1
|
Stainbrook S, Aubuchon L, Chen A, Johnson E, Si A, Walton L, Ahrendt AJ, Strenkert D, Jez J. C4 grasses employ distinct strategies to acclimate rubisco activase to heat stress. Biosci Rep 2024; 44:BSR20240353. [PMID: 39361893 PMCID: PMC11499382 DOI: 10.1042/bsr20240353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024] Open
Abstract
Rising temperatures due to the current climate crisis will soon have devastating impacts on crop performance and resilience. In particular, CO2 assimilation is dramatically limited at high temperatures. CO2 assimilation is accomplished by rubisco, which is inhibited by the binding of inhibitory sugar phosphates to its active site. Plants therefore utilize the essential chaperone rubisco activase (RCA) to remove these inhibitors and enable continued CO2 fixation. However, RCA does not function at moderately high temperatures (42°C), resulting in impaired rubisco activity and reduced CO2 assimilation. We set out to understand temperature-dependent RCA regulation in four different C4 plants, with a focus on the crop plants maize (two cultivars) and sorghum, as well as the model grass Setaria viridis (setaria) using gas exchange measurements, which confirm that CO2 assimilation is limited by carboxylation in these organisms at high temperatures (42°C). All three species express distinct complements of RCA isoforms and each species alters the isoform and proteoform abundances in response to heat; however, the changes are species-specific. We also examine whether the heat-mediated inactivation of RCA is due to biochemical regulation rather than simple thermal denaturation. We reveal that biochemical regulation affects RCA function differently in different C4 species, and differences are apparent even between different cultivars of the same species. Our results suggest that each grass evolved different strategies to maintain RCA function during stress and we conclude that a successful engineering approach aimed at improving carbon capture in C4 grasses will need to accommodate these individual regulatory mechanisms.
Collapse
Affiliation(s)
- Sarah C. Stainbrook
- Department of Biology, Washington University in St Louis, St Louis, MO, USA
- Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | | | - Amanda Chen
- Illinois Mathematics and Science Academy, Aurora, IL, USA
| | - Emily Johnson
- Illinois Mathematics and Science Academy, Aurora, IL, USA
| | - Audrey Si
- Illinois Mathematics and Science Academy, Aurora, IL, USA
| | - Laila Walton
- Illinois Mathematics and Science Academy, Aurora, IL, USA
| | | | - Daniela Strenkert
- Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Joseph M. Jez
- Department of Biology, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
2
|
Pandey S, Divakar S, Singh A. Genome editing prospects for heat stress tolerance in cereal crops. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108989. [PMID: 39094478 DOI: 10.1016/j.plaphy.2024.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/10/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
The world population is steadily growing, exerting increasing pressure to feed in the future, which would need additional production of major crops. Challenges associated with changing and unpredicted climate (such as heat waves) are causing global food security threats. Cereal crops are a staple food for a large portion of the world's population. They are mostly affected by these environmentally generated abiotic stresses. Therefore, it is imperative to develop climate-resilient cultivars to support the sustainable production of main cereal crops (Rice, wheat, and maize). Among these stresses, heat stress causes significant losses to major cereals. These issues can be solved by comprehending the molecular mechanisms of heat stress and creating heat-tolerant varieties. Different breeding and biotechnology techniques in the last decade have been employed to develop heat-stress-tolerant varieties. However, these time-consuming techniques often lack the pace required for varietal improvement in climate change scenarios. Genome editing technologies offer precise alteration in the crop genome for developing stress-resistant cultivars. CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeat/Cas9), one such genome editing platform, recently got scientists' attention due to its easy procedures. It is a powerful tool for functional genomics as well as crop breeding. This review will focus on the molecular mechanism of heat stress and different targets that can be altered using CRISPR/Cas genome editing tools to generate climate-smart cereal crops. Further, heat stress signaling and essential players have been highlighted to provide a comprehensive overview of the topic.
Collapse
Affiliation(s)
- Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - S Divakar
- Department of Agricultural Biotechnology Biotechnology and Molecular Biotechnology, CBSH, RPCAU, Pusa, Samastipur, Bihar, 8481253, India
| | - Ashutosh Singh
- Centre for Advanced Studies on Climate Change, RPCAU, Pusa, Bihar, 848125, India.
| |
Collapse
|
3
|
Nazari M, Kordrostami M, Ghasemi-Soloklui AA, Eaton-Rye JJ, Pashkovskiy P, Kuznetsov V, Allakhverdiev SI. Enhancing Photosynthesis and Plant Productivity through Genetic Modification. Cells 2024; 13:1319. [PMID: 39195209 DOI: 10.3390/cells13161319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Enhancing crop photosynthesis through genetic engineering technologies offers numerous opportunities to increase plant productivity. Key approaches include optimizing light utilization, increasing cytochrome b6f complex levels, and improving carbon fixation. Modifications to Rubisco and the photosynthetic electron transport chain are central to these strategies. Introducing alternative photorespiratory pathways and enhancing carbonic anhydrase activity can further increase the internal CO2 concentration, thereby improving photosynthetic efficiency. The efficient translocation of photosynthetically produced sugars, which are managed by sucrose transporters, is also critical for plant growth. Additionally, incorporating genes from C4 plants, such as phosphoenolpyruvate carboxylase and NADP-malic enzymes, enhances the CO2 concentration around Rubisco, reducing photorespiration. Targeting microRNAs and transcription factors is vital for increasing photosynthesis and plant productivity, especially under stress conditions. This review highlights potential biological targets, the genetic modifications of which are aimed at improving photosynthesis and increasing plant productivity, thereby determining key areas for future research and development.
Collapse
Affiliation(s)
- Mansoureh Nazari
- Department of Horticultural Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran
| | - Mojtaba Kordrostami
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj 31485-498, Iran
| | - Ali Akbar Ghasemi-Soloklui
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj 31485-498, Iran
| | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya St. 35, Moscow 127276, Russia
| | - Vladimir Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya St. 35, Moscow 127276, Russia
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya St. 35, Moscow 127276, Russia
- Faculty of Engineering and Natural Sciences, Bahcesehir University, 34349 Istanbul, Turkey
| |
Collapse
|
4
|
Eshenour K, Hotto A, Michel EJS, Oh ZG, Stern DB. Transgenic expression of Rubisco accumulation factor2 and Rubisco subunits increases photosynthesis and growth in maize. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4024-4037. [PMID: 38696303 DOI: 10.1093/jxb/erae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
Carbon assimilation by Rubisco is often a limitation to photosynthesis and therefore plant productivity. We have previously shown that transgenic co-expression of the Rubisco large (LS) and small (SS) subunits along with an essential Rubisco accumulation factor, Raf1, leads to faster growth, increased photosynthesis, and enhanced chilling tolerance in maize (Zea mays). Maize also requires Rubisco accumulation factor2 (Raf2) for full accumulation of Rubisco. Here we have analyzed transgenic maize lines with increased expression of Raf2 or Raf2 plus LS and SS. We show that increasing Raf2 expression alone had minor effects on photosynthesis, whereas expressing Raf2 with Rubisco subunits led to increased Rubisco content, more rapid carbon assimilation, and greater plant height, most notably in plants at least 6 weeks of age. The magnitude of the effects was similar to what was observed previously for expression of Raf1 together with Rubisco subunits. Taken together, this suggests that increasing the amount of either assembly factor with Rubisco subunits can independently enhance Rubisco abundance and some aspects of plant performance. These results could also imply either synergy or a degree of functional redundancy for Raf1 and Raf2, the latter of whose precise role in Rubisco assembly is currently unknown.
Collapse
Affiliation(s)
| | - Amber Hotto
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
| | | | - Zhen Guo Oh
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - David B Stern
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Singh S, Praveen A, Dudha N, Bhadrecha P. Integrating physiological and multi-omics methods to elucidate heat stress tolerance for sustainable rice production. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1185-1208. [PMID: 39100874 PMCID: PMC11291831 DOI: 10.1007/s12298-024-01480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024]
Abstract
Heat stress presents unique challenges compared to other environmental stressors, as predicting crop responses and understanding the mechanisms for heat tolerance are complex tasks. The escalating impact of devastating climate changes heightens the frequency and intensity of heat stresses, posing a noteworthy threat to global agricultural productivity, especially in rice-dependent regions of the developing world. Humidity has been demonstrated to negatively affect rice yields worldwide. Plants have evolved intricate biochemical adaptations, involving intricate interactions among genes, proteins, and metabolites, to counter diverse external signals and ensure their survival. Modern-omics technologies, encompassing transcriptomics, metabolomics, and proteomics, have revolutionized our comprehension of the intricate biochemical and cellular shifts that occur in stressed agricultural plants. Integrating these multi-omics approaches offers a comprehensive view of cellular responses to heat stress and other challenges, surpassing the insights gained from multi-omics analyses. This integration becomes vital in developing heat-tolerant crop varieties, which is crucial in the face of increasingly unpredictable weather patterns. To expedite the development of heat-resistant rice varieties, aiming at sustainability in terms of food production and food security globally, this review consolidates the latest peer-reviewed research highlighting the application of multi-omics strategies.
Collapse
Affiliation(s)
- Shilpy Singh
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, U.P. 203201 India
| | - Afsana Praveen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Namrata Dudha
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, U.P. 203201 India
| | - Pooja Bhadrecha
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab India
| |
Collapse
|
6
|
Karthick PV, Senthil A, Djanaguiraman M, Anitha K, Kuttimani R, Boominathan P, Karthikeyan R, Raveendran M. Improving Crop Yield through Increasing Carbon Gain and Reducing Carbon Loss. PLANTS (BASEL, SWITZERLAND) 2024; 13:1317. [PMID: 38794389 PMCID: PMC11124956 DOI: 10.3390/plants13101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/26/2024]
Abstract
Photosynthesis is a process where solar energy is utilized to convert atmospheric CO2 into carbohydrates, which forms the basis for plant productivity. The increasing demand for food has created a global urge to enhance yield. Earlier, the plant breeding program was targeting the yield and yield-associated traits to enhance the crop yield. However, the yield cannot be further improved without improving the leaf photosynthetic rate. Hence, in this review, various strategies to enhance leaf photosynthesis were presented. The most promising strategies were the optimization of Rubisco carboxylation efficiency, the introduction of a CO2 concentrating mechanism in C3 plants, and the manipulation of photorespiratory bypasses in C3 plants, which are discussed in detail. Improving Rubisco's carboxylation efficiency is possible by engineering targets such as Rubisco subunits, chaperones, and Rubisco activase enzyme activity. Carbon-concentrating mechanisms can be introduced in C3 plants by the adoption of pyrenoid and carboxysomes, which can increase the CO2 concentration around the Rubisco enzyme. Photorespiration is the process by which the fixed carbon is lost through an oxidative process. Different approaches to reduce carbon and nitrogen loss were discussed. Overall, the potential approaches to improve the photosynthetic process and the way forward were discussed in detail.
Collapse
Affiliation(s)
- Palanivelu Vikram Karthick
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (P.V.K.); (M.D.); (K.A.); (R.K.); (P.B.)
| | - Alagarswamy Senthil
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (P.V.K.); (M.D.); (K.A.); (R.K.); (P.B.)
| | - Maduraimuthu Djanaguiraman
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (P.V.K.); (M.D.); (K.A.); (R.K.); (P.B.)
| | - Kuppusamy Anitha
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (P.V.K.); (M.D.); (K.A.); (R.K.); (P.B.)
| | - Ramalingam Kuttimani
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (P.V.K.); (M.D.); (K.A.); (R.K.); (P.B.)
| | - Parasuraman Boominathan
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (P.V.K.); (M.D.); (K.A.); (R.K.); (P.B.)
| | - Ramasamy Karthikeyan
- Directorate of Crop Management, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Muthurajan Raveendran
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| |
Collapse
|
7
|
Panigrahi S, Kumar U, Swami S, Singh Y, Balyan P, Singh KP, Dhankher OP, Varshney RK, Roorkiwal M, Amiri KM, Mir RR. Meta QTL analysis for dissecting abiotic stress tolerance in chickpea. BMC Genomics 2024; 25:439. [PMID: 38698307 PMCID: PMC11067088 DOI: 10.1186/s12864-024-10336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/23/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Chickpea is prone to many abiotic stresses such as heat, drought, salinity, etc. which cause severe loss in yield. Tolerance towards these stresses is quantitative in nature and many studies have been done to map the loci influencing these traits in different populations using different markers. This study is an attempt to meta-analyse those reported loci projected over a high-density consensus map to provide a more accurate information on the regions influencing heat, drought, cold and salinity tolerance in chickpea. RESULTS A meta-analysis of QTL reported to be responsible for tolerance to drought, heat, cold and salinity stress tolerance in chickpeas was done. A total of 1512 QTL responsible for the concerned abiotic stress tolerance were collected from literature, of which 1189 were projected on a chickpea consensus genetic map. The QTL meta-analysis predicted 59 MQTL spread over all 8 chromosomes, responsible for these 4 kinds of abiotic stress tolerance in chickpea. The physical locations of 23 MQTL were validated by various marker-trait associations and genome-wide association studies. Out of these reported MQTL, CaMQAST1.1, CaMQAST4.1, CaMQAST4.4, CaMQAST7.8, and CaMQAST8.2 were suggested to be useful for different breeding approaches as they were responsible for high per cent variance explained (PVE), had small intervals and encompassed a large number of originally reported QTL. Many putative candidate genes that might be responsible for directly or indirectly conferring abiotic stress tolerance were identified in the region covered by 4 major MQTL- CaMQAST1.1, CaMQAST4.4, CaMQAST7.7, and CaMQAST6.4, such as heat shock proteins, auxin and gibberellin response factors, etc. CONCLUSION: The results of this study should be useful for the breeders and researchers to develop new chickpea varieties which are tolerant to drought, heat, cold, and salinity stresses.
Collapse
Affiliation(s)
- Sourav Panigrahi
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Upendra Kumar
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India.
- Department of Plant Science, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 243001, India.
| | - Sonu Swami
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
- Department of Botany & Plant Physiology, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Yogita Singh
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Priyanka Balyan
- Department of Botany, Deva Nagri P.G. College, CCS University, Meerut, 245206, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences & Humanities, GB Pant University of Agriculture & Technology, Pantnagar, 263145, India
- Vice-Chancellor's Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 243001, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, USA
| | - Rajeev K Varshney
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Manish Roorkiwal
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates.
| | - Khaled Ma Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-Kashmir), Srinagar, J&K, India.
| |
Collapse
|
8
|
Sugumar T, Shen G, Smith J, Zhang H. Creating Climate-Resilient Crops by Increasing Drought, Heat, and Salt Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1238. [PMID: 38732452 PMCID: PMC11085490 DOI: 10.3390/plants13091238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
Over the years, the changes in the agriculture industry have been inevitable, considering the need to feed the growing population. As the world population continues to grow, food security has become challenged. Resources such as arable land and freshwater have become scarce due to quick urbanization in developing countries and anthropologic activities; expanding agricultural production areas is not an option. Environmental and climatic factors such as drought, heat, and salt stresses pose serious threats to food production worldwide. Therefore, the need to utilize the remaining arable land and water effectively and efficiently and to maximize the yield to support the increasing food demand has become crucial. It is essential to develop climate-resilient crops that will outperform traditional crops under any abiotic stress conditions such as heat, drought, and salt, as well as these stresses in any combinations. This review provides a glimpse of how plant breeding in agriculture has evolved to overcome the harsh environmental conditions and what the future would be like.
Collapse
Affiliation(s)
- Tharanya Sugumar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (T.S.); (J.S.)
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Jennifer Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (T.S.); (J.S.)
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (T.S.); (J.S.)
| |
Collapse
|
9
|
Chao M, Huang L, Dong J, Chen Y, Hu G, Zhang Q, Zhang J, Wang Q. Molecular characterization and expression pattern of Rubisco activase gene GhRCAβ2 in upland cotton (Gossypium hirsutum L.). Genes Genomics 2024; 46:423-436. [PMID: 38324226 DOI: 10.1007/s13258-024-01494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Rubisco activase (RCA) is a pivotal enzyme that can catalyse the activation of Rubisco in carbon assimilation pathway. Many studies have shown that RCA may be a potential target for genetic manipulation aimed at enhancing photosynthetic efficiency and crop yield. OBJECTIVE To understand the biological function of the GhRCAβ2 gene in upland cotton, we cloned the coding sequence (CDS) of the GhRCAβ2 gene and investigated its sequence features, evolutionary relationship, subcellular localization, promoter sequence and expression pattern. METHODS The bioinformatics tools were used to analyze the sequence features of GhRCAβ2 protein. Transient transformation of Arabidopsis mesophyll protoplasts was performed to determine the subcellular localization of the GhRCAβ2 protein. The expression pattern of the GhRCAβ2 gene was examined by analyzing transcriptome data and using the quantitative real-time PCR (qRT-PCR). RESULTS The full-length CDS of GhRCAβ2 was 1317 bp, and it encoded a protein with a chloroplast transit peptide. The GhRCAβ2 had two conserved ATP-binding domains, and did not have the C-terminal extension (CTE) domain that was unique to the RCA α-isoform in plants. Evolutionarily, GhRCAβ2 was clustered in Group A, and had a close evolutionary relationship with the soybean RCA. Western blot analysis demonstrated that GhRCAβ2 was immunoreactive to the RCA antibody displaying a molecular weight similar to that of the RCA β-isoform. The GhRCAβ2 protein was found in chloroplast, aligning with its role as a vital enzyme in the process of photosynthesis. The GhRCAβ2 gene had a leaf tissue-specific expression pattern, and the yellow-green leaf mutant exhibited a decreased expression of GhRCAβ2 in comparison to the wild-type cotton plants. The GhRCAβ2 promoter contained several cis-acting elements that respond to light, phytohormones and stress, suggesting that the expression of GhRCAβ2 may be regulated by these factors. An additional examination of stress response indicated that GhRCAβ2 expression was influenced by cold, heat, salt, and drought stress. Notably, diverse expression pattern was observed across different stress conditions. Additionally, low phosphorus and low potassium stress may result in a notable reduction in the expression of GhRCAβ2 gene. CONCLUSION Our findings will establish a basis for further understanding the function of the GhRCAβ2 gene, as well as providing valuable genetic knowledge to improve cotton photosynthetic efficiency and yield under challenging environmental circumstances.
Collapse
Affiliation(s)
- Maoni Chao
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Ling Huang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jie Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Yu Chen
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Genhai Hu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Qiufang Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jinbao Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Qinglian Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
10
|
Zhao L, Cai Z, Li Y, Zhang Y. Engineering Rubisco to enhance CO 2 utilization. Synth Syst Biotechnol 2024; 9:55-68. [PMID: 38273863 PMCID: PMC10809010 DOI: 10.1016/j.synbio.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 01/27/2024] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a pivotal enzyme that mediates the fixation of CO2. As the most abundant protein on earth, Rubisco has a significant impact on global carbon, water, and nitrogen cycles. However, the significantly low carboxylation activity and competing oxygenase activity of Rubisco greatly impede high carbon fixation efficiency. This review first summarizes the current efforts in directly or indirectly modifying plant Rubisco, which has been challenging due to its high conservation and limitations in chloroplast transformation techniques. However, recent advancements in understanding Rubisco biogenesis with the assistance of chaperones have enabled successful heterologous expression of all Rubisco forms, including plant Rubisco, in microorganisms. This breakthrough facilitates the acquisition and evaluation of modified proteins, streamlining the measurement of their activity. Moreover, the establishment of a screening system in E. coli opens up possibilities for obtaining high-performance mutant enzymes through directed evolution. Finally, this review emphasizes the utilization of Rubisco in microorganisms, not only expanding their carbon-fixing capabilities but also holding significant potential for enhancing biotransformation processes.
Collapse
Affiliation(s)
- Lei Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Cai
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
11
|
Cavanagh AP, Ort DR. Transgenic strategies to improve the thermotolerance of photosynthesis. PHOTOSYNTHESIS RESEARCH 2023; 158:109-120. [PMID: 37273092 DOI: 10.1007/s11120-023-01024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023]
Abstract
Warming driven by the accumulation of greenhouse gases in the atmosphere is irreversible over at least the next century, unless practical technologies are rapidly developed and deployed at scale to remove and sequester carbon dioxide from the atmosphere. Accepting this reality highlights the central importance for crop agriculture to develop adaptation strategies for a warmer future. While nearly all processes in plants are impacted by above optimum temperatures, the impact of heat stress on photosynthetic processes stand out for their centrality. Here, we review transgenic strategies that show promise in improving the high-temperature tolerance of specific subprocesses of photosynthesis and in some cases have already been shown in proof of concept in field experiments to protect yield from high temperature-induced losses. We also highlight other manipulations to photosynthetic processes for which full proof of concept is still lacking but we contend warrant further attention. Warming that has already occurred over the past several decades has had detrimental impacts on crop production in many parts of the world. Declining productivity presages a rapidly developing global crisis in food security particularly in low income countries. Transgenic manipulation of photosynthesis to engineer greater high-temperature resilience holds encouraging promise to help meet this challenge.
Collapse
Affiliation(s)
- Amanda P Cavanagh
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA.
- Departments of Plant Biology and Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
12
|
Doddrell NH, Lawson T, Raines CA, Wagstaff C, Simkin AJ. Feeding the world: impacts of elevated [CO 2] on nutrient content of greenhouse grown fruit crops and options for future yield gains. HORTICULTURE RESEARCH 2023; 10:uhad026. [PMID: 37090096 PMCID: PMC10116952 DOI: 10.1093/hr/uhad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/13/2023] [Indexed: 05/03/2023]
Abstract
Several long-term studies have provided strong support demonstrating that growing crops under elevated [CO2] can increase photosynthesis and result in an increase in yield, flavour and nutritional content (including but not limited to Vitamins C, E and pro-vitamin A). In the case of tomato, increases in yield by as much as 80% are observed when plants are cultivated at 1000 ppm [CO2], which is consistent with current commercial greenhouse production methods in the tomato fruit industry. These results provide a clear demonstration of the potential for elevating [CO2] for improving yield and quality in greenhouse crops. The major focus of this review is to bring together 50 years of observations evaluating the impact of elevated [CO2] on fruit yield and fruit nutritional quality. In the final section, we consider the need to engineer improvements to photosynthesis and nitrogen assimilation to allow plants to take greater advantage of elevated CO2 growth conditions.
Collapse
Affiliation(s)
- Nicholas H Doddrell
- NIAB, New Road, East Malling, Kent, ME19 6BJ UK
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6DZ, UK
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester CO4 4SQ, UK
| | | | - Carol Wagstaff
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6DZ, UK
| | - Andrew J Simkin
- NIAB, New Road, East Malling, Kent, ME19 6BJ UK
- School of Biosciences, University of Kent, Canterbury, United Kingdom CT2 7NJ, UK
| |
Collapse
|
13
|
Recent developments in the engineering of Rubisco activase for enhanced crop yield. Biochem Soc Trans 2023; 51:627-637. [PMID: 36929563 DOI: 10.1042/bst20221281] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
Rubisco activase (RCA) catalyzes the release of inhibitory sugar phosphates from ribulose-1,6-biphosphate carboxylase/oxygenase (Rubisco) and can play an important role in biochemical limitations of photosynthesis under dynamic light and elevated temperatures. There is interest in increasing RCA activity to improve crop productivity, but a lack of understanding about the regulation of photosynthesis complicates engineering strategies. In this review, we discuss work relevant to improving RCA with a focus on advances in understanding the structural cause of RCA instability under heat stress and the regulatory interactions between RCA and components of photosynthesis. This reveals substantial variation in RCA thermostability that can be influenced by single amino acid substitutions, and that engineered variants can perform better in vitro and in vivo under heat stress. In addition, there are indications RCA activity is controlled by transcriptional, post-transcriptional, post-translational, and spatial regulation, which may be important for balancing between carbon fixation and light capture. Finally, we provide an overview of findings from recent field experiments and consider the requirements for commercial validation as part of efforts to increase crop yields in the face of global climate change.
Collapse
|
14
|
Qu Y, Mueller-Cajar O, Yamori W. Improving plant heat tolerance through modification of Rubisco activase in C3 plants to secure crop yield and food security in a future warming world. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:591-599. [PMID: 35981868 DOI: 10.1093/jxb/erac340] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The world's population may reach 10 billion by 2050, but 10% still suffer from food shortages. At the same time, global warming threatens food security by decreasing crop yields, so it is necessary to develop crops with enhanced resistance to high temperatures in order to secure the food supply. In this review, the role of Rubisco activase as an important factor in plant heat tolerance is summarized, based on the conclusions of recent findings. Rubisco activase is a molecular chaperone determining the activation of Rubisco, whose heat sensitivity causes reductions of photosynthesis at high temperatures. Thus, the thermostability of Rubisco activase is considered to be critical for improving plant heat tolerance. It has been shown that the introduction of thermostable Rubisco activase through gene editing into Arabidopsis thaliana and from heat-adapted wild Oryza species or C4Zea mays into Oryza sativa improves Rubisco activation, photosynthesis, and plant growth at high temperatures. We propose that developing a universal thermostable Rubisco activase could be a promising direction for further studies.
Collapse
Affiliation(s)
- Yuchen Qu
- Graduate School of Agricultural and Life Sciences, Institute for Sustainable Agri-ecosystem Services, The University of Tokyo, Tokyo, Japan
| | | | - Wataru Yamori
- Graduate School of Agricultural and Life Sciences, Institute for Sustainable Agri-ecosystem Services, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Eckardt NA, Ainsworth EA, Bahuguna RN, Broadley MR, Busch W, Carpita NC, Castrillo G, Chory J, DeHaan LR, Duarte CM, Henry A, Jagadish SVK, Langdale JA, Leakey ADB, Liao JC, Lu KJ, McCann MC, McKay JK, Odeny DA, Jorge de Oliveira E, Platten JD, Rabbi I, Rim EY, Ronald PC, Salt DE, Shigenaga AM, Wang E, Wolfe M, Zhang X. Climate change challenges, plant science solutions. THE PLANT CELL 2023; 35:24-66. [PMID: 36222573 PMCID: PMC9806663 DOI: 10.1093/plcell/koac303] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.
Collapse
Affiliation(s)
- Nancy A Eckardt
- Senior Features Editor, The Plant Cell, American Society of Plant Biologists, USA
| | - Elizabeth A Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, Illinois 61801, USA
| | - Rajeev N Bahuguna
- Centre for Advanced Studies on Climate Change, Dr Rajendra Prasad Central Agricultural University, Samastipur 848125, Bihar, India
| | - Martin R Broadley
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Nicholas C Carpita
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Gabriel Castrillo
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Joanne Chory
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Amelia Henry
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - S V Krishna Jagadish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79410, USA
| | - Jane A Langdale
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Andrew D B Leakey
- Department of Plant Biology, Department of Crop Sciences, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - James C Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Kuan-Jen Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Maureen C McCann
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - John K McKay
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Damaris A Odeny
- The International Crops Research Institute for the Semi-Arid Tropics–Eastern and Southern Africa, Gigiri 39063-00623, Nairobi, Kenya
| | | | - J Damien Platten
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - Ismail Rabbi
- International Institute of Tropical Agriculture (IITA), PMB 5320 Ibadan, Oyo, Nigeria
| | - Ellen Youngsoo Rim
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
- Innovative Genomics Institute, Berkeley, California 94704, USA
| | - David E Salt
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alexandra M Shigenaga
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Marnin Wolfe
- Auburn University, Dept. of Crop Soil and Environmental Sciences, College of Agriculture, Auburn, Alabama 36849, USA
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
16
|
Bowerman AF, Byrt CS, Roy SJ, Whitney SM, Mortimer JC, Ankeny RA, Gilliham M, Zhang D, Millar AA, Rebetzke GJ, Pogson BJ. Potential abiotic stress targets for modern genetic manipulation. THE PLANT CELL 2023; 35:139-161. [PMID: 36377770 PMCID: PMC9806601 DOI: 10.1093/plcell/koac327] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/03/2022] [Indexed: 05/06/2023]
Abstract
Research into crop yield and resilience has underpinned global food security, evident in yields tripling in the past 5 decades. The challenges that global agriculture now faces are not just to feed 10+ billion people within a generation, but to do so under a harsher, more variable, and less predictable climate, and in many cases with less water, more expensive inputs, and declining soil quality. The challenges of climate change are not simply to breed for a "hotter drier climate," but to enable resilience to floods and droughts and frosts and heat waves, possibly even within a single growing season. How well we prepare for the coming decades of climate variability will depend on our ability to modify current practices, innovate with novel breeding methods, and communicate and work with farming communities to ensure viability and profitability. Here we define how future climates will impact farming systems and growing seasons, thereby identifying the traits and practices needed and including exemplars being implemented and developed. Critically, this review will also consider societal perspectives and public engagement about emerging technologies for climate resilience, with participatory approaches presented as the best approach.
Collapse
Affiliation(s)
- Andrew F Bowerman
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Caitlin S Byrt
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Stuart John Roy
- ARC Training Centre for Accelerated Future Crops Development, University of Adelaide, South Australia, Australia
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Spencer M Whitney
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jenny C Mortimer
- ARC Training Centre for Accelerated Future Crops Development, University of Adelaide, South Australia, Australia
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Rachel A Ankeny
- ARC Training Centre for Accelerated Future Crops Development, University of Adelaide, South Australia, Australia
- School of Humanities, University of Adelaide, North Terrace, South Australia, Australia
| | - Matthew Gilliham
- ARC Training Centre for Accelerated Future Crops Development, University of Adelaide, South Australia, Australia
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Dabing Zhang
- ARC Training Centre for Accelerated Future Crops Development, University of Adelaide, South Australia, Australia
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Anthony A Millar
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Greg J Rebetzke
- CSIRO Agriculture & Food, Canberra, Australian Capital Territory, Australia
| | - Barry J Pogson
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
17
|
Phillips AL, Scafaro AP, Atwell BJ. Photosynthetic traits of Australian wild rice (Oryza australiensis) confer tolerance to extreme daytime temperatures. PLANT MOLECULAR BIOLOGY 2022; 110:347-363. [PMID: 34997897 PMCID: PMC9646608 DOI: 10.1007/s11103-021-01210-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/27/2021] [Indexed: 05/08/2023]
Abstract
A wild relative of rice from the Australian savannah was compared with cultivated rice, revealing thermotolerance in growth and photosynthetic processes and a more robust carbon economy in extreme heat. Above ~ 32 °C, impaired photosynthesis compromises the productivity of rice. We compared leaf tissues from heat-tolerant wild rice (Oryza australiensis) with temperate-adapted O. sativa after sustained exposure to heat, as well as diurnal heat shock. Leaf elongation and shoot biomass in O. australiensis were unimpaired at 45 °C, and soluble sugar concentrations trebled during 10 h of a 45 °C shock treatment. By contrast, 45 °C slowed growth strongly in O. sativa. Chloroplastic CO2 concentrations eliminated CO2 supply to chloroplasts as the basis of differential heat tolerance. This directed our attention to carboxylation and the abundance of the heat-sensitive chaperone Rubisco activase (Rca) in each species. Surprisingly, O. australiensis leaves at 45 °C had 50% less Rca per unit Rubisco, even though CO2 assimilation was faster than at 30 °C. By contrast, Rca per unit Rubisco doubled in O. sativa at 45 °C while CO2 assimilation was slower, reflecting its inferior Rca thermostability. Plants grown at 45 °C were simultaneously exposed to 700 ppm CO2 to enhance the CO2 supply to Rubisco. Growth at 45 °C responded to CO2 enrichment in O. australiensis but not O. sativa, reflecting more robust carboxylation capacity and thermal tolerance in the wild rice relative.
Collapse
Affiliation(s)
- Aaron L Phillips
- Waite Research Institute and School of Agriculture, Food, and Wine, University of Adelaide, Adelaide, SA, Australia
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food, and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Andrew P Scafaro
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Brian J Atwell
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
18
|
Raza QUA, Bashir MA, Rehim A, Ejaz R, Raza HMA, Shahzad U, Ahmed F, Geng Y. Biostimulants induce positive changes in the radish morpho-physiology and yield. FRONTIERS IN PLANT SCIENCE 2022; 13:950393. [PMID: 36003805 PMCID: PMC9393613 DOI: 10.3389/fpls.2022.950393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
An ever-increasing population has issued an open challenge to the agricultural sector to provide enough food in a sustainable manner. The upsurge in chemical fertilizers to enhance food production had resulted in environmental problems. The objective of the current study is to assess the utilization of biostimulants for sustainable agricultural production as an alternative to chemical fertilization. For this purpose, two pot experiments were conducted to examine the response of radish against individual and combined applications of biostimulants. In the first experiment, the effects of chemical fertilizer (CK), glycine (G), lysine (L), aspartic acid (A), and vitamin B complex (V) were studied. The results demonstrated that V significantly improved the transpiration rate (81.79%), stomatal conductance (179.17%), fresh weight (478.31%), and moisture content (2.50%). In the second experiment, tested treatments included chemical fertilizer (CK), Isabion® (I), glycine + lysine + aspartic acid (GLA), moringa leaf extract + GLA (M1), 25% NPK + M1 (M2). The doses of biostimulants were 5g L-1 glycine, 1g L-1 lysine, 2g L-1 aspartic acid, and 10 ml L-1 moringa leaf extract. The photosynthetic rate improved significantly with GLA (327.01%), M1 (219.60%), and M2 (22.16%), while the transpiration rate was enhanced with GLA (53.14%) and M2 (17.86%) compared to the Ck. In addition, M1 increased the stomatal conductance (54.84%), internal CO2 concentration (0.83%), plant fresh weight (201.81%), and dry weight (101.46%) as compared to CK. This study concludes that biostimulants can effectively contribute to the sustainable cultivation of radish with better growth and yield.
Collapse
Affiliation(s)
- Qurat-Ul-Ain Raza
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Amjad Bashir
- College of Agriculture, Bahauddin Zakariya University Multan, Bahadur Sub-Campus Layyah, Layyah, Pakistan
| | - Abdur Rehim
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Rafia Ejaz
- College of Agriculture, Bahauddin Zakariya University Multan, Bahadur Sub-Campus Layyah, Layyah, Pakistan
| | - Hafiz Muhammad Ali Raza
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
- College of Agriculture, Bahauddin Zakariya University Multan, Bahadur Sub-Campus Layyah, Layyah, Pakistan
| | - Umbreen Shahzad
- College of Agriculture, Bahauddin Zakariya University Multan, Bahadur Sub-Campus Layyah, Layyah, Pakistan
| | - Faraz Ahmed
- Soil and Water Testing Laboratory, Sargodha, Pakistan
| | - Yucong Geng
- KOYO Star Agriculture Technology Co., LTD., Beijing, China
| |
Collapse
|
19
|
Phillips AL, Ferguson S, Watson-Haigh NS, Jones AW, Borevitz JO, Burton RA, Atwell BJ. The first long-read nuclear genome assembly of Oryza australiensis, a wild rice from northern Australia. Sci Rep 2022; 12:10823. [PMID: 35752642 PMCID: PMC9233661 DOI: 10.1038/s41598-022-14893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Oryza australiensis is a wild rice native to monsoonal northern Australia. The International Oryza Map Alignment Project emphasises its significance as the sole representative of the EE genome clade. Assembly of the O. australiensis genome has previously been challenging due to its high Long Terminal Repeat (LTR) retrotransposon (RT) content. Oxford Nanopore long reads were combined with Illumina short reads to generate a high-quality ~ 858 Mbp genome assembly within 850 contigs with 46× long read coverage. Reference-guided scaffolding increased genome contiguity, placing 88.2% of contigs into 12 pseudomolecules. After alignment to the Oryza sativa cv. Nipponbare genome, we observed several structural variations. PacBio Iso-Seq data were generated for five distinct tissues to improve the functional annotation of 34,587 protein-coding genes and 42,329 transcripts. We also report SNV numbers for three additional O. australiensis genotypes based on Illumina re-sequencing. Although genetic similarity reflected geographical separation, the density of SNVs also correlated with our previous report on variations in salinity tolerance. This genome re-confirms the genetic remoteness of the O. australiensis lineage within the O. officinalis genome complex. Assembly of a high-quality genome for O. australiensis provides an important resource for the discovery of critical genes involved in development and stress tolerance.
Collapse
Affiliation(s)
- Aaron L Phillips
- Department of Food Science, University of Adelaide, Adelaide, SA, Australia
- ARC Centre of Excellence in Plant Energy Biology, Adelaide, SA, Australia
| | - Scott Ferguson
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- ARC Centre of Excellence in Plant Energy Biology, Canberra, ACT, Australia
| | - Nathan S Watson-Haigh
- South Australian Genomics Centre, University of Adelaide, Adelaide, SA, Australia
- Australian Genome Research Facility, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Ashley W Jones
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- ARC Centre of Excellence in Plant Energy Biology, Canberra, ACT, Australia
| | - Justin O Borevitz
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- ARC Centre of Excellence in Plant Energy Biology, Canberra, ACT, Australia
| | - Rachel A Burton
- Department of Food Science, University of Adelaide, Adelaide, SA, Australia
- ARC Centre of Excellence in Plant Energy Biology, Adelaide, SA, Australia
| | - Brian J Atwell
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
20
|
Sharwood RE, Quick WP, Sargent D, Estavillo GM, Silva-Perez V, Furbank RT. Mining for allelic gold: finding genetic variation in photosynthetic traits in crops and wild relatives. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3085-3108. [PMID: 35274686 DOI: 10.1093/jxb/erac081] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Improvement of photosynthetic traits in crops to increase yield potential and crop resilience has recently become a major breeding target. Synthetic biology and genetic technologies offer unparalleled opportunities to create new genetics for photosynthetic traits driven by existing fundamental knowledge. However, large 'gene bank' collections of germplasm comprising historical collections of crop species and their relatives offer a wealth of opportunities to find novel allelic variation in the key steps of photosynthesis, to identify new mechanisms and to accelerate genetic progress in crop breeding programmes. Here we explore the available genetic resources in food and fibre crops, strategies to selectively target allelic variation in genes underpinning key photosynthetic processes, and deployment of this variation via gene editing in modern elite material.
Collapse
Affiliation(s)
- Robert E Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - W Paul Quick
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Demi Sargent
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | | | | | - Robert T Furbank
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
21
|
Fan X, Liu J, Zhang Z, Xi Y, Li S, Xiong L, Xing Y. A long transcript mutant of the rubisco activase gene RCA upregulated by the transcription factor Ghd2 enhances drought tolerance in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:673-687. [PMID: 35106849 DOI: 10.1111/tpj.15694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The transcription factor Ghd2 increases rice yield potential under normal conditions and accelerates leaf senescence under drought stress. However, its mechanism on the regulation of leaf senescence under drought stress remains unclear. In the present study, to unveil the mechanism, one target of Ghd2, the Rubisco activase gene RCA, was identified through the combined analysis of Ghd2-CRISPR transcriptome data and Ghd2-overexpression microarray data. Ghd2 binds to the 'CACA' motif in the RCA promoter by its CCT domain and upregulates RCA expression. RCA has alternative transcripts, RCAS and RCAL, which are predominantly expressed under normal conditions and drought stress, respectively. Similar to Ghd2-overexpressing plants, RCAL-overexpressing plants were more sensitive to drought stress than the wild-type. However, the plants overexpressing RCAS showed a weak drought-sensitive phenotype. Moreover, RCAL knockdown and knockout plants did not show yield loss under normal conditions, but exhibited enhanced drought tolerance and delayed leaf senescence. The chlorophyll content, the free amino acid content and the expression of senescence-related genes in the RCAL mutant were lower than those in the wild-type plants under drought stress. In summary, Ghd2 induces leaf senescence by upregulating RCAL expression under drought stress, and the RCAL mutant has important values in breeding drought-tolerant varieties.
Collapse
Affiliation(s)
- Xiaowei Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juhong Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhanyi Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanli Xi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangle Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
22
|
Regulation of Calvin-Benson cycle enzymes under high temperature stress. ABIOTECH 2022; 3:65-77. [PMID: 36311539 PMCID: PMC9590453 DOI: 10.1007/s42994-022-00068-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/01/2022] [Indexed: 10/19/2022]
Abstract
The Calvin-Benson cycle (CBC) consists of three critical processes, including fixation of CO2 by Rubisco, reduction of 3-phosphoglycerate (3PGA) to triose phosphate (triose-P) with NADPH and ATP generated by the light reactions, and regeneration of ribulose 1,5-bisphosphate (RuBP) from triose-P. The activities of photosynthesis-related proteins, mainly from the CBC, were found more significantly affected and regulated in plants challenged with high temperature stress, including Rubisco, Rubisco activase (RCA) and the enzymes involved in RuBP regeneration, such as sedoheptulose-1,7-bisphosphatase (SBPase). Over the past years, the regulatory mechanism of CBC, especially for redox-regulation, has attracted major interest, because balancing flux at the various enzymatic reactions and maintaining metabolite levels in a range are of critical importance for the optimal operation of CBC under high temperature stress, providing insights into the genetic manipulation of photosynthesis. Here, we summarize recent progress regarding the identification of various layers of regulation point to the key enzymes of CBC for acclimation to environmental temperature changes along with open questions are also discussed.
Collapse
|
23
|
Lohani N, Singh MB, Bhalla PL. Biological Parts for Engineering Abiotic Stress Tolerance in Plants. BIODESIGN RESEARCH 2022; 2022:9819314. [PMID: 37850130 PMCID: PMC10521667 DOI: 10.34133/2022/9819314] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2023] Open
Abstract
It is vital to ramp up crop production dramatically by 2050 due to the increasing global population and demand for food. However, with the climate change projections showing that droughts and heatwaves becoming common in much of the globe, there is a severe threat of a sharp decline in crop yields. Thus, developing crop varieties with inbuilt genetic tolerance to environmental stresses is urgently needed. Selective breeding based on genetic diversity is not keeping up with the growing demand for food and feed. However, the emergence of contemporary plant genetic engineering, genome-editing, and synthetic biology offer precise tools for developing crops that can sustain productivity under stress conditions. Here, we summarize the systems biology-level understanding of regulatory pathways involved in perception, signalling, and protective processes activated in response to unfavourable environmental conditions. The potential role of noncoding RNAs in the regulation of abiotic stress responses has also been highlighted. Further, examples of imparting abiotic stress tolerance by genetic engineering are discussed. Additionally, we provide perspectives on the rational design of abiotic stress tolerance through synthetic biology and list various bioparts that can be used to design synthetic gene circuits whose stress-protective functions can be switched on/off in response to environmental cues.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
24
|
Iñiguez C, Aguiló-Nicolau P, Galmés J. Improving photosynthesis through the enhancement of Rubisco carboxylation capacity. Biochem Soc Trans 2021; 49:2007-2019. [PMID: 34623388 DOI: 10.1042/bst20201056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
Rising human population, along with the reduction in arable land and the impacts of global change, sets out the need for continuously improving agricultural resource use efficiency and crop yield (CY). Bioengineering approaches for photosynthesis optimization have largely demonstrated the potential for enhancing CY. This review is focused on the improvement of Rubisco functioning, which catalyzes the rate-limiting step of CO2 fixation required for plant growth, but also catalyzes the ribulose-bisphosphate oxygenation initiating the carbon and energy wasteful photorespiration pathway. Rubisco carboxylation capacity can be enhanced by engineering the Rubisco large and/or small subunit genes to improve its catalytic traits, or by engineering the mechanisms that provide enhanced Rubisco expression, activation and/or elevated [CO2] around the active sites to favor carboxylation over oxygenation. Recent advances have been made in the expression, assembly and activation of foreign (either natural or mutant) faster and/or more CO2-specific Rubisco versions. Some components of CO2 concentrating mechanisms (CCMs) from bacteria, algae and C4 plants has been successfully expressed in tobacco and rice. Still, none of the transformed plant lines expressing foreign Rubisco versions and/or simplified CCM components were able to grow faster than wild type plants under present atmospheric [CO2] and optimum conditions. However, the results obtained up to date suggest that it might be achievable in the near future. In addition, photosynthetic and yield improvements have already been observed when manipulating Rubisco quantity and activation degree in crops. Therefore, engineering Rubisco carboxylation capacity continues being a promising target for the improvement in photosynthesis and yield.
Collapse
Affiliation(s)
- Concepción Iñiguez
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
- Department of Ecology, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Pere Aguiló-Nicolau
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| |
Collapse
|
25
|
Razzaq A, Wani SH, Saleem F, Yu M, Zhou M, Shabala S. Rewilding crops for climate resilience: economic analysis and de novo domestication strategies. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6123-6139. [PMID: 34114599 DOI: 10.1093/jxb/erab276] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/09/2021] [Indexed: 05/08/2023]
Abstract
To match predicted population growth, annual food production should be doubled by 2050. This is not achievable by current agronomical and breeding practices, due to the impact of climate changes and associated abiotic stresses on agricultural production systems. Here, we analyze the impact of global climate trends on crop productivity and show that the overall loss in crop production from climate-driven abiotic stresses may exceed US$170 billion year-1 and represents a major threat to global food security. We also show that abiotic stress tolerance had been present in wild progenitors of modern crops but was lost during their domestication. We argue for a major shift in our paradigm of crop breeding, focusing on climate resilience, and call for a broader use of wild relatives as a major tool in this process. We argue that, while molecular tools are currently in place to harness the potential of climate-resilient genes present in wild relatives, the complex polygenic nature of tolerance traits remains a major bottleneck in this process. Future research efforts should be focused not only on finding appropriate wild relatives but also on development of efficient cell-based high-throughput phenotyping platforms allowing assessment of the in planta operation of key genes.
Collapse
Affiliation(s)
- Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisald 38040,Pakistan
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, J&K,India
| | - Fozia Saleem
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisald 38040,Pakistan
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001,Australia
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001,Australia
| |
Collapse
|
26
|
Sales CRG, Wang Y, Evers JB, Kromdijk J. Improving C4 photosynthesis to increase productivity under optimal and suboptimal conditions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5942-5960. [PMID: 34268575 PMCID: PMC8411859 DOI: 10.1093/jxb/erab327] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/09/2021] [Indexed: 05/05/2023]
Abstract
Although improving photosynthetic efficiency is widely recognized as an underutilized strategy to increase crop yields, research in this area is strongly biased towards species with C3 photosynthesis relative to C4 species. Here, we outline potential strategies for improving C4 photosynthesis to increase yields in crops by reviewing the major bottlenecks limiting the C4 NADP-malic enzyme pathway under optimal and suboptimal conditions. Recent experimental results demonstrate that steady-state C4 photosynthesis under non-stressed conditions can be enhanced by increasing Rubisco content or electron transport capacity, both of which may also stimulate CO2 assimilation at supraoptimal temperatures. Several additional putative bottlenecks for photosynthetic performance under drought, heat, or chilling stress or during photosynthetic induction await further experimental verification. Based on source-sink interactions in maize, sugarcane, and sorghum, alleviating these photosynthetic bottlenecks during establishment and growth of the harvestable parts are likely to improve yield. The expected benefits are also shown to be augmented by the increasing trend in planting density, which increases the impact of photosynthetic source limitation on crop yields.
Collapse
Affiliation(s)
- Cristina R G Sales
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Yu Wang
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jochem B Evers
- Centre for Crops Systems Analysis (WUR), Wageningen University, Wageningen, The Netherlands
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
27
|
Wijewardene I, Shen G, Zhang H. Enhancing crop yield by using Rubisco activase to improve photosynthesis under elevated temperatures. STRESS BIOLOGY 2021; 1:2. [PMID: 37676541 PMCID: PMC10429496 DOI: 10.1007/s44154-021-00002-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/29/2021] [Indexed: 09/08/2023]
Abstract
With the rapid growth of world population, it is essential to increase agricultural productivity to feed the growing population. Over the past decades, many methods have been used to increase crop yields. Despite the success in boosting the crop yield through these methods, global food production still needs to be increased to be on par with the increasing population and its dynamic consumption patterns. Additionally, given the prevailing environmental conditions pertaining to the global temperature increase, heat stress will likely be a critical factor that negatively affects plant biomass and crop yield. One of the key elements hindering photosynthesis and plant productivity under heat stress is the thermo-sensitivity of the Rubisco activase (RCA), a molecular chaperone that converts Rubisco back to active form after it becomes inactive. It would be an attractive and practical strategy to maintain photosynthetic activity under elevated temperatures by enhancing the thermo-stability of RCA. In this context, this review discusses the need to improve the thermo-tolerance of RCA under current climatic conditions and to further study RCA structure and regulation, and its limitations at elevated temperatures. This review summarizes successful results and provides a perspective on RCA research and its implication in improving crop yield under elevated temperature conditions in the future.
Collapse
Affiliation(s)
- Inosha Wijewardene
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
28
|
Qu Y, Sakoda K, Fukayama H, Kondo E, Suzuki Y, Makino A, Terashima I, Yamori W. Overexpression of both Rubisco and Rubisco activase rescues rice photosynthesis and biomass under heat stress. PLANT, CELL & ENVIRONMENT 2021; 44:2308-2320. [PMID: 33745135 DOI: 10.1111/pce.14051] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 05/15/2023]
Abstract
Global warming threatens food security by decreasing crop yields through damage to photosynthetic systems, especially Rubisco activation. We examined whether co-overexpression of Rubisco and Rubisco activase improves the photosynthetic and growth performance of rice under high temperatures. We grew three rice lines-the wild-type (WT), a Rubisco activase-overexpressing line (oxRCA) and a Rubisco- and Rubisco activase-co-overexpressing line (oxRCA-RBCS)-and analysed photosynthesis and biomass at 25 and 40°C. Compared with the WT, the Rubisco activase content was 153% higher in oxRCA and 138% higher in oxRCA-RBCS, and the Rubisco content was 27% lower in oxRCA and similar in oxRCA-RBCS. The CO2 assimilation rate (A) of WT was lower at 40°C than at 25°C, attributable to Rubisco deactivation by heat. On the other hand, that of oxRCA and oxRCA-RBCS was maintained at 40°C, resulting in higher A than WT. Notably, the dry weight of oxRCA-RBCS was 26% higher than that of WT at 40°C. These results show that increasing the Rubisco activase content without the reduction of Rubisco content could improve yield and sustainability in rice at high temperature.
Collapse
Affiliation(s)
- Yuchen Qu
- Graduate School of Agricultural and Life Science, Institute for Sustainable Agri-ecosystem, The University of Tokyo, Tokyo, Japan
| | - Kazuma Sakoda
- Graduate School of Agricultural and Life Science, Institute for Sustainable Agri-ecosystem, The University of Tokyo, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hiroshi Fukayama
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Eri Kondo
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yuji Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Amane Makino
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ichiro Terashima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Wataru Yamori
- Graduate School of Agricultural and Life Science, Institute for Sustainable Agri-ecosystem, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Zhu T, De Lima CFF, De Smet I. The Heat is On: How Crop Growth, Development and Yield Respond to High Temperature. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab308. [PMID: 34185832 DOI: 10.1093/jxb/erab308] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 06/13/2023]
Abstract
Plants are exposed to a wide range of temperatures during their life cycle and need to continuously adapt. These adaptations need to deal with temperature changes on a daily and seasonal level and with temperatures affected by climate change. Increasing global temperatures negatively impact crop performance, and several physiological, biochemical, morphological and developmental responses to increased temperature have been described that allow plants to mitigate this. In this review, we assess various growth, development, and yield-related responses of crops to extreme and moderate high temperature, focusing on knowledge gained from both monocot (e.g. wheat, barley, maize, rice) and dicot crops (e.g. soybean and tomato) and incorporating information from model plants (e.g. Arabidopsis and Brachypodium). This revealed common and different responses between dicot and monocot crops, and defined different temperature thresholds depending on the species, growth stage and organ.
Collapse
Affiliation(s)
- Tingting Zhu
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Cassio Flavio Fonseca De Lima
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ive De Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
30
|
Moore CE, Meacham-Hensold K, Lemonnier P, Slattery RA, Benjamin C, Bernacchi CJ, Lawson T, Cavanagh AP. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2822-2844. [PMID: 33619527 PMCID: PMC8023210 DOI: 10.1093/jxb/erab090] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/19/2021] [Indexed: 05/03/2023]
Abstract
As global land surface temperature continues to rise and heatwave events increase in frequency, duration, and/or intensity, our key food and fuel cropping systems will likely face increased heat-related stress. A large volume of literature exists on exploring measured and modelled impacts of rising temperature on crop photosynthesis, from enzymatic responses within the leaf up to larger ecosystem-scale responses that reflect seasonal and interannual crop responses to heat. This review discusses (i) how crop photosynthesis changes with temperature at the enzymatic scale within the leaf; (ii) how stomata and plant transport systems are affected by temperature; (iii) what features make a plant susceptible or tolerant to elevated temperature and heat stress; and (iv) how these temperature and heat effects compound at the ecosystem scale to affect crop yields. Throughout the review, we identify current advancements and future research trajectories that are needed to make our cropping systems more resilient to rising temperature and heat stress, which are both projected to occur due to current global fossil fuel emissions.
Collapse
Affiliation(s)
- Caitlin E Moore
- School of Agriculture and Environment, The University of Western Australia, Crawley, Australia
- Institute for Sustainability, Energy & Environment, University of Illinois at Urbana-Champaign, Urbana, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Katherine Meacham-Hensold
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | | | - Rebecca A Slattery
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Claire Benjamin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Carl J Bernacchi
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture–Agricultural Research Service, Urbana, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Amanda P Cavanagh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
- School of Life Sciences, University of Essex, Colchester, UK
| |
Collapse
|
31
|
Degen GE, Orr DJ, Carmo-Silva E. Heat-induced changes in the abundance of wheat Rubisco activase isoforms. THE NEW PHYTOLOGIST 2021; 229:1298-1311. [PMID: 32964463 DOI: 10.1111/nph.16937] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/02/2020] [Indexed: 05/24/2023]
Abstract
The Triticum aestivum (wheat) genome encodes three isoforms of Rubisco activase (Rca) differing in thermostability, which could be exploited to improve the resilience of this crop to global warming. We hypothesized that elevated temperatures would cause an increase in the relative abundance of heat-stable Rca1β. Wheat plants were grown at 25° C : 18°C (day : night) and exposed to heat stress (38° C : 22°C) for up to 5 d at pre-anthesis. Carbon (C) assimilation, Rubisco activity, CA1Pase activity, transcripts of Rca1β, Rca2β, and Rca2α, and the quantities of the corresponding protein products were measured during and after heat stress. The transcript of Rca1β increased 40-fold in 4 h at elevated temperatures and returned to the original level after 4 h upon return of plants to control temperatures. Rca1β comprised up to 2% of the total Rca protein in unstressed leaves but increased three-fold in leaves exposed to elevated temperatures for 5 d and remained high at 4 h after heat stress. These results show that elevated temperatures cause rapid changes in Rca gene expression and adaptive changes in Rca isoform abundance. The improved understanding of the regulation of C assimilation under heat stress will inform efforts to improve wheat productivity and climate resilience.
Collapse
Affiliation(s)
- Gustaf E Degen
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | | |
Collapse
|
32
|
Raza Q, Riaz A, Bashir K, Sabar M. Reproductive tissues-specific meta-QTLs and candidate genes for development of heat-tolerant rice cultivars. PLANT MOLECULAR BIOLOGY 2020; 104:97-112. [PMID: 32643113 DOI: 10.1007/s11103-020-01027-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
By integrating genetics and genomics data, reproductive tissues-specific and heat stress responsive 35 meta-QTLs and 45 candidate genes were identified, which could be exploited through marker-assisted breeding for fast-track development of heat-tolerant rice cultivars. Rice holds the key to future food security. In rice-growing areas, temperature has already reached an optimum level for growth, hence, any further increase due to global climate change could significantly reduce rice yield. Several mapping studies have identified a plethora of reproductive tissue-specific and heat stress associated inconsistent quantitative trait loci (QTL), which could be exploited for improvement of heat tolerance. In this study, we performed a meta-analysis on previously reported QTLs and identified 35 most consistent meta-QTLs (MQTLs) across diverse genetic backgrounds and environments. Genetic and physical intervals of nearly 66% MQTLs were narrower than 5 cM and 2 Mb respectively, indicating hotspot genomic regions for heat tolerance. Comparative analyses of MQTLs underlying genes with microarray and RNA-seq based transcriptomic data sets revealed a core set of 45 heat-responsive genes, among which 24 were reproductive tissue-specific and have not been studied in detail before. Remarkably, all these genes corresponded to various stress associated functions, ranging from abiotic stress sensing to regulating plant stress responses, and included heat-shock genes (OsBiP2, OsMed37_1), transcription factors (OsNAS3, OsTEF1, OsWRKY10, OsWRKY21), transmembrane transporters (OsAAP7A, OsAMT2;1), sugar metabolizing (OsSUS4, α-Gal III) and abiotic stress (OsRCI2-7, SRWD1) genes. Functional data evidences from Arabidopsis heat-shock genes also suggest that OsBIP2 may be associated with thermotolerance of pollen tubes under heat stress conditions. Furthermore, promoters of identified genes were enriched with heat, dehydration, pollen and sugar responsive cis-acting regulatory elements, proposing a common regulatory mechanism might exist in rice for mitigating reproductive stage heat stress. These findings strongly support our results and provide new candidate genes for fast-track development of heat-tolerant rice cultivars.
Collapse
Affiliation(s)
- Qasim Raza
- Molecular Breeding Laboratory, Division of Plant Breeding and Genetics, Rice Research Institute, Kala Shah Kaku, Lahore, Punjab, Pakistan.
| | - Awais Riaz
- Molecular Breeding Laboratory, Division of Plant Breeding and Genetics, Rice Research Institute, Kala Shah Kaku, Lahore, Punjab, Pakistan
| | - Khurram Bashir
- Plant Genomic Network Research Team, Center for Sustainable Resource Science, RIKEN, Yokohama Campus, Yokohama, Japan
| | - Muhammad Sabar
- Molecular Breeding Laboratory, Division of Plant Breeding and Genetics, Rice Research Institute, Kala Shah Kaku, Lahore, Punjab, Pakistan
| |
Collapse
|
33
|
Rashid FAA, Crisp PA, Zhang Y, Berkowitz O, Pogson BJ, Day DA, Masle J, Dewar RC, Whelan J, Atkin OK, Scafaro AP. Molecular and physiological responses during thermal acclimation of leaf photosynthesis and respiration in rice. PLANT, CELL & ENVIRONMENT 2020; 43:594-610. [PMID: 31860752 DOI: 10.1111/pce.13706] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 05/24/2023]
Abstract
To further our understanding of how sustained changes in temperature affect the carbon economy of rice (Oryza sativa), hydroponically grown plants of the IR64 cultivar were developed at 30°C/25°C (day/night) before being shifted to 25/20°C or 40/35°C. Leaf messenger RNA and protein abundance, sugar and starch concentrations, and gas-exchange and elongation rates were measured on preexisting leaves (PE) already developed at 30/25°C or leaves newly developed (ND) subsequent to temperature transfer. Following a shift in growth temperature, there was a transient adjustment in metabolic gene transcript abundance of PE leaves before homoeostasis was reached within 24 hr, aligning with Rdark (leaf dark respiratory CO2 release) and An (net CO2 assimilation) changes. With longer exposure, the central respiratory protein cytochrome c oxidase (COX) declined in abundance at 40/35°C. In contrast to Rdark , An was maintained across the three growth temperatures in ND leaves. Soluble sugars did not differ significantly with growth temperature, and growth was fastest with extended exposure at 40/35°C. The results highlight that acclimation of photosynthesis and respiration is asynchronous in rice, with heat-acclimated plants exhibiting a striking ability to maintain net carbon gain and growth when exposed to heat-wave temperatures, even while reducing investment in energy-conserving respiratory pathways.
Collapse
Affiliation(s)
- Fatimah Azzahra Ahmad Rashid
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- Department of Biology, Faculty of Science and Mathematics, Sultan Idris Education University, Tanjung Malim, Malaysia
| | - Peter A Crisp
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota
| | - You Zhang
- CSIRO Plant Industry, Canberra, Australian Capital Territory, Australia
| | - Oliver Berkowitz
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, AgriBio Building, La Trobe University, Melbourne, Victoria, Australia
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - David A Day
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Department of Animal, Plant and Soil Sciences, AgriBio Building, La Trobe University, Melbourne, Victoria, Australia
| | - Josette Masle
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Roderick C Dewar
- Research School of Biology, The Australian National University, Canberra, Australia
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, Finland
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, AgriBio Building, La Trobe University, Melbourne, Victoria, Australia
| | - Owen K Atkin
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Andrew P Scafaro
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
34
|
Khan S, Anwar S, Ashraf MY, Khaliq B, Sun M, Hussain S, Gao ZQ, Noor H, Alam S. Mechanisms and Adaptation Strategies to Improve Heat Tolerance in Rice. A Review. PLANTS (BASEL, SWITZERLAND) 2019; 8:E508. [PMID: 31731732 PMCID: PMC6918131 DOI: 10.3390/plants8110508] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 02/05/2023]
Abstract
The incidence of short episodes of high temperature in the most productive rice growing region is a severe threat for sustainable rice production. Screening for heat tolerance and breeding to increase the heat tolerance of rice is major objective in the situation of recent climate change. Replacing sensitive genotypes with heat tolerant cultivars, modification in sowing time, and use of growth regulators are some of the adaptive strategies for the mitigation of yield reduction by climate change. Different strategies could be adopted to enhance the thermos-tolerance of rice by (1) the modification of agronomic practices i.e., adjusting sowing time or selecting early morning flowering cultivars; (2) induction of acclimation by using growth regulators and fertilizers; (3) selecting the genetically heat resistant cultivars by breeding; and, (4) developing genetic modification. Understanding the differences among the genotypes could be exploited for the identification of traits that are responsible for thermo-tolerance for breeding purpose. The selection of cultivars that flowers in early morning before the increase of temperature, and having larger anthers with long basal pore, higher basal dehiscence, and pollen viability could induce higher thermo-tolerance. Furthermore, the high expression of heat shock proteins could impart thermo-tolerance by protecting structural proteins and enzymes. Thus, these traits could be considered for breeding programs to develop resistant cultivars under a changing climate.
Collapse
Affiliation(s)
- Shahbaz Khan
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China; (S.K.); (M.S.); (H.N.); (S.A.)
| | - Sumera Anwar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (M.Y.A.); (B.K.)
- China National Rice Research Institute, Hangzhou 311400, China;
| | - M. Yasin Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (M.Y.A.); (B.K.)
| | - Binish Khaliq
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (M.Y.A.); (B.K.)
| | - Min Sun
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China; (S.K.); (M.S.); (H.N.); (S.A.)
| | - Sajid Hussain
- China National Rice Research Institute, Hangzhou 311400, China;
| | - Zhi-qiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China; (S.K.); (M.S.); (H.N.); (S.A.)
| | - Hafeez Noor
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China; (S.K.); (M.S.); (H.N.); (S.A.)
| | - Sher Alam
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China; (S.K.); (M.S.); (H.N.); (S.A.)
| |
Collapse
|
35
|
Slattery RA, Ort DR. Carbon assimilation in crops at high temperatures. PLANT, CELL & ENVIRONMENT 2019; 42:2750-2758. [PMID: 31046135 DOI: 10.1111/pce.13572] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/15/2019] [Accepted: 04/27/2019] [Indexed: 05/24/2023]
Abstract
Global temperatures are rising, and higher rates of temperature increase are projected over land areas that encompass the globe's major agricultural regions. In addition to increased growing season temperatures, heat waves are predicted to become more common and severe. High temperatures can inhibit photosynthetic carbon gain of crop plants and thus threaten productivity, the effects of which may interact with other aspects of climate change. Here, we review the current literature assessing temperature effects on photosynthesis in key crops with special attention to field studies using crop canopy heating technology and in combination with other climate variables. We also discuss the biochemical reactions related to carbon fixation that may limit crop photosynthesis under warming temperatures and the current strategies for adaptation. Important progress has been made on several adaptation strategies demonstrating proof-of-concept for translating improved photosynthesis into higher yields. These are now poised to test in important food crops.
Collapse
Affiliation(s)
- Rebecca A Slattery
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| |
Collapse
|