:1350281. [PMID: 38736448 PMCID: PMC11086184 DOI: 10.3389/fpls.2024.1350281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Fungal diseases, caused mainly by Bipolaris spp., are past and current threats to Northern Wild Rice (NWR) grain production and germplasm preservation in both natural and cultivated settings. Genetic resistance against the pathogen is scarce. Toward expanding our understanding of the global gene communications of NWR and Bipolaris oryzae interaction, we designed an RNA sequencing study encompassing the first 12 h and 48 h of their encounter. NWR activated numerous plant recognition receptors after pathogen infection, followed by active transcriptional reprogramming of signaling mechanisms driven by Ca2+ and its sensors, mitogen-activated protein kinase cascades, activation of an oxidative burst, and phytohormone signaling-bound mechanisms. Several transcription factors associated with plant defense were found to be expressed. Importantly, evidence of diterpenoid phytoalexins, especially phytocassane biosynthesis, among expression of other defense genes was found. In B. oryzae, predicted genes associated with pathogenicity including secreted effectors that could target plant defense mechanisms were expressed. This study uncovered the early molecular communication between the NWR-B. oryzae pathosystem, which could guide selection for allele-specific genes to boost NWR defenses, and overall aid in the development of more efficient selection methods in NWR breeding through the use of the most virulent fungal isolates.
Collapse
Affiliation(s)
| | - Thomas J.Y. Kono
- Minnesota Supercomputing Institute, University of Minnesota, Saint Paul, MN, United States
| | - Ashish Ranjan
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| | - Daniel C. Schlatter
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
- United States Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Saint Paul, MN, United States
| | - Deborah A. Samac
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
- United States Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Saint Paul, MN, United States
| | - Jennifer A. Kimball
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
6
|
Jones JDG, Staskawicz BJ, Dangl JL. The plant immune system: From discovery to deployment. Cell 2024; 187:2095-2116. [PMID: 38670067 DOI: 10.1016/j.cell.2024.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Plant diseases cause famines, drive human migration, and present challenges to agricultural sustainability as pathogen ranges shift under climate change. Plant breeders discovered Mendelian genetic loci conferring disease resistance to specific pathogen isolates over 100 years ago. Subsequent breeding for disease resistance underpins modern agriculture and, along with the emergence and focus on model plants for genetics and genomics research, has provided rich resources for molecular biological exploration over the last 50 years. These studies led to the identification of extracellular and intracellular receptors that convert recognition of extracellular microbe-encoded molecular patterns or intracellular pathogen-delivered virulence effectors into defense activation. These receptor systems, and downstream responses, define plant immune systems that have evolved since the migration of plants to land ∼500 million years ago. Our current understanding of plant immune systems provides the platform for development of rational resistance enhancement to control the many diseases that continue to plague crop production.
Collapse
Affiliation(s)
- Jonathan D G Jones
- Sainsbury Lab, University of East Anglia, Colney Lane, Norwich NR4 7UH, UK.
| | - Brian J Staskawicz
- Department of Plant and Microbial Biology and Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill and Howard Hughes Medical Institute, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Zhang J, Sun J, Chiu CH, Landry D, Li K, Wen J, Mysore KS, Fort S, Lefebvre B, Oldroyd GED, Feng F. A receptor required for chitin perception facilitates arbuscular mycorrhizal associations and distinguishes root symbiosis from immunity. Curr Biol 2024; 34:1705-1717.e6. [PMID: 38574729 PMCID: PMC11037463 DOI: 10.1016/j.cub.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/15/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Plants establish symbiotic associations with arbuscular mycorrhizal fungi (AMF) to facilitate nutrient uptake, particularly in nutrient-limited conditions. This partnership is rooted in the plant's ability to recognize fungal signaling molecules, such as chitooligosaccharides (chitin) and lipo-chitooligosaccharides. In the legume Medicago truncatula, chitooligosaccharides trigger both symbiotic and immune responses via the same lysin-motif-receptor-like kinases (LysM-RLKs), notably CERK1 and LYR4. The nature of plant-fungal engagement is opposite according to the outcomes of immunity or symbiosis signaling, and as such, discrimination is necessary, which is challenged by the dual roles of CERK1/LYR4 in both processes. Here, we describe a LysM-RLK, LYK8, that is functionally redundant with CERK1 for mycorrhizal colonization but is not involved in chitooligosaccharides-induced immunity. Genetic mutation of both LYK8 and CERK1 blocks chitooligosaccharides-triggered symbiosis signaling, as well as mycorrhizal colonization, but shows no further impact on immunity signaling triggered by chitooligosaccharides, compared with the mutation of CERK1 alone. LYK8 interacts with CERK1 and forms a receptor complex that appears essential for chitooligosaccharides activation of symbiosis signaling, with the lyk8/cerk1 double mutant recapitulating the impact of mutations in the symbiosis signaling pathway. We conclude that this novel receptor complex allows chitooligosaccharides activation specifically of symbiosis signaling and helps the plant to differentiate between activation of these opposing signaling processes.
Collapse
Affiliation(s)
- Jingyi Zhang
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jongho Sun
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB3 0LE, UK
| | - Chai Hao Chiu
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB3 0LE, UK
| | - David Landry
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Kangping Li
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kirankumar S Mysore
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
| | - Sébastien Fort
- Université de Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Benoit Lefebvre
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Giles E D Oldroyd
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB3 0LE, UK.
| | - Feng Feng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
8
|
Liu J, Li W, Wu G, Ali K. An update on evolutionary, structural, and functional studies of receptor-like kinases in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1305599. [PMID: 38362444 PMCID: PMC10868138 DOI: 10.3389/fpls.2024.1305599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
All living organisms must develop mechanisms to cope with and adapt to new environments. The transition of plants from aquatic to terrestrial environment provided new opportunities for them to exploit additional resources but made them vulnerable to harsh and ever-changing conditions. As such, the transmembrane receptor-like kinases (RLKs) have been extensively duplicated and expanded in land plants, increasing the number of RLKs in the advanced angiosperms, thus becoming one of the largest protein families in eukaryotes. The basic structure of the RLKs consists of a variable extracellular domain (ECD), a transmembrane domain (TM), and a conserved kinase domain (KD). Their variable ECDs can perceive various kinds of ligands that activate the conserved KD through a series of auto- and trans-phosphorylation events, allowing the KDs to keep the conserved kinase activities as a molecular switch that stabilizes their intracellular signaling cascades, possibly maintaining cellular homeostasis as their advantages in different environmental conditions. The RLK signaling mechanisms may require a coreceptor and other interactors, which ultimately leads to the control of various functions of growth and development, fertilization, and immunity. Therefore, the identification of new signaling mechanisms might offer a unique insight into the regulatory mechanism of RLKs in plant development and adaptations. Here, we give an overview update of recent advances in RLKs and their signaling mechanisms.
Collapse
Affiliation(s)
| | | | - Guang Wu
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Khawar Ali
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
9
|
Ivanov S, Harrison MJ. Receptor-associated kinases control the lipid provisioning program in plant-fungal symbiosis. Science 2024; 383:443-448. [PMID: 38271524 DOI: 10.1126/science.ade1124] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
The mutualistic association between plants and arbuscular mycorrhizal (AM) fungi requires intracellular accommodation of the fungal symbiont and maintenance by means of lipid provisioning. Symbiosis signaling through lysin motif (LysM) receptor-like kinases and a leucine-rich repeat receptor-like kinase DOES NOT MAKE INFECTIONS 2 (DMI2) activates transcriptional programs that underlie fungal passage through the epidermis and accommodation in cortical cells. We show that two Medicago truncatula cortical cell-specific, membrane-bound proteins of a CYCLIN-DEPENDENT KINASE-LIKE (CKL) family associate with, and are phosphorylation substrates of, DMI2 and a subset of the LysM receptor kinases. CKL1 and CKL2 are required for AM symbiosis and control expression of transcription factors that regulate part of the lipid provisioning program. Onset of lipid provisioning is coupled with arbuscule branching and with the REDUCED ARBUSCULAR MYCORRHIZA 1 (RAM1) regulon for complete endosymbiont accommodation.
Collapse
|
10
|
Dallachiesa D, Aguilar OM, Lozano MJ. Improved detection and phylogenetic analysis of plant proteins containing LysM domains. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 38007819 DOI: 10.1071/fp23131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/31/2023] [Indexed: 11/28/2023]
Abstract
Plants perceive N-acetyl-d-glucosamine-containing oligosaccharides that play a role in the interaction with bacteria and fungi, through cell-surface receptors containing a tight bundle of three LysM domains in their extracellular region. However, the identification of LysM domains of receptor-like kinases (RLK)/receptor-like proteins (RLP) using sequence based methods has led to some ambiguity, as some proteins have been annotated with only one or two LysM domains. This missing annotation was likely produced by the failure of the LysM hidden Markov model (HMM) from the Pfam database to correctly identify some LysM domains in proteins of plant origin. In this work, we provide improved HMMs for LysM domain detection in plants, that were built from the structural alignment of manually curated LysM domain structures from the Protein Data Bank and AlphaFold Protein Structure Database. Furthermore, we evaluated different sets of ligand-specific HMMs that were able to correctly classify a limited set of fully characterised RLK/Ps by their ligand specificity. In contrast, the phylogenetic analysis of the extracellular region of RLK/Ps, or of their individual LysM domains, was unable to discriminate these proteins by their ligand specificity. The HMMs reported here will allow a more sensitive detection of plant proteins containing LysM domains and help improve their characterisation.
Collapse
Affiliation(s)
- Dardo Dallachiesa
- Instituto de Biotecnología y Biología Molecular (IBBM) - CONICET-CCT La Plata - Universidad Nacional de La Plata, La Plata, Argentina
| | - O Mario Aguilar
- Instituto de Biotecnología y Biología Molecular (IBBM) - CONICET-CCT La Plata - Universidad Nacional de La Plata, La Plata, Argentina
| | - Mauricio J Lozano
- Instituto de Biotecnología y Biología Molecular (IBBM) - CONICET-CCT La Plata - Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
11
|
Gupta P, Geniza M, Elser J, Al-Bader N, Baschieri R, Phillips JL, Haq E, Preece J, Naithani S, Jaiswal P. Reference genome of the nutrition-rich orphan crop chia ( Salvia hispanica) and its implications for future breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1272966. [PMID: 38162307 PMCID: PMC10757625 DOI: 10.3389/fpls.2023.1272966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024]
Abstract
Chia (Salvia hispanica L.) is one of the most popular nutrition-rich foods and pseudocereal crops of the family Lamiaceae. Chia seeds are a rich source of proteins, polyunsaturated fatty acids (PUFAs), dietary fibers, and antioxidants. In this study, we present the assembly of the chia reference genome, which spans 303.6 Mb and encodes 48,090 annotated protein-coding genes. Our analysis revealed that ~42% of the chia genome harbors repetitive content, and identified ~3 million single nucleotide polymorphisms (SNPs) and 15,380 simple sequence repeat (SSR) marker sites. By investigating the chia transcriptome, we discovered that ~44% of the genes undergo alternative splicing with a higher frequency of intron retention events. Additionally, we identified chia genes associated with important nutrient content and quality traits, such as the biosynthesis of PUFAs and seed mucilage fiber (dietary fiber) polysaccharides. Notably, this is the first report of in-silico annotation of a plant genome for protein-derived small bioactive peptides (biopeptides) associated with improving human health. To facilitate further research and translational applications of this valuable orphan crop, we have developed the Salvia genomics database (SalviaGDB), accessible at https://salviagdb.org.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Matthew Geniza
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Molecular and Cellular Biology Graduate Program, Oregon State University, Corvallis, OR, United States
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Noor Al-Bader
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Molecular and Cellular Biology Graduate Program, Oregon State University, Corvallis, OR, United States
| | - Rachel Baschieri
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jeremy Levi Phillips
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Ebaad Haq
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Justin Preece
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
12
|
Kileeg Z, Haldar A, Khan H, Qamar A, Mott GA. Differential expansion and retention patterns of LRR-RLK genes across plant evolution. PLANT DIRECT 2023; 7:e556. [PMID: 38145254 PMCID: PMC10739070 DOI: 10.1002/pld3.556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/03/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023]
Abstract
To maximize overall fitness, plants must accurately respond to a host of growth, developmental, and environmental signals throughout their life. Many of these internal and external signals are perceived by the leucine-rich repeat receptor-like kinases, which play roles in regulating growth, development, and immunity. This largest family of receptor kinases in plants can be divided into subfamilies based on the conservation of the kinase domain, which demonstrates that shared evolutionary history often indicates shared molecular function. Here we investigate the evolutionary history of this family across the evolution of 112 plant species. We identify lineage-specific expansions of the malectin-domain containing subfamily LRR subfamily I primarily in the Brassicales and bryophytes. Most other plant lineages instead show a large expansion in LRR subfamily XII, which in Arabidopsis is known to contain key receptors in pathogen perception. This striking asymmetric expansion may reveal a dichotomy in the evolutionary history and adaptation strategies employed by plants. A greater understanding of the evolutionary pressures and adaptation strategies acting on members of this receptor family offers a way to improve functional predictions for orphan receptors and simplify the identification of novel stress-related receptors.
Collapse
Affiliation(s)
- Zachary Kileeg
- Department of Biological SciencesUniversity of Toronto ‐ ScarboroughTorontoCanada
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| | - Aparna Haldar
- Department of Biological SciencesUniversity of Toronto ‐ ScarboroughTorontoCanada
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| | - Hasna Khan
- Department of Biological SciencesUniversity of Toronto ‐ ScarboroughTorontoCanada
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| | - Arooj Qamar
- Department of Biological SciencesUniversity of Toronto ‐ ScarboroughTorontoCanada
| | - G. Adam Mott
- Department of Biological SciencesUniversity of Toronto ‐ ScarboroughTorontoCanada
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
- Centre for the Analysis of Genome Evolution & FunctionUniversity of TorontoTorontoCanada
| |
Collapse
|
13
|
Zhou D, Chen X, Chen X, Xia Y, Liu J, Zhou G. Plant immune receptors interact with hemibiotrophic pathogens to activate plant immunity. Front Microbiol 2023; 14:1252039. [PMID: 37876778 PMCID: PMC10591190 DOI: 10.3389/fmicb.2023.1252039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023] Open
Abstract
Phytopathogens pose a devastating threat to the productivity and yield of crops by causing destructive plant diseases in natural and agricultural environments. Hemibiotrophic pathogens have a variable-length biotrophic phase before turning to necrosis and are among the most invasive plant pathogens. Plant resistance to hemibiotrophic pathogens relies mainly on the activation of innate immune responses. These responses are typically initiated after the plant plasma membrane and various plant immune receptors detect immunogenic signals associated with pathogen infection. Hemibiotrophic pathogens evade pathogen-triggered immunity by masking themselves in an arms race while also enhancing or manipulating other receptors to promote virulence. However, our understanding of plant immune defenses against hemibiotrophic pathogens is highly limited due to the intricate infection mechanisms. In this review, we summarize the strategies that different hemibiotrophic pathogens interact with host immune receptors to activate plant immunity. We also discuss the significant role of the plasma membrane in plant immune responses, as well as the current obstacles and potential future research directions in this field. This will enable a more comprehensive understanding of the pathogenicity of hemibiotrophic pathogens and how distinct plant immune receptors oppose them, delivering valuable data for the prevention and management of plant diseases.
Collapse
Affiliation(s)
- Diao Zhou
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Xingzhou Chen
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Xinggang Chen
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Yandong Xia
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Junang Liu
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Guoying Zhou
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
14
|
Yao K, Wang Y, Li X, Ji H. Genome-Wide Identification of the Soybean LysM-RLK Family Genes and Its Nitrogen Response. Int J Mol Sci 2023; 24:13621. [PMID: 37686427 PMCID: PMC10487828 DOI: 10.3390/ijms241713621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Lysin-Motif receptor-like kinase (LysM-RLK) proteins are widely distributed in plants and serve a critical role in defending against pathogens and establishing symbiotic relationships. However, there is a lack of comprehensive identification and analysis of LysM-RLK family members in the soybean genome. In this study, we discovered and named 27 LysM-RLK genes in soybean. The majority of LysM-RLKs were highly conserved in Arabidopsis and soybean, while certain members of subclades III, VI, and VII are unique to soybean. The promoters of these LysM-RLKs contain specific cis-elements associated with plant development and responses to environmental factors. Notably, all LysM-RLK gene promoters feature nodule specificity elements, while 51.86% of them also possess NBS sites (NIN/NLP binding site). The expression profiles revealed that genes from subclade V in soybean roots were regulated by both rhizobia and nitrogen treatment. The expression levels of subclade V genes were then validated by real-time quantitative PCR, and it was observed that the level of GmLYK4a and GmLYK4c in roots was inhibited by rhizobia but induced via varying concentrations of nitrate. Consequently, our findings provide a comprehensive understanding of the soybean LysM-RLK gene family and emphasize the role of subclade V in coupling soybean symbiotic nitrogen fixation and nitrogen response.
Collapse
Affiliation(s)
- Kaijie Yao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (K.Y.); (Y.W.); (X.L.)
| | - Yongliang Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (K.Y.); (Y.W.); (X.L.)
| | - Xia Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (K.Y.); (Y.W.); (X.L.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongtao Ji
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (K.Y.); (Y.W.); (X.L.)
| |
Collapse
|
15
|
Qiu Y, Wu X, Wen T, Hu L, Rui L, Zhang Y, Ye J. The Bursaphelenchus xylophilus candidate effector BxLip-3 targets the class I chitinases to suppress immunity in pine. MOLECULAR PLANT PATHOLOGY 2023; 24:1033-1046. [PMID: 37448165 PMCID: PMC10423331 DOI: 10.1111/mpp.13334] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 07/15/2023]
Abstract
Lipase is involved in lipid hydrolysis, which is related to nematodes' energy reserves and stress resistance. However, the role of lipases in Bursaphelenchus xylophilus, a notorious plant-parasitic nematode responsible for severe damage to pine forest ecosystems, remains largely obscure. Here, we characterized a class III lipase as a candidate effector and named it BxLip-3. It was transcriptionally up-regulated in the parasitic stages of B. xylophilus and specifically expressed in the oesophageal gland cells and the intestine. In addition, BxLip-3 suppressed cell death triggered by the pathogen-associated molecular patterns PsXEG1 and BxCDP1 in Nicotiana benthamiana, and its Lipase-3 domain is essential for immunosuppression. Silencing of the BxLip-3 gene resulted in a delay in disease onset and increased the activity of antioxidant enzymes and the expression of pathogenesis-related (PR) genes. Plant chitinases are thought to be PR proteins involved in the defence system against pathogen attack. Using yeast two-hybrid and co-immunoprecipitation assays, we identified two class I chitinases in Pinus thunbergii, PtChia1-3 and PtChia1-4, as targets of BxLip-3. The expression of these two chitinases was up-regulated during B. xylophilus inoculation and inhibited by BxLip-3. Overall, this study illustrated that BxLip-3 is a crucial virulence factor that plays a critical role in the interaction between B. xylophilus and host pine.
Collapse
Affiliation(s)
- Yi‐Jun Qiu
- Co‐Innovation Center for Sustainable Forestry in Southern China, College of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Xiao‐Qin Wu
- Co‐Innovation Center for Sustainable Forestry in Southern China, College of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Tong‐Yue Wen
- Co‐Innovation Center for Sustainable Forestry in Southern China, College of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Long‐Jiao Hu
- Co‐Innovation Center for Sustainable Forestry in Southern China, College of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
- Institute of BotanyJiangsu Province and Chinese Academy of SciencesNanjingChina
| | - Lin Rui
- Co‐Innovation Center for Sustainable Forestry in Southern China, College of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Yan Zhang
- Co‐Innovation Center for Sustainable Forestry in Southern China, College of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Jian‐Ren Ye
- Co‐Innovation Center for Sustainable Forestry in Southern China, College of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| |
Collapse
|
16
|
Pernis M, Salaj T, Bellová J, Danchenko M, Baráth P, Klubicová K. Secretome analysis revealed that cell wall remodeling and starch catabolism underlie the early stages of somatic embryogenesis in Pinus nigra. FRONTIERS IN PLANT SCIENCE 2023; 14:1225424. [PMID: 37600183 PMCID: PMC10436561 DOI: 10.3389/fpls.2023.1225424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
Somatic embryogenesis is an efficient mean for rapid micropropagation and preservation of the germplasm of valuable coniferous trees. Little is known about how the composition of secretome tracks down the level of embryogenic capacity. Unlike embryogenic tissue on solid medium, suspension cell cultures enable the study of extracellular proteins secreted into a liquid cultivation medium, avoiding contamination from destructured cells. Here, we present proteomic data of the secretome of Pinus nigra cell lines with contrasting embryogenic capacity, accounting for variability between genotypes. Our results showed that cell wall-related and carbohydrate-acting proteins were the most differentially accumulated. Peroxidases, extensin, α-amylase, plant basic secretory family protein (BSP), and basic secretory protease (S) were more abundant in the medium from the lines with high embryogenic capacity. In contrast, the medium from the low embryogenic capacity cell lines contained a higher amount of polygalacturonases, hothead protein, and expansin, which are generally associated with cell wall loosening or softening. These results corroborated the microscopic findings in cell lines with low embryogenic capacity-long suspensor cells without proper assembly. Furthermore, proteomic data were subsequently validated by peroxidase and α-amylase activity assays, and hence, we conclude that both tested enzyme activities can be considered potential markers of high embryogenic capacity.
Collapse
Affiliation(s)
- Miroslav Pernis
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Nitra, Slovakia
| | - Terézia Salaj
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Nitra, Slovakia
| | - Jana Bellová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Maksym Danchenko
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Nitra, Slovakia
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarína Klubicová
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Nitra, Slovakia
| |
Collapse
|
17
|
Luu TB, Carles N, Bouzou L, Gibelin-Viala C, Remblière C, Gasciolli V, Bono JJ, Lefebvre B, Pauly N, Cullimore J. Analysis of the structure and function of the LYK cluster of Medicago truncatula A17 and R108. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111696. [PMID: 37019339 DOI: 10.1016/j.plantsci.2023.111696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/17/2023] [Accepted: 04/01/2023] [Indexed: 05/27/2023]
Abstract
The establishment of the Legume-Rhizobia symbiosis is generally dependent on the production of rhizobial lipochitooligosaccharidic Nod factors (NFs) and their perception by plant Lysin Motif Receptor-Like Kinases (LysM-RLKs). In this study, we characterized a cluster of LysM-RLK genes implicated in strain-specific recognition in two highly divergent and widely-studied Medicago truncatula genotypes, A17 and R108. We then used reverse genetic approaches and biochemical analyses to study the function of selected genes in the clusters and the ability of their encoded proteins to bind NFs. Our study has revealed that the LYK cluster exhibits a high degree of variability among M. truncatula genotypes, which in A17 and R108 includes recent recombination events within the cluster and a transposon insertion in A17. The essential role of LYK3 in nodulation in A17 is not conserved in R108 despite similar sequences and good nodulation expression profiles. Although, LYK2, LYK5 and LYK5bis are not essential for nodulation of the two genotypes, some evidence points to accessory roles in nodulation, but not through high-affinity NF binding. This work shows that recent evolution in the LYK cluster provides a source of variation for nodulation, and potential robustness of signaling through genetic redundancy.
Collapse
Affiliation(s)
- Thi-Bich Luu
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Noémie Carles
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Louis Bouzou
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Chrystel Gibelin-Viala
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Céline Remblière
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Virginie Gasciolli
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Jean-Jacques Bono
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Benoit Lefebvre
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Nicolas Pauly
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France; Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, Sophia Antipolis Cedex, France.
| | - Julie Cullimore
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
18
|
Wang T, Gasciolli V, Gaston M, Medioni L, Cumener M, Buendia L, Yang B, Bono JJ, He G, Lefebvre B. LysM receptor-like kinases involved in immunity perceive lipo-chitooligosaccharides in mycotrophic plants. PLANT PHYSIOLOGY 2023; 192:1435-1448. [PMID: 36722175 PMCID: PMC10231384 DOI: 10.1093/plphys/kiad059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 06/01/2023]
Abstract
Symbiotic microorganisms such as arbuscular mycorrhizal fungi (AMF) produce both conserved microbial molecules that activate plant defense and lipo-chitooligosaccharides (LCOs) that modulate plant defense. Beside a well-established role of LCOs in the activation of a signaling pathway required for AMF penetration in roots, LCO perception and defense modulation during arbuscular mycorrhiza is not well understood. Here we show that members of the LYRIIIA phylogenetic group from the multigenic Lysin Motif Receptor-Like Kinase family have a conserved role in dicotyledons as modulators of plant defense and regulate AMF colonization in the Solanaceae species Nicotiana benthamiana. Interestingly, these proteins have a high-affinity for LCOs in plant species able to form a symbiosis with AMF but have lost this property in species that have lost this ability. Our data support the hypothesis that LYRIIIA proteins modulate plant defense upon LCO perception to facilitate AMF colonization in mycotrophic plant species and that only their role in plant defense, but not their ability to be regulated by LCOs, has been conserved in non-mycotrophic plants.
Collapse
Affiliation(s)
- Tongming Wang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Rice Research Institute, Southwest University, Chongqing 400715, China
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Virginie Gasciolli
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Mégane Gaston
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Lauréna Medioni
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Marie Cumener
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Luis Buendia
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Jean Jacques Bono
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Guanghua He
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Rice Research Institute, Southwest University, Chongqing 400715, China
| | - Benoit Lefebvre
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| |
Collapse
|
19
|
González-Fuente M. Who does not LYKe fungi? A plant receptor modulates defenses to facilitate the establishment of fungal symbioses. PLANT PHYSIOLOGY 2023; 192:707-709. [PMID: 36853025 DOI: 10.1093/plphys/kiad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 06/01/2023]
Affiliation(s)
- Manuel González-Fuente
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists, USA
- Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
20
|
Cullimore J, Fliegmann J, Gasciolli V, Gibelin-Viala C, Carles N, Luu TB, Girardin A, Cumener M, Maillet F, Pradeau S, Fort S, Bono JJ, Gough C, Lefebvre B. Evolution of lipochitooligosaccharide binding to a LysM-RLK for nodulation in Medicago truncatula. PLANT & CELL PHYSIOLOGY 2023:pcad033. [PMID: 37098213 DOI: 10.1093/pcp/pcad033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 06/19/2023]
Abstract
Lysin motif receptor like kinases (LysM-RLKs) are involved in the perception of chitooligosaccharides (COs) and related lipochitooligosaccharides (LCOs) in plants. Expansion and divergence of the gene family during evolution have led to various roles in symbiosis and defence. By studying proteins of the LYR-IA subclass of LysM-RLKs of the Poaceae, we show here that they are high affinity LCO binding proteins with a lower affinity for COs, consistent with a role in LCO perception to establish arbuscular mycorrhiza (AM). In Papilionoid legumes whole genome duplication has resulted in two LYR-IA paralogs, MtLYR1 and MtNFP in Medicago truncatula, with MtNFP playing an essential role in the root nodule symbiosis with nitrogen-fixing rhizobia. We show that MtLYR1 has retained the ancestral LCO binding characteristic and is dispensable for AM. Domain swapping between the three Lysin motifs (LysMs) of MtNFP and MtLYR1 and mutagenesis in MtLYR1 suggest that the MtLYR1 LCO binding site is on the second LysM, and that divergence in MtNFP led to better nodulation, but surprisingly with decreased LCO binding. These results suggest that divergence of the LCO binding site has been important for the evolution of a role of MtNFP in nodulation with rhizobia.
Collapse
Affiliation(s)
- Julie Cullimore
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, 31326 Castanet-Tolosan Cedex, France
| | - Judith Fliegmann
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, 31326 Castanet-Tolosan Cedex, France
| | - Virginie Gasciolli
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, 31326 Castanet-Tolosan Cedex, France
| | - Chrystel Gibelin-Viala
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, 31326 Castanet-Tolosan Cedex, France
| | - Noémie Carles
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, 31326 Castanet-Tolosan Cedex, France
| | - Thi-Bich Luu
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, 31326 Castanet-Tolosan Cedex, France
| | - Ariane Girardin
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, 31326 Castanet-Tolosan Cedex, France
| | - Marie Cumener
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, 31326 Castanet-Tolosan Cedex, France
| | - Fabienne Maillet
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, 31326 Castanet-Tolosan Cedex, France
| | | | - Sébastien Fort
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Jean-Jacques Bono
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, 31326 Castanet-Tolosan Cedex, France
| | - Clare Gough
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, 31326 Castanet-Tolosan Cedex, France
| | - Benoit Lefebvre
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, 31326 Castanet-Tolosan Cedex, France
| |
Collapse
|
21
|
van Blokland-Post K, Weber MF, van Wolferen ME, Penning LC, van Sluijs FJ, Kummeling A. Prediction of outcome after ligation or thin film banding of extrahepatic shunts, based on plasma albumin concentration and hematologic expression of 8 target genes in 85 dogs. J Vet Intern Med 2023; 37:537-549. [PMID: 36934445 DOI: 10.1111/jvim.16680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 02/22/2023] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND In dogs with a congenital extrahepatic portosystemic shunt (EHPSS), outcome after surgical attenuation is difficult to predict. OBJECTIVES Develop a minimally invasive test to predict outcome after surgical EHPSS attenuation and establish risk factors for postattenuation seizures (PAS). ANIMALS Eighty-five client-owned dogs referred for surgical attenuation of a single EHPSS. METHODS mRNA expression of 8 genes was measured in preoperatively collected venous blood samples. Outcome was determined at a median of 92 days (range, 26-208) postoperatively by evaluating clinical performance, blood test results and abdominal ultrasonography. Multivariable logistic regression was used to construct models predicting clinical and complete recovery. The associations between putative predictors and PAS were studied using univariable analyses. RESULTS Five of 85 dogs developed PAS. Risk factors were age, white blood cell (WBC) count and expression of hepatocyte growth factor activator and LysM and putative peptidoglycan-binding domain-containing protein 2. Clinical recovery was observed in 72 of 85 dogs and complete recovery in 51 of 80 dogs (median follow-up, 92 days). The model predicting clinical recovery included albumin, WBC count, and methionine adenosyltransferase 2 alpha (MAT2α) expression, whereas the model predicting complete recovery included albumin, and connective tissue growth factor precursor and MAT2α expression. The areas under the receiver operating characteristic curves were 0.886 (95% confidence interval [CI]: 0.783, 0.990) and 0.794 (95% CI: 0.686, 0.902), respectively. CONCLUSIONS AND CLINICAL IMPORTANCE Two models were constructed for predicting outcome after EHPSS attenuation using venous blood samples. The model predicting clinical recovery showed the best diagnostic properties. Clinical application requires further validation.
Collapse
Affiliation(s)
- Krista van Blokland-Post
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Maarten F Weber
- Royal GD, P.O. Box 9, 7400 AA Deventer, The Netherlands.,Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Monique E van Wolferen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Freek J van Sluijs
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Anne Kummeling
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
22
|
Ruman H, Kawaharada Y. A New Classification of Lysin Motif Receptor-Like Kinases in Lotus japonicus. PLANT & CELL PHYSIOLOGY 2023; 64:176-190. [PMID: 36334262 DOI: 10.1093/pcp/pcac156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Lysin motif receptor-like kinases (LysM-RLKs) are a plant-specific receptor protein family that sense components from soil microorganisms, regulating innate immunity and symbiosis. Every plant species possesses multiple LysM-RLKs in order to interact with a variety of soil microorganisms; however, most receptors have not been characterized yet. Therefore, we tried to identify LysM-RLKs from diverse plant species and proposed a new classification to indicate their evolution and characteristics, as well as to predict new functions. In this study, we have attempted to explore and update LysM-RLKs in Lotus japonicus using the latest genome sequencing and divided 20 LysM-RLKs into 11 clades based on homolog identity and phylogenetic analysis. We further identified 193 LysM-RLKs from 16 Spermatophyta species including L. japonicus and divided these receptors into 14 clades and one out-group special receptor based on the classification of L. japonicus LysM-RLKs. All plant species not only have clade I receptors such as Nod factor or chitin receptors but also have clade III receptors where most of the receptors are uncharacterized. We also identified dicotyledon- and monocotyledon-specific clades and predicted evolutionary trends in LysM-RLKs. In addition, we found a strong correlation between plant species that did not possess clade II receptors and those that lost symbiosis with arbuscular mycorrhizal fungi. A clade II receptor in L. japonicus Lys8 was predicted to express during arbuscular mycorrhizal symbiosis. Our proposed new inventory classification suggests the evolutionary pattern of LysM-RLKs and might help in elucidating novel receptor functions in various plant species.
Collapse
Affiliation(s)
- Hafijur Ruman
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8, Ueda, Morioka, Iwate, 020-8550 Japan
| | - Yasuyuki Kawaharada
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8, Ueda, Morioka, Iwate, 020-8550 Japan
- Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3-18-8, Ueda, Morioka, Iwate, 020-8550 Japan
| |
Collapse
|
23
|
Roudaire T, Marzari T, Landry D, Löffelhardt B, Gust AA, Jermakow A, Dry I, Winckler P, Héloir MC, Poinssot B. The grapevine LysM receptor-like kinase VvLYK5-1 recognizes chitin oligomers through its association with VvLYK1-1. FRONTIERS IN PLANT SCIENCE 2023; 14:1130782. [PMID: 36818830 PMCID: PMC9932513 DOI: 10.3389/fpls.2023.1130782] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The establishment of defense reactions to protect plants against pathogens requires the recognition of invasion patterns (IPs), mainly detected by plasma membrane-bound pattern recognition receptors (PRRs). Some IPs, also termed elicitors, are used in several biocontrol products that are gradually being developed to reduce the use of chemicals in agriculture. Chitin, the major component of fungal cell walls, as well as its deacetylated derivative, chitosan, are two elicitors known to activate plant defense responses. However, recognition of chitooligosaccharides (COS) in Vitis vinifera is still poorly understood, hampering the improvement and generalization of protection tools for this important crop. In contrast, COS perception in the model plant Arabidopsis thaliana is well described and mainly relies on a tripartite complex formed by the cell surface lysin motif receptor-like kinases (LysM-RLKs) AtLYK1/CERK1, AtLYK4 and AtLYK5, the latter having the strongest affinity for COS. In grapevine, COS perception has for the moment only been demonstrated to rely on two PRRs VvLYK1-1 and VvLYK1-2. Here, we investigated additional players by overexpressing in Arabidopsis the two putative AtLYK5 orthologs from grapevine, VvLYK5-1 and VvLYK5-2. Expression of VvLYK5-1 in the atlyk4/5 double mutant background restored COS sensitivity, such as chitin-induced MAPK activation, defense gene expression, callose deposition and conferred non-host resistance to grapevine downy mildew (Erysiphe necator). Protein-protein interaction studies conducted in planta revealed a chitin oligomer-triggered interaction between VvLYK5-1 and VvLYK1-1. Interestingly, our results also indicate that VvLYK5-1 mediates the perception of chitin but not chitosan oligomers showing a part of its specificity.
Collapse
Affiliation(s)
- Thibault Roudaire
- Agroécologie, CNRS, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Tania Marzari
- Agroécologie, CNRS, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - David Landry
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Birgit Löffelhardt
- Department of Plant Biochemistry, University of Tübingen, Center for Plant Molecular Biology, Tübingen, Germany
| | - Andrea A. Gust
- Department of Plant Biochemistry, University of Tübingen, Center for Plant Molecular Biology, Tübingen, Germany
| | - Angelica Jermakow
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia
| | - Ian Dry
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia
| | - Pascale Winckler
- Dimacell Imaging Facility, PAM UMR A 02.102, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Marie-Claire Héloir
- Agroécologie, CNRS, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Benoit Poinssot
- Agroécologie, CNRS, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
24
|
Rübsam H, Krönauer C, Abel NB, Ji H, Lironi D, Hansen SB, Nadzieja M, Kolte MV, Abel D, de Jong N, Madsen LH, Liu H, Stougaard J, Radutoiu S, Andersen KR. Nanobody-driven signaling reveals the core receptor complex in root nodule symbiosis. Science 2023; 379:272-277. [PMID: 36656954 DOI: 10.1126/science.ade9204] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Understanding the composition and activation of multicomponent receptor complexes is a challenge in biology. To address this, we developed a synthetic approach based on nanobodies to drive assembly and activation of cell surface receptors and apply the concept by manipulating receptors that govern plant symbiosis with nitrogen-fixing bacteria. We show that the Lotus japonicus Nod factor receptors NFR1 and NFR5 constitute the core receptor complex initiating the cortical root nodule organogenesis program as well as the epidermal program controlling infection. We find that organogenesis signaling is mediated by the intracellular kinase domains whereas infection requires functional ectodomains. Finally, we identify evolutionarily distant barley receptors that activate root nodule organogenesis, which could enable engineering of biological nitrogen-fixation into cereals.
Collapse
Affiliation(s)
- Henriette Rübsam
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Christina Krönauer
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Nikolaj B Abel
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Hongtao Ji
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.,National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Damiano Lironi
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Simon B Hansen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Marie V Kolte
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Dörte Abel
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Noor de Jong
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Lene H Madsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Huijun Liu
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Kasper R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
25
|
Zhu Q, Feng Y, Xue J, Chen P, Zhang A, Yu Y. Advances in Receptor-like Protein Kinases in Balancing Plant Growth and Stress Responses. PLANTS (BASEL, SWITZERLAND) 2023; 12:427. [PMID: 36771514 PMCID: PMC9919196 DOI: 10.3390/plants12030427] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Accompanying the process of growth and development, plants are exposed to ever-changing environments, which consequently trigger abiotic or biotic stress responses. The large protein family known as receptor-like protein kinases (RLKs) is involved in the regulation of plant growth and development, as well as in the response to various stresses. Understanding the biological function and molecular mechanism of RLKs is helpful for crop breeding. Research on the role and mechanism of RLKs has recently received considerable attention regarding the balance between plant growth and environmental adaptability. In this paper, we systematically review the classification of RLKs, the regulatory roles of RLKs in plant development (meristem activity, leaf morphology and reproduction) and in stress responses (disease resistance and environmental adaptation). This review focuses on recent findings revealing that RLKs simultaneously regulate plant growth and stress adaptation, which may pave the way for the better understanding of their function in crop improvement. Although the exact crosstalk between growth constraint and plant adaptation remains elusive, a profound study on the adaptive mechanisms for decoupling the developmental processes would be a promising direction for the future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Yu
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
26
|
Cope KR, Prates ET, Miller JI, Demerdash ON, Shah M, Kainer D, Cliff A, Sullivan KA, Cashman M, Lane M, Matthiadis A, Labbé J, Tschaplinski TJ, Jacobson DA, Kalluri UC. Exploring the role of plant lysin motif receptor-like kinases in regulating plant-microbe interactions in the bioenergy crop Populus. Comput Struct Biotechnol J 2022; 21:1122-1139. [PMID: 36789259 PMCID: PMC9900275 DOI: 10.1016/j.csbj.2022.12.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/18/2022] [Accepted: 12/30/2022] [Indexed: 01/02/2023] Open
Abstract
For plants, distinguishing between mutualistic and pathogenic microbes is a matter of survival. All microbes contain microbe-associated molecular patterns (MAMPs) that are perceived by plant pattern recognition receptors (PRRs). Lysin motif receptor-like kinases (LysM-RLKs) are PRRs attuned for binding and triggering a response to specific MAMPs, including chitin oligomers (COs) in fungi, lipo-chitooligosaccharides (LCOs), which are produced by mycorrhizal fungi and nitrogen-fixing rhizobial bacteria, and peptidoglycan in bacteria. The identification and characterization of LysM-RLKs in candidate bioenergy crops including Populus are limited compared to other model plant species, thus inhibiting our ability to both understand and engineer microbe-mediated gains in plant productivity. As such, we performed a sequence analysis of LysM-RLKs in the Populus genome and predicted their function based on phylogenetic analysis with known LysM-RLKs. Then, using predictive models, molecular dynamics simulations, and comparative structural analysis with previously characterized CO and LCO plant receptors, we identified probable ligand-binding sites in Populus LysM-RLKs. Using several machine learning models, we predicted remarkably consistent binding affinity rankings of Populus proteins to CO. In addition, we used a modified Random Walk with Restart network-topology based approach to identify a subset of Populus LysM-RLKs that are functionally related and propose a corresponding signal transduction cascade. Our findings provide the first look into the role of LysM-RLKs in Populus-microbe interactions and establish a crucial jumping-off point for future research efforts to understand specificity and redundancy in microbial perception mechanisms.
Collapse
Affiliation(s)
- Kevin R. Cope
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Erica T. Prates
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - John I. Miller
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Omar N.A. Demerdash
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Manesh Shah
- Genome Science and Technology, The University of Tennessee–Knoxville, Knoxville, TN 37996, USA
| | - David Kainer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Ashley Cliff
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville 37996, USA
| | - Kyle A. Sullivan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Mikaela Cashman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Matthew Lane
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville 37996, USA
| | - Anna Matthiadis
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jesse Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | - Daniel A. Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville 37996, USA
| | - Udaya C. Kalluri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
27
|
Ishida K, Noutoshi Y. The function of the plant cell wall in plant-microbe interactions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:273-284. [PMID: 36279746 DOI: 10.1016/j.plaphy.2022.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The plant cell wall is an interface of plant-microbe interactions. The ability of microbes to decompose cell wall polysaccharides contributes to microbial pathogenicity. Plants have evolved mechanisms to prevent cell wall degradation. However, the role of the cell wall in plant-microbe interactions is not well understood. Here, we discuss four functions of the plant cell wall-physical defence, storage of antimicrobial compounds, production of cell wall-derived elicitors, and provision of carbon sources-in the context of plant-microbe interactions. In addition, we discuss the four families of cell surface receptors associated with plant cell walls (malectin-like receptor kinase family, wall-associated kinase family, leucine-rich repeat receptor-like kinase family, and lysin motif receptor-like kinase family) that have been the subject of several important studies in recent years. This review summarises the findings on both plant cell wall and plant immunity, improving our understanding and may provide impetus to various researchers.
Collapse
Affiliation(s)
- Konan Ishida
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
28
|
Identification of Cyclic-di-GMP-Modulating Protein Residues by Bidirectionally Evolving a Social Behavior in Pseudomonas fluorescens. mSystems 2022; 7:e0073722. [PMID: 36190139 PMCID: PMC9600634 DOI: 10.1128/msystems.00737-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Modulation of the intracellular cyclic di-GMP (c-di-GMP) pool is central to the formation of structured bacterial communities. Genome annotations predict the presence of dozens of conserved c-di-GMP catalytic enzymes in many bacterial species, but the functionality and regulatory control of the vast majority remain underexplored. Here, we begin to fill this gap by utilizing an experimental evolution system in Pseudomonas fluorescens Pf0-1, which repeatedly produces a unique social behavior through bidirectional transitions between two distinct phenotypes converging on c-di-GMP modulation. Parallel evolution of 33 lineages captured 147 unique mutations among 191 evolved isolates in genes that are empirically demonstrated, bioinformatically predicted, or previously unknown to impact the intracellular pool of c-di-GMP. Quantitative chemistry confirmed that each mutation causing the phenotypic shift either amplifies or reduces c-di-GMP production. We identify missense or in-frame deletion mutations in numerous diguanylate cyclase genes that largely fall outside the conserved catalytic domain. We also describe a novel relationship between a regulatory component of branched-chain amino acid biosynthesis and c-di-GMP production, and predict functions of several other unexpected proteins that clearly impact c-di-GMP production. Sequential mutations that continuously disrupt or recover c-di-GMP production across discrete functional elements suggest a complex and underappreciated interconnectivity within the c-di-GMP regulome of P. fluorescens. IMPORTANCE Microbial communities comprise densely packed cells where competition for space and resources is fierce. Aging colonies of Pseudomonas fluorescens are known to repeatedly produce mutants with two distinct phenotypes that physically work together to spread away from the overcrowded population. We demonstrate that the mutants with one phenotype produce high levels of cyclic di-GMP (c-di-GMP) and those with the second phenotype produce low levels. C-di-GMP is an intracellular signaling molecule which regulates many bacterial traits that cause tremendous clinical and environmental problems. Here, we analyze 147 experimentally selected mutations, which manifest either of the two phenotypes, to identify key residues in diverse proteins that force or shut down c-di-GMP production. Our data indicate that the intracellular pool of c-di-GMP is modulated through the catalytic activities of many independent c-di-GMP enzymes, which appear to be in tune with several proteins with no known links to c-di-GMP modulation.
Collapse
|
29
|
Valle-Sotelo EG, Troncoso-Rojas R, Tiznado-Hernández ME, Carvajal-Millán E, Sánchez-Estrada A, Henry García Y. Bioefficacy of fungal chitin oligomers in the control of postharvest decay in tomato fruit. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.5.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tomato is one of the most commercialised and consumed fruits worldwide. However, tomatoes are highly susceptible to Alternaria rot. Among the safe strategies proposed to control Alternaria rot is the induction of defence mechanisms through biological elicitors, such as chitin. Chitin and its oligosaccharides are an activate plant defence mechanisms, but studies of fruits exposed to fungal chitin fragments are scarce. Therefore, the present work aimed to obtain and partially characterise chitin oligomers of Alternaria alternata, and evaluate their effect on the defence mechanism of tomato fruits and their tolerance to Alternaria rot. The chitin oligomers obtained had a molecular weight of ≤ 1 kDa, 12% N-acetyl-glucosamine, 0.2% residual protein, and were 94% acetylated. These oligomers markedly increased the enzymatic activity of chitinase and β-1,3-glucanase in tomato fruits, and the development of Alternaria rot was inhibited by 78%. Chitin oligomers of A. alternata represent a promising alternative to attenuate Alternaria rot in tomato fruits through an enzymatic defence mechanism.
Collapse
|
30
|
Silva JCF, Ferreira MA, Carvalho TFM, Silva FF, de A. Silveira S, Brommonschenkel SH, Fontes EPB. RLPredictiOme, a Machine Learning-Derived Method for High-Throughput Prediction of Plant Receptor-like Proteins, Reveals Novel Classes of Transmembrane Receptors. Int J Mol Sci 2022; 23:12176. [PMID: 36293031 PMCID: PMC9603095 DOI: 10.3390/ijms232012176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Cell surface receptors play essential roles in perceiving and processing external and internal signals at the cell surface of plants and animals. The receptor-like protein kinases (RLK) and receptor-like proteins (RLPs), two major classes of proteins with membrane receptor configuration, play a crucial role in plant development and disease defense. Although RLPs and RLKs share a similar single-pass transmembrane configuration, RLPs harbor short divergent C-terminal regions instead of the conserved kinase domain of RLKs. This RLP receptor structural design precludes sequence comparison algorithms from being used for high-throughput predictions of the RLP family in plant genomes, as has been extensively performed for RLK superfamily predictions. Here, we developed the RLPredictiOme, implemented with machine learning models in combination with Bayesian inference, capable of predicting RLP subfamilies in plant genomes. The ML models were simultaneously trained using six types of features, along with three stages to distinguish RLPs from non-RLPs (NRLPs), RLPs from RLKs, and classify new subfamilies of RLPs in plants. The ML models achieved high accuracy, precision, sensitivity, and specificity for predicting RLPs with relatively high probability ranging from 0.79 to 0.99. The prediction of the method was assessed with three datasets, two of which contained leucine-rich repeats (LRR)-RLPs from Arabidopsis and rice, and the last one consisted of the complete set of previously described Arabidopsis RLPs. In these validation tests, more than 90% of known RLPs were correctly predicted via RLPredictiOme. In addition to predicting previously characterized RLPs, RLPredictiOme uncovered new RLP subfamilies in the Arabidopsis genome. These include probable lipid transfer (PLT)-RLP, plastocyanin-like-RLP, ring finger-RLP, glycosyl-hydrolase-RLP, and glycerophosphoryldiester phosphodiesterase (GDPD, GDPDL)-RLP subfamilies, yet to be characterized. Compared to the only Arabidopsis GDPDL-RLK, molecular evolution studies confirmed that the ectodomain of GDPDL-RLPs might have undergone a purifying selection with a predominance of synonymous substitutions. Expression analyses revealed that predicted GDPGL-RLPs display a basal expression level and respond to developmental and biotic signals. The results of these biological assays indicate that these subfamily members have maintained functional domains during evolution and may play relevant roles in development and plant defense. Therefore, RLPredictiOme provides a framework for genome-wide surveys of the RLP superfamily as a foundation to rationalize functional studies of surface receptors and their relationships with different biological processes.
Collapse
Affiliation(s)
- Jose Cleydson F. Silva
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa 36570-900, Brazil
| | - Marco Aurélio Ferreira
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | - Thales F. M. Carvalho
- Institute of Engineering, Science and Technology, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Janaúba 39447-814, Brazil
| | - Fabyano F. Silva
- Departament of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | - Sabrina de A. Silveira
- Department of Computer Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | | | - Elizabeth P. B. Fontes
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| |
Collapse
|
31
|
Chatterjee P, Schafran P, Li FW, Meeks JC. Nostoc Talks Back: Temporal Patterns of Differential Gene Expression During Establishment of Anthoceros-Nostoc Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:917-932. [PMID: 35802132 DOI: 10.1094/mpmi-05-22-0101-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Endosymbiotic associations between hornworts and nitrogen-fixing cyanobacteria form when the plant is limited for combined nitrogen (N). We generated RNA-seq data to examine temporal gene expression patterns during the culturing of N-starved Anthoceros punctatus in the absence and the presence of symbiotic cyanobacterium Nostoc punctiforme. In symbiont-free A. punctatus gametophytes, N starvation caused downregulation of chlorophyll content and chlorophyll fluorescence characteristics as well as transcription of photosynthesis-related genes. This downregulation was reversed in A. punctatus cocultured with N. punctiforme, corresponding to the provision by the symbiont of N2-derived NH4+, which commenced within 5 days of coculture and reached a maximum by 14 days. We also observed transient increases in transcription of ammonium and nitrate transporters in a N. punctiforme-dependent manner as well as that of a SWEET transporter that was initially independent of N2-derived NH4+. The temporal patterns of differential gene expression indicated that N. punctiforme transmits signals that impact gene expression to A. punctatus both prior to and after its provision of fixed N. This study is the first illustrating the temporal patterns of gene expression during establishment of an endosymbiotic nitrogen-fixing association in this monophyletic evolutionary lineage of land plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Poulami Chatterjee
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, U.S.A
| | - Peter Schafran
- Boyce Thompson Institute, Ithaca, NY 14853, U.S.A
- Plant Biology Section, Cornell University, Ithaca, NY 14953, U.S.A
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY 14853, U.S.A
- Plant Biology Section, Cornell University, Ithaca, NY 14953, U.S.A
| | - John C Meeks
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, U.S.A
| |
Collapse
|
32
|
Cardoso JLS, Souza AA, Vieira MLC. Molecular basis for host responses to Xanthomonas infection. PLANTA 2022; 256:84. [PMID: 36114308 DOI: 10.1007/s00425-022-03994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
This review highlights the most relevant and recent updated information available on the defense responses of selected hosts against Xanthomonas spp. Xanthomonas is one of the most important genera of Gram-negative phytopathogenic bacteria, severely affecting the productivity of economically important crops worldwide, colonizing either the vascular system or the mesophyll tissue of the host. Due to its rapid propagation, Xanthomonas poses an enormous challenge to farmers, because it is usually controlled using huge quantities of copper-based chemicals, adversely impacting the environment. Thus, developing new ways of preventing colonization by these bacteria has become essential. Advances in genomic and transcriptomic technologies have significantly elucidated at molecular level interactions between various crops and Xanthomonas species. Understanding how these hosts respond to the infection is crucial if we are to exploit potential approaches for improving crop breeding and cutting productivity losses. This review focuses on our current knowledge of the defense response mechanisms in agricultural crops after Xanthomonas infection. We describe the molecular basis of host-bacterium interactions over a broad spectrum with the aim of improving our fundamental understanding of which genes are involved and how they work in this interaction, providing information that can help to speed up plant breeding programs, namely using gene editing approaches.
Collapse
Affiliation(s)
- Jéssica L S Cardoso
- Genetics Department, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Alessandra A Souza
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeirópolis, SP, 13490-000, Brazil
| | - Maria Lucia C Vieira
- Genetics Department, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
33
|
Chiu CH, Roszak P, Orvošová M, Paszkowski U. Arbuscular mycorrhizal fungi induce lateral root development in angiosperms via a conserved set of MAMP receptors. Curr Biol 2022; 32:4428-4437.e3. [PMID: 36115339 DOI: 10.1016/j.cub.2022.08.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/06/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
Abstract
Root systems regulate their branching patterns in response to environmental stimuli. Lateral root development in both monocotyledons and dicotyledons is enhanced in response to inoculation with arbuscular mycorrhizal (AM) fungi, which has been interpreted as a developmental response to specific, symbiosis-activating chitinaceous signals. Here, we report that generic instead of symbiosis-specific, chitin-derived molecules trigger lateral root formation. We demonstrate that this developmental response requires the well-known microbe-associated molecular pattern (MAMP) receptor, ChitinElicitorReceptorKinase 1 (CERK1), in rice, Medicago truncatula, and Lotus japonicus, as well as the non-host of AM fungi, Arabidopsis thaliana, lending further support for a broadly conserved signal transduction mechanism across angiosperms. Using rice mutants impaired in strigolactone biosynthesis and signaling, we show that strigolactone signaling is necessary to regulate this developmental response. Rice CERK1 operates together with either Chitin Elicitor Binding Protein (CEBiP) or Nod Factor Receptor 5 (NFR5) in immunity and symbiosis signaling, respectively; for the lateral root response, however, all three LysM receptors are required. Our work, therefore, reveals an overlooked but a conserved role of LysM receptors integrating MAMP perception with developmental responses in plants, an ability that might influence the interaction between roots and the rhizosphere biota.
Collapse
Affiliation(s)
- Chai Hao Chiu
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK.
| | - Pawel Roszak
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Martina Orvošová
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Uta Paszkowski
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK.
| |
Collapse
|
34
|
Luu TB, Ourth A, Pouzet C, Pauly N, Cullimore J. A newly evolved chimeric lysin motif receptor-like kinase in Medicago truncatula spp. tricycla R108 extends its Rhizobia symbiotic partnership. THE NEW PHYTOLOGIST 2022; 235:1995-2007. [PMID: 35611584 DOI: 10.1111/nph.18270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Rhizobial lipochitooligosaccharidic Nod factors (NFs), specified by nod genes, are the primary determinants of host specificity in the legume-Rhizobia symbiosis. We examined the nodulation ability of Medicago truncatula cv Jemalong A17 and M. truncatula ssp. tricycla R108 with the Sinorhizobium meliloti nodF/nodL mutant, which produces modified NFs. We then applied genetic and functional approaches to study the genetic basis and mechanism of nodulation of R108 by this mutant. We show that the nodF/nodL mutant can nodulate R108 but not A17. Using genomics and reverse genetics, we identified a newly evolved, chimeric LysM receptor-like kinase gene in R108, LYK2bis, which is responsible for the phenotype and can allow A17 to gain nodulation with the nodF/nodL mutant. We found that LYK2bis is involved in nodulation by mutants producing nonO-acetylated NFs and interacts with the key receptor protein NFP. Many, but not all, natural S. meliloti and S. medicae strains tested require LYK2bis for efficient nodulation of R108. Our findings reveal that a newly evolved gene in R108, LYK2bis, extends nodulation specificity to mutants producing nonO-acetylated NFs and is important for nodulation by many natural Sinorhizobia. Evolution of this gene may present an adaptive advantage to allow nodulation by a greater variety of strains.
Collapse
Affiliation(s)
- Thi-Bich Luu
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, 31326, Castanet-Tolosan Cedex, France
| | - Anna Ourth
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, 31326, Castanet-Tolosan Cedex, France
| | - Cécile Pouzet
- FRAIB-TRI Imaging Platform Facilities, FR AIB, Université de Toulouse, CNRS, 31320, Castanet-Tolosan, France
| | - Nicolas Pauly
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, 31326, Castanet-Tolosan Cedex, France
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, 06903, Sophia Antipolis Cedex, France
| | - Julie Cullimore
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, 31326, Castanet-Tolosan Cedex, France
| |
Collapse
|
35
|
Ren W, Zhang C, Wang M, Zhang C, Xu X, Huang Y, Chen Y, Lin Y, Lai Z. Genome-wide identification, evolution analysis of LysM gene family members and their expression analysis in response to biotic and abiotic stresses in banana (Musa L.). Gene X 2022; 845:146849. [PMID: 36044944 DOI: 10.1016/j.gene.2022.146849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
LysM (Lysin motif), in response to pathogenic molecular stresses, is a crucial signal recognition gene. To understand the molecular characteristics of banana LysM gene family members, we used a series of bioinformatics methods. Based on the genomic databases of Musa acuminata, Musa balbisiana and Musa itinerans, a total of 53 genes and 55 proteins were identified, with 21 genes and 23 proteins in the M.acuminata, 16 genes and 16 proteins in each of M.balbisiana and M.itinerans, respectively. According to the conserved structural domains, LysM can be divided into five classes, namely LysM&MltD, LYK, LYP, LysMn, and LysMe. The LysM gene was relatively highly conserved in the evolution of the three genomes of banana, and some differences occurred. Expression analysis revealed that MaLysM4-5 was relatively highly expressed under high-temperature stress, low-temperature stress and pathogen infection; at the same time, about one-third of the members were down-regulated under low-temperature stress and high-temperature stress, while the expression of MaLysM10-1 and MaLysM4-5 were up-regulated. After the banana wilt fungus FocTR4 infected the banana roots, MaLysM1 was down-regulated and MaLysM11-1 was up-regulated. In conclusion, our study suggests that MaLysMs may be necessary in the response to high- and low-temperature stresses, as well as the banana wilt fungus infestation. Overall, this paper found that LysM genes may be involved in biotic and abiotic stresses in banana, and provided helpful information about LysM's evolution, expression and properties, which will provide theoretical references for further studies on the functions of LysM genes and resistance breeding in the future.
Collapse
Affiliation(s)
- Wenhui Ren
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengyu Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengge Wang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunyu Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoqiong Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuji Huang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
36
|
Osman MEFM, Dirar AI, Konozy EHE. Genome-wide screening of lectin putative genes from Sorghum bicolor L., distribution in QTLs and a probable implications of lectins in abiotic stress tolerance. BMC PLANT BIOLOGY 2022; 22:397. [PMID: 35963996 PMCID: PMC9375933 DOI: 10.1186/s12870-022-03792-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Sorghum bicolor is one of the most important crops worldwide with the potential to provide resilience when other economic staples might fail against the continuous environmental changes. Many physiological, developmental and tolerance traits in plants are either controlled or influenced by lectins; carbohydrate binding proteins. Hence, we aimed at providing a comprehensive in silico account on sorghum's lectins and study their possible implication on various desired agronomical traits. RESULTS We have searched sorghum's genome from grain and sweet types for lectins putative genes that encode proteins with domains capable of differentially binding carbohydrate moieties and trigger various physiological responses. Of the 12 known plant lectin families, 8 were identified regarding their domain architectures, evolutionary relationships, physiochemical characteristics, and gene expansion mechanisms, and they were thoroughly addressed. Variations between grain and sweet sorghum lectin homologs in term of the presence/absence of certain other joint domains like dirigent and nucleotide-binding adaptor shared by APAF-1, R-proteins, and CED-4 (NB-ARC) indicate a possible neofunctionalization. Lectin sequences were found to be preferentially overrepresented in certain quantitative trait loci (QTLs) related to various traits under several subcategories such as cold, drought, salinity, panicle/grain composition, and leaf morphology. The co-localization and distribution of lectins among multiple QTLs provide insights into the pleiotropic effects that could be played by one lectin gene in numerous traits. CONCLUSION Our study offers a first-time inclusive details on sorghum lectins and their possible role in conferring tolerance against abiotic stresses and other economically important traits that can be informative for future functional analysis and breeding studies.
Collapse
Affiliation(s)
| | - Amina Ibrahim Dirar
- Medicinal, Aromatic Plants and Traditional Medicine Research Institute (MAPTRI), National Center for Research, Mek Nimr Street, Khartoum, Sudan
| | | |
Collapse
|
37
|
Miyata K, Hasegawa S, Nakajima E, Nishizawa Y, Kamiya K, Yokogawa H, Shirasaka S, Maruyama S, Shibuya N, Kaku H. OsCERK2/OsRLK10, a homolog of OsCERK1, has a potential role for chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:119-128. [PMID: 35937538 PMCID: PMC9300421 DOI: 10.5511/plantbiotechnology.21.1222a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/22/2021] [Indexed: 05/31/2023]
Abstract
In rice, the lysin motif (LysM) receptor-like kinase OsCERK1, originally identified as the essential molecule for chitin-triggered immunity, plays a key role in arbuscular mycorrhizal (AM) symbiosis. As we previously reported, although AM colonization was largely repressed at 2 weeks after inoculation (WAI), arbuscules were observed at 5 WAI in oscerk1 mutant. Conversely, most mutant plants that defect the common symbiosis signaling pathway exhibited no arbuscule formation. Concerning the reason for this characteristic phenotype of oscerk1, we speculated that OsRLK10, which is a putative paralog of OsCERK1, may have a redundant function in AM symbiosis. The protein sequences of these two genes are highly conserved and it is estimated that the gene duplication occurred 150 million years ago. Here we demonstrated that OsCERK2/OsRLK10 induced AM colonization and chitin-triggered reactive oxygen species production in oscerk1 knockout mutant as similar to OsCERK1. The oscerk2 mutant showed a slight but significant reduction of AM colonization at 5 WAI, indicating the contribution of OsCERK2 for AM symbiosis. However, the oscerk2;oscerk1 double-knockout mutant produced arbuscules at 5 WAI as similar to the oscerk1 mutant, indicating that the redundancy of OsCERK1 and OsCERK2 did not explain the mycorrhizal colonization in oscerk1 at 5 WAI. These results indicated that OsCERK2 has a potential to regulate both chitin-triggered immunity and AM symbiosis and at least partially contributes to AM symbiosis in rice though the contribution of OsCERK2 appears to be weaker than that of OsCERK1.
Collapse
Affiliation(s)
- Kana Miyata
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Shun Hasegawa
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Emi Nakajima
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Yoko Nishizawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Kota Kamiya
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Hirotaka Yokogawa
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Subaru Shirasaka
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Shingo Maruyama
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Naoto Shibuya
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Hanae Kaku
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
38
|
Versluys M, Toksoy Öner E, Van den Ende W. Fructan oligosaccharide priming alters apoplastic sugar dynamics and improves resistance against Botrytis cinerea in chicory. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4214-4235. [PMID: 35383363 DOI: 10.1093/jxb/erac140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Carbohydrates such as fructans can be involved in priming or defence stimulation, and hence potentially provide new strategies for crop protection against biotic stress. Chicory (Cichorium intybus) is a model plant for fructan research and is a crop with many known health benefits. Using the chicory-Botrytis cinerea pathosystem, we tested the effectiveness of fructan-induced immunity, focussing on different plant and microbial fructans. Sugar dynamics were followed after priming and subsequent pathogen infection. Our results indicated that many higher plants might detect extracellular levan oligosaccharides (LOS) of microbial origin, while chicory also detects extracellular small inulin-type fructooligosaccharides (FOS) of endogenous origin, thus differing from the findings of previous fructan priming studies. No clear positive effects were observed for inulin or mixed-type fructans. An elicitor-specific burst of reactive oxygen species was observed for sulfated LOS, while FOS and LOS both behaved as genuine priming agents. In addition, a direct antifungal effect was observed for sulfated LOS. Intriguingly, LOS priming led to a temporary increase in apoplastic sugar concentrations, mainly glucose, which could trigger downstream responses. Total sugar and starch contents in total extracts of LOS-primed leaves were higher after leaf detachment, indicating they could maintain their metabolic activity. Our results indicate the importance of balancing intra- and extracellular sugar levels (osmotic balance) in the context of 'sweet immunity' pathways.
Collapse
Affiliation(s)
- Maxime Versluys
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Ebru Toksoy Öner
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| |
Collapse
|
39
|
Speck A, Trouvé JP, Enjalbert J, Geffroy V, Joets J, Moreau L. Genetic Architecture of Powdery Mildew Resistance Revealed by a Genome-Wide Association Study of a Worldwide Collection of Flax ( Linum usitatissimum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:871633. [PMID: 35812909 PMCID: PMC9263915 DOI: 10.3389/fpls.2022.871633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Powdery mildew is one of the most important diseases of flax and is particularly prejudicial to its yield and oil or fiber quality. This disease, caused by the obligate biotrophic ascomycete Oïdium lini, is progressing in France. Genetic resistance of varieties is critical for the control of this disease, but very few resistance genes have been identified so far. It is therefore necessary to identify new resistance genes to powdery mildew suitable to the local context of pathogenicity. For this purpose, we studied a worldwide diversity panel composed of 311 flax genotypes both phenotyped for resistance to powdery mildew resistance over 2 years of field trials in France and resequenced. Sequence reads were mapped on the CDC Bethune reference genome revealing 1,693,910 high-quality SNPs, further used for both population structure analysis and genome-wide association studies (GWASs). A number of four major genetic groups were identified, separating oil flax accessions from America or Europe and those from Asia or Middle-East and fiber flax accessions originating from Eastern Europe and those from Western Europe. A number of eight QTLs were detected at the false discovery rate threshold of 5%, located on chromosomes 1, 2, 4, 13, and 14. Taking advantage of the moderate linkage disequilibrium present in the flax panel, and using the available genome annotation, we identified potential candidate genes. Our study shows the existence of new resistance alleles against powdery mildew in our diversity panel, of high interest for flax breeding program.
Collapse
Affiliation(s)
| | | | - Jérôme Enjalbert
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution - Le Moulon, Gif-sur-Yvette, France
| | - Valérie Geffroy
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Johann Joets
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution - Le Moulon, Gif-sur-Yvette, France
| | - Laurence Moreau
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution - Le Moulon, Gif-sur-Yvette, France
| |
Collapse
|
40
|
Bouchiba Y, Esque J, Cottret L, Maréchaux M, Gaston M, Gasciolli V, Keller J, Nouwen N, Gully D, Arrighi J, Gough C, Lefebvre B, Barbe S, Bono J. An integrated approach reveals how lipo‐chitooligosaccharides interact with the lysin motif receptor‐like kinase
MtLYR3. Protein Sci 2022; 31:e4327. [PMID: 35634776 PMCID: PMC9115844 DOI: 10.1002/pro.4327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/22/2022]
Abstract
N‐acetylglucosamine containing compounds acting as pathogenic or symbiotic signals are perceived by plant‐specific Lysin Motif Receptor‐Like Kinases (LysM‐RLKs). The molecular mechanisms of this perception are not fully understood, notably those of lipo‐chitooligosaccharides (LCOs) produced during root endosymbioses with nitrogen‐fixing bacteria or arbuscular mycorrhizal fungi. In Medicago truncatula, we previously identified the LysM‐RLK LYR3 (MtLYR3) as a specific LCO‐binding protein. We also showed that the absence of LCO binding to LYR3 of the non‐mycorrhizal Lupinus angustifolius, (LanLYR3), was related to LysM3, which differs from that of MtLYR3 by several amino acids and, particularly, by a critical tyrosine residue absent in LanLYR3. Here, we aimed to define the LCO binding site of MtLYR3 by using molecular modelling and simulation approaches, combined with site‐directed mutagenesis and LCO binding experiments. 3D models of MtLYR3 and LanLYR3 ectodomains were built, and homology modelling and molecular dynamics (MD) simulations were performed. Molecular docking and MD simulation on the LysM3 identified potential key residues for LCO binding. We highlighted by steered MD simulations that in addition to the critical tyrosine, two other residues were important for LCO binding in MtLYR3. Substitution of these residues in LanLYR3‐LysM3 by those of MtLYR3‐LysM3 allowed the recovery of high‐affinity LCO binding in experimental radioligand‐binding assays. An analysis of selective constraints revealed that the critical tyrosine has experienced positive selection pressure and is absent in some LYR3 proteins. These findings now pave the way to uncover the functional significance of this specific evolutionary pattern.
Collapse
Affiliation(s)
- Younes Bouchiba
- TBI, Université de Toulouse CNRS, INRAE, INSA Toulouse France
| | - Jérémy Esque
- TBI, Université de Toulouse CNRS, INRAE, INSA Toulouse France
| | - Ludovic Cottret
- LIPME, Université de Toulouse INRAE, CNRS Castanet‐Tolosan France
| | - Maude Maréchaux
- LIPME, Université de Toulouse INRAE, CNRS Castanet‐Tolosan France
| | - Mégane Gaston
- LIPME, Université de Toulouse INRAE, CNRS Castanet‐Tolosan France
| | | | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales Université de Toulouse, CNRS, UPS Castanet‐Tolosan France
| | - Nico Nouwen
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) UMR IRD/SupAgro/INRAE/UM/CIRAD Montpellier France
| | - Djamel Gully
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) UMR IRD/SupAgro/INRAE/UM/CIRAD Montpellier France
| | - Jean‐François Arrighi
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) UMR IRD/SupAgro/INRAE/UM/CIRAD Montpellier France
| | - Clare Gough
- LIPME, Université de Toulouse INRAE, CNRS Castanet‐Tolosan France
| | - Benoit Lefebvre
- LIPME, Université de Toulouse INRAE, CNRS Castanet‐Tolosan France
| | - Sophie Barbe
- TBI, Université de Toulouse CNRS, INRAE, INSA Toulouse France
| | | |
Collapse
|
41
|
Jalmi SK, Sinha AK. Ambiguities of PGPR-Induced Plant Signaling and Stress Management. Front Microbiol 2022; 13:899563. [PMID: 35633696 PMCID: PMC9136662 DOI: 10.3389/fmicb.2022.899563] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
The growth and stress responses developed by the plant in virtue of the action of PGPR are dictated by the changes in hormone levels and related signaling pathways. Each plant possesses its specific type of microbiota that is shaped by the composition of root exudates and the signal molecules produced by the plant and microbes. Plants convey signals through diverse and complex signaling pathways. The signaling pathways are also controlled by phytohormones wherein they regulate and coordinate various defense responses and developmental stages. On account of improved growth and stress tolerance provided by the PGPR to plants, there exist crosstalk of signaling events between phytohormones and other signaling molecules secreted by the plants and the PGPR. This review discusses some of the important aspects related to the ambiguities of signaling events occurring in plants, allowing the interaction of PGPR with plants and providing stress tolerance to the plant.
Collapse
|
42
|
Reim S, Winkelmann T, Cestaro A, Rohr AD, Flachowsky H. Identification of Candidate Genes Associated With Tolerance to Apple Replant Disease by Genome-Wide Transcriptome Analysis. Front Microbiol 2022; 13:888908. [PMID: 35615498 PMCID: PMC9125221 DOI: 10.3389/fmicb.2022.888908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 12/03/2022] Open
Abstract
Apple replant disease (ARD) is a worldwide economic risk in apple cultivation for fruit tree nurseries and fruit growers. Several studies on the reaction of apple plants to ARD are documented but less is known about the genetic mechanisms behind this symptomatology. RNA-seq analysis is a powerful tool for revealing candidate genes that are involved in the molecular responses to biotic stresses in plants. The aim of our work was to find differentially expressed genes in response to ARD in Malus. For this, we compared transcriptome data of the rootstock ‘M9’ (susceptible) and the wild apple genotype M. ×robusta 5 (Mr5, tolerant) after cultivation in ARD soil and disinfected ARD soil, respectively. When comparing apple plantlets grown in ARD soil to those grown in disinfected ARD soil, 1,206 differentially expressed genes (DEGs) were identified based on a log2 fold change, (LFC) ≥ 1 for up– and ≤ −1 for downregulation (p < 0.05). Subsequent validation revealed a highly significant positive correlation (r = 0.91; p < 0.0001) between RNA-seq and RT-qPCR results indicating a high reliability of the RNA-seq data. PageMan analysis showed that transcripts of genes involved in gibberellic acid (GA) biosynthesis were significantly enriched in the DEG dataset. Most of these GA biosynthesis genes were associated with functions in cell wall stabilization. Further genes were related to detoxification processes. Genes of both groups were expressed significantly higher in Mr5, suggesting that the lower susceptibility to ARD in Mr5 is not due to a single mechanism. These findings contribute to a better insight into ARD response in susceptible and tolerant apple genotypes. However, future research is needed to identify the defense mechanisms, which are most effective for the plant to overcome ARD.
Collapse
Affiliation(s)
- Stefanie Reim
- Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
- *Correspondence: Stefanie Reim,
| | - Traud Winkelmann
- Woody Plant and Propagation Physiology Section, Institute of Horticultural Production Systems, Leibniz University Hannover, Hanover, Germany
| | - Alessandro Cestaro
- Computational Biology Unit, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Annmarie-Deetja Rohr
- Woody Plant and Propagation Physiology Section, Institute of Horticultural Production Systems, Leibniz University Hannover, Hanover, Germany
| | - Henryk Flachowsky
- Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| |
Collapse
|
43
|
Ren CG, Kong CC, Liu ZY, Zhong ZH, Yang JC, Wang XL, Qin S. A Perspective on Developing a Plant ‘Holobiont’ for Future Saline Agriculture. Front Microbiol 2022; 13:763014. [PMID: 35602056 PMCID: PMC9120776 DOI: 10.3389/fmicb.2022.763014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Soil salinity adversely affects plant growth and has become a major limiting factor for agricultural development worldwide. There is a continuing demand for sustainable technology innovation in saline agriculture. Among various bio-techniques being used to reduce the salinity hazard, symbiotic microorganisms such as rhizobia and arbuscular mycorrhizal (AM) fungi have proved to be efficient. These symbiotic associations each deploy an array of well-tuned mechanisms to provide salinity tolerance for the plant. In this review, we first comprehensively cover major research advances in symbiont-induced salinity tolerance in plants. Second, we describe the common signaling process used by legumes to control symbiosis establishment with rhizobia and AM fungi. Multi-omics technologies have enabled us to identify and characterize more genes involved in symbiosis, and eventually, map out the key signaling pathways. These developments have laid the foundation for technological innovations that use symbiotic microorganisms to improve crop salt tolerance on a larger scale. Thus, with the aim of better utilizing symbiotic microorganisms in saline agriculture, we propose the possibility of developing non-legume ‘holobionts’ by taking advantage of newly developed genome editing technology. This will open a new avenue for capitalizing on symbiotic microorganisms to enhance plant saline tolerance for increased sustainability and yields in saline agriculture.
Collapse
Affiliation(s)
- Cheng-Gang Ren
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China
| | - Cun-Cui Kong
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zheng-Yi Liu
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhi-Hai Zhong
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China
| | | | - Xiao-Li Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Song Qin
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China
- *Correspondence: Song Qin,
| |
Collapse
|
44
|
Ollivier R, Glory I, Cloteau R, Le Gallic JF, Denis G, Morlière S, Miteul H, Rivière JP, Lesné A, Klein A, Aubert G, Kreplak J, Burstin J, Pilet-Nayel ML, Simon JC, Sugio A. A major-effect genetic locus, ApRVII, controlling resistance against both adapted and non-adapted aphid biotypes in pea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1511-1528. [PMID: 35192006 DOI: 10.1007/s00122-022-04050-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
KEY MESSAGE A genome-wide association study for pea resistance against a pea-adapted biotype and a non-adapted biotype of the aphid, Acyrthosiphon pisum, identified a genomic region conferring resistance to both biotypes. In a context of reduced insecticide use, the development of cultivars resistant to insect pests is crucial for an integrated pest management. Pea (Pisum sativum) is a crop of major importance among cultivated legumes, for the supply of dietary proteins and nitrogen in low-input cropping systems. However, yields of the pea crop have become unstable due to plant parasites. The pea aphid (Acyrthosiphon pisum) is an insect pest species forming a complex of biotypes, each one adapted to feed on one or a few related legume species. This study aimed to identify resistance to A. pisum and the underlying genetic determinism by examining a collection of 240 pea genotypes. The collection was screened against a pea-adapted biotype and a non-adapted biotype of A. pisum to characterize their resistant phenotype. Partial resistance was observed in some pea genotypes exposed to the pea-adapted biotype. Many pea genotypes were completely resistant to non-adapted biotype, but some exhibited partial susceptibility. A genome-wide association study, using pea exome-capture sequencing data, enabled the identification of the major-effect quantitative trait locus ApRVII on the chromosome 7. ApRVII includes linkage disequilibrium blocks significantly associated with resistance to one or both of the two aphid biotypes studied. Finally, we identified candidate genes underlying ApRVII that are potentially involved in plant-aphid interactions and marker haplotypes linked with aphid resistance. This study sets the ground for the functional characterization of molecular pathways involved in pea defence to the aphids but also is a step forward for breeding aphid-resistant cultivars.
Collapse
Affiliation(s)
- Rémi Ollivier
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Isabelle Glory
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Romuald Cloteau
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | | | - Gaëtan Denis
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | | | - Henri Miteul
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | | | - Angélique Lesné
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Anthony Klein
- Agroécologie, INRAE, AgroSup Dijon, Univ Bourgogne-Franche-Comté, 21065, Dijon, France
| | - Grégoire Aubert
- Agroécologie, INRAE, AgroSup Dijon, Univ Bourgogne-Franche-Comté, 21065, Dijon, France
| | - Jonathan Kreplak
- Agroécologie, INRAE, AgroSup Dijon, Univ Bourgogne-Franche-Comté, 21065, Dijon, France
| | - Judith Burstin
- Agroécologie, INRAE, AgroSup Dijon, Univ Bourgogne-Franche-Comté, 21065, Dijon, France
| | | | | | - Akiko Sugio
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France.
| |
Collapse
|
45
|
|
46
|
Versluys M, Van den Ende W. Sweet Immunity Aspects during Levan Oligosaccharide-Mediated Priming in Rocket against Botrytis cinerea. Biomolecules 2022; 12:370. [PMID: 35327562 PMCID: PMC8945012 DOI: 10.3390/biom12030370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
New strategies are required for crop protection against biotic stress. Naturally derived molecules, including carbohydrates such as fructans, can be used in priming or defense stimulation. Rocket (Eruca sativa) is an important leafy vegetable and a good source of antioxidants. Here, we tested the efficacy of fructan-induced immunity in the Botrytis cinerea pathosystem. Different fructan types of plant and microbial origin were considered and changes in sugar dynamics were analyzed. Immune resistance increased significantly after priming with natural and sulfated levan oligosaccharides (LOS). No clear positive effects were observed for fructo-oligosaccharides (FOS), inulin or branched-type fructans. Only sulfated LOS induced a direct ROS burst, typical for elicitors, while LOS behaved as a genuine priming compound. Total leaf sugar levels increased significantly both after LOS priming and subsequent infection. Intriguingly, apoplastic sugar levels temporarily increased after LOS priming but not after infection. We followed LOS and small soluble sugar dynamics in the apoplast as a function of time and found a temporal peak in small soluble sugar levels. Although similar dynamics were also found with inulin-type FOS, increased Glc and FOS levels may benefit B. cinerea. During LOS priming, LOS- and/or Glc-dependent signaling may induce downstream sweet immunity responses.
Collapse
Affiliation(s)
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium;
| |
Collapse
|
47
|
Villalobos Solis MI, Engle NL, Spangler MK, Cottaz S, Fort S, Maeda J, Ané JM, Tschaplinski TJ, Labbé JL, Hettich RL, Abraham PE, Rush TA. Expanding the Biological Role of Lipo-Chitooligosaccharides and Chitooligosaccharides in Laccaria bicolor Growth and Development. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:808578. [PMID: 37746234 PMCID: PMC10512320 DOI: 10.3389/ffunb.2022.808578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/10/2022] [Indexed: 09/26/2023]
Abstract
The role of lipo-chitooligosaccharides (LCOs) as signaling molecules that mediate the establishment of symbiotic relationships between fungi and plants is being redefined. New evidence suggests that the production of these molecular signals may be more of a common trait in fungi than what was previously thought. LCOs affect different aspects of growth and development in fungi. For the ectomycorrhizal forming fungi, Laccaria bicolor, the production and effects of LCOs have always been studied with a symbiotic plant partner; however, there is still no scientific evidence describing the effects that these molecules have on this organism. Here, we explored the physiological, molecular, and metabolomic changes in L. bicolor when grown in the presence of exogenous sulfated and non-sulfated LCOs, as well as the chitooligomers, chitotetraose (CO4), and chitooctaose (CO8). Physiological data from 21 days post-induction showed reduced fungal growth in response to CO and LCO treatments compared to solvent controls. The underlying molecular changes were interrogated by proteomics, which revealed substantial alterations to biological processes related to growth and development. Moreover, metabolite data showed that LCOs and COs caused a downregulation of organic acids, sugars, and fatty acids. At the same time, exposure to LCOs resulted in the overproduction of lactic acid in L. bicolor. Altogether, these results suggest that these signals might be fungistatic compounds and contribute to current research efforts investigating the emerging impacts of these molecules on fungal growth and development.
Collapse
Affiliation(s)
| | - Nancy L. Engle
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Margaret K. Spangler
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Sylvain Cottaz
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | - Sébastien Fort
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | - Junko Maeda
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Jesse L. Labbé
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Robert L. Hettich
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Paul E. Abraham
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Tomás A. Rush
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
48
|
Mukherjee A. What do we know from the transcriptomic studies investigating the interactions between plants and plant growth-promoting bacteria? FRONTIERS IN PLANT SCIENCE 2022; 13:997308. [PMID: 36186072 PMCID: PMC9521398 DOI: 10.3389/fpls.2022.997308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/02/2022] [Indexed: 05/21/2023]
Abstract
Major crops such as corn, wheat, and rice can benefit from interactions with various plant growth-promoting bacteria (PGPB). Naturally, several studies have investigated the primary mechanisms by which these PGPB promote plant growth. These mechanisms involve biological nitrogen fixation, phytohormone synthesis, protection against biotic and abiotic stresses, etc. Decades of genetic and biochemical studies in the legume-rhizobia symbiosis and arbuscular mycorrhizal symbiosis have identified a few key plant and microbial signals regulating these symbioses. Furthermore, genetic studies in legumes have identified the host genetic pathways controlling these symbioses. But, the same depth of information does not exist for the interactions between host plants and PGPB. For instance, our knowledge of the host genes and the pathways involved in these interactions is very poor. However, some transcriptomic studies have investigated the regulation of gene expression in host plants during these interactions in recent years. In this review, we discuss some of the major findings from these studies and discuss what lies ahead. Identifying the genetic pathway(s) regulating these plant-PGPB interactions will be important as we explore ways to improve crop production sustainably.
Collapse
|
49
|
Analyses of Lysin-motif Receptor-like Kinase ( LysM-RLK) Gene Family in Allotetraploid Brassica napus L. and Its Progenitor Species: An In Silico Study. Cells 2021; 11:cells11010037. [PMID: 35011598 PMCID: PMC8750388 DOI: 10.3390/cells11010037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
The LysM receptor-like kinases (LysM-RLKs) play a crucial role in plant symbiosis and response to environmental stresses. Brassica napus, B. rapa, and B. oleracea are utilized as valuable vegetables. Different biotic and abiotic stressors affect these crops, resulting in yield losses. Therefore, genome-wide analysis of the LysM-RLK gene family was conducted. From the genome of the examined species, 33 LysM-RLK have been found. The conserved domains of Brassica LysM-RLKs were divided into three groups: LYK, LYP, and LysMn. In the BrassicaLysM-RLK gene family, only segmental duplication has occurred. The Ka/Ks ratio for the duplicated pair of genes was less than one indicating that the genes’ function had not changed over time. The BrassicaLysM-RLKs contain 70 cis-elements, indicating that they are involved in stress response. 39 miRNA molecules were responsible for the post-transcriptional regulation of 12 Brassica LysM-RLKs. A total of 22 SSR loci were discovered in 16 Brassica LysM-RLKs. According to RNA-seq data, the highest expression in response to biotic stresses was related to BnLYP6. According to the docking simulations, several residues in the active sites of BnLYP6 are in direct contact with the docked chitin and could be useful in future studies to develop pathogen-resistant B. napus. This research reveals comprehensive information that could lead to the identification of potential genes for Brassica species genetic manipulation.
Collapse
|
50
|
Shu F, Han J, Ndayambaje JP, Jia Q, Sarsaiya S, Jain A, Huang M, Liu M, Chen J. Transcriptomic analysis of Pinellia ternata (Thunb.) Breit T2 plus line provides insights in host responses resist Pectobacterium carotovorum infection. Bioengineered 2021; 12:1173-1188. [PMID: 33830860 PMCID: PMC8806331 DOI: 10.1080/21655979.2021.1905325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 10/25/2022] Open
Abstract
Transcriptome is used to determine the induction response of Pinellia ternata (Thunb.) Breit T2 plus line (abbreviated as PT2P line) infected with Pectobacterium carotovorum. The main objective of the study was to deal with the transcriptome database of PT2P line resistance to soft rot pathogens to provide a new perspective for identifying the resistance-related genes and understanding the molecular mechanism. Results indicated that water soaking and tissue collapse started at 20 h after PT2P line was infected by P. carotovorum. A total of 1360 and 5768 differentially expressed genes (DEGs) were identified at 0 h and 20 h, respectively. After 20 h of infection, growth and development-related pathways were inhibited. Meanwhile, DEGs were promoted the colonization of P. carotovorum pathogens in specific cell wall modification processes at the early infected stage. A shift to a defensive response was triggered at 0 h. A large number of DEGs were mainly up-controlled at 20 h and were substantially used in the pathogen recognition and the introduction of signal transformation cascades, secondary metabolites biosynthesis, pathogenic proteins activation, transcription aspects and numerous transporters. Furthermore, our data provided novel insights into the transcript reprogramming of PT2P line in response to P. carotovorum infestation.
Collapse
Affiliation(s)
- Fuxing Shu
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jing Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jean Pierre Ndayambaje
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Qi Jia
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| | - Surendra Sarsaiya
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| | - Archana Jain
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| | - Minglei Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Minghong Liu
- Zunyi Branch of Guizhou Tobacco Company, Zunyi, China
| | - Jishuang Chen
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|