1
|
Kruth PS, Whale J, Léveillé AN, Brisbin J, Barta JR. Development of a molecular assay for the determination of Eimeria tenella oocyst viability. Parasitol Res 2024; 123:422. [PMID: 39730923 DOI: 10.1007/s00436-024-08429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024]
Abstract
Coccidiosis is caused by apicomplexan parasites of the genus Eimeria, which infect epithelial cells of the intestinal tract causing diarrhea and negatively impacting production in the poultry industry. The self-limiting and highly immunogenic nature of infection by Eimeria spp. make live vaccination an effective means of coccidiosis control. Paramount to vaccine efficacy is the ability to administer precise numbers of viable oocysts. Unfortunately, no rapid and accurate method for determination of oocyst viability is available presently. This study presents the development of a qPCR-based assay for assessment of Eimeria tenella Tyzzer, 1929 oocyst viability. Transcriptome sequencing supported identification of three viability assay target transcripts based on significant increase in abundance with heat-stimulation. Measurement of shifts in target abundances in response to heat stimulation in oocysts, that ranged from high viability to non-infectious, was achieved via qPCR. Omission of DNase treatment supported use of background DNA in RNA samples for normalization for parasite numbers and oocyst disruption efficiency, while spike in of exogenous RNA supported normalization for variations in RNA recovery and reverse transcription efficiency. The assay demonstrated strong correlation with oocyst viability as confirmed through live infection trials, showing the highest predictive value for a transcript encoding a putative partial translationally controlled tumor protein, XM_013379639.1. This assay provides results in hours and could reduce the reliance on time-consuming and expensive live-infection trials in oocyst viability testing and could improve the accessibility and efficacy of coccidiosis vaccines. Future iterations may facilitate multivalent vaccine quality control and environmental monitoring.
Collapse
Affiliation(s)
- P S Kruth
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - J Whale
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - A N Léveillé
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - J Brisbin
- Ceva Animal Health Inc, Guelph, ON, Canada
| | - J R Barta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
2
|
Yan Y, Zhu X, Qi H, Wang Y, Zhang H, He J. Rice seed storability: From molecular mechanisms to agricultural practices. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112215. [PMID: 39151802 DOI: 10.1016/j.plantsci.2024.112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
The storability of rice seeds is crucial for ensuring flexible planting options, agricultural seed security, and global food safety. With the intensification of global climate change and the constant fluctuations in agricultural production conditions, enhancing the storability of rice seeds has become particularly important. Seed storability is a complex quantitative trait regulated by both genetic and environmental factors. This article reviews the main regulatory mechanisms of rice seed storability, including the accumulation of seed storage proteins, late embryogenesis abundant (LEA) proteins, heat shock proteins, sugar signaling, hormonal regulation by gibberellins and abscisic acid, and the role of the ubiquitination pathway. Additionally, this article explores the improvement of storability using wild rice genes, molecular marker-assisted selection, and gene editing techniques such as CRISPR/Cas9 in rice breeding. By providing a comprehensive scientific foundation and practical guidance, this review aims to promote the development of rice varieties with enhanced storability to meet evolving agricultural demands.
Collapse
Affiliation(s)
- Yuntao Yan
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Xiaoya Zhu
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Hui Qi
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China; Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yan Wang
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Haiqing Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Jiwai He
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China.
| |
Collapse
|
3
|
Gordeeva EI, Shoeva OY, Khlestkina EK. A comparative study on germination of wheat grains with different anthocyanin pigmentation of the pericarp in natural or induced aging. Vavilovskii Zhurnal Genet Selektsii 2024; 28:495-505. [PMID: 39280842 PMCID: PMC11393652 DOI: 10.18699/vjgb-24-56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 09/18/2024] Open
Abstract
One of promising areas of wheat breeding is the creation of varieties with a high concentration of anthocyanins in the grain for the production of functional food products. Nonetheless, the question of how these compounds affect seed viability after long-term storage has remained unexplored. A comparative study on seed viability was conducted using a set of near-isogenic lines on the background of spring wheat variety Saratovskaya 29. These sister lines carry different combinations of recombinant DNA regions (on chromosomes 2A and 7D) containing dominant and recessive alleles at loci Pp3 and Pp-D1 (Pp: Purple pericarp), which determine the anthocyanin color of coleoptiles and of the pericarp. Seeds were germinated on two layers of water-moistened filter paper in a climatic chamber at a constant temperature of 20 °C on a 12-hour daylight cycle. During long-term natural storage of the seeds for up to 9 years in a dry ventilated room in Kraft bags at 20 ± 2 °C, the tested wheat samples experienced a loss of seed germination capacity of ~50 %; anthocyanins were found to not participate in the preservation of germination capacity. Nonetheless, anthocyanins contributed to the preservation of seed viability under unfavorable short-term conditions of a temperature rise to 48 °C at 100 % humidity. The accelerated aging test did not predict poor germination capacity after long-term seed storage. The results showed a neutral role of anthocyanins in the maintenance of seed germination capacity for 6-9 years under natural storage conditions at 20 ± 2 °C. A small statistically significant increase in grain germination capacity during natural aging was associated with the presence of a recombinant region containing the Pp-D1 gene on wheat chromosome 7D.
Collapse
Affiliation(s)
- E I Gordeeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O Y Shoeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E K Khlestkina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| |
Collapse
|
4
|
Lescano López I, Torres JR, Cecchini NM, Alvarez ME. Arabidopsis DNA glycosylase MBD4L improves recovery of aged seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2021-2032. [PMID: 38963754 DOI: 10.1111/tpj.16907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
DNA glycosylases initiate the base excision repair (BER) pathway by catalyzing the removal of damaged or mismatched bases from DNA. The Arabidopsis DNA glycosylase methyl-CpG-binding domain protein 4 like (MBD4L) is a nuclear enzyme triggering BER in response to the genotoxic agents 5-fluorouracil and 5-bromouracil. To date, the involvement of MBD4L in plant physiological processes has not been analyzed. To address this, we studied the enzyme functions in seeds. We found that imbibition induced the MBD4L gene expression by generating two alternative transcripts, MBD4L.3 and MBD4L.4. Gene activation was stronger in aged than in non-aged seeds. Seeds from mbd4l-1 mutants displayed germination failures when maintained under control or ageing conditions, while 35S:MBD4L.3/mbd4l-1 and 35S:MBD4L.4/mbd4l-1 seeds reversed these phenotypes. Seed nuclear DNA repair, assessed by comet assays, was exacerbated in an MBD4L-dependent manner at 24 h post-imbibition. Under this condition, the BER genes ARP, APE1L, and LIG1 showed higher expression in 35S:MBD4L.3/mbd4l-1 and 35S:MBD4L.4/mbd4l-1 than in mbd4l-1 seeds, suggesting that these components could coordinate with MBD4L to repair damaged DNA bases in seeds. Interestingly, the ATM, ATR, BRCA1, RAD51, and WEE1 genes associated with the DNA damage response (DDR) pathway were activated in mbd4l-1, but not in 35S:MBD4L.3/mbd4l-1 or 35S:MBD4L.4/mbd4l-1 seeds. These results indicate that MBD4L is a key enzyme of a BER cascade that operates during seed imbibition, whose deficiency would cause genomic damage detected by DDR, generating a delay or reduction in germination.
Collapse
Affiliation(s)
- Ignacio Lescano López
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - José Roberto Torres
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Nicolás Miguel Cecchini
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - María Elena Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| |
Collapse
|
5
|
Shi Z, Liang G, Li S, Liu W. Adequate water supply enhances seedling growth and metabolism in Festuca kryloviana: insights from physiological and transcriptomic analys. BMC PLANT BIOLOGY 2024; 24:714. [PMID: 39060979 PMCID: PMC11282697 DOI: 10.1186/s12870-024-05353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Festuca kryloviana is a significant native grass species in the Qinghai Lake region, and its low emergence rate is a primary factor limiting the successful establishment of cultivated grasslands. The region's arid and low-rainfall climate characteristics result in reduced soil moisture content at the surface. Despite the recognized impact of water availability on plant growth, the specific role of moisture in seedling development remains not fully elucidated. This study aims to investigate the germination rate and seedling growth velocity of F. kryloviana seeds under varying moisture conditions, and to integrate physiological and transcriptomic analyses of seedlings under these conditions to reveal the mechanisms by which water influences seedling development. RESULTS The emergence rate of F. kryloviana seedlings exhibited an initial increase followed by a decrease with increasing moisture content. The highest emergence rate, reaching 75%, was observed under 20% soil moisture conditions. By the eighth day of the experiment, the lengths of the plumules and radicles under the optimal emergence rate (full water, FW) were 21.82% and 10.87% longer, respectively, than those under closely matching the soil moisture content during the background survey (stress water, SW). The differential development of seedlings under varying moisture regimes is attributed to sugar metabolism within the seeds and the accumulation of abscisic acid (ABA). At FW conditions, enhanced sugar metabolism, which generates more energy for seedling development, is facilitated by higher activities of α-amylase, sucrose synthase, and trehalose-6-phosphate synthase compared to SW conditions. This is reflected at the transcriptomic level with upregulated expression of the α-amylase (AMY2) gene and trehalose-6-phosphate synthase (TPS6), while genes associated with ABA signaling and transduction are downregulated. Additionally, under FW conditions, the expression of genes related to the chloroplast thylakoid photosystems, such as photosystem II (PSII) and photosystem I (PSI), is upregulated, enhancing the seedlings' light-capturing ability and photosynthetic efficiency, thereby improving their autotrophic capacity. Furthermore, FW treatment enhances the expression of the non-enzymatic antioxidant system, promoting metabolism within the seeds. In contrast, SW treatment increases the activity of the enzymatic antioxidant system, including peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT), to cope with water stress. CONCLUSIONS Our experiment systematically evaluated the impact of moisture conditions on the growth and development of F. kryloviana seedlings. Physiological and transcriptomic data collectively indicate that adequate water (20%) supply enhances seedling growth and development by reducing ABA levels and increasing α-amylase activity within seeds, thereby boosting sugar metabolism and promoting the growth of seedling, which in turn leads to an improved emergence rate. Considering water management in future cultivation practices may be a crucial strategy for enhancing the successful establishment of F. kryloviana in grassland ecosystems.
Collapse
Affiliation(s)
- Zhenghai Shi
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810000, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Chengbei District, Xining City, Qinghai Province, China
| | - Guoling Liang
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810000, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Chengbei District, Xining City, Qinghai Province, China
| | - Sida Li
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810000, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Chengbei District, Xining City, Qinghai Province, China
| | - Wenhui Liu
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810000, Qinghai, China.
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Chengbei District, Xining City, Qinghai Province, China.
| |
Collapse
|
6
|
Waterworth W, Balobaid A, West C. Seed longevity and genome damage. Biosci Rep 2024; 44:BSR20230809. [PMID: 38324350 PMCID: PMC11111285 DOI: 10.1042/bsr20230809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/08/2024] Open
Abstract
Seeds are the mode of propagation for most plant species and form the basis of both agriculture and ecosystems. Desiccation tolerant seeds, representative of most crop species, can survive maturation drying to become metabolically quiescent. The desiccated state prolongs embryo viability and provides protection from adverse environmental conditions, including seasonal periods of drought and freezing often encountered in temperate regions. However, the capacity of the seed to germinate declines over time and culminates in the loss of seed viability. The relationship between environmental conditions (temperature and humidity) and the rate of seed deterioration (ageing) is well defined, but less is known about the biochemical and genetic factors that determine seed longevity. This review will highlight recent advances in our knowledge that provide insight into the cellular stresses and protective mechanisms that promote seed survival, with a focus on the roles of DNA repair and response mechanisms. Collectively, these pathways function to maintain the germination potential of seeds. Understanding the molecular basis of seed longevity provides important new genetic targets for the production of crops with enhanced resilience to changing climates and knowledge important for the preservation of plant germplasm in seedbanks.
Collapse
Affiliation(s)
- Wanda Waterworth
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds LS2
9JT, U.K
| | - Atheer Balobaid
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds LS2
9JT, U.K
| | - Chris West
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds LS2
9JT, U.K
| |
Collapse
|
7
|
Dueñas C, Pagano A, Calvio C, Srikanthan DS, Slamet-Loedin I, Balestrazzi A, Macovei A. Genotype-specific germination behavior induced by sustainable priming techniques in response to water deprivation stress in rice. FRONTIERS IN PLANT SCIENCE 2024; 15:1344383. [PMID: 38390302 PMCID: PMC10881859 DOI: 10.3389/fpls.2024.1344383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Water stress brought about by climate change is among the major global concerns threatening food security. Rice is an important staple food which requires high water resources. Being a semi-aquatic plant, rice is particularly susceptible to drought. The aim of this work was to develop techniques directed to promote rice resilience to water deprivation stress during germination by implementing specific seed priming treatments. Five popular Italian rice varieties were subjected to priming treatments using novel, sustainable solutions, like poly-gamma-glutamic acid (γ-PGA), denatured γ-PGA (dPGA), and iron (Fe) pulsing, alone or in combination. The effect of the developed priming methods was tested under optimal conditions as well as under water deprivation stress imposed by polyethylene glycol (PEG) treatments. The priming efficacy was phenotypically determined in terms of germination behavior by measuring a series of parameters (germinability, germination index, mean germination time, seed vigor index, root and shoot length, germination stress tolerance index). Biochemical analyses were carried out to measure the levels of iron uptake and accumulation of reactive oxygen species (ROS). Integrative data analyses revealed that the rice varieties exhibited a strong genotype- and treatment-specific germination behavior. PEG strongly inhibited germination while most of the priming treatments were able to rescue it in all varieties tested except for Unico, which can be defined as highly stress sensitive. Molecular events (DNA repair, antioxidant response, iron homeostasis) associated with the transition from seed to seedling were monitored in terms of changes in gene expression profiles in two varieties sensitive to water deprivation stress with different responses to priming. The investigated genes appeared to be differentially expressed in a genotype-, priming treatment-, stress- and stage-dependent manner. The proposed seed priming treatments can be envisioned as sustainable and versatile agricultural practices that could help in addressing the impact of climate challenges on the agri-food system.
Collapse
Affiliation(s)
- Conrado Dueñas
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
| | - Andrea Pagano
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
| | - Cinzia Calvio
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
| | | | - Inez Slamet-Loedin
- Trait and Genome Engineering Cluster, Rice Breeding Innovations, International Rice Research Institute, Metro Manila, Philippines
| | - Alma Balestrazzi
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
| |
Collapse
|
8
|
Srivastava S, Tyagi R, Sharma S. Seed biopriming as a promising approach for stress tolerance and enhancement of crop productivity: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1244-1257. [PMID: 37824780 DOI: 10.1002/jsfa.13048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/04/2023] [Accepted: 10/13/2023] [Indexed: 10/14/2023]
Abstract
Chemicals are used extensively in agriculture to increase crop production to meet the nutritional needs of an expanding world population. However, their injudicious application adversely affects the soil's physical, chemical and biological properties, subsequently posing a substantial threat to human health and global food security. Beneficial microorganisms improve plant health and productivity with minimal impact on the environment; however, their efficacy greatly relies on the application technique. Biopriming is an advantageous technique that involves the treatment of seeds with beneficial biological agents. It exhibits immense potential in improving the physiological functioning of seeds, thereby playing a pivotal role in their uniform germination and vigor. Biopriming-mediated molecular and metabolic reprogramming imparts stress tolerance to plants, improves plant health, and enhances crop productivity. Furthermore, it is also associated with rehabilitating degraded land, and improving soil fertility, health and nutrient cycling. Although biopriming has vast applications in the agricultural system, its commercialization and utilization by farmers is still in its infancy. This review aims to critically analyze the recent studies based on biopriming-mediated stress mitigation by alteration in physiological, metabolic and molecular processes in plants. Additionally, considering the necessity of popularizing this technique, the major challenges and prospects linked to the commercialization and utilization of this technique in agricultural systems have also been discussed. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sonal Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Rashi Tyagi
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
9
|
Pirredda M, Fañanás-Pueyo I, Oñate-Sánchez L, Mira S. Seed Longevity and Ageing: A Review on Physiological and Genetic Factors with an Emphasis on Hormonal Regulation. PLANTS (BASEL, SWITZERLAND) 2023; 13:41. [PMID: 38202349 PMCID: PMC10780731 DOI: 10.3390/plants13010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Upon storage, seeds inevitably age and lose their viability over time, which determines their longevity. Longevity correlates with successful seed germination and enhancing this trait is of fundamental importance for long-term seed storage (germplasm conservation) and crop improvement. Seed longevity is governed by a complex interplay between genetic factors and environmental conditions experienced during seed development and after-ripening that will shape seed physiology. Several factors have been associated with seed ageing such as oxidative stress responses, DNA repair enzymes, and composition of seed layers. Phytohormones, mainly abscisic acid, auxins, and gibberellins, have also emerged as prominent endogenous regulators of seed longevity, and their study has provided new regulators of longevity. Gaining a thorough understanding of how hormonal signalling genes and pathways are integrated with downstream mechanisms related to seed longevity is essential for formulating strategies aimed at preserving seed quality and viability. A relevant aspect related to research in seed longevity is the existence of significant differences between results depending on the seed equilibrium relative humidity conditions used to study seed ageing. Hence, this review delves into the genetic, environmental and experimental factors affecting seed ageing and longevity, with a particular focus on their hormonal regulation. We also provide gene network models underlying hormone signalling aimed to help visualize their integration into seed longevity and ageing. We believe that the format used to present the information bolsters its value as a resource to support seed longevity research for seed conservation and crop improvement.
Collapse
Affiliation(s)
- Michela Pirredda
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro 2, 28040 Madrid, Spain;
| | - Iris Fañanás-Pueyo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Luis Oñate-Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Sara Mira
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro 2, 28040 Madrid, Spain;
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| |
Collapse
|
10
|
Taylor RE, Waterworth W, West CE, Foyer CH. WHIRLY proteins maintain seed longevity by effects on seed oxygen signalling during imbibition. Biochem J 2023; 480:941-956. [PMID: 37351567 PMCID: PMC10422932 DOI: 10.1042/bcj20230008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 06/24/2023]
Abstract
The WHIRLY (WHY) family of DNA/RNA binding proteins fulfil multiple but poorly characterised functions in plants. We analysed WHY protein functions in the Arabidopsis Atwhy1, Atwhy3, Atwhy1why3 single and double mutants and wild type controls. The Atwhy3 and Atwhy1why3 double mutants showed a significant delay in flowering, having more siliques per plant but with fewer seeds per silique than the wild type. While germination was similar in the unaged high-quality seeds of all lines, significant decreases in vigour and viability were observed in the aged mutant seeds compared with the wild type. Imbibition of unaged high-quality seeds was characterised by large increases in transcripts that encode proteins involved in oxygen sensing and responses to hypoxia. Seed aging resulted in a disruption of the imbibition-induced transcriptome profile such that transcripts encoding RNA metabolism and processing became the most abundant components of the imbibition signature. The imbibition-related profile of the Atwhy1why3 mutant seeds, was characterised by decreased expression of hypoxia-related and oxygen metabolism genes even in the absence of aging. Seed aging further decreased the abundance of hypoxia-related and oxygen metabolism transcripts relative to the wild type. These findings suggest that the WHY1 and WHY3 proteins regulate the imbibition-induced responses to oxygen availability and hypoxia. Loss of WHY1 and WHY3 functions decreases the ability of Arabidopsis seeds to resist the adverse effects of seed aging.
Collapse
Affiliation(s)
- Rachel E. Taylor
- The Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Wanda Waterworth
- The Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Christopher E West
- The Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, U.K
| |
Collapse
|
11
|
Pagano A, Kunz L, Dittmann A, Araújo SDS, Macovei A, Shridhar Gaonkar S, Sincinelli F, Wazeer H, Balestrazzi A. Changes in Medicago truncatula seed proteome along the rehydration-dehydration cycle highlight new players in the genotoxic stress response. FRONTIERS IN PLANT SCIENCE 2023; 14:1188546. [PMID: 37409306 PMCID: PMC10319343 DOI: 10.3389/fpls.2023.1188546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/24/2023] [Indexed: 07/07/2023]
Abstract
Introduction Several molecular aspects underlying the seed response to priming and the resulting vigor profile are still poorly understood. Mechanisms involved in genome maintenance deserve attention since the balance between stimulation of germination and DNA damage accumulation versus active repair is a key determinant for designing successful seed priming protocols. Methods Changes in the Medicago truncatula seed proteome were investigated in this study, using discovery mass spectrometry and label-free quantification, along the rehydration-dehydration cycle of a standard vigorization treatment (hydropriming plus dry-back), and during post-priming imbibition. Resuts and discussion From 2056 to 2190 proteins were detected in each pairwise comparison, among which six were differentially accumulated and 36 were detected only in one condition. The following proteins were selected for further investigation: MtDRP2B (DYNAMIN-RELATED PROTEIN), MtTRXm4 (THIOREDOXIN m4), and MtASPG1 (ASPARTIC PROTEASE IN GUARD CELL 1) showing changes in seeds under dehydration stress; MtITPA (INOSINE TRIPHOSPHATE PYROPHOSPHORYLASE), MtABA2 (ABSCISIC ACID DEFICIENT 2), MtRS2Z32 (SERINE/ARGININE-RICH SPLICING FACTOR RS2Z32), and MtAQR (RNA HELICASE AQUARIUS) that were differentially regulated during post-priming imbibition. Changes in the corresponding transcript levels were assessed by qRT-PCR. In animal cells, ITPA hydrolyses 2'-deoxyinosine triphosphate and other inosine nucleotides, preventing genotoxic damage. A proof of concept was performed by imbibing primed and control M. truncatula seeds in presence/absence of 20 mM 2'-deoxyinosine (dI). Results from comet assay highlighted the ability of primed seeds to cope with dI-induced genotoxic damage. The seed repair response was assessed by monitoring the expression profiles of MtAAG (ALKYL-ADENINE DNA GLYCOSILASE) and MtEndoV (ENDONUCLEASE V) genes that participate in the repair of the mismatched I:T pair in BER (base excision repair) and AER (alternative excision repair) pathways, respectively.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Pavia, Italy
| | - Laura Kunz
- Functional Genomics Center Zurich (FGCZ), University of Zurich/Eidgenossische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Antje Dittmann
- Functional Genomics Center Zurich (FGCZ), University of Zurich/Eidgenossische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Susana De Sousa Araújo
- Association BLC3 - Campus of Technology and Innovation, Centre BIO R&D Unit | North Delegation, Macedo de Cavaleiros, Portugal
| | - Anca Macovei
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Pavia, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | | | - Federico Sincinelli
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Pavia, Italy
| | - Hisham Wazeer
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Pavia, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
12
|
Prasad C T M, Kodde J, Angenent GC, Hay FR, McNally KL, Groot SPC. Identification of the rice Rc gene as a main regulator of seed survival under dry storage conditions. PLANT, CELL & ENVIRONMENT 2023; 46:1962-1980. [PMID: 36891587 DOI: 10.1111/pce.14581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 05/04/2023]
Abstract
Seed deterioration during storage results in poor germination, reduced vigour, and non-uniform seedling emergence. The aging rate depends on storage conditions and genetic factors. This study aims to identify these genetic factors determining the longevity of rice (Oryza sativa L.) seeds stored under experimental aging conditions mimicking long-term dry storage. Genetic variation for tolerance to aging was studied in 300 Indica rice accessions by storing dry seeds under an elevated partial pressure of oxygen (EPPO) condition. A genome-wide association analysis identified 11 unique genomic regions for all measured germination parameters after aging, differing from those previously identified in rice under humid experimental aging conditions. The significant single nucleotide polymorphism in the most prominent region was located within the Rc gene, encoding a basic helix-loop-helix transcription factor. Storage experiments using near-isogenic rice lines (SD7-1D (Rc) and SD7-1d (rc) with the same allelic variation confirmed the role of the wildtype Rc gene, providing stronger tolerance to dry EPPO aging. In the seed pericarp, a functional Rc gene results in accumulation of proanthocyanidins, an important sub-class of flavonoids having strong antioxidant activity, which may explain the variation in tolerance to dry EPPO aging.
Collapse
Affiliation(s)
- Manjunath Prasad C T
- Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
- Department of Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jan Kodde
- Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Gerco C Angenent
- Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Fiona R Hay
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | | | - Steven P C Groot
- Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
13
|
Pagano A, Macovei A, Balestrazzi A. Molecular dynamics of seed priming at the crossroads between basic and applied research. PLANT CELL REPORTS 2023; 42:657-688. [PMID: 36780009 PMCID: PMC9924218 DOI: 10.1007/s00299-023-02988-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The potential of seed priming is still not fully exploited. Our limited knowledge of the molecular dynamics of seed pre-germinative metabolism is the main hindrance to more effective new-generation techniques. Climate change and other recent global crises are disrupting food security. To cope with the current demand for increased food, feed, and biofuel production, while preserving sustainability, continuous technological innovation should be provided to the agri-food sector. Seed priming, a pre-sowing technique used to increase seed vigor, has become a valuable tool due to its potential to enhance germination and stress resilience under changing environments. Successful priming protocols result from the ability to properly act on the seed pre-germinative metabolism and stimulate events that are crucial for seed quality. However, the technique still requires constant optimization, and researchers are committed to addressing some key open questions to overcome such drawbacks. In this review, an update of the current scientific and technical knowledge related to seed priming is provided. The rehydration-dehydration cycle associated with priming treatments can be described in terms of metabolic pathways that are triggered, modulated, or turned off, depending on the seed physiological stage. Understanding the ways seed priming affects, either positively or negatively, such metabolic pathways and impacts gene expression and protein/metabolite accumulation/depletion represents an essential step toward the identification of novel seed quality hallmarks. The need to expand the basic knowledge on the molecular mechanisms ruling the seed response to priming is underlined along with the strong potential of applied research on primed seeds as a source of seed quality hallmarks. This route will hasten the implementation of seed priming techniques needed to support sustainable agriculture systems.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy.
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy.
| |
Collapse
|
14
|
Louis N, Dhankher OP, Puthur JT. Seed priming can enhance and retain stress tolerance in ensuing generations by inducing epigenetic changes and trans-generational memory. PHYSIOLOGIA PLANTARUM 2023; 175:e13881. [PMID: 36840678 DOI: 10.1111/ppl.13881] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The significance of priming in enhancing abiotic stress tolerance is well-established in several important crops. Priming positively impacts plant growth and improves stress tolerance at multiple developmental stages, and seed priming is one of the most used methods. Seed priming influences the pre-germinative metabolism that ensures proper germination, early seedling establishment, enhanced stress tolerance and yield, even under unfavourable environmental conditions. Seed priming involves pre-exposure of seeds to mild stress, and this pre-treatment induces specific changes at the physiological and molecular levels. Interestingly, priming can improve the efficiency of the DNA repair mechanism, along with activation of specific signalling proteins and transcription factors for rapid and efficient stress tolerance. Notably, such acquired stress tolerance may be retained for longer duration, namely, later developmental stages or even subsequent generations. Epigenetic and chromatin-based mechanisms such as DNA methylation, histone modifications, and nucleosome positioning are some of the key molecular changes involved in priming/stress memory. Further, the retention of induced epigenetic changes may influence the priming-induced trans-generational stress memory. This review discusses known and plausible seed priming-induced molecular mechanisms that govern germination and stress memory within and across generations, highlighting their role in regulating the plant response to abiotic stresses. Understanding the molecular mechanism for activation of stress-responsive genes and the epigenetic changes resulting from seed priming will help to improve the resiliency of the crops for enhanced productivity under extreme environments.
Collapse
Affiliation(s)
- Noble Louis
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Malapuram, Kerala, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Malapuram, Kerala, India
| |
Collapse
|
15
|
Nadarajan J, Walters C, Pritchard HW, Ballesteros D, Colville L. Seed Longevity-The Evolution of Knowledge and a Conceptual Framework. PLANTS (BASEL, SWITZERLAND) 2023; 12:471. [PMID: 36771556 PMCID: PMC9919896 DOI: 10.3390/plants12030471] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
The lifespan or longevity of a seed is the time period over which it can remain viable. Seed longevity is a complex trait and varies greatly between species and even seed lots of the same species. Our scientific understanding of seed longevity has advanced from anecdotal 'Thumb Rules,' to empirically based models, biophysical explanations for why those models sometimes work or fail, and to the profound realisation that seeds are the model of the underexplored realm of biology when water is so limited that the cytoplasm solidifies. The environmental variables of moisture and temperature are essential factors that define survival or death, as well as the timescale to measure lifespan. There is an increasing understanding of how these factors induce cytoplasmic solidification and affect glassy properties. Cytoplasmic solidification slows down, but does not stop, the chemical reactions involved in ageing. Continued degradation of proteins, lipids and nucleic acids damage cell constituents and reduce the seed's metabolic capacity, eventually impairing the ability to germinate. This review captures the evolution of knowledge on seed longevity over the past five decades in relation to seed ageing mechanisms, technology development, including tools to predict seed storage behaviour and non-invasive techniques for seed longevity assessment. It is concluded that seed storage biology is a complex science covering seed physiology, biophysics, biochemistry and multi-omic technologies, and simultaneous knowledge advancement in these areas is necessary to improve seed storage efficacy for crops and wild species biodiversity conservation.
Collapse
Affiliation(s)
- Jayanthi Nadarajan
- The New Zealand Institute for Plant and Food Research Limited, Food Industry Science Centre, Palmerston North 4410, New Zealand
| | - Christina Walters
- USDA—Agricultural Research Service, National Laboratory for Genetic Resources Preservation, Fort Collins, CO 80521, USA
| | - Hugh W. Pritchard
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath RH17 6TN, UK
- Chinese Academy of Sciences, Kunming Institute of Botany, Kunming 650201, China
| | - Daniel Ballesteros
- Faculty of Farmacy, Department of Botany and Geology, University of Valencia, Av. Vicent Estelles s/n, 46100 Valencia, Spain
| | - Louise Colville
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath RH17 6TN, UK
| |
Collapse
|
16
|
Trusiak M, Plitta-Michalak BP, Michalak M. Choosing the Right Path for the Successful Storage of Seeds. PLANTS (BASEL, SWITZERLAND) 2022; 12:72. [PMID: 36616200 PMCID: PMC9823941 DOI: 10.3390/plants12010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Seeds are the most commonly used source of storage material to preserve the genetic diversity of plants. However, prior to the deposition of seeds in gene banks, several questions need to be addressed. Here, we illustrate the scheme that can be used to ensure that the most optimal conditions are identified to enable the long-term storage of seeds. The main questions that need to be answered pertain to the production of viable seeds by plants, the availability of proper protocols for dormancy alleviation and germination, seed tolerance to desiccation and cold storage at -20 °C. Finally, it is very important to fully understand the capability or lack thereof for seeds or their explants to tolerate cryogenic conditions. The proper storage regimes for orthodox, intermediate and recalcitrant seeds are discussed.
Collapse
Affiliation(s)
- Magdalena Trusiak
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, M. Oczapowskiego 1A, 10-721 Olsztyn, Poland
| | | | - Marcin Michalak
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, M. Oczapowskiego 1A, 10-721 Olsztyn, Poland
| |
Collapse
|
17
|
Pereira Neto LG, Rossini BC, Marino CL, Toorop PE, Silva EAA. Comparative Seeds Storage Transcriptome Analysis of Astronium fraxinifolium Schott, a Threatened Tree Species from Brazil. Int J Mol Sci 2022; 23:ijms232213852. [PMID: 36430327 PMCID: PMC9696909 DOI: 10.3390/ijms232213852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2022] Open
Abstract
Astronium fraxinifolium Schott (Anacardiaceae), also known as a 'gonçalo-alves', is a tree of the American tropics, with distribution in Mexico, part of Central America, Argentina, Bolivia, Brazil and Paraguay. In Brazil it is an endangered species that occurs in the Cerrado, Caatinga and in the Amazon biomes. In support of ex situ conservation, this work aimed to study two accessions with different longevity (p50) of A. fraxinifolium collected from two different geographic regions, and to evaluate the transcriptome during aging of the seeds in order to identify genes related to seed longevity. Artificial ageing was performed at a constant temperature of 45 °C and 60% relative humidity. RNA was extracted from 100 embryonic axes exposed to control and aging conditions for 21 days. The transcriptome analysis revealed differentially expressed genes such as Late Embryogenesis Abundant (LEA) genes, genes involved in the photosystem, glycine rich protein (GRP) genes, and several transcription factors associated with embryo development and ubiquitin-conjugating enzymes. Thus, these results contribute to understanding which genes play a role in seed ageing, and may serve as a basis for future functional characterization of the seed aging process in A. fraxinifolium.
Collapse
Affiliation(s)
| | - Bruno Cesar Rossini
- Biotechnology Institute, São Paulo State University “Júlio de Mesquita Filho”, Botucatu 18607-440, Brazil
- Correspondence:
| | - Celso Luis Marino
- Biotechnology Institute, São Paulo State University “Júlio de Mesquita Filho”, Botucatu 18607-440, Brazil
- Departament of Biological and Chemical Sciences, Biosciences Institute, São Paulo State University “Júlio de Mesquita Filho”, Botucatu 18618-689, Brazil
| | - Peter E. Toorop
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK
| | - Edvaldo Aparecido Amaral Silva
- Departamento de Produção Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu 18610-034, Brazil
| |
Collapse
|
18
|
Niñoles R, Planes D, Arjona P, Ruiz-Pastor C, Chazarra R, Renard J, Bueso E, Forment J, Serrano R, Kranner I, Roach T, Gadea J. Comparative analysis of wild-type accessions reveals novel determinants of Arabidopsis seed longevity. PLANT, CELL & ENVIRONMENT 2022; 45:2708-2728. [PMID: 35672914 DOI: 10.1111/pce.14374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Understanding the genetic factors involved in seed longevity is of paramount importance in agricultural and ecological contexts. The polygenic nature of this trait suggests that many of them remain undiscovered. Here, we exploited the contrasting seed longevity found amongst Arabidopsis thaliana accessions to further understand this phenomenon. Concentrations of glutathione were higher in longer-lived than shorter-lived accessions, supporting that redox poise plays a prominent role in seed longevity. However, high seed permeability, normally associated with shorter longevity, is also present in long-lived accessions. Dry seed transcriptome analysis indicated that the contribution to longevity of stored messenger RNA (mRNAs) is complex, including mainly accession-specific mechanisms. The detrimental effect on longevity caused by other factors may be counterbalanced by higher levels of specific mRNAs stored in dry seeds, for instance those of heat-shock proteins. Indeed, loss-of-function mutant analysis demonstrated that heat-shock factors HSF1A and 1B contributed to longevity. Furthermore, mutants of the stress-granule zinc-finger protein TZF9 or the spliceosome subunits MOS4 or MAC3A/MAC3B, extended seed longevity, positioning RNA as a novel player in the regulation of seed viability. mRNAs of proteins with putative relevance to longevity were also abundant in shorter-lived accessions, reinforcing the idea that resistance to ageing is determined by multiple factors.
Collapse
Affiliation(s)
- Regina Niñoles
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Dolores Planes
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Paloma Arjona
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Carmen Ruiz-Pastor
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Rubén Chazarra
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Joan Renard
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Eduardo Bueso
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Javier Forment
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Ramón Serrano
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Ilse Kranner
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Thomas Roach
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - José Gadea
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
19
|
Abstract
The desiccated, quiescent state of seeds confers extended survival of the embryonic plant. However, accumulation of striking levels of genome damage in quiescence impairs germination and threatens plant survival. The mechanisms by which seeds mitigate this damage remain unclear. Here, we reveal that imbibed Arabidopsis seeds display high resistance to DNA damage, which is lost as seeds advance to germination, coincident with increasing cell cycle activity. In contrast to seedlings, we show that seeds minimize the impact of DNA damage by reducing meristem disruption and delaying SOG1-dependent programmed cell death. This promotes root growth early postgermination. In response to naturally accumulated DNA damage in aging seeds, SOG1 activates cell death postgermination. SOG1 activities are also important for promoting successful seedling establishment. These distinct cellular responses of seeds and seedlings are reflected by different DNA damage transcriptional profiles. Comparative analysis of DNA repair mutants identifies roles of the major genome maintenance pathways in germination but that the repair of cytotoxic chromosomal breaks is the most important for seed longevity. Collectively, these results indicate that high levels of DNA damage incurred in seeds are countered by low cell cycle activity, cell cycle checkpoints, and DNA repair, promoting successful seedling establishment. Our findings reveal insight into both the physiological significance of plant DNA damage responses and the mechanisms which maintain seed longevity, important for survival of plant populations in the natural environment and sustainable crop production under changing climates.
Collapse
|
20
|
Chu Z, Wang H, Wang Y, Chang S, Jia S, Pang L, Xi C, Liu J, Zhao H, Zhou X, Han S, Wang Y. OsHSD2 interaction with and phosphorylation by OsCPK21 is essential for lipid metabolism during rice caryopsis development. JOURNAL OF PLANT PHYSIOLOGY 2022; 274:153714. [PMID: 35569367 DOI: 10.1016/j.jplph.2022.153714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Rice calcium-dependent protein kinase 21 (OsCPK21) is specifically and highly expressed throughout reproductive development and plays a critical role in rice pollen development by indirectly regulating the MIKC*-type MADS box transcription factor. However, little is known about the function of OsCPK21 in rice caryopsis development. In this study, we performed an in vitro pull-down experiment followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and identified hydroxysteroid dehydrogenase 2 (HSD2) as a candidate OsCPK21-interacting protein in 25 DAF (days after flowering) rice caryopses. Then, we verified the interaction between OsCPK21 and OsHSD2 using yeast two-hybrid and bimolecular fluorescence assays and revealed the in vitro phosphorylation of OsHSD2 by OsCPK21. Furthermore, oscpk21 and oshsd2 mutants were generated by the CRISPR/Cas9 technique, and we found that the lipid profiles were drastically changed in both oscpk21 and oshsd2, implying that OsHSD2 phosphorylated by OsCPK21 regulates lipid abundance in caryopsis development, thereby providing a potential target for the genetic improvement of rice grain quality in future lipid-related breeding and biotechnology applications.
Collapse
Affiliation(s)
- Zhilin Chu
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hanmeng Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yinxing Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shu Chang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shenghua Jia
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Lu Pang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Chao Xi
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jin Liu
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiaojin Zhou
- Department of Crop Genomic & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China; Academy of Plateau Science and Sustainability of the People's Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining, 810008, Qinghai, China.
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China; Academy of Plateau Science and Sustainability of the People's Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining, 810008, Qinghai, China.
| |
Collapse
|
21
|
Michalak M, Plitta-Michalak BP, Naskręt-Barciszewska MZ, Barciszewski J, Chmielarz P. DNA Methylation as an Early Indicator of Aging in Stored Seeds of “Exceptional” Species Populus nigra L. Cells 2022; 11:cells11132080. [PMID: 35805164 PMCID: PMC9265770 DOI: 10.3390/cells11132080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Ex situ preservation of genetic resources is an essential strategy for the conservation of plant biodiversity. In this regard, seed storage is the most convenient and efficient way of preserving germplasm for future plant breeding efforts. A better understanding of the molecular changes that occur during seed desiccation and aging is necessary to improve conservation protocols, as well as real-time methods for monitoring seed quality. In the present study, we assessed changes in the level of genomic 5-methylcytosine (5mC) in seeds of Populus nigra L. by 2D-TLC. Epigenetic changes were characterized in response to several seed storage regimes. Our results demonstrate that P. nigra seeds represent an intermediate type of post-harvest behavior, falling between recalcitrant and orthodox seeds. This was also true for the epigenetic response of P. nigra seeds to external factors. A crucial question is whether aging in seeds is initiated by a decline in the level of 5mC, or if epigenetic changes induce a process that leads to deterioration. In our study, we demonstrate for the first time that 5mC levels decrease during storage and that the decline can be detected before any changes in seed germination are evident. Once P. nigra seeds reached an 8–10% reduction in the level of 5mC, a substantial decrease in germination occurred. The decline in the level of 5mC appears to be a critical parameter underlying the rapid deterioration of intermediate seeds. Thus, the measurement of 5mC can be a fast, real-time method for assessing asymptomatic aging in stored seeds.
Collapse
Affiliation(s)
- Marcin Michalak
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, M Oczapowskiego 1A, 10-721 Olsztyn, Poland;
- Correspondence: ; Tel.: +48-89-523-44-55
| | - Beata Patrycja Plitta-Michalak
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, M Oczapowskiego 1A, 10-721 Olsztyn, Poland;
- Department of Chemistry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 4, 10-719 Olsztyn, Poland
| | | | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznan, Poland; (M.Z.N.-B.); (J.B.)
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Paweł Chmielarz
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland;
| |
Collapse
|
22
|
Hay FR, Rezaei S, Buitink J. Seed Moisture Isotherms, Sorption Models, and Longevity. FRONTIERS IN PLANT SCIENCE 2022; 13:891913. [PMID: 35720538 PMCID: PMC9201756 DOI: 10.3389/fpls.2022.891913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/09/2022] [Indexed: 05/26/2023]
Abstract
Seed moisture sorption isotherms show the equilibrium relationship between water content and equilibrium relative humidity (eRH) when seeds are either losing water from a hydrated state (desorption isotherm) or gaining water from a dry state (adsorption isotherm). They have been used in food science to predict the stability of different products and to optimize drying and/or processing. Isotherms have also been applied to understand the physiological processes occurring in viable seeds and how sorption properties differ in relation to, for example, developmental maturity, degree of desiccation tolerance, or dormancy status. In this review, we describe how sorption isotherms can help us understand how the longevity of viable seeds depends upon how they are dried and the conditions under which they are stored. We describe different ways in which isotherms can be determined, how the data are modeled using various theoretical and non-theoretical equations, and how they can be interpreted in relation to storage stability.
Collapse
Affiliation(s)
- Fiona R. Hay
- Department of Agroecology, University of Aarhus, Slagelse, Denmark
| | - Shabnam Rezaei
- Department of Agroecology, University of Aarhus, Slagelse, Denmark
| | - Julia Buitink
- Université d'Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| |
Collapse
|
23
|
Pagano A, Zannino L, Pagano P, Doria E, Dondi D, Macovei A, Biggiogera M, Araújo SDS, Balestrazzi A. Changes in genotoxic stress response, ribogenesis and PAP (3'-phosphoadenosine 5'-phosphate) levels are associated with loss of desiccation tolerance in overprimed Medicago truncatula seeds. PLANT, CELL & ENVIRONMENT 2022; 45:1457-1473. [PMID: 35188276 PMCID: PMC9311706 DOI: 10.1111/pce.14295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 05/06/2023]
Abstract
Re-establishment of desiccation tolerance is essential for the survival of germinated seeds facing water deficit in the soil. The molecular and ultrastructural features of desiccation tolerance maintenance and loss within the nuclear compartment are not fully resolved. In the present study, the impact of desiccation-induced genotoxic stress on nucleolar ultrastructure and ribogenesis was explored along the rehydration-dehydration cycle applied in standard seed vigorization protocols. Primed and overprimed Medicago truncatula seeds, obtained through hydropriming followed by desiccation (dry-back), were analysed. In contrast to desiccation-tolerant primed seeds, overprimed seeds enter irreversible germination and do not survive dry-back. Reactive oxygen species, DNA damage and expression profiles of antioxidant/DNA Damage Response genes were measured, as main hallmarks of the seed response to desiccation stress. Nuclear ultrastructural features were also investigated. Overprimed seeds subjected to dry-back revealed altered rRNA accumulation profiles and up-regulation of genes involved in ribogenesis control. The signal molecule PAP (3'-phosphoadenosine 5'-phosphate) accumulated during dry-back only in primed seeds, as a distinctive feature of desiccation tolerance. The presented results show the molecular and ultrastructural landscapes of the seed desiccation response, including substantial changes in nuclear organization.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| | - Lorena Zannino
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| | - Paola Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| | - Enrico Doria
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| | - Daniele Dondi
- Department of ChemistryUniversity of PaviaPaviaItaly
| | - Anca Macovei
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| | - Marco Biggiogera
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| | - Susana de Sousa Araújo
- Association BLC3‐Technology and Innovation CampusCentre Bio R&D UnitMacedo de CavaleirosPortugal
| | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| |
Collapse
|
24
|
Gianella M, Doria E, Dondi D, Milanese C, Gallotti L, Börner A, Zannino L, Macovei A, Pagano A, Guzzon F, Biggiogera M, Balestrazzi A. Physiological and molecular aspects of seed longevity: exploring intra-species variation in eight Pisum sativum L. accessions. PHYSIOLOGIA PLANTARUM 2022; 174:e13698. [PMID: 35526223 PMCID: PMC9321030 DOI: 10.1111/ppl.13698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/20/2022] [Accepted: 05/02/2022] [Indexed: 05/12/2023]
Abstract
Conservation of plant genetic diversity is fundamental for crop improvement, increasing agricultural production and sustainability, especially in the face of climatic changes. Although seed longevity is essential for the management of seed banks, few studies have, so far, addressed differences in this trait among the accessions of a single species. Eight Pisum sativum L. (pea) accessions were investigated to study the impact of long-term (approximately 20 years) storage, aiming to reveal contrasting seed longevity and clarify the causes for these differences. The outstanding seed longevity observed in the G4 accession provided a unique experimental system. To characterize the biochemical and physical status of stored seeds, reactive oxygen species, lipid peroxidation, tocopherols, free proline and reducing sugars were measured. Thermoanalytical measurements (thermogravimetry and differential scanning calorimetry) and transmission electron microscopy combined with immunohistochemical analysis were performed. The long-lived G4 seeds neither consumed tocopherols during storage nor showed free proline accumulation, as a deterioration hallmark, whereas reducing sugars were not affected. Thermal decomposition suggested a biomass composition compatible with the presence of low molecular weight molecules. Expansion of heterochromatic areas and reduced occurrence of γH2AX foci were highlighted in the nucleus of G4 seeds. The longevity of G4 seeds correlates with the occurrence of a reducing cellular environment and a nuclear ultrastructure favourable to genome stability. This work brings novelty to the study of within-species variations in seed longevity, underlining the relevance of multidisciplinary approaches in seed longevity research.
Collapse
Affiliation(s)
- Maraeva Gianella
- Department of Biology and Biotechnology ‘L. Spallanzani’University of PaviaPaviaItaly
- Royal Botanic Gardens, Kew, Wakehurst, ArdinglyHaywards HeathWest SussexUK
| | - Enrico Doria
- Department of Biology and Biotechnology ‘L. Spallanzani’University of PaviaPaviaItaly
| | - Daniele Dondi
- C.S.G.I. & Department of ChemistryUniversity of PaviaPaviaItaly
| | - Chiara Milanese
- C.S.G.I. & Department of ChemistryUniversity of PaviaPaviaItaly
| | - Lucia Gallotti
- C.S.G.I. & Department of ChemistryUniversity of PaviaPaviaItaly
| | - Andreas Börner
- Genebank DepartmentLeibniz Institute of Plant Genetics and Crop Plant Research (IPK) CorrensstrSeelandGermany
| | - Lorena Zannino
- Department of Biology and Biotechnology ‘L. Spallanzani’University of PaviaPaviaItaly
| | - Anca Macovei
- Department of Biology and Biotechnology ‘L. Spallanzani’University of PaviaPaviaItaly
| | - Andrea Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani’University of PaviaPaviaItaly
| | - Filippo Guzzon
- International Maize and Wheat Improvement Center (CIMMYT)Carretera México‐VeracruzTexcocoMexico StateMexico
- Centre for Pacific Crops and Trees (CePaCT), Land Resource Division (LRD)Pacific Community (SPC)SuvaFiji
| | - Marco Biggiogera
- Department of Biology and Biotechnology ‘L. Spallanzani’University of PaviaPaviaItaly
| | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘L. Spallanzani’University of PaviaPaviaItaly
| |
Collapse
|
25
|
Pagano A, Gualtieri C, Mutti G, Raveane A, Sincinelli F, Semino O, Balestrazzi A, Macovei A. Identification and Characterization of SOG1 (Suppressor of Gamma Response 1) Homologues in Plants Using Data Mining Resources and Gene Expression Profiling. Genes (Basel) 2022; 13:667. [PMID: 35456473 PMCID: PMC9026448 DOI: 10.3390/genes13040667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022] Open
Abstract
SOG1 (Suppressor of the Gamma response 1) is the master-regulator of plant DNA damage response (DDR), a highly coordinated network of DNA damage sensors, transducers, mediators, and effectors, with highly coordinated activities. SOG1 transcription factor belongs to the NAC/NAM protein family, containing the well-conserved NAC domain and five serine-glutamine (SQ) motifs, preferential targets for phosphorylation by ATM and ATR. So far, the information gathered for the SOG1 function comes from studies on the model plant Arabidopsis thaliana. To expand the knowledge on plant-specific DDR, it is opportune to gather information on other SOG1 orthologues. The current study identified plants where multiple SOG1 homologues are present and evaluated their functions by leveraging the information contained in publicly available transcriptomics databases. This analysis revealed the presence of multiple SOG1 sequences in thirteen plant species, and four (Medicago truncatula, Glycine max, Kalankoe fedtschenkoi, Populus trichocarpa) were selected for gene expression data mining based on database availability. Additionally, M. truncatula seeds and seedlings exposed to treatments known to activate DDR pathways were used to evaluate the expression profiles of MtSOG1a and MtSOG1b. The experimental workflow confirmed the data retrieved from transcriptomics datasets, suggesting that the SOG1 homologues have redundant functions in different plant species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anca Macovei
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (A.P.); (C.G.); (G.M.); (A.R.); (F.S.); (O.S.); (A.B.)
| |
Collapse
|
26
|
Li J, Liang W, Liu Y, Ren Z, Ci D, Chang J, Qian W. The Arabidopsis ATR-SOG1 signaling module regulates pleiotropic developmental adjustments in response to 3'-blocked DNA repair intermediates. THE PLANT CELL 2022; 34:852-866. [PMID: 34791445 PMCID: PMC8824664 DOI: 10.1093/plcell/koab282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/08/2021] [Indexed: 06/01/2023]
Abstract
Base excision repair and active DNA demethylation produce repair intermediates with DNA molecules blocked at the 3'-OH end by an aldehyde or phosphate group. However, both the physiological consequences of these accumulated single-strand DNAs break with 3'-blocked ends (DNA 3'-blocks) and the signaling pathways responding to unrepaired DNA 3'-blocks remain unclear in plants. Here, we investigated the effects of DNA 3'-blocks on plant development using the zinc finger DNA 3'-phosphoesterase (zdp) AP endonuclease2 (ape2) double mutant, in which 3'-blocking residues are poorly repaired. The accumulation of DNA 3'-blocked triggered diverse developmental defects that were dependent on the ATM and RAD3-related (ATR)-suppressor of gamma response 1 (SOG1) signaling module. SOG1 mutation rescued the developmental defects of zdp ape2 leaves by preventing cell endoreplication and promoting cell proliferation. However, SOG1 mutation caused intensive meristematic cell death in the radicle of zdp ape2 following germination, resulting in rapid termination of radicle growth. Notably, mutating FORMAMIDOPYRIMIDINE DNA GLYCOSYLASE (FPG) in zdp ape2 sog1 partially recovered its radicle growth, demonstrating that DNA 3'-blocks generated by FPG caused the meristematic defects. Surprisingly, despite lacking a functional radicle, zdp ape2 sog1 mutants compensated the lack of root growth by generating anchor roots having low levels of DNA damage response. Our results reveal dual roles of SOG1 in regulating root establishment when seeds germinate with excess DNA 3'-blocks.
Collapse
Affiliation(s)
- Jinchao Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenjie Liang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Yi Liu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhitong Ren
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Dong Ci
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jinjie Chang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
27
|
Pedroza-Garcia JA, Xiang Y, De Veylder L. Cell cycle checkpoint control in response to DNA damage by environmental stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:490-507. [PMID: 34741364 DOI: 10.1111/tpj.15567] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Being sessile organisms, plants are ubiquitously exposed to stresses that can affect the DNA replication process or cause DNA damage. To cope with these problems, plants utilize DNA damage response (DDR) pathways, consisting of both highly conserved and plant-specific elements. As a part of this DDR, cell cycle checkpoint control mechanisms either pause the cell cycle, to allow DNA repair, or lead cells into differentiation or programmed cell death, to prevent the transmission of DNA errors in the organism through mitosis or to its offspring via meiosis. The two major DDR cell cycle checkpoints control either the replication process or the G2/M transition. The latter is largely overseen by the plant-specific SOG1 transcription factor, which drives the activity of cyclin-dependent kinase inhibitors and MYB3R proteins, which are rate limiting for the G2/M transition. By contrast, the replication checkpoint is controlled by different players, including the conserved kinase WEE1 and likely the transcriptional repressor RBR1. These checkpoint mechanisms are called upon during developmental processes, in retrograde signaling pathways, and in response to biotic and abiotic stresses, including metal toxicity, cold, salinity, and phosphate deficiency. Additionally, the recent expansion of research from Arabidopsis to other model plants has revealed species-specific aspects of the DDR. Overall, it is becoming evidently clear that the DNA damage checkpoint mechanisms represent an important aspect of the adaptation of plants to a changing environment, hence gaining more knowledge about this topic might be helpful to increase the resilience of plants to climate change.
Collapse
Affiliation(s)
- José Antonio Pedroza-Garcia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | - Yanli Xiang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| |
Collapse
|
28
|
Plitta-Michalak BP, Ramos AA, Pupel P, Michalak M. Oxidative damage and DNA repair in desiccated recalcitrant embryonic axes of Acer pseudoplatanus L. BMC PLANT BIOLOGY 2022; 22:40. [PMID: 35045819 PMCID: PMC8767751 DOI: 10.1186/s12870-021-03419-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Most plants encounter water stress at one or more different stages of their life cycle. The maintenance of genetic stability is the integral component of desiccation tolerance that defines the storage ability and long-term survival of seeds. Embryonic axes of desiccation-sensitive recalcitrant seeds of Acer pseudoplatnus L. were used to investigate the genotoxic effect of desiccation. Alkaline single-cell gel electrophoresis (comet assay) methodology was optimized and used to provide unique insights into the onset and repair of DNA strand breaks and 8-oxo-7,8-dihydroguanine (8-oxoG) formation during progressive steps of desiccation and rehydration. RESULTS The loss of DNA integrity and impairment of damage repair were significant predictors of the viability of embryonic axes. In contrast to the comet assay, automated electrophoresis failed to detect changes in DNA integrity resulting from desiccation. Notably, no significant correlation was observed between hydroxyl radical (٠OH) production and 8-oxoG formation, although the former is regarded to play a major role in guanine oxidation. CONCLUSIONS The high-throughput comet assay represents a sensitive tool for monitoring discrete changes in DNA integrity and assessing the viability status in plant germplasm processed for long-term storage.
Collapse
Affiliation(s)
- Beata P. Plitta-Michalak
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A/103, 10-719 Olsztyn, Poland
| | - Alice A. Ramos
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U. Porto), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Center for Marine and Environmental Research (CIIMAR), University of Porto (U. Porto), Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Piotr Pupel
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A/103, 10-719 Olsztyn, Poland
| | - Marcin Michalak
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A/103, 10-719 Olsztyn, Poland
| |
Collapse
|
29
|
Transcriptomics View over the Germination Landscape in Biofortified Rice. Genes (Basel) 2021; 12:genes12122013. [PMID: 34946962 PMCID: PMC8700799 DOI: 10.3390/genes12122013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/29/2022] Open
Abstract
Hidden hunger, or micronutrient deficiency, is a worldwide problem. Several approaches are employed to alleviate its effects (e.g., promoting diet diversity, use of dietary supplements, chemical fortification of processed food), and among these, biofortification is considered as one of the most cost-effective and highly sustainable. Rice is one of the best targets for biofortification since it is a staple food for almost half of the world’s population as a high-energy source but with low nutritional value. Multiple biofortified rice lines have been produced during the past decades, while few studies also reported modifications in germination behavior (in terms of enhanced or decreased germination percentage or speed). It is important to underline that rapid, uniform germination, and seedling establishment are essential prerequisites for crop productivity. Combining the two traits, biofortified, highly-nutritious seeds with improved germination behavior can be envisaged as a highly-desired target for rice breeding. To this purpose, information gathered from transcriptomics studies can reveal useful insights to unveil the molecular players governing both traits. The present review aims to provide an overview of transcriptomics studies applied at the crossroad between biofortification and seed germination, pointing out potential candidates for trait pyramiding.
Collapse
|
30
|
Renard J, Martínez-Almonacid I, Queralta Castillo I, Sonntag A, Hashim A, Bissoli G, Campos L, Muñoz-Bertomeu J, Niñoles R, Roach T, Sánchez-León S, Ozuna CV, Gadea J, Lisón P, Kranner I, Barro F, Serrano R, Molina I, Bueso E. Apoplastic lipid barriers regulated by conserved homeobox transcription factors extend seed longevity in multiple plant species. THE NEW PHYTOLOGIST 2021; 231:679-694. [PMID: 33864680 DOI: 10.1111/nph.17399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Cutin and suberin are lipid polyesters deposited in specific apoplastic compartments. Their fundamental roles in plant biology include controlling the movement of gases, water and solutes, and conferring pathogen resistance. Both cutin and suberin have been shown to be present in the Arabidopsis seed coat where they regulate seed dormancy and longevity. In this study, we use accelerated and natural ageing seed assays, glutathione redox potential measures, optical and transmission electron microscopy and gas chromatography-mass spectrometry to demonstrate that increasing the accumulation of lipid polyesters in the seed coat is the mechanism by which the AtHB25 transcription factor regulates seed permeability and longevity. Chromatin immunoprecipitation during seed maturation revealed that the lipid polyester biosynthetic gene long-chain acyl-CoA synthetase 2 (LACS2) is a direct AtHB25 binding target. Gene transfer of this transcription factor to wheat and tomato demonstrated the importance of apoplastic lipid polyesters for the maintenance of seed viability. Our work establishes AtHB25 as a trans-species regulator of seed longevity and has identified the deposition of apoplastic lipid barriers as a key parameter to improve seed longevity in multiple plant species.
Collapse
Affiliation(s)
- Joan Renard
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain
| | - Irene Martínez-Almonacid
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain
| | - Indira Queralta Castillo
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste Marie, ON, P6A 2G4, Canada
| | - Annika Sonntag
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste Marie, ON, P6A 2G4, Canada
| | - Aseel Hashim
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste Marie, ON, P6A 2G4, Canada
| | - Gaetano Bissoli
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain
| | - Laura Campos
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain
| | - Jesús Muñoz-Bertomeu
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain
| | - Regina Niñoles
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain
| | - Thomas Roach
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck, A-6020, Austria
| | - Susana Sánchez-León
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS-CSIC), Córdoba, 14004, Spain
| | - Carmen V Ozuna
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS-CSIC), Córdoba, 14004, Spain
| | - José Gadea
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain
| | - Ilse Kranner
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck, A-6020, Austria
| | - Francisco Barro
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS-CSIC), Córdoba, 14004, Spain
| | - Ramón Serrano
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain
| | - Isabel Molina
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste Marie, ON, P6A 2G4, Canada
| | - Eduardo Bueso
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain
| |
Collapse
|
31
|
Raina A, Sahu PK, Laskar RA, Rajora N, Sao R, Khan S, Ganai RA. Mechanisms of Genome Maintenance in Plants: Playing It Safe With Breaks and Bumps. Front Genet 2021; 12:675686. [PMID: 34239541 PMCID: PMC8258418 DOI: 10.3389/fgene.2021.675686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/04/2021] [Indexed: 01/14/2023] Open
Abstract
Maintenance of genomic integrity is critical for the perpetuation of all forms of life including humans. Living organisms are constantly exposed to stress from internal metabolic processes and external environmental sources causing damage to the DNA, thereby promoting genomic instability. To counter the deleterious effects of genomic instability, organisms have evolved general and specific DNA damage repair (DDR) pathways that act either independently or mutually to repair the DNA damage. The mechanisms by which various DNA repair pathways are activated have been fairly investigated in model organisms including bacteria, fungi, and mammals; however, very little is known regarding how plants sense and repair DNA damage. Plants being sessile are innately exposed to a wide range of DNA-damaging agents both from biotic and abiotic sources such as ultraviolet rays or metabolic by-products. To escape their harmful effects, plants also harbor highly conserved DDR pathways that share several components with the DDR machinery of other organisms. Maintenance of genomic integrity is key for plant survival due to lack of reserve germline as the derivation of the new plant occurs from the meristem. Untowardly, the accumulation of mutations in the meristem will result in a wide range of genetic abnormalities in new plants affecting plant growth development and crop yield. In this review, we will discuss various DNA repair pathways in plants and describe how the deficiency of each repair pathway affects plant growth and development.
Collapse
Affiliation(s)
- Aamir Raina
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
- Botany Section, Women’s College, Aligarh Muslim University, Aligarh, India
| | - Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Agriculture University, Raipur, India
| | | | - Nitika Rajora
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Agriculture University, Raipur, India
| | - Samiullah Khan
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Rais A. Ganai
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, India
| |
Collapse
|
32
|
Cartelier K, Aimé D, Ly Vu J, Combes-Soia L, Labas V, Prosperi JM, Buitink J, Gallardo K, Le Signor C. Genetic determinants of seed protein plasticity in response to the environment in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1298-1311. [PMID: 33733554 DOI: 10.1111/tpj.15236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
As the frequency of extreme environmental events is expected to increase with climate change, identifying candidate genes for stabilizing the protein composition of legume seeds or optimizing this in a given environment is increasingly important. To elucidate the genetic determinants of seed protein plasticity, major seed proteins from 200 ecotypes of Medicago truncatula grown in four contrasting environments were quantified after one-dimensional electrophoresis. The plasticity index of these proteins was recorded for each genotype as the slope of Finlay and Wilkinson's regression and then used for genome-wide association studies (GWASs), enabling the identification of candidate genes for determining this plasticity. This list was enriched in genes related to transcription, DNA repair and signal transduction, with many of them being stress responsive. Other over-represented genes were related to sulfur and aspartate family pathways leading to the synthesis of the nutritionally essential amino acids methionine and lysine. By placing these genes in metabolic pathways, and using a M. truncatula mutant impaired in regenerating methionine from S-methylmethionine, we discovered that methionine recycling pathways are major contributors to globulin composition establishment and plasticity. These data provide a unique resource of genes that can be targeted to mitigate negative impacts of environmental stresses on seed protein composition.
Collapse
Affiliation(s)
- Kevin Cartelier
- Agroécologie, AgroSup Dijon, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Delphine Aimé
- Agroécologie, AgroSup Dijon, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Joseph Ly Vu
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, F-49000, France
| | - Lucie Combes-Soia
- Physiologie de la Reproduction et des Comportements (PRC) UMR85, INRAE, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Valérie Labas
- Physiologie de la Reproduction et des Comportements (PRC) UMR85, INRAE, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Jean-Marie Prosperi
- Genetic Improvement and Adaptation of Mediterranean and Tropical Plants (AGAP), INRAE, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD, Montpellier SupAgro, Montpellier, France
| | - Julia Buitink
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, F-49000, France
| | - Karine Gallardo
- Agroécologie, AgroSup Dijon, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Christine Le Signor
- Agroécologie, AgroSup Dijon, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
33
|
Abstract
Resurrection genomics is an alternative to ancient DNA approaches in studying the genetics and evolution of past and possibly extinct populations. By reviving biological material such as germinating ancient seeds from archaeological and paleontological sites, or historical collections, one can study genomes of lost populations. We applied this approach by sequencing the genomes of seven Judean date palms (Phoenix dactylifera) that were germinated from ∼2,000 y old seeds recovered in the Southern Levant. Using this genomic data, we were able to document that introgressive hybridization of the wild Cretan palm Phoenix theophrasti into date palms had occurred in the Eastern Mediterranean by ∼2,200 y ago and examine the evolution of date palm populations in this pivotal region two millennia ago. Seven date palm seeds (Phoenix dactylifera L.), radiocarbon dated from the fourth century BCE to the second century CE, were recovered from archaeological sites in the Southern Levant and germinated to yield viable plants. We conducted whole-genome sequencing of these germinated ancient samples and used single-nucleotide polymorphism data to examine the genetics of these previously extinct Judean date palms. We find that the oldest seeds from the fourth to first century BCE are related to modern West Asian date varieties, but later material from the second century BCE to second century CE showed increasing genetic affinities to present-day North African date palms. Population genomic analysis reveals that by ∼2,400 to 2,000 y ago, the P. dactylifera gene pool in the Eastern Mediterranean already contained introgressed segments from the Cretan palm Phoenix theophrasti, a crucial genetic feature of the modern North African date palm populations. The P. theophrasti introgression fraction content is generally higher in the later samples, while introgression tracts are longer in these ancient germinated date palms compared to modern North African varieties. These results provide insights into crop evolution arising from an analysis of plants originating from ancient germinated seeds and demonstrate what can be accomplished with the application of a resurrection genomics approach.
Collapse
|
34
|
Nanomaterial-aided seed regeneration in the global warming scenario: multiwalled carbon nanotubes, gold nanoparticles and heat-aged maize seeds. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01804-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Bolaños-Villegas P. The Role of Structural Maintenance of Chromosomes Complexes in Meiosis and Genome Maintenance: Translating Biomedical and Model Plant Research Into Crop Breeding Opportunities. FRONTIERS IN PLANT SCIENCE 2021; 12:659558. [PMID: 33868354 PMCID: PMC8044525 DOI: 10.3389/fpls.2021.659558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 06/06/2023]
Abstract
Cohesin is a multi-unit protein complex from the structural maintenance of chromosomes (SMC) family, required for holding sister chromatids together during mitosis and meiosis. In yeast, the cohesin complex entraps sister DNAs within tripartite rings created by pairwise interactions between the central ring units SMC1 and SMC3 and subunits such as the α-kleisin SCC1 (REC8/SYN1 in meiosis). The complex is an indispensable regulator of meiotic recombination in eukaryotes. In Arabidopsis and maize, the SMC1/SMC3 heterodimer is a key determinant of meiosis. In Arabidopsis, several kleisin proteins are also essential: SYN1/REC8 is meiosis-specific and is essential for double-strand break repair, whereas AtSCC2 is a subunit of the cohesin SCC2/SCC4 loading complex that is important for synapsis and segregation. Other important meiotic subunits are the cohesin EXTRA SPINDLE POLES (AESP1) separase, the acetylase ESTABLISHMENT OF COHESION 1/CHROMOSOME TRANSMISSION FIDELITY 7 (ECO1/CTF7), the cohesion release factor WINGS APART-LIKE PROTEIN 1 (WAPL) in Arabidopsis (AtWAPL1/AtWAPL2), and the WAPL antagonist AtSWITCH1/DYAD (AtSWI1). Other important complexes are the SMC5/SMC6 complex, which is required for homologous DNA recombination during the S-phase and for proper meiotic synapsis, and the condensin complexes, featuring SMC2/SMC4 that regulate proper clustering of rDNA arrays during interphase. Meiotic recombination is the key to enrich desirable traits in commercial plant breeding. In this review, I highlight critical advances in understanding plant chromatid cohesion in the model plant Arabidopsis and crop plants and suggest how manipulation of crossover formation during meiosis, somatic DNA repair and chromosome folding may facilitate transmission of desirable alleles, tolerance to radiation, and enhanced transcription of alleles that regulate sexual development. I hope that these findings highlight opportunities for crop breeding.
Collapse
Affiliation(s)
- Pablo Bolaños-Villegas
- Fabio Baudrit Agricultural Research Station, University of Costa Rica, Alajuela, Costa Rica
- Lankester Botanical Garden, University of Costa Rica, Cartago, Costa Rica
| |
Collapse
|
36
|
Fabrissin I, Sano N, Seo M, North HM. Ageing beautifully: can the benefits of seed priming be separated from a reduced lifespan trade-off? JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2312-2333. [PMID: 33512455 DOI: 10.1093/jxb/erab004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/12/2021] [Indexed: 05/15/2023]
Abstract
Germination performance is affected following seed exposure to a combination of temperature fluctuations and cycles of hydration and dehydration. This has long been exploited in a seed technology termed priming, which increases germination speed and seedling vigour, but these benefits have often been associated with effects on seed lifespan, or longevity, with conflicting evidence for positive and negative effects. Seed longevity is a key seed trait influencing not only the storage of commercial stocks but also in situ and ex situ seed conservation. In the context of increasingly variable environmental conditions faced by both crops and wild species, this has led to renewed interest in understanding the molecular factors that underlie priming. Here, we provide an overview of the literature relating to the effect of priming on seed lifespan, and catalogue the different parameters used for priming treatments and their consequences on longevity for a range of species. Our current limited understanding of the molecular basis for priming effects is also outlined, with an emphasis on recent advances and promising approaches that should lead towards the application and monitoring of the priming process in a less empirical manner.
Collapse
Affiliation(s)
- Isabelle Fabrissin
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Naoto Sano
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Helen M North
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
37
|
Forti C, Ottobrino V, Doria E, Bassolino L, Toppino L, Rotino GL, Pagano A, Macovei A, Balestrazzi A. Hydropriming Applied on Fast Germinating Solanum villosum Miller Seeds: Impact on Pre-germinative Metabolism. FRONTIERS IN PLANT SCIENCE 2021; 12:639336. [PMID: 33841466 PMCID: PMC8030258 DOI: 10.3389/fpls.2021.639336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/02/2021] [Indexed: 05/15/2023]
Abstract
Seed priming can circumvent poor germination rate and uniformity, frequently reported in eggplant (Solanum melongena L.) and its crop wild relatives (CWRs). However, there is still a gap of knowledge on how these treatments impact the pre-germinative metabolism in a genotype- and/or species-dependent manner. The CWR Solanum villosum Miller (hairy nightshade) investigated in this study showed a quite unique profile of fast germination. Although this accelerated germination profile would not apparently require further improvement, we wanted to test whether priming would still be able to impact the pre-germinative metabolism, eventually disclosing the predominant contribution of specific antioxidant components. Hydropriming followed by dry-back resulted in synchronized germination, as revealed by the lowest MGR (Mean Germination Rate) and U (Uncertainty) values, compared to unprimed seeds. No significant changes in ROS (reactive oxygen species) were observed throughout the treatment. Increased tocopherols levels were detected at 2 h of hydropriming whereas, overall, a low lipid peroxidation was evidenced by the malondialdehyde (MDA) assay. Hydropriming resulted in enhanced accumulation of the naturally occurring antioxidant phenolic compounds chlorogenic acid and iso-orientin, found in the dry seeds and ex novo accumulation of rutin. The dynamic changes of the pre-germinative metabolism induced by hydropriming are discussed in view of future applications that might boost the use of eggplant CWRs for breeding, upon upgrade mediated by seed technology.
Collapse
Affiliation(s)
- Chiara Forti
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Valentino Ottobrino
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Enrico Doria
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Laura Bassolino
- CREA, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
- CREA, Research Centre for Cereal and Industrial Crops, Bologna, Italy
| | - Laura Toppino
- CREA, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | | | - Andrea Pagano
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| |
Collapse
|
38
|
Gualtieri C, Gianella M, Pagano A, Cadeddu T, Araújo S, Balestrazzi A, Macovei A. Exploring microRNA Signatures of DNA Damage Response Using an Innovative System of Genotoxic Stress in Medicago truncatula Seedlings. FRONTIERS IN PLANT SCIENCE 2021; 12:645323. [PMID: 33767724 PMCID: PMC7985446 DOI: 10.3389/fpls.2021.645323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/15/2021] [Indexed: 05/08/2023]
Abstract
One of the challenges that living organisms face is to promptly respond to genotoxic stress to avoid DNA damage. To this purpose, all organisms, including plants, developed complex DNA damage response (DDR) mechanisms. These mechanisms are highly conserved among organisms and need to be finely regulated. In this scenario, microRNAs (miRNAs) are emerging as active players, thus attracting the attention of the research community. The involvement of miRNAs in DDR has been investigated prominently in human cells whereas studies in plants are still scarce. To experimentally investigate the involvement of plant miRNAs in the regulation of DDR-associated pathways, an ad hoc system was developed, using the model legume Medicago truncatula. Specific treatments with camptothecin (CPT) and/or NSC120686 (NSC), targeting distinct components of DDR, namely topoisomerase I (TopI) and tyrosyl-DNA phosphodiesterase 1 (TDP1), were used. Phenotypic (germination percentage and speed, seedling growth) and molecular (cell death, DNA damage, and gene expression profiles) analyses demonstrated that the imposed treatments impact DDR. Our results show that these treatments do not influence the germination process but rather inhibit seedling development, causing an increase in cell death and accumulation of DNA damage. Moreover, treatment-specific changes in the expression of suppressor of gamma response 1 (SOG1), master-regulator of plant DDR, were observed. Additionally, the expression of multiple genes playing important roles in different DNA repair pathways and cell cycle regulation were differentially expressed in a treatment-specific manner. Subsequently, specific miRNAs identified from our previous bioinformatics approaches as putatively targeting genes involved in DDR processes were investigated alongside their targets. The obtained results indicate that under most conditions when a miRNA is upregulated the corresponding candidate target gene is downregulated, providing an indirect evidence of miRNAs action over these targets. Hence, the present study extends the present knowledge on the information available regarding the roles played by miRNAs in the post-transcriptional regulation of DDR in plants.
Collapse
Affiliation(s)
- Carla Gualtieri
- Plant Biotechnology Laboratory, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Maraeva Gianella
- Plant Biotechnology Laboratory, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Andrea Pagano
- Plant Biotechnology Laboratory, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Tiziano Cadeddu
- Plant Biotechnology Laboratory, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Susana Araújo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Association BLC3, Technology and Innovation Campus, Centre BIO- R&D Unit, Lagares da Beira, Portugal
| | - Alma Balestrazzi
- Plant Biotechnology Laboratory, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Anca Macovei
- Plant Biotechnology Laboratory, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| |
Collapse
|
39
|
Smolikova G, Leonova T, Vashurina N, Frolov A, Medvedev S. Desiccation Tolerance as the Basis of Long-Term Seed Viability. Int J Mol Sci 2020; 22:E101. [PMID: 33374189 PMCID: PMC7795748 DOI: 10.3390/ijms22010101] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Desiccation tolerance appeared as the key adaptation feature of photoautotrophic organisms for survival in terrestrial habitats. During the further evolution, vascular plants developed complex anatomy structures and molecular mechanisms to maintain the hydrated state of cell environment and sustain dehydration. However, the role of the genes encoding the mechanisms behind this adaptive feature of terrestrial plants changed with their evolution. Thus, in higher vascular plants it is restricted to protection of spores, seeds and pollen from dehydration, whereas the mature vegetative stages became sensitive to desiccation. During maturation, orthodox seeds lose up to 95% of water and successfully enter dormancy. This feature allows seeds maintaining their viability even under strongly fluctuating environmental conditions. The mechanisms behind the desiccation tolerance are activated at the late seed maturation stage and are associated with the accumulation of late embryogenesis abundant (LEA) proteins, small heat shock proteins (sHSP), non-reducing oligosaccharides, and antioxidants of different chemical nature. The main regulators of maturation and desiccation tolerance are abscisic acid and protein DOG1, which control the network of transcription factors, represented by LEC1, LEC2, FUS3, ABI3, ABI5, AGL67, PLATZ1, PLATZ2. This network is complemented by epigenetic regulation of gene expression via methylation of DNA, post-translational modifications of histones and chromatin remodeling. These fine regulatory mechanisms allow orthodox seeds maintaining desiccation tolerance during the whole period of germination up to the stage of radicle protrusion. This time point, in which seeds lose desiccation tolerance, is critical for the whole process of seed development.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Tatiana Leonova
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia; (T.L.); (N.V.); (A.F.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Natalia Vashurina
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia; (T.L.); (N.V.); (A.F.)
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia; (T.L.); (N.V.); (A.F.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
40
|
Huarte HR, Puglia GD, Prjibelski AD, Raccuia SA. Seed Transcriptome Annotation Reveals Enhanced Expression of Genes Related to ROS Homeostasis and Ethylene Metabolism at Alternating Temperatures in Wild Cardoon. PLANTS 2020; 9:plants9091225. [PMID: 32961840 PMCID: PMC7570316 DOI: 10.3390/plants9091225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/20/2022]
Abstract
The association among environmental cues, ethylene response, ABA signaling, and reactive oxygen species (ROS) homeostasis in the process of seed dormancy release is nowadays well-established in many species. Alternating temperatures are recognized as one of the main environmental signals determining dormancy release, but their underlying mechanisms are scarcely known. Dry after-ripened wild cardoon achenes germinated poorly at a constant temperature of 20, 15, or 10 °C, whereas germination was stimulated by 80% at alternating temperatures of 20/10 °C. Using an RNA-Seq approach, we identified 23,640 and annotated 14,078 gene transcripts expressed in dry achenes and achenes exposed to constant or alternating temperatures. Transcriptional patterns identified in dry condition included seed reserve and response to dehydration stress genes (i.e., HSPs, peroxidases, and LEAs). At a constant temperature, we observed an upregulation of ABA biosynthesis genes (i.e., NCED9), ABA-responsive genes (i.e., ABI5 and TAP), as well as other genes previously related to physiological dormancy and inhibition of germination. However, the alternating temperatures were associated with the upregulation of ethylene metabolism (i.e., ACO1, 4, and ACS10) and signaling (i.e., EXPs) genes and ROS homeostasis regulators genes (i.e., RBOH and CAT). Accordingly, the ethylene production was twice as high at alternating than at constant temperatures. The presence in the germination medium of ethylene or ROS synthesis and signaling inhibitors reduced significantly, but not completely, germination at 20/10 °C. Conversely, the presence of methyl viologen and salicylhydroxamic acid (SHAM), a peroxidase inhibitor, partially increased germination at constant temperature. Taken together, the present study provides the first insights into the gene expression patterns and physiological response associated with dormancy release at alternating temperatures in wild cardoon (Cynara cardunculus var. sylvestris).
Collapse
Affiliation(s)
- Hector R. Huarte
- CONICET/Faculty of Agricultural Sciences, National University of Lomas de Zamora, 1836 Llavallol, Argentina;
| | - Giuseppe. D. Puglia
- Institute for Agricultural and Forestry Systems in the Mediterranean (ISAFoM), Department of Biology, Agriculture and Food Science (DiSBA), National Research Council (CNR), Via Empedocle, 58, 95128 Catania, Italy;
- Correspondence: ; Tel.: +39-0956139914
| | - Andrey D. Prjibelski
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, 199004 St. Petersburg, Russia;
| | - Salvatore A. Raccuia
- Institute for Agricultural and Forestry Systems in the Mediterranean (ISAFoM), Department of Biology, Agriculture and Food Science (DiSBA), National Research Council (CNR), Via Empedocle, 58, 95128 Catania, Italy;
| |
Collapse
|
41
|
Afzal I, Imran S, Javed T, Basra SMA. Evaluating the integrative response of moringa leaf extract with synthetic growth promoting substances in maize under early spring conditions. SOUTH AFRICAN JOURNAL OF BOTANY 2020; 132:378-387. [DOI: 10.1016/j.sajb.2020.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
42
|
Nájera-Martínez M, Pedroza-García JA, Suzuri-Hernández LJ, Mazubert C, Drouin-Wahbi J, Vázquez-Ramos J, Raynaud C, Plasencia J. Maize Thymidine Kinase Activity Is Present throughout Plant Development and Its Heterologous Expression Confers Tolerance to an Organellar DNA-Damaging Agent. PLANTS 2020; 9:plants9080930. [PMID: 32717805 PMCID: PMC7463494 DOI: 10.3390/plants9080930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022]
Abstract
Thymidine kinase 1 (TK1) phosphorylates thymidine nucleosides to generate thymidine monophosphate. This reaction belongs to the pyrimidine salvage route that is phylogenetically conserved. In the model plant Arabidopsis thaliana, TK activity contributes to maintain nuclear and organellar genome integrity by providing deoxythymidine-triphosphate (dTTP) for DNA synthesis. Arabidopsis has two TK1 genes (TK1a and TK1b) and double mutants show an albino phenotype and develop poorly. In contrast, maize (Zea mays L.) has a single TK1 (ZmTK1) gene and mutant plants are albino and display reduced genome copy number in chloroplasts. We studied the role of ZmTK1 during development and genotoxic stress response by assessing its activity at different developmental stages and by complementing Arabidopsis tk1 mutants. We found that ZmTK1 transcripts and activity are present during germination and throughout maize development. We show that ZmTK1 translocation to chloroplasts depends on a 72-amino-acid N-signal and its plastid localization is consistent with its ability to complement Arabidopsis tk1b mutants which are hypersensitive to ciprofloxacin (CIP), a genotoxic agent to organellar DNA. Also, ZmTK1 partly complemented the Arabidopsis double mutant plants during development. Our results contribute to the understanding of TK1 function in monocot species as an organellar enzyme for genome replication and repair.
Collapse
Affiliation(s)
- Manuela Nájera-Martínez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (M.N.-M.); (J.A.P.-G.); (L.J.S.-H.); (J.V.-R.)
| | - José Antonio Pedroza-García
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (M.N.-M.); (J.A.P.-G.); (L.J.S.-H.); (J.V.-R.)
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, Paris University, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France; (C.M.); (J.D.-W.); (C.R.)
| | - Luis Jiro Suzuri-Hernández
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (M.N.-M.); (J.A.P.-G.); (L.J.S.-H.); (J.V.-R.)
- Licenciatura en Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Christelle Mazubert
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, Paris University, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France; (C.M.); (J.D.-W.); (C.R.)
| | - Jeannine Drouin-Wahbi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, Paris University, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France; (C.M.); (J.D.-W.); (C.R.)
| | - Jorge Vázquez-Ramos
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (M.N.-M.); (J.A.P.-G.); (L.J.S.-H.); (J.V.-R.)
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, Paris University, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France; (C.M.); (J.D.-W.); (C.R.)
| | - Javier Plasencia
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (M.N.-M.); (J.A.P.-G.); (L.J.S.-H.); (J.V.-R.)
- Correspondence:
| |
Collapse
|
43
|
Alam R, Hummel M, Yeung E, Locke AM, Ignacio JCI, Baltazar MD, Jia Z, Ismail AM, Septiningsih EM, Bailey‐Serres J. Flood resilience loci SUBMERGENCE 1 and ANAEROBIC GERMINATION 1 interact in seedlings established underwater. PLANT DIRECT 2020; 4:e00240. [PMID: 32775950 PMCID: PMC7403837 DOI: 10.1002/pld3.240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/25/2020] [Accepted: 06/17/2020] [Indexed: 05/11/2023]
Abstract
Crops with resilience to multiple climatic stresses are essential for increased yield stability. Here, we evaluate the interaction between two loci associated with flooding survival in rice (Oryza sativa L.). ANAEROBIC GERMINATION 1 (AG1), encoding trehalose 6-phosphate phosphatase 7 (TPP7), promotes mobilization of endosperm reserves to enhance the elongation of a hollow coleoptile in seeds that are seeded directly into shallow paddies. SUBMERGENCE 1 (SUB1), encoding the ethylene-responsive transcription factor SUB1A-1, confers tolerance to complete submergence by dampening carbohydrate catabolism, to enhance recovery upon desubmergence. Interactions between AG1/TPP7 and SUB1/SUB1A-1 were investigated under three flooding scenarios using four near-isogenic lines by surveying growth and survival. Pyramiding of the two loci does not negatively affect anaerobic germination or vegetative-stage submergence tolerance. However, the pyramided AG1 SUB1 genotype displays reduced survival when seeds are planted underwater and maintained under submergence for 16 d. To better understand the roles of TPP7 and SUB1A-1 and their interaction, temporal changes in carbohydrates and shoot transcriptomes were monitored in the four genotypes varying at the two loci at four developmental timeponts, from day 2 after seeding through day 14 of complete submergence. TPP7 enhances early coleoptile elongation, whereas SUB1A-1 promotes precocious photoautotrophy and then restricts underwater elongation. By contrast, pyramiding of the AG1 and SUB1 slows elongation growth, the transition to photoautotrophy, and survival. mRNA-sequencing highlights time-dependent and genotype-specific regulation of mRNAs associated with DNA repair, cell cycle, chromatin modification, plastid biogenesis, carbohydrate catabolism and transport, elongation growth, and other processes. These results suggest that interactions between AG1/TPP7 and SUB1/SUB1A-1 could impact seedling establishment if paddy depth is not effectively managed after direct seeding.
Collapse
Affiliation(s)
- Rejbana Alam
- Department of Botany and Plant SciencesCenter for Plant Cell BiologyUniversity of California RiversideRiversideCAUSA
| | - Maureen Hummel
- Department of Botany and Plant SciencesCenter for Plant Cell BiologyUniversity of California RiversideRiversideCAUSA
| | - Elaine Yeung
- Department of Botany and Plant SciencesCenter for Plant Cell BiologyUniversity of California RiversideRiversideCAUSA
| | - Anna M. Locke
- Department of Botany and Plant SciencesCenter for Plant Cell BiologyUniversity of California RiversideRiversideCAUSA
- Present address:
Soybean and Nitrogen Fixation Research UnitUSDA‐ARSRaleighNCUSA
| | | | - Miriam D. Baltazar
- Department of Biological SciencesCavite State UniversityIndangPhilippines
| | - Zhenyu Jia
- Department of Botany and Plant SciencesCenter for Plant Cell BiologyUniversity of California RiversideRiversideCAUSA
| | | | - Endang M. Septiningsih
- International Rice Research InstituteMetro ManilaPhilippines
- Present address:
Department of Soil and Crop SciencesTexas A&M UniversityCollege StationTXUSA
| | - Julia Bailey‐Serres
- Department of Botany and Plant SciencesCenter for Plant Cell BiologyUniversity of California RiversideRiversideCAUSA
| |
Collapse
|
44
|
Molecular and environmental factors regulating seed longevity. Biochem J 2020; 477:305-323. [PMID: 31967650 DOI: 10.1042/bcj20190165] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022]
Abstract
Seed longevity is a central pivot of the preservation of biodiversity, being of main importance to face the challenges linked to global climate change and population growth. This complex, quantitative seed quality trait is acquired on the mother plant during the second part of seed development. Understanding what factors contribute to lifespan is one of the oldest and most challenging questions in plant biology. One of these challenges is to recognize that longevity depends on the storage conditions that are experimentally used because they determine the type and rate of deleterious conditions that lead to cell death and loss of viability. In this review, we will briefly review the different storage methods that accelerate the deteriorative reactions during storage and argue that a minimum amount of information is necessary to interpret the longevity data. Next, we will give an update on recent discoveries on the hormonal factors regulating longevity, both from the ABA signaling pathway but also other hormonal pathways. In addition, we will review the effect of both maternal and abiotic factors that influence longevity. In the last section of this review, we discuss the problems in unraveling cause-effect relationship between the time of death during storage and deteriorative reactions leading to seed ageing. We focus on the three major types of cellular damage, namely membrane permeability, lipid peroxidation and RNA integrity for which germination data on seed stored in dedicated seed banks for long period times are now available.
Collapse
|
45
|
Carrera-Castaño G, Calleja-Cabrera J, Pernas M, Gómez L, Oñate-Sánchez L. An Updated Overview on the Regulation of Seed Germination. PLANTS 2020; 9:plants9060703. [PMID: 32492790 PMCID: PMC7356954 DOI: 10.3390/plants9060703] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
The ability of a seed to germinate and establish a plant at the right time of year is of vital importance from an ecological and economical point of view. Due to the fragility of these early growth stages, their swiftness and robustness will impact later developmental stages and crop yield. These traits are modulated by a continuous interaction between the genetic makeup of the plant and the environment from seed production to germination stages. In this review, we have summarized the established knowledge on the control of seed germination from a molecular and a genetic perspective. This serves as a “backbone” to integrate the latest developments in the field. These include the link of germination to events occurring in the mother plant influenced by the environment, the impact of changes in the chromatin landscape, the discovery of new players and new insights related to well-known master regulators. Finally, results from recent studies on hormone transport, signaling, and biophysical and mechanical tissue properties are underscoring the relevance of tissue-specific regulation and the interplay of signals in this crucial developmental process.
Collapse
|
46
|
Pagano A, L'Andolina C, Sabatini ME, de Sousa Araújo S, Balestrazzi A, Macovei A. Sodium butyrate induces genotoxic stress in function of photoperiod variations and differentially modulates the expression of genes involved in chromatin modification and DNA repair in Petunia hybrida seedlings. PLANTA 2020; 251:102. [PMID: 32350684 DOI: 10.1007/s00425-020-03392-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Sodium butyrate applied to Petunia hybrida seeds under a long-day photoperiod has a negative impact (reduced seedling length, decreased production of photosynthetic pigments, and accumulation of DNA damage) on early seedling development, whereas its administration under dark/light conditions (complete dark conditions for 5 days followed by exposure to long-day photoperiod for 5 days) bypasses some of the adverse effects. Genotoxic stress impairs plant development. To circumvent DNA damage, plants activate DNA repair pathways in concert with chromatin dynamics. These are essential during seed germination and seedling establishment, and may be influenced by photoperiod variations. To assess this interplay, an experimental design was developed in Petunia hybrida, a relevant horticultural crop and model species. Seeds were treated with different doses of sodium butyrate (NaB, 1 mM and 5 mM) as a stress agent applied under different light/dark conditions throughout a time period of 10 days. Phenotypic (germination percentage and speed, seedling length, and photosynthetic pigments) and molecular (DNA damage and gene expression profiles) analyses were performed to monitor the response to the imposed conditions. Seed germination was not affected by the treatments. Seedling development was hampered by increasing NaB concentrations applied under a long-day photoperiod (L) as reflected by the decreased seedling length accompanied by increased DNA damage. When seedlings were grown under dark conditions for 5 days and then exposed to long-day photoperiod for the remaining 5 days (D/L), the damaging effects of NaB were circumvented. NaB exposure under L conditions resulted in enhanced expression of HAT/HDAC (HISTONE ACETYLTRANSFERASES/HISTONE DEACTEYLASES) genes along with repression of genes involved in DNA repair. Differently, under D/L conditions, the expression of DNA repair genes was increased by NaB treatment and this was associated with lower levels of DNA damage. The observed DNA damage and gene expression profiles suggest the involvement of chromatin modification- and DNA repair-associated pathways in response to NaB and dark/light exposure during seedling development.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Corrado L'Andolina
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Maria Elisa Sabatini
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, via Ferrata 9, 27100, Pavia, Italy
- Viral Control of Cellular Pathways and Biology of Tumorigenesis Unit, European Institute of Oncology (IFOM-IEO), via Adamello 16, 20139, Milano, Italy
| | - Susana de Sousa Araújo
- Instituto de Tecnologia Química E Biológica António Xavier (ITQB-NOVA), Avenida da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
| | - Alma Balestrazzi
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
47
|
Chandler JO, Haas FB, Khan S, Bowden L, Ignatz M, Enfissi EMA, Gawthrop F, Griffiths A, Fraser PD, Rensing SA, Leubner-Metzger G. Rocket Science: The Effect of Spaceflight on Germination Physiology, Ageing, and Transcriptome of Eruca sativa Seeds. Life (Basel) 2020; 10:E49. [PMID: 32344775 PMCID: PMC7235897 DOI: 10.3390/life10040049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
In the 'Rocket Science' project, storage of Eruca sativa (salad rocket) seeds for six months on board the International Space Station resulted in delayed seedling establishment. Here we investigated the physiological and molecular mechanisms underpinning the spaceflight effects on dry seeds. We found that 'Space' seed germination vigor was reduced, and ageing sensitivity increased, but the spaceflight did not compromise seed viability and the development of normal seedlings. Comparative analysis of the transcriptomes (using RNAseq) in dry seeds and upon controlled artificial ageing treatment (CAAT) revealed differentially expressed genes (DEGs) associated with spaceflight and ageing. DEG categories enriched by spaceflight and CAAT included transcription and translation with reduced transcript abundances for 40S and 60S ribosomal subunit genes. Among the 'spaceflight-up' DEGs were heat shock proteins (HSPs), DNAJ-related chaperones, a heat shock factor (HSFA7a-like), and components of several DNA repair pathways (e.g., ATM, DNA ligase 1). The 'response to radiation' category was especially enriched in 'spaceflight-up' DEGs including HSPs, catalases, and the transcription factor HY5. The major finding from the physiological and transcriptome analysis is that spaceflight causes vigor loss and partial ageing during air-dry seed storage, for which space environmental factors and consequences for seed storage during spaceflights are discussed.
Collapse
Affiliation(s)
- Jake O. Chandler
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (J.O.C.); (S.K.); (M.I.); (E.M.A.E.); (P.D.F.)
| | - Fabian B. Haas
- Plant Cell Biology, Faculty of Biology, University of Marburg, 35043 Marburg, Germany; (F.B.H.); (S.A.R.)
| | - Safina Khan
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (J.O.C.); (S.K.); (M.I.); (E.M.A.E.); (P.D.F.)
| | - Laura Bowden
- Official Seed Testing Station for Scotland, SASA, Edinburgh EH12 9FJ, UK;
| | - Michael Ignatz
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (J.O.C.); (S.K.); (M.I.); (E.M.A.E.); (P.D.F.)
| | - Eugenia M. A. Enfissi
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (J.O.C.); (S.K.); (M.I.); (E.M.A.E.); (P.D.F.)
| | | | - Alistair Griffiths
- Science Department, Royal Horticultural Society, Woking, Surrey GU23 6QB, UK;
| | - Paul D. Fraser
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (J.O.C.); (S.K.); (M.I.); (E.M.A.E.); (P.D.F.)
| | - Stefan A. Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, 35043 Marburg, Germany; (F.B.H.); (S.A.R.)
| | - Gerhard Leubner-Metzger
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (J.O.C.); (S.K.); (M.I.); (E.M.A.E.); (P.D.F.)
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Palaćky University, 78371 Olomouc, Czech Republic
| |
Collapse
|
48
|
Lost in Translation: Physiological Roles of Stored mRNAs in Seed Germination. PLANTS 2020; 9:plants9030347. [PMID: 32164149 PMCID: PMC7154877 DOI: 10.3390/plants9030347] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Seeds characteristics such as germination ability, dormancy, and storability/longevity are important traits in agriculture, and various genes have been identified that are involved in its regulation at the transcriptional and post-transcriptional level. A particularity of mature dry seeds is a special mechanism that allows them to accumulate more than 10,000 mRNAs during seed maturation and use them as templates to synthesize proteins during germination. Some of these stored mRNAs are also referred to as long-lived mRNAs because they remain translatable even after seeds have been exposed to long-term stressful conditions. Mature seeds can germinate even in the presence of transcriptional inhibitors, and this ability is acquired in mid-seed development. The type of mRNA that accumulates in seeds is affected by the plant hormone abscisic acid and environmental factors, and most of them accumulate in seeds in the form of monosomes. Release of seed dormancy during after-ripening involves the selective oxidation of stored mRNAs and this prevents translation of proteins that function in the suppression of germination after imbibition. Non-selective oxidation and degradation of stored mRNAs occurs during long-term storage of seeds so that the quality of stored RNAs is linked to the degree of seed deterioration. After seed imbibition, a population of stored mRNAs are selectively loaded into polysomes and the mRNAs, involved in processes such as redox, glycolysis, and protein synthesis, are actively translated for germination.
Collapse
|
49
|
Ischebeck T, Krawczyk HE, Mullen RT, Dyer JM, Chapman KD. Lipid droplets in plants and algae: Distribution, formation, turnover and function. Semin Cell Dev Biol 2020; 108:82-93. [PMID: 32147380 DOI: 10.1016/j.semcdb.2020.02.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/28/2020] [Accepted: 02/29/2020] [Indexed: 01/02/2023]
Abstract
Plant oils represent an energy-rich and carbon-dense group of hydrophobic compounds. These oils are not only of economic interest, but also play important, fundamental roles in plant and algal growth and development. The subcellular storage compartments of plant lipids, referred to as lipid droplets (LDs), have long been considered relatively inert oil vessels. However, research in the last decade has revealed that LDs play far more dynamic roles in plant biology than previously appreciated, including transient neutral lipid storage, membrane remodeling, lipid signaling, and stress responses. Here we discuss recent developments in the understanding of LD formation, turnover and function in land plants and algae.
Collapse
Affiliation(s)
- Till Ischebeck
- University of Göttingen, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, 37077, Göttingen, Germany.
| | - Hannah E Krawczyk
- University of Göttingen, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, 37077, Göttingen, Germany
| | - Robert T Mullen
- University of Guelph, Department of Molecular Cell Biology, Guelph, Ontario, N1G 2W1, Canada
| | - John M Dyer
- United States Department of Agriculture, Agriculture Research Service, US Arid-Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Kent D Chapman
- University of North Texas, BioDiscovery Institute, Department of Biological Sciences, Denton, TX, 76203, USA
| |
Collapse
|
50
|
Hydropriming and Biopriming Improve Medicago truncatula Seed Germination and Upregulate DNA Repair and Antioxidant Genes. Genes (Basel) 2020; 11:genes11030242. [PMID: 32106615 PMCID: PMC7140799 DOI: 10.3390/genes11030242] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 02/02/2023] Open
Abstract
Seed germination is a critical parameter for the successful development of sustainable agricultural practices. While seed germination is impaired by environmental constraints emerging from the climate change scenario, several types of simple procedures, known as priming, can be used to enhance it. Seed priming is defined as the process of regulating seed germination by managing a series of parameters during the initial stages of germination. Hydropriming is a highly accessible and economic technique that involves soaking of seeds in water followed by drying. Biopriming refers to the inoculation of seeds with beneficial microorganism. The present study aims to investigate whether hydropriming and biopriming could enhance seed germination. Thereby, the germination of Medicago truncatula seeds exposed to hydropriming and/or Bacillus spp. isolates was monitored for two-weeks. The seeds were sown in trays containing two types of in situ agricultural soils collected from Northern India (Karsara, Varanasi). This region is believed to be contaminated by solid waste from a nearby power plant. Phenotypic parameters had been monitored and compared to find the most appropriate combination of treatments. Additionally, qRT-PCR was used to evaluate the expression levels of specific genes used as molecular indicators of seed quality. The results show that, while hydropriming significantly enhanced seed germination percentage, biopriming resulted in improved seedling development, represented by increased biomass rather than seedling length. At a molecular level, this is reflected by the upregulation of genes involved in DNA damage repair and antioxidant defence. In conclusion, hydropriming and biopriming are efficient to improve seed germination and seedling establishment in soils collected from damaged sites of Northern India; this is reflected by morphological parameters and molecular hallmarks of seed quality.
Collapse
|