1
|
Huang J, Huang J, Wu J, Zhou M, Luo S, Jiang J, Chen T, Shao L, Lai J, Yang C. A synthetic biology approach for identifying de-SUMOylation enzymes of substrates. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 39835880 DOI: 10.1111/jipb.13838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
A synthetic biology approach using a robust reconstitution system in Escherichia coli enables the identification of plant ubiquitin-like proteases responsible for removing the small ubiquitin-like modifier (SUMO) post-translational modifications from specific protein substrates.
Collapse
Affiliation(s)
- Junwen Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- School of Life Sciences, Zhaoqing University, Zhaoqing, 526061, China
| | - Junjie Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Jiayuan Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Mi Zhou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Siyi Luo
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jieming Jiang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Ling Shao
- School of Life Sciences, Zhaoqing University, Zhaoqing, 526061, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
2
|
Cohen ZP, Perkin LC, Wagner TA, Liu J, Bell AA, Arick MA, Grover CE, Yu JZ, Udall JA, Suh CPC. Nematode-resistance loci in upland cotton genomes are associated with structural differences. G3 (BETHESDA, MD.) 2024; 14:jkae140. [PMID: 38934790 PMCID: PMC11373641 DOI: 10.1093/g3journal/jkae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 03/22/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Reniform and root-knot nematode are two of the most destructive pests of conventional upland cotton, Gossypium hirsutum L., and continue to be a major threat to cotton fiber production in semiarid regions of the Southern United States and Central America. Fortunately, naturally occurring tolerance to these nematodes has been identified in the Pima cotton species (Gossypium barbadense) and several upland cotton varieties (G. hirsutum), which has led to a robust breeding program that has successfully introgressed and stacked these independent resistant traits into several upland cotton lineages with superior agronomic traits, e.g. BAR 32-30 and BARBREN-713. This work identifies the genomic variations of these nematode-tolerant accessions by comparing their respective genomes to the susceptible, high-quality fiber-producing parental line of this lineage: Phytogen 355 (PSC355). We discover several large genomic differences within marker regions that harbor putative resistance genes as well as expression mechanisms shared by the two resistant lines, with respect to the susceptible PSC355 parental line. This work emphasizes the utility of whole-genome comparisons as a means of elucidating large and small nuclear differences by lineage and phenotype.
Collapse
Affiliation(s)
- Zachary P Cohen
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Lindsey C Perkin
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Tanya A Wagner
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Jinggao Liu
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Alois A Bell
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Mark A Arick
- Biocomputing & Biotechnology, Institute for Genomics, Mississippi State University, Mississippi State, MS 39762, USA
| | | | - John Z Yu
- USDA Agricultural Research Service, Crop Germplasm Research Unit, College Station, TX 77845, USA
| | - Joshua A Udall
- USDA Agricultural Research Service, Crop Germplasm Research Unit, College Station, TX 77845, USA
| | - Charles P C Suh
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| |
Collapse
|
3
|
Ghosh S, Mellado Sanchez M, Sue-Ob K, Roy D, Jones A, Blazquez MA, Sadanandom A. Charting the evolutionary path of the SUMO modification system in plants reveals molecular hardwiring of development to stress adaptation. THE PLANT CELL 2024; 36:3131-3144. [PMID: 38923935 PMCID: PMC11371177 DOI: 10.1093/plcell/koae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
SUMO modification is part of the spectrum of Ubiquitin-like (UBL) systems that give rise to proteoform complexity through post-translational modifications (PTMs). Proteoforms are essential modifiers of cell signaling for plant adaptation to changing environments. Exploration of the evolutionary emergence of Ubiquitin-like (UBL) systems unveils their origin from prokaryotes, where it is linked to the mechanisms that enable sulfur uptake into biomolecules. We explore the emergence of the SUMO machinery across the plant lineage from single-cell to land plants. We reveal the evolutionary point at which plants acquired the ability to form SUMO chains through the emergence of SUMO E4 ligases, hinting at its role in facilitating multicellularity. Additionally, we explore the possible mechanism for the neofunctionalization of SUMO proteases through the fusion of conserved catalytic domains with divergent sequences. We highlight the pivotal role of SUMO proteases in plant development and adaptation, offering new insights into target specificity mechanisms of SUMO modification during plant evolution. Correlating the emergence of adaptive traits in the plant lineage with established experimental evidence for SUMO in developmental processes, we propose that SUMO modification has evolved to link developmental processes to adaptive functions in land plants.
Collapse
Affiliation(s)
- Srayan Ghosh
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | | | - Kawinnat Sue-Ob
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Dipan Roy
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Andrew Jones
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Miguel A Blazquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, 46022, Spain
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| |
Collapse
|
4
|
Joo H, Baek W, Lim CW, Lee SC. Pepper SUMO protease CaDeSI2 positively modulates the drought responses via deSUMOylation of clade A PP2C CaAITP1. THE NEW PHYTOLOGIST 2024; 243:1361-1373. [PMID: 38934066 DOI: 10.1111/nph.19920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Posttranslational modification of multiple ABA signaling components is an essential process for the adaptation and survival of plants under stress conditions. In our previous study, we established that the pepper group A PP2C protein CaAITP1, one of the core components of ABA signaling, undergoes ubiquitination mediated by the RING-type E3 ligase CaAIRE1. In this study, we discovered an additional form of regulation mediated via the SUMOylation of CaAITP1. Pepper plants subjected to drought stress were characterized by reductions in both the stability and SUMOylation of CaAITP1 protein. Moreover, we identified a SUMO protease, Capsicum annuum DeSUMOylating Isopeptidase 2 (CaDeSI2), as a new interacting partner of CaAITP1. In vitro and in vivo analyses revealed that CaAITP1 is deSUMOylated by CaDeSI2. Silencing of CaDeSI2 in pepper plants led to drought-hypersensitive and ABA-hyposensitive phenotypes, whereas overexpression of CaDeSI2 in transgenic Arabidopsis plants resulted in the opposite phenotypes. Importantly, we found that the CaAITP1 protein was stabilized in response to the silencing of CaDeSI2, and CaDeSI2 and CaAITP1 co-silenced pepper plants were characterized by drought-tolerant phenotypes similar to those observed in CaAITP1-silenced pepper. Collectively, our findings indicate that CaDeSI2 reduces the stability of CaAITP1 via deSUMOylation, thereby positively regulating drought tolerance.
Collapse
Affiliation(s)
- Hyunhee Joo
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Korea
| | - Woonhee Baek
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Korea
| |
Collapse
|
5
|
Dabravolski SA, Isayenkov SV. The Role of Plant Ubiquitin-like Modifiers in the Formation of Salt Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1468. [PMID: 38891277 PMCID: PMC11174624 DOI: 10.3390/plants13111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
The climate-driven challenges facing Earth necessitate a comprehensive understanding of the mechanisms facilitating plant resilience to environmental stressors. This review delves into the crucial role of ubiquitin-like modifiers, particularly focusing on ATG8-mediated autophagy, in bolstering plant tolerance to salt stress. Synthesising recent research, we unveil the multifaceted contributions of ATG8 to plant adaptation mechanisms amidst salt stress conditions, including stomatal regulation, photosynthetic efficiency, osmotic adjustment, and antioxidant defence. Furthermore, we elucidate the interconnectedness of autophagy with key phytohormone signalling pathways, advocating for further exploration into their molecular mechanisms. Our findings underscore the significance of understanding molecular mechanisms underlying ubiquitin-based protein degradation systems and autophagy in salt stress tolerance, offering valuable insights for designing innovative strategies to improve crop productivity and ensure global food security amidst increasing soil salinisation. By harnessing the potential of autophagy and other molecular mechanisms, we can foster sustainable agricultural practices and develop stress-tolerant crops resilient to salt stress.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel;
| | - Stanislav V. Isayenkov
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse 3, 06120 Halle, Germany
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, The National Academy of Sciences of Ukraine, Baidi-Vyshneveckogo Str. 2a, 04123 Kyiv, Ukraine
| |
Collapse
|
6
|
Sureshkumar S, Bandaranayake C, Lv J, Dent CI, Bhagat PK, Mukherjee S, Sarwade R, Atri C, York HM, Tamizhselvan P, Shamaya N, Folini G, Bergey BG, Yadav AS, Kumar S, Grummisch OS, Saini P, Yadav RK, Arumugam S, Rosonina E, Sadanandom A, Liu H, Balasubramanian S. SUMO protease FUG1, histone reader AL3 and chromodomain protein LHP1 are integral to repeat expansion-induced gene silencing in Arabidopsis thaliana. NATURE PLANTS 2024; 10:749-759. [PMID: 38641663 DOI: 10.1038/s41477-024-01672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/15/2024] [Indexed: 04/21/2024]
Abstract
Epigenetic gene silencing induced by expanded repeats can cause diverse phenotypes ranging from severe growth defects in plants to genetic diseases such as Friedreich's ataxia in humans. The molecular mechanisms underlying repeat expansion-induced epigenetic silencing remain largely unknown. Using a plant model with a temperature-sensitive phenotype, we have previously shown that expanded repeats can induce small RNAs, which in turn can lead to epigenetic silencing through the RNA-dependent DNA methylation pathway. Here, using a genetic suppressor screen and yeast two-hybrid assays, we identified novel components required for epigenetic silencing caused by expanded repeats. We show that FOURTH ULP GENE CLASS 1 (FUG1)-an uncharacterized SUMO protease with no known role in gene silencing-is required for epigenetic silencing caused by expanded repeats. In addition, we demonstrate that FUG1 physically interacts with ALFIN-LIKE 3 (AL3)-a histone reader that is known to bind to active histone mark H3K4me2/3. Loss of function of AL3 abolishes epigenetic silencing caused by expanded repeats. AL3 physically interacts with the chromodomain protein LIKE HETEROCHROMATIN 1 (LHP1)-known to be associated with the spread of the repressive histone mark H3K27me3 to cause repeat expansion-induced epigenetic silencing. Loss of any of these components suppresses repeat expansion-associated phenotypes coupled with an increase in IIL1 expression with the reversal of gene silencing and associated change in epigenetic marks. Our findings suggest that the FUG1-AL3-LHP1 module is essential to confer repeat expansion-associated epigenetic silencing and highlight the importance of post-translational modifiers and histone readers in epigenetic silencing.
Collapse
Affiliation(s)
- Sridevi Sureshkumar
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia.
| | - Champa Bandaranayake
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Junqing Lv
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Craig I Dent
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | | | - Sourav Mukherjee
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Rucha Sarwade
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Chhaya Atri
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Harrison M York
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- European Molecular Biology Laboratory, Australia (EMBL Australia), Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Prashanth Tamizhselvan
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Nawar Shamaya
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Giulia Folini
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | | | - Avilash Singh Yadav
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Subhasree Kumar
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Oliver S Grummisch
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Prince Saini
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Ram K Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Senthil Arumugam
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- European Molecular Biology Laboratory, Australia (EMBL Australia), Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Emanuel Rosonina
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Durham, UK
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
7
|
Deciphering the mechanisms of gene silencing induced by triplet-repeat expansions. NATURE PLANTS 2024; 10:708-709. [PMID: 38641665 DOI: 10.1038/s41477-024-01673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
|
8
|
Campos Alonso M, Knobeloch KP. In the moonlight: non-catalytic functions of ubiquitin and ubiquitin-like proteases. Front Mol Biosci 2024; 11:1349509. [PMID: 38455765 PMCID: PMC10919355 DOI: 10.3389/fmolb.2024.1349509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Proteases that cleave ubiquitin or ubiquitin-like proteins (UBLs) are critical players in maintaining the homeostasis of the organism. Concordantly, their dysregulation has been directly linked to various diseases, including cancer, neurodegeneration, developmental aberrations, cardiac disorders and inflammation. Given their potential as novel therapeutic targets, it is essential to fully understand their mechanisms of action. Traditionally, observed effects resulting from deficiencies in deubiquitinases (DUBs) and UBL proteases have often been attributed to the misregulation of substrate modification by ubiquitin or UBLs. Therefore, much research has focused on understanding the catalytic activities of these proteins. However, this view has overlooked the possibility that DUBs and UBL proteases might also have significant non-catalytic functions, which are more prevalent than previously believed and urgently require further investigation. Moreover, multiple examples have shown that either selective loss of only the protease activity or complete absence of these proteins can have different functional and physiological consequences. Furthermore, DUBs and UBL proteases have been shown to often contain domains or binding motifs that not only modulate their catalytic activity but can also mediate entirely different functions. This review aims to shed light on the non-catalytic, moonlighting functions of DUBs and UBL proteases, which extend beyond the hydrolysis of ubiquitin and UBL chains and are just beginning to emerge.
Collapse
Affiliation(s)
- Marta Campos Alonso
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus-Peter Knobeloch
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Xie B, Luo M, Li Q, Shao J, Chen D, Somers DE, Tang D, Shi H. NUA positively regulates plant immunity by coordination with ESD4 to deSUMOylate TPR1 in Arabidopsis. THE NEW PHYTOLOGIST 2024; 241:363-377. [PMID: 37786257 PMCID: PMC10843230 DOI: 10.1111/nph.19287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
Nuclear pore complex (NPC) is composed of multiple nucleoporins (Nups). A plethora of studies have highlighted the significance of NPC in plant immunity. However, the specific roles of individual Nups are poorly understood. NUCLEAR PORE ANCHOR (NUA) is a component of NPC. Loss of NUA leads to an increase in SUMO conjugates and pleiotropic developmental defects in Arabidopsis thaliana. Herein, we revealed that NUA is required for plant defense against multiple pathogens. NUCLEAR PORE ANCHOR associates with the transcriptional corepressor TOPLESS-RELATED1 (TPR1) and contributes to TPR1 deSUMOylation. Significantly, NUA-interacting protein EARLY IN SHORT DAYS 4 (ESD4), a SUMO protease, specifically deSUMOylates TPR1. It has been previously established that the SUMO E3 ligase SAP AND MIZ1 DOMAIN-CONTAINING LIGASE 1 (SIZ1)-mediated SUMOylation of TPR1 represses the immune-related function of TPR1. Consistent with this notion, the hyper-SUMOylated TPR1 in nua-3 leads to upregulated expression of TPR1 target genes and compromised TPR1-mediated disease resistance. Taken together, our work uncovers a mechanism by which NUA positively regulates plant defense responses by coordination with ESD4 to deSUMOylate TPR1. Our findings, together with previous studies, reveal a regulatory module in which SIZ1 and NUA/ESD4 control the homeostasis of TPR1 SUMOylation to maintain proper immune output.
Collapse
Affiliation(s)
- Bao Xie
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingyu Luo
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiuyi Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Shao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Desheng Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - David E Somers
- Department of Molecular Genetics, The Ohio State University, Columbus 43210, USA
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hua Shi
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
10
|
Masoabi M, Burger NFV, Botha AM, Le Roux ML, Vlok M, Snyman S, Van der Vyver C. Overexpression of the Small Ubiquitin-Like Modifier protease OTS1 gene enhances drought tolerance in sugarcane (Saccharum spp. hybrid). PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1121-1141. [PMID: 37856570 DOI: 10.1111/plb.13585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Sugarcane is an economically important crop plant across the globe as it is the primary source of sugar and biofuel. Its growth and development are greatly influenced by water availability; therefore, in periods of water scarcity, yields are severely compromised. Small Ubiquitin-Like Modifier (SUMO) proteases play an important role in stress responses by regulating the SUMO-related post-translational modification of proteins. In an attempt to enhance drought tolerance in sugarcane, this crop was genetically transformed with a cysteine protease (OVERLY TOLERANT TO SALT-1; OTS1) from Arabidopsis thaliana using particle bombardment. Transgenic plants were analysed in terms of photosynthetic capacity, oxidative damage, antioxidant accumulation and the SUMO-enrich protein profile was assessed. Sugarcane transformed with the AtOTS1 gene displayed enhanced drought tolerance and delayed leaf senescence under water deficit compared to the untransformed wild type (WT). The AtOTS1 transgenic plants maintained a high relative moisture content and higher photosynthesis rate when compared to the WT. In addition, when the transgene was expressed at high levels, the transformed plants were able to maintain higher stomatal conductance and chlorophyl content under moderate stress compared to the WT. Under severe water deficit stress, the transgenic plants accumulated less malondialdehyde and maintained membrane integrity. SUMOylation of total protein and protease activity was lower in the AtOTS1 transformed plants compared to the WT, with several SUMO-enriched proteins exclusively expressed in the transgenics when exposed to water deficit stress. SUMOylation of proteins likely influenced various mechanisms contributing to enhanced drought tolerance in sugarcane.
Collapse
Affiliation(s)
- M Masoabi
- Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa
| | - N F V Burger
- Department of Genetics, University of Stellenbosch, Stellenbosch, South Africa
| | - A-M Botha
- Department of Genetics, University of Stellenbosch, Stellenbosch, South Africa
| | - M L Le Roux
- Department of Genetics, University of Stellenbosch, Stellenbosch, South Africa
| | - M Vlok
- Mass Spectrometry Unit, Central Analytic Facility, Stellenbosch University, Stellenbosch, South Africa
| | - S Snyman
- South African Sugarcane Research Institute, Mount Edgecombe, South Africa
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - C Van der Vyver
- Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
11
|
Jing H, Strader LC. AUXIN RESPONSE FACTOR protein accumulation and function. Bioessays 2023; 45:e2300018. [PMID: 37584215 PMCID: PMC10592145 DOI: 10.1002/bies.202300018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
Auxin is a key regulator of plant developmental processes. Its effects on transcription are mediated by the AUXIN RESPONSE FACTOR (ARF) family of transcription factors. ARFs tightly control specific auxin responses necessary for proper plant growth and development. Recent research has revealed that regulated ARF protein accumulation and ARF nucleo-cytoplasmic partitioning can determine auxin transcriptional outputs. In this review, we explore these recent findings and consider the potential for regulated ARF accumulation in driving auxin responses in plants.
Collapse
Affiliation(s)
- Hongwei Jing
- Department of Biology, Duke University, Durham, NC 27008, USA
| | | |
Collapse
|
12
|
Wang H, Feng M, Jiang Y, Du D, Dong C, Zhang Z, Wang W, Liu J, Liu X, Li S, Chen Y, Guo W, Xin M, Yao Y, Ni Z, Sun Q, Peng H, Liu J. Thermosensitive SUMOylation of TaHsfA1 defines a dynamic ON/OFF molecular switch for the heat stress response in wheat. THE PLANT CELL 2023; 35:3889-3910. [PMID: 37399070 PMCID: PMC10533334 DOI: 10.1093/plcell/koad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023]
Abstract
Dissecting genetic components in crop plants associated with heat stress (HS) sensing and adaptation will facilitate the design of modern crop varieties with improved thermotolerance. However, the molecular mechanisms underlying the ON/OFF switch controlling HS responses (HSRs) in wheat (Triticum aestivum) remain largely unknown. In this study, we focused on the molecular action of TaHsfA1, a class A heat shock transcription factor, in sensing dynamically changing HS signals and regulating HSRs. We show that the TaHsfA1 protein is modified by small ubiquitin-related modifier (SUMO) and that this modification is essential for the full transcriptional activation activity of TaHsfA1 in triggering downstream gene expression. During sustained heat exposure, the SUMOylation of TaHsfA1 is suppressed, which partially reduces TaHsfA1 protein activity, thereby reducing the intensity of downstream HSRs. In addition, we demonstrate that TaHsfA1 interacts with the histone acetyltransferase TaHAG1 in a thermosensitive manner. Together, our findings emphasize the importance of TaHsfA1 in thermotolerance in wheat. In addition, they define a highly dynamic SUMOylation-dependent "ON/OFF" molecular switch that senses temperature signals and contributes to thermotolerance in crops.
Collapse
Affiliation(s)
- Haoran Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Man Feng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yujie Jiang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Dejie Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Chaoqun Dong
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jing Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiangqing Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Sufang Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Camuel A, Teulet A, Carcagno M, Haq F, Pacquit V, Gully D, Pervent M, Chaintreuil C, Fardoux J, Horta-Araujo N, Okazaki S, Ratu STN, Gueye F, Zilli J, Nouwen N, Arrighi JF, Luo H, Mergaert P, Deslandes L, Giraud E. Widespread Bradyrhizobium distribution of diverse Type III effectors that trigger legume nodulation in the absence of Nod factor. THE ISME JOURNAL 2023; 17:1416-1429. [PMID: 37355742 PMCID: PMC10432411 DOI: 10.1038/s41396-023-01458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
The establishment of the rhizobium-legume symbiosis is generally based on plant perception of Nod factors (NFs) synthesized by the bacteria. However, some Bradyrhizobium strains can nodulate certain legume species, such as Aeschynomene spp. or Glycine max, independently of NFs, and via two different processes that are distinguished by the necessity or not of a type III secretion system (T3SS). ErnA is the first known type III effector (T3E) triggering nodulation in Aeschynomene indica. In this study, a collection of 196 sequenced Bradyrhizobium strains was tested on A. indica. Only strains belonging to the photosynthetic supergroup can develop a NF-T3SS-independent symbiosis, while the ability to use a T3SS-dependent process is found in multiple supergroups. Of these, 14 strains lacking ernA were tested by mutagenesis to identify new T3Es triggering nodulation. We discovered a novel T3E, Sup3, a putative SUMO-protease without similarity to ErnA. Its mutation in Bradyrhizobium strains NAS96.2 and WSM1744 abolishes nodulation and its introduction in an ernA mutant of strain ORS3257 restores nodulation. Moreover, ectopic expression of sup3 in A. indica roots led to the formation of spontaneous nodules. We also report three other new T3Es, Ubi1, Ubi2 and Ubi3, which each contribute to the nodulation capacity of strain LMTR13. These T3Es have no homology to known proteins but share with ErnA three motifs necessary for ErnA activity. Together, our results highlight an unsuspected distribution and diversity of T3Es within the Bradyrhizobium genus that may contribute to their symbiotic efficiency by participating in triggering legume nodulation.
Collapse
Affiliation(s)
- Alicia Camuel
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/Institut Agro/INRAE/Université de Montpellier/CIRAD, TA-A82/J- Campus de Baillarguet 34398, Montpellier cedex 5, France
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Albin Teulet
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/Institut Agro/INRAE/Université de Montpellier/CIRAD, TA-A82/J- Campus de Baillarguet 34398, Montpellier cedex 5, France
- University of Cambridge, Sainsbury Laboratory (SLCU), Cambridge, CB2 1LR, UK
| | - Mélanie Carcagno
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Fazal Haq
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Valérie Pacquit
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Djamel Gully
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/Institut Agro/INRAE/Université de Montpellier/CIRAD, TA-A82/J- Campus de Baillarguet 34398, Montpellier cedex 5, France
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Marjorie Pervent
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/Institut Agro/INRAE/Université de Montpellier/CIRAD, TA-A82/J- Campus de Baillarguet 34398, Montpellier cedex 5, France
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Clémence Chaintreuil
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/Institut Agro/INRAE/Université de Montpellier/CIRAD, TA-A82/J- Campus de Baillarguet 34398, Montpellier cedex 5, France
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Joël Fardoux
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/Institut Agro/INRAE/Université de Montpellier/CIRAD, TA-A82/J- Campus de Baillarguet 34398, Montpellier cedex 5, France
| | - Natasha Horta-Araujo
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/Institut Agro/INRAE/Université de Montpellier/CIRAD, TA-A82/J- Campus de Baillarguet 34398, Montpellier cedex 5, France
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Shin Okazaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Safirah Tasa Nerves Ratu
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Fatou Gueye
- Carrefour International, Bureau Régional Afrique de l'Ouest, Dakar, Sénégal
| | - Jerri Zilli
- Embrapa Agrobiologia, Bairro Ecologia, Seropedica, Rio de Janeiro, Brazil
| | - Nico Nouwen
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/Institut Agro/INRAE/Université de Montpellier/CIRAD, TA-A82/J- Campus de Baillarguet 34398, Montpellier cedex 5, France
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jean-François Arrighi
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/Institut Agro/INRAE/Université de Montpellier/CIRAD, TA-A82/J- Campus de Baillarguet 34398, Montpellier cedex 5, France
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Haiwei Luo
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Peter Mergaert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Laurent Deslandes
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/Institut Agro/INRAE/Université de Montpellier/CIRAD, TA-A82/J- Campus de Baillarguet 34398, Montpellier cedex 5, France.
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
14
|
Xu X, Fonseca de Lima CF, Vu LD, De Smet I. When drought meets heat - a plant omics perspective. FRONTIERS IN PLANT SCIENCE 2023; 14:1250878. [PMID: 37674736 PMCID: PMC10478009 DOI: 10.3389/fpls.2023.1250878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
Changes in weather patterns with emerging drought risks and rising global temperature are widespread and negatively affect crop growth and productivity. In nature, plants are simultaneously exposed to multiple biotic and abiotic stresses, but most studies focus on individual stress conditions. However, the simultaneous occurrence of different stresses impacts plant growth and development differently than a single stress. Plants sense the different stress combinations in the same or in different tissues, which could induce specific systemic signalling and acclimation responses; impacting different stress-responsive transcripts, protein abundance and modifications, and metabolites. This mini-review focuses on the combination of drought and heat, two abiotic stress conditions that often occur together. Recent omics studies indicate common or independent regulators involved in heat or drought stress responses. Here, we summarize the current research results, highlight gaps in our knowledge, and flag potential future focus areas.
Collapse
Affiliation(s)
- Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Cassio Flavio Fonseca de Lima
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
15
|
Rytz TC, Feng J, Barros JAS, Vierstra RD. Arabidopsis-expressing lysine-null SUMO1 reveals a non-essential role for secondary SUMO modifications in plants. PLANT DIRECT 2023; 7:e506. [PMID: 37465357 PMCID: PMC10350450 DOI: 10.1002/pld3.506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 07/20/2023]
Abstract
The reversible conjugation of small ubiquitin-like modifier (SUMO) to other proteins has pervasive roles in various aspects of plant development and stress defense through its selective attachment to numerous intracellular substrates. An intriguing aspect of SUMO is that it can be further modified by SUMOylation and ubiquitylation, which isopeptide-link either or both polypeptides to internal lysines within previously bound SUMOs. Although detectable by mass spectrometry, the functions of these secondary modifications remain obscure. Here, we generated transgenic Arabidopsis that replaced the two related and essential SUMO isoforms (SUMO1 and SUMO2) with a lysine-null SUMO1 variant (K0) immune to further SUMOylation/ubiquitylation at these residues. Remarkably, homozygous SUMO1(K0) sumo1 sumo2 plants developed normally, were not hypersensitive to heat stress, and have nearly unaltered SUMOylation profiles during heat shock. However, subtle changes in tolerance to salt, paraquat, and the DNA-damaging agents bleomycin and methane methylsulfonate were evident, as were increased sensitivities to ABA and the gibberellic acid biosynthesis inhibitor paclobutrazol, suggesting roles for these secondary modifications in stress defense, DNA repair, and hormone signaling. We also generated viable sumo1 sumo2 lines expressing a SUMO1(K0) variant specifically designed to help isolate SUMO conjugates and map SUMOylation sites, thus offering a new tool for investigating SUMO in planta.
Collapse
Affiliation(s)
- Thérèse C. Rytz
- Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
- Benson Hill Inc.St. LouisMissouriUSA
| | - Juanjuan Feng
- Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
- State Key Laboratory of Cotton Biology, School of Life SciencesHenan UniversityKaifengChina
| | | | | |
Collapse
|
16
|
Xiong J, Yang F, Wei F, Yang F, Lin H, Zhang D. Inhibition of SIZ1-mediated SUMOylation of HOOKLESS1 promotes light-induced apical hook opening in Arabidopsis. THE PLANT CELL 2023; 35:2027-2043. [PMID: 36890719 PMCID: PMC10226575 DOI: 10.1093/plcell/koad072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/19/2023] [Accepted: 02/12/2023] [Indexed: 05/12/2023]
Abstract
The apical hook protects cotyledons and the shoot apical meristem from mechanical injuries during seedling emergence from the soil. HOOKLESS1 (HLS1) is a central regulator of apical hook development, as a terminal signal onto which several pathways converge. However, how plants regulate the rapid opening of the apical hook in response to light by modulating HLS1 function remains unclear. In this study, we demonstrate that the small ubiquitin-like modifier (SUMO) E3 ligase SAP AND MIZ1 DOMAIN-CONTAINING LIGASE1 (SIZ1) interacts with HLS1 and mediates its SUMOylation in Arabidopsis thaliana. Mutating SUMO attachment sites of HLS1 results in impaired function of HLS1, indicating that HLS1 SUMOylation is essential for its function. SUMOylated HLS1 was more likely to assemble into oligomers, which are the active form of HLS1. During the dark-to-light transition, light induces rapid apical hook opening, concomitantly with a drop in SIZ1 transcript levels, resulting in lower HLS1 SUMOylation. Furthermore, ELONGATED HYPOCOTYL5 (HY5) directly binds to the SIZ1 promoter and suppresses its transcription. HY5-initiated rapid apical hook opening partially depended on HY5 inhibition of SIZ1 expression. Taken together, our study identifies a function for SIZ1 in apical hook development, providing a dynamic regulatory mechanism linking the post-translational modification of HLS1 during apical hook formation and light-induced apical hook opening.
Collapse
Affiliation(s)
- Jiawei Xiong
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, P.R. China
| | - Fabin Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, P.R. China
| | - Fan Wei
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, P.R. China
| | - Feng Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, P.R. China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, P.R. China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, P.R. China
| |
Collapse
|
17
|
Liu Z, Bian N, Guo J, Zhao S, Khan A, Chu B, Ma Z, Niu C, Ma F, Ma M, Guan Q, Li X. Interfering small ubiquitin modifiers (SUMO) improves the thermotolerance of apple by facilitating the activity of MdDREB2A. STRESS BIOLOGY 2023; 3:10. [PMID: 37676624 PMCID: PMC10442018 DOI: 10.1007/s44154-023-00089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/14/2023] [Indexed: 09/08/2023]
Abstract
Heat stress, which is caused by global warming, threatens crops yield and quality across the world. As a kind of post-translation modification, SUMOylation involves in plants heat stress response with a rapid and wide pattern. Here, we identified small ubiquitin modifiers (SUMO), which affect drought tolerance in apple, also participated in thermotolerance. Six isoforms of SUMOs located on six chromosomes in apple genome, and all the SUMOs were up-regulated in response to heat stress condition. The MdSUMO2 RNAi transgenic apple plants exhibited higher survival rate, lower ion leakage, higher catalase (CAT) activity, and Malondialdehyde (MDA) content under heat stress. MdDREB2A, the substrate of MdSUMO2 in apple, was accumulated in MdSUMO2 RNAi transgenic plants than the wild type GL-3 at the protein level in response to heat stress treatment. Further, the inhibited SUMOylation level of MdDREB2A in MdSUMO2 RNAi plants might repress its ubiquitination, too. The accumulated MdDREB2A in MdSUMO2 RNAi plants further induced heat-responsive genes expression to strengthen plants thermotolerance, including MdHSFA3, MdHSP26.5, MdHSP18.2, MdHSP70, MdCYP18-1 and MdTLP1. In summary, these findings illustrate that interfering small ubiquitin modifiers (SUMO) in apple improves plants thermotolerance, partly by facilitating the stability and activity of MdDREB2A.
Collapse
Affiliation(s)
- Zeyuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ningning Bian
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianyan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur, 22620, Pakistan
| | - Baohua Chu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ziqing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ming Ma
- Gansu Academy of Agricultural Sciences, Lanzhou, 730000, Gansu, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
18
|
Shimada H, Tanaka K. Rice SUMOs and unification of their names. Genes Genet Syst 2023. [PMID: 37150617 DOI: 10.1266/ggs.22-00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Posttranslational modifications (PTMs) to proteins are regulatory mechanisms that play a critical role in regulating growth and development. The SUMO system is a rapid and dynamic PTM system employed by eukaryotic cells. Plant SUMOs are involved in many physiological processes, such as stress responses, regulation of flowering time and defense reactions to pathogen attack. In Arabidopsis thaliana and rice (Oryza sativa), eight and seven SUMO genes, respectively, were predicted by sequence analysis. Phylogenetic tree analysis of these SUMOs shows that they are divided into two groups. One consists of SUMOs that contain no SUMO acceptor site and are involved in monoSUMOylation of their target proteins. Rice OsSUMO1 and OsSUMO2 are in this group, and are structurally similar to each other and to Arabidopsis AtSUMO1. The other group is composed of SUMOs in which an acceptor site (ΨKXE/D) occurs inside the SUMO molecule, suggesting their involvement in polySUMOylation. Several studies on the rice SUMOs have been performed independently and reported. Individual names of rice SUMOs are confusing, because a unified nomenclature has not been proposed. This review clarifies the attribution of seven rice SUMOs and unifies the individual SUMO names.
Collapse
Affiliation(s)
- Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science
| | - Katsunori Tanaka
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei Gakuin University
| |
Collapse
|
19
|
Bhagat PK, Roy D, Sadanandom A. Expression, Purification, and Enzymatic Analysis of Plant SUMO Proteases. Methods Mol Biol 2023; 2581:109-119. [PMID: 36413314 DOI: 10.1007/978-1-0716-2784-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The conjugation of SUMO can profoundly change the behavior of substrate proteins, impacting a wide variety of cellular responses. SUMO proteases are emerging as key regulators of plant adaptation to its environment because of their instrumental role in the SUMO deconjugation process. Here we describe how to express, purify, and determine SUMO deconjugation activity of a plant SUMO protease.
Collapse
Affiliation(s)
| | - Dipan Roy
- Department of BioSciences, University of Durham, Durham, UK
| | - Ari Sadanandom
- Department of BioSciences, University of Durham, Durham, UK.
| |
Collapse
|
20
|
Negi S, Bhakta S, Ganapathi TR, Tak H. MusaNAC29-like transcription factor improves stress tolerance through modulation of phytohormone content and expression of stress responsive genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111507. [PMID: 36332768 DOI: 10.1016/j.plantsci.2022.111507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 05/20/2023]
Abstract
Understanding the molecular mechanisms governed by genes and cross-talks among stress signaling pathways is vital for generating a broad view on stress responses in plants. Here, we analysed the effects of MusaNAC29-like transcription factor of banana on stress responses and report the quantitative modulation of phytohormone and flavonoid content and analysed the growth parameters and yield trait in transgenic banana plants. Expression of MusaNAC29-like transcription factor was strongly altered in responses to stress conditions and application of signaling molecules. Under control conditions, PMusaNAC29-like-GUS is activated in cells bordering xylem vessel elements and is strongly triggered in other cells types after influence of salicylic acid and abscisic acid. Transgenic banana plants of cultivar Rasthali and Grand Naine overexpressing MusaNAC29-like transcription factor displayed superior tolerance towards drought and salinity stress. LC-MS analysis indicated elevated levels of jasmonic acid and salicylic acid while content of zeatin was significantly reduced in leaves of transgenic banana lines. Transgenic banana lines displayed increased levels of gallic acid, coumaric acid, naringenin, chlorogenic acid while levels of vanillic acid and piperine were significantly reduced. Expression of stress related genes coding for antioxidants, thiol peptidase proteins, cold-regulated proteins, late embryogenesis abundant proteins, ethylene-responsive transcription factors, bHLH proteins, jasmonate-zim-domain proteins and WRKY transcription factors were significantly induced in transgenic banana lines. Though MusaNAC29-like transcription factor improved stress tolerance, its overexpression resulted in retarded growth of transgenic lines resulting in reduced yield of banana fruits.
Collapse
Affiliation(s)
- Sanjana Negi
- Department of Biotechnology, University of Mumbai, Mumbai 400098, India.
| | - Subham Bhakta
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - T R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
21
|
Rose T, Wilkinson M, Lowe C, Xu J, Hughes D, Hassall KL, Hassani‐Pak K, Amberkar S, Noleto‐Dias C, Ward J, Heuer S. Novel molecules and target genes for vegetative heat tolerance in wheat. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2022; 3:264-289. [PMID: 37284432 PMCID: PMC10168084 DOI: 10.1002/pei3.10096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 06/08/2023]
Abstract
To prevent yield losses caused by climate change, it is important to identify naturally tolerant genotypes with traits and related pathways that can be targeted for crop improvement. Here we report on the characterization of contrasting vegetative heat tolerance in two UK bread wheat varieties. Under chronic heat stress, the heat-tolerant cultivar Cadenza produced an excessive number of tillers which translated into more spikes and higher grain yield compared to heat-sensitive Paragon. RNAseq and metabolomics analyses revealed that over 5000 genotype-specific genes were differentially expressed, including photosynthesis-related genes, which might explain the observed ability of Cadenza to maintain photosynthetic rate under heat stress. Around 400 genes showed a similar heat-response in both genotypes. Only 71 genes showed a genotype × temperature interaction. As well as known heat-responsive genes such as heat shock proteins (HSPs), several genes that have not been previously linked to the heat response, particularly in wheat, have been identified, including dehydrins, ankyrin-repeat protein-encoding genes, and lipases. Contrary to primary metabolites, secondary metabolites showed a highly differentiated heat response and genotypic differences. These included benzoxazinoid (DIBOA, DIMBOA), and phenylpropanoids and flavonoids with known radical scavenging capacity, which was assessed via the DPPH assay. The most highly heat-induced metabolite was (glycosylated) propanediol, which is widely used in industry as an anti-freeze. To our knowledge, this is the first report on its response to stress in plants. The identified metabolites and candidate genes provide novel targets for the development of heat-tolerant wheat.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sandeep Amberkar
- Rothamsted ResearchHarpendenUK
- Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | | | | | - Sigrid Heuer
- Rothamsted ResearchHarpendenUK
- National Institute of Agricultural Botany (NIAB)CambridgeUK
| |
Collapse
|
22
|
Macauyag EA, Kajiura H, Ohashi T, Misaki R, Fujiyama K. High-level transient production of a protease-resistant mutant form of human basic fibroblast growth factor in Nicotiana benthamiana leaves. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:291-301. [PMID: 36349230 PMCID: PMC9592933 DOI: 10.5511/plantbiotechnology.22.0628a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/28/2022] [Indexed: 06/16/2023]
Abstract
The human basic fibroblast growth factor (bFGF) is a protein that plays a pivotal role in cellular processes like cell proliferation and development. As a result, it has become an important component in cell culture systems, with applications in biomedical engineering, cosmetics, and research. Alternative production techniques, such as transient production in plants, are becoming a feasible option as the demand continues to grow. High-level bFGF production was achieved in this study employing an optimized Agrobacterium-mediated transient expression system, which yielded about a 3-fold increase in production over a conventional system. This yield was further doubled at about 185 µg g-1 FW using a mutant protease-resistant version that degraded/aggregated at a three-fold slower rate in leaf crude extracts. To achieve a pure product, a two-step purification technique was applied. The capacity of the pure protease-resistant bFGF (PRbFGF) to stimulate cell proliferation was tested and was found to be comparable to that of E. coli-produced bFGF in HepG2 and CHO-K1 cells. Overall, this study demonstrates a high-level transient production system of functional PRbFGF in N. benthamiana leaves as well as an efficient tag-less purification technique of leaf crude extracts.
Collapse
Affiliation(s)
- Edjohn Aaron Macauyag
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Takao Ohashi
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryo Misaki
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
- Cooperative Research Station in Southeast Asia (OU: CRS), Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
23
|
Singh M, Singh A, Yadav N, Yadav DK. Current perspectives of ubiquitination and SUMOylation in abiotic stress tolerance in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:993194. [PMID: 36212351 PMCID: PMC9533872 DOI: 10.3389/fpls.2022.993194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Post-translational modification (PTM) is a critical and rapid mechanism to regulate all the major cellular processes through the modification of diverse protein substrates. Substrate-specific covalent attachment of ubiquitin and Small Ubiquitin-Like Modifier (SUMO) with the target proteins, known as ubiquitination and SUMOylation, respectively, are crucial PTMs that regulate almost every process in the cell by modulating the stability and fidelity of the proteins. Ubiquitination and SUMOylation play a very significant role to provide tolerance to the plants in adverse environmental conditions by activating/deactivating the pre-existing proteins to a great extent. We reviewed the importance of ubiquitination and SUMOylation in plants, implicating its prospects in various abiotic stress regulations. An exhaustive study of molecular mechanisms of ubiquitination and SUMOylation of plant proteins and their role will contribute to the understanding of physiology underlying mitigation of the abiotic stresses and survival in plants. It will be helpful to strategize the improvement of crops for abiotic stress tolerance.
Collapse
Affiliation(s)
- Madhavi Singh
- Plant Molecular Biology and Genetic Engineering Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Ananya Singh
- Plant Molecular Biology and Genetic Engineering Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Neelam Yadav
- Department of Botany, University of Allahabad, Prayagraj, India
| | - Dinesh Kumar Yadav
- Plant Molecular Biology and Genetic Engineering Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| |
Collapse
|
24
|
Shi H, Li X, Lv M, Li J. BES1/BZR1 Family Transcription Factors Regulate Plant Development via Brassinosteroid-Dependent and Independent Pathways. Int J Mol Sci 2022; 23:ijms231710149. [PMID: 36077547 PMCID: PMC9478962 DOI: 10.3390/ijms231710149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 01/04/2023] Open
Abstract
The BES1/BZR1 family is a plant-specific small group of transcription factors possessing a non-canonical bHLH domain. Genetic and biochemical analyses within the last two decades have demonstrated that members of this family are key transcription factors in regulating the expression of brassinosteroid (BR) response genes. Several recent genetic and evolutionary studies, however, have clearly indicated that the BES1/BZR1 family transcription factors also function in regulating several aspects of plant development via BR-independent pathways, suggesting they are not BR specific. In this review, we summarize our current understanding of this family of transcription factors, the mechanisms regulating their activities, DNA binding motifs, and target genes. We selectively discuss a number of their biological functions via BR-dependent and particularly independent pathways, which were recently revealed by loss-of-function genetic analyses. We also highlight a few possible future directions.
Collapse
|
25
|
Mangena P. Pleiotropic effects of recombinant protease inhibitors in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:994710. [PMID: 36119571 PMCID: PMC9478479 DOI: 10.3389/fpls.2022.994710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Recombinant gene encoded protease inhibitors have been identified as some of the most effective antidigestive molecules to guard against proteolysis of essential proteins and plant attacking proteases from herbivorous pests and pathogenic microorganisms. Protease inhibitors (PIs) can be over expressed in transgenic plants to complement internal host defense systems, Bt toxins in genetically modified pest resistance and abiotic stress tolerance achieved through cystatins expression. Although the understanding of the role of proteolytic enzymes and their inhibitors encoded by both endogenous and transgenes expressed in crop plants has significantly advanced, their implication in biological systems still requires further elucidations. This paper, therefore, succinctly reviewed most recently published literature on recombinant proteases inhibitors (RPIs), focusing mainly on their unintended consequences in plants, other living organisms, and the environment. The review discusses major negative and unintended effects of RPIs involving the inhibitors' non-specificity on protease enzymes, non-target organisms and ubiquitous versatility in their mechanism of inhibition. The paper also discusses some direct and indirect effects of RPIs such as degradation by distinct classes of proteases, reduced functionality due to plant exposure to severe environmental stress and any other potential negative influences exerted on both the host plant as well as the environment. These pleiotropic effects must be decisively monitored to eliminate and prevent any potential adverse effects that transgenic plants carrying recombinant inhibitor genes may have on non-target organisms and biodiversity.
Collapse
Affiliation(s)
- Phetole Mangena
- Department of Biodiversity, Faculty of Science and Agriculture, School of Molecular and Life Sciences, University of Limpopo, Polokwane, Limpopo, South Africa
| |
Collapse
|
26
|
Understanding SUMO-mediated adaptive responses in plants to improve crop productivity. Essays Biochem 2022; 66:155-168. [PMID: 35920279 PMCID: PMC9400072 DOI: 10.1042/ebc20210068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 12/30/2022]
Abstract
The response to abiotic and biotic stresses in plants and crops is considered a multifaceted process. Due to their sessile nature, plants have evolved unique mechanisms to ensure that developmental plasticity remains during their life cycle. Among these mechanisms, post-translational modifications (PTMs) are crucial components of adaptive responses in plants and transduce environmental stimuli into cellular signalling through the modulation of proteins. SUMOylation is an emerging PTM that has received recent attention due to its dynamic role in protein modification and has quickly been considered a significant component of adaptive mechanisms in plants during stress with great potential for agricultural improvement programs. In the present review, we outline the concept that small ubiquitin-like modifier (SUMO)-mediated response in plants and crops to abiotic and biotic stresses is a multifaceted process with each component of the SUMO cycle facilitating tolerance to several different environmental stresses. We also highlight the clear increase in SUMO genes in crops when compared with Arabidopsis thaliana. The SUMO system is understudied in crops, given the importance of SUMO for stress responses, and for some SUMO genes, the apparent expansion provides new avenues to discover SUMO-conjugated targets that could regulate beneficial agronomical traits.
Collapse
|
27
|
Smalley S, Hellmann H. Review: Exploring possible approaches using ubiquitylation and sumoylation pathways in modifying plant stress tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111275. [PMID: 35487671 DOI: 10.1016/j.plantsci.2022.111275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Ubiquitin and similar proteins, such as SUMO, are utilized by plants to modify target proteins to rapidly change their stability and activity in cells. This review will provide an overview of these crucial protein interactions with a focus on ubiquitylation and sumoylation in plants and how they contribute to stress tolerance. The work will also explore possibilities to use these highly conserved pathways for novel approaches to generate more robust crop plants better fit to cope with abiotic and biotic stress situations.
Collapse
Affiliation(s)
- Samuel Smalley
- Washington State University, Pullman, WA 99164, United States
| | - Hanjo Hellmann
- Washington State University, Pullman, WA 99164, United States.
| |
Collapse
|
28
|
Huang X, Liu Y, Huang J, Fernando WGD, Li X, Xia S. Activation of NLR-Mediated Autoimmunity in Arabidopsis Early in Short Days 4 Mutant. FRONTIERS IN PLANT SCIENCE 2022; 13:881212. [PMID: 35693184 PMCID: PMC9174647 DOI: 10.3389/fpls.2022.881212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
From a reverse genetic screen using CRISPR/Cas9 gene editing tool, we unintentionally identified an autoimmune mutant. Map-based cloning and whole-genome sequencing revealed that it contains a deletion in SMALL UBIQUITIN-RELATED MODIFIER (SUMO) protease encoding gene EARLY IN SHORT DAYS 4 (ESD4). Previous studies reported that esd4 mutants accumulate elevated levels of plant defense hormone salicylic acid (SA). However, upregulated PATHOGENESIS-RELATED GENE 1 (PR1) expression in esd4 only partly relies on SA level. In this study, we show that plant metabolite N-hydroxypipecolic acid (NHP) biosynthetic genes are upregulated in esd4, and NHP biosynthesis mutant flavin-dependent-monooxygenase 1 (fmo1) partially suppresses the autoimmune phenotypes of esd4, suggestive of a requirement of NHP signaling for the autoimmunity in esd4. As activation of nucleotide-binding leucine-rich repeat immune receptors (NLRs) are associates with the biosynthesis of SA and NHP and lipase-like protein ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) is a key component downstream of many NLRs, we examined the relationship between EDS1 and ESD4 by analyzing the eds1 esd4 double mutant. We found that eds1 largely suppresses esd4 autoimmunity and blocks the elevated expressions of SA and NHP biosynthesis-related genes in esd4. Overall, our study provides evidence supporting the hypothesis that SUMO protease ESD4 likely targets a yet to be identified guardee of NLR by removing its SUMO modification to avoid recognition by the cognate NLR. Loss of ESD4 results in activation of NLR-mediated autoimmunity.
Collapse
Affiliation(s)
- Xingchuan Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Yanan Liu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jianhua Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
29
|
Mohanty S, Dabburu GR, Kumar M, Khasa YP. Heterologous expression of novel SUMO proteases from Schizosaccharomyces pombe in E. coli: Catalytic domain identification and optimization of product yields. Int J Biol Macromol 2022; 209:1001-1019. [PMID: 35447271 DOI: 10.1016/j.ijbiomac.2022.04.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022]
Abstract
Small ubiquitin-related modifier (SUMO) proteins are efficiently used to target the soluble expression of various difficult-to-express proteins in E. coli. However, its utilization in large scale protein production is restricted by the higher cost of Ulp, which is required to cleave SUMO fusion tag from protein-of-interest to generate an authentic N-terminus. This study identified and characterized two novel SUMO proteases i.e., Ulp1 and Ulp2 from Schizosaccharomyces pombe. Codon-optimized gene sequences were cloned and expressed in E. coli. The sequence and structure of SpUlp1 and SpUlp2 catalytic domains were deduced using bioinformatics tools. Protein-protein interaction studies predicted the higher affinity of SpUlp1 towards SUMO compared to its counterpart from Saccharomyces cerevisiae (ScUlp1). The catalytic domain of SpUlp1 was purified using Ni-NTA chromatography with 83.33% recovery yield. Moreover, In vitro activity data further confirmed the fast-acting nature of SpUlp1 catalytic domain, where a 90% cleavage of fusion proteins was obtained within 1 h of incubation, indicating novelty and commercial relevance of S. pombe Ulp1. Biophysical characterization showed 8.8% α-helices, 36.7% β-sheets in SpUlp1SD. From thermal CD and fluorescence data, SpUlp1SD Tm was found to be 45 °C. Further, bioprocess optimization using fed-batch cultivation resulted in 3.5 g/L of SpUlp1SD production with YP/X of 77.26 mg/g DCW and volumetric productivity of 205.88 mg/L/h.
Collapse
Affiliation(s)
- Shilpa Mohanty
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Govinda Rao Dabburu
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| | - Yogender Pal Khasa
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
30
|
Teulet A, Camuel A, Perret X, Giraud E. The Versatile Roles of Type III Secretion Systems in Rhizobia-Legume Symbioses. Annu Rev Microbiol 2022; 76:45-65. [PMID: 35395168 DOI: 10.1146/annurev-micro-041020-032624] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To suppress plant immunity and promote the intracellular infection required for fixing nitrogen for the benefit of their legume hosts, many rhizobia use type III secretion systems (T3SSs) that deliver effector proteins (T3Es) inside host cells. As reported for interactions between pathogens and host plants, the immune system of legume hosts and the cocktail of T3Es secreted by rhizobia determine the symbiotic outcome. If they remain undetected, T3Es may reduce plant immunity and thus promote infection of legumes by rhizobia. If one or more of the secreted T3Es are recognized by the cognate plant receptors, defense responses are triggered and rhizobial infection may abort. However, some rhizobial T3Es can also circumvent the need for nodulation (Nod) factors to trigger nodule formation. Here we review the multifaceted roles played by rhizobial T3Es during symbiotic interactions with legumes. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Albin Teulet
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), IRD, Institut Agro, INRAE, Université de Montpellier, and CIRAD, Montpellier, France;
| | - Alicia Camuel
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), IRD, Institut Agro, INRAE, Université de Montpellier, and CIRAD, Montpellier, France; .,PHIM Plant Health Institute, IRD, Institut Agro, INRAE, Université de Montpellier, and CIRAD, Montpellier, France
| | - Xavier Perret
- Laboratory of Microbial Genetics, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Eric Giraud
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), IRD, Institut Agro, INRAE, Université de Montpellier, and CIRAD, Montpellier, France; .,PHIM Plant Health Institute, IRD, Institut Agro, INRAE, Université de Montpellier, and CIRAD, Montpellier, France
| |
Collapse
|
31
|
Sumoylation in Physiology, Pathology and Therapy. Cells 2022; 11:cells11050814. [PMID: 35269436 PMCID: PMC8909597 DOI: 10.3390/cells11050814] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Sumoylation is an essential post-translational modification that has evolved to regulate intricate networks within emerging complexities of eukaryotic cells. Thousands of target substrates are modified by SUMO peptides, leading to changes in protein function, stability or localization, often by modulating interactions. At the cellular level, sumoylation functions as a key regulator of transcription, nuclear integrity, proliferation, senescence, lineage commitment and stemness. A growing number of prokaryotic and viral proteins are also emerging as prime sumoylation targets, highlighting the role of this modification during infection and in immune processes. Sumoylation also oversees epigenetic processes. Accordingly, at the physiological level, it acts as a crucial regulator of development. Yet, perhaps the most prominent function of sumoylation, from mammals to plants, is its role in orchestrating organismal responses to environmental stresses ranging from hypoxia to nutrient stress. Consequently, a growing list of pathological conditions, including cancer and neurodegeneration, have now been unambiguously associated with either aberrant sumoylation of specific proteins and/or dysregulated global cellular sumoylation. Therapeutic enforcement of sumoylation can also accomplish remarkable clinical responses in various diseases, notably acute promyelocytic leukemia (APL). In this review, we will discuss how this modification is emerging as a novel drug target, highlighting from the perspective of translational medicine, its potential and limitations.
Collapse
|
32
|
(De)Activation (Ir)Reversibly or Degradation: Dynamics of Post-Translational Protein Modifications in Plants. Life (Basel) 2022; 12:life12020324. [PMID: 35207610 PMCID: PMC8874572 DOI: 10.3390/life12020324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
The increasing dynamic functions of post-translational modifications (PTMs) within protein molecules present outstanding challenges for plant biology even at this present day. Protein PTMs are among the first and fastest plant responses to changes in the environment, indicating that the mechanisms and dynamics of PTMs are an essential area of plant biology. Besides being key players in signaling, PTMs play vital roles in gene expression, gene, and protein localization, protein stability and interactions, as well as enzyme kinetics. In this review, we take a broader but concise approach to capture the current state of events in the field of plant PTMs. We discuss protein modifications including citrullination, glycosylation, phosphorylation, oxidation and disulfide bridges, N-terminal, SUMOylation, and ubiquitination. Further, we outline the complexity of studying PTMs in relation to compartmentalization and function. We conclude by challenging the proteomics community to engage in holistic approaches towards identification and characterizing multiple PTMs on the same protein, their interaction, and mechanism of regulation to bring a deeper understanding of protein function and regulation in plants.
Collapse
|
33
|
Hong Y, Chen Y, Shi H, Kong X, Yao J, Lei M, Zhu JK, Wang Z. SUMO E3 ligase SIZ1 negatively regulates arsenite resistance via depressing GSH biosynthesis in Arabidopsis. STRESS BIOLOGY 2022; 2:9. [PMID: 37676515 PMCID: PMC10441941 DOI: 10.1007/s44154-021-00029-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 09/08/2023]
Abstract
Arsenic is a metalloid toxic to plants, animals and human beings. Small ubiquitin-like modifier (SUMO) conjugation is involved in many biological processes in plants. However, the role of SUMOylation in regulating plant arsenic response is still unclear. In this study, we found that dysfunction of SUMO E3 ligase SIZ1 improves arsenite resistance in Arabidopsis. Overexpression of the dominant-negative SUMO E2 variant resembled the arsenite-resistant phenotype of siz1 mutant, indicating that SUMOylation plays a negative role in plant arsenite detoxification. The siz1 mutant accumulated more glutathione (GSH) than the wild type under arsenite stress, and the arsenite-resistant phenotype of siz1 was depressed by inhibiting GSH biosynthesis. The transcript levels of the genes in the GSH biosynthetic pathway were increased in the siz1 mutant comparing with the wild type in response to arsenite treatment. Taken together, our findings revealed a novel function of SIZ1 in modulating plant arsenite response through regulating the GSH-dependent detoxification.
Collapse
Affiliation(s)
- Yechun Hong
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yunjuan Chen
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Xiangfeng Kong
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Juanjuan Yao
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhen Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
34
|
Ibrahim EI, Attia KA, Ghazy AI, Itoh K, Almajhdi FN, Al-Doss AA. Molecular Characterization and Functional Localization of a Novel SUMOylation Gene in Oryza sativa. BIOLOGY 2021; 11:biology11010053. [PMID: 35053052 PMCID: PMC8772976 DOI: 10.3390/biology11010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/19/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The small ubiquitin-related modifier genes regulate the function of the cellular proteins, which are associated with cell stress-tolerance. Identification and understanding the functional localization of these genes are very important to mitigate the stresses. In this study, we identified a novel small ubiquitin-related modifier gene and studied its functional localization in the cell. This new finding will be very valuable in increasing our understanding of the mechanism of stress-tolerance. Abstract Small ubiquitin-related modifier (SUMO) regulates the cellular function of diverse proteins through post-translational modifications. The current study defined a new homolog of SUMO genes in the rice genome and named it OsSUMO7. Putative protein analysis of OsSUMO7 detected SUMOylation features, including di-glycine (GG) and consensus motifs (ΨKXE/D) for the SUMOylation site. Phylogenetic analysis demonstrated the high homology of OsSUMO7 with identified rice SUMO genes, which indicates that the OsSUMO7 gene is an evolutionarily conserved SUMO member. RT-PCR analysis revealed that OsSUMO7 was constitutively expressed in all plant organs. Bioinformatic analysis defined the physicochemical properties and structural model prediction of OsSUMO7 proteins. A red fluorescent protein (DsRed), fused with the OsSUMO7 protein, was expressed and localized mainly in the nucleus and formed nuclear subdomain structures. The fusion proteins of SUMO-conjugating enzymes with the OsSUMO7 protein were co-expressed and co-localized in the nucleus and formed nuclear subdomains. This indicated that the OsSUMO7 precursor is processed, activated, and transported to the nucleus through the SUMOylation system of the plant cell.
Collapse
Affiliation(s)
- Eid I. Ibrahim
- Biotechnology Lab., Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.I.G.); (A.A.A.-D.)
- Correspondence: (E.I.I.); (K.A.A.)
| | - Kotb A. Attia
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455-11451, Riyadh 11451, Saudi Arabia
- Rice Biotechnology Lab., Rice Research Department, Field Crops Research Institute, ARC, Sakha, Kafr, EL-Sheikh 33717, Egypt
- Correspondence: (E.I.I.); (K.A.A.)
| | - Abdelhalim I. Ghazy
- Biotechnology Lab., Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.I.G.); (A.A.A.-D.)
| | - Kimiko Itoh
- Institute of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Fahad N. Almajhdi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Abdullah A. Al-Doss
- Biotechnology Lab., Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.I.G.); (A.A.A.-D.)
| |
Collapse
|
35
|
Srivastava M, Verma V, Srivastava AK. The converging path of protein SUMOylation in phytohormone signalling: highlights and new frontiers. PLANT CELL REPORTS 2021; 40:2047-2061. [PMID: 34129078 DOI: 10.1007/s00299-021-02732-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
The intersection of phytohormone signalling pathways with SUMOylation, a key post-translational modification, offers an additional layer of control to the phytohormone signalling for sophisticated regulation of plant development. Plants live in a constantly changing environment that are often challenging for the growth and development of plants. Phytohormones play a critical role in modulating molecular-level changes for enabling plants to resist climatic aberrations. The orchestration of such effective molecular responses entails rapid regulation of phytohormone signalling at transcriptional, translational and post-translational levels. Post-translational modifications have emerged as a key player in modulating hormonal pathways. The current review lays emphasis on the role of SUMOylation, a key post-translational modification, in manipulating individual hormone signalling pathways for better plant adaptability. Here, we discuss the recent advancement in the field and highlights how SUMO targets key signalling intermediates including transcription factors to provide a quick response to different biotic or abiotic stresses, sometimes even prior to changes in hormone levels. The understanding of the convergence of SUMOylation and hormonal pathways will offer an additional layer of control to the phytohormone signalling for an intricate and sophisticated regulation of plant development and can be utilised as a tool to generate climate-resilient crops.
Collapse
Affiliation(s)
| | - Vivek Verma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India.
| | - Anjil Kumar Srivastava
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
36
|
D'Ippólito S, Rey-Burusco MF, Feingold SE, Guevara MG. Role of proteases in the response of plants to drought. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:1-9. [PMID: 34607206 DOI: 10.1016/j.plaphy.2021.09.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/02/2021] [Accepted: 09/28/2021] [Indexed: 05/25/2023]
Abstract
Plants are sessile organisms that, to survive they develop response mechanisms under water deficit conditions. Plant proteases play an essential role in a diversity of biological processes, among them tolerance to drought stress. Proteolysis is a critical regulator of stomatal development. Plant proteases are involved in the crosstalk among phytohormones and adjustment of stomatal aperture. Plant proteases are also related to the increment in reactive oxygen species (ROS) production detected in the plant biochemical response to drought. Plant proteases mitigate this process by degrading damaged, denatured, and aggregated proteins, remobilizing amino acids, and generating molecules involved in signal transductions. Although many roles for proteases have been proposed, molecular bases that regulate these mechanisms remain unknown. In this review, we summarize the current knowledge on the participation of proteases in the signaling pathways of plants in response to water deficit and their relationship with plant stress tolerance.
Collapse
Affiliation(s)
- Sebastián D'Ippólito
- Biological Research Institute, National Council of Scientific and Technique Research (CONICET), University of Mar del Plata, Mar del Plata (UNMDP), Argentina
| | - María Florencia Rey-Burusco
- Agrobiotechnology Laboratory, National Institute of Agrotechnology (INTA) EEA - Balcarce, Route 226, Km 73.5. DC 276, (7620), Balcarce, Argentina
| | - Sergio Enrique Feingold
- Agrobiotechnology Laboratory, National Institute of Agrotechnology (INTA) EEA - Balcarce, Route 226, Km 73.5. DC 276, (7620), Balcarce, Argentina
| | - María Gabriela Guevara
- Biological Research Institute, National Council of Scientific and Technique Research (CONICET), University of Mar del Plata, Mar del Plata (UNMDP), Argentina.
| |
Collapse
|
37
|
Kasera M, Ingole KD, Rampuria S, Walia Y, Gassmann W, Bhattacharjee S. Global SUMOylome Adjustments in Basal Defenses of Arabidopsis thaliana Involve Complex Interplay Between SMALL-UBIQUITIN LIKE MODIFIERs and the Negative Immune Regulator SUPPRESSOR OF rps4-RLD1. Front Cell Dev Biol 2021; 9:680760. [PMID: 34660568 PMCID: PMC8514785 DOI: 10.3389/fcell.2021.680760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/03/2021] [Indexed: 11/26/2022] Open
Abstract
Steady-state SUMOylome of a plant is adjusted locally during developmental transitions and more globally during stress exposures. We recently reported that basal immunity in Arabidopsis thaliana against Pseudomonas syringae pv tomato strain DC3000 (PstDC3000) is associated with strong enhancements in the net SUMOylome. Transcriptional upregulations of SUMO conjugases, suppression of protease, and increased SUMO translations accounted for this enhanced SUMOylation. Antagonistic roles of SUMO1/2 and SUMO3 isoforms further fine-tuned the SUMOylome adjustments, thus impacting defense amplitudes and immune outcomes. Loss of function of SUPPRESSOR OF rps4-RLD1 (SRFR1), a previously reported negative regulator of basal defenses, also caused constitutive increments in global SUMO-conjugates through similar modes. These suggest that SRFR1 plays a pivotal role in maintenance of SUMOylation homeostasis and its dynamic changes during immune elicitations. Here, we demonstrate that SRFR1 degradation kinetically precedes and likely provides the salicylic acid (SA) elevations necessary for the SUMOylome increments in basal defenses. We show that SRFR1 not only is a SUMOylation substrate but also interacts in planta with both SUMO1 and SUMO3. In sum1 or sum3 mutants, SRFR1 stabilities are reduced albeit by different modes. Whereas a srfr1 sum1 combination is lethal, the srfr1 sum3 plants retain developmental defects and enhanced immunity of the srfr1 parent. Together with increasing evidence of SUMOs self-regulating biochemical efficiencies of SUMOylation-machinery, we present their impositions on SRFR1 expression that in turn counter-modulates the SUMOylome. Overall, our investigations reveal multifaceted dynamics of regulated SUMOylome changes via SRFR1 in defense-developmental balance.
Collapse
Affiliation(s)
- Mritunjay Kasera
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, India
| | - Kishor D Ingole
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, India.,Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, India
| | - Sakshi Rampuria
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, India.,Division of Plant Sciences, C. S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Yashika Walia
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, India
| | - Walter Gassmann
- Division of Plant Sciences, C. S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Saikat Bhattacharjee
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
38
|
Physiological and Molecular Responses of 'Dusa' Avocado Rootstock to Water Stress: Insights for Drought Adaptation. PLANTS 2021; 10:plants10102077. [PMID: 34685886 PMCID: PMC8537572 DOI: 10.3390/plants10102077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022]
Abstract
Avocado consumption is increasing year by year, and its cultivation has spread to many countries with low water availability, which threatens the sustainability and profitability of avocado orchards. However, to date, there is not much information on the behavior of commercial avocado rootstocks against drought. The aim of this research was to evaluate the physiological and molecular responses of ‘Dusa’ avocado rootstock to different levels of water stress. Plants were deficit irrigated until soil water content reached 50% (mild-WS) and 25% (severe-WS) of field capacity. Leaf water potential (Ψw), net CO2 assimilation rates (AN), transpiration rate (E), stomatal conductance (gs), and plant transpiration rates significantly decreased under both WS treatments, reaching significantly lower values in severe-WS plants. After rewatering, mild- and severe-WS plants showed a fast recovery in most physiological parameters measured. To analyze root response to different levels of drought stress, a cDNA avocado stress microarray was carried out. Plants showed a wide transcriptome response linked to the higher degree of water stress, and functional enrichment of differentially expressed genes (DEGs) revealed abundance of common sequences associated with water stress, as well as specific categories for mild-WS and severe-WS. DEGs previously linked to drought tolerance showed overexpression under both water stress levels, i.e., several transcription factors, genes related to abscisic acid (ABA) response, redox homeostasis, osmoprotection, and cell-wall organization. Taken altogether, physiological and molecular data highlight the good performance of ‘Dusa’ rootstock under low-water-availability conditions, although further water stress experiments must be carried out under field conditions.
Collapse
|
39
|
Ingole KD, Kasera M, van den Burg HA, Bhattacharjee S. Antagonism between SUMO1/2 and SUMO3 regulates SUMO conjugate levels and fine-tunes immunity. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6640-6658. [PMID: 34145454 DOI: 10.1093/jxb/erab296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/16/2021] [Indexed: 06/12/2023]
Abstract
The attachment of SMALL UBIQUITIN-LIKE MODIFIER (SUMO) to target proteins regulates a plethora of cellular processes across eukaryotes. In Arabidopsis thaliana, mutants with abnormal SUMO1/2 conjugate levels display a dwarf stature, autoimmunity, and altered stress responses to adverse environmental conditions. Since the SUMO pathway is known to autoregulate its biochemical activity (via allosteric interactions), we assessed whether the emergence of additional SUMO paralogs in Arabidopsis has introduced the capacity of self-regulation by means of isoform diversification in this model plant. By studying the plant defense responses elicited by the bacterial pathogen Pseudomonas syringae pv. tomato, we provide genetic evidence that SUM3, a divergent paralog, acts downstream of the two main SUMO paralogues, SUM1/2. The expression of SUM3 apparently buffers or suppresses the function of SUM1/2 by controlling the timing and amplitude of the immune response. Moreover, SUM1 and SUM2 work additively to suppress both basal and TNL-specific immunity, a specific branch of the immune network. Finally, our data reveal that SUM3 is required for the global increase in SUMO1/2 conjugates upon exposure to biotic and abiotic stresses, namely heat and pathogen exposure. We cannot exclude that this latter effect is independent of the role of SUM3 in immunity.
Collapse
Affiliation(s)
- Kishor D Ingole
- Laboratory of Signal Transduction and Plant Resistance, UNESCO Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121 001, Haryana, India
- Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar-751 024, Odisha, India
| | - Mritunjay Kasera
- Laboratory of Signal Transduction and Plant Resistance, UNESCO Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121 001, Haryana, India
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Saikat Bhattacharjee
- Laboratory of Signal Transduction and Plant Resistance, UNESCO Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121 001, Haryana, India
| |
Collapse
|
40
|
Sharma M, Fuertes D, Perez-Gil J, Lois LM. SUMOylation in Phytopathogen Interactions: Balancing Invasion and Resistance. Front Cell Dev Biol 2021; 9:703795. [PMID: 34485289 PMCID: PMC8415633 DOI: 10.3389/fcell.2021.703795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 12/03/2022] Open
Abstract
Plants are constantly confronted by a multitude of biotic stresses involving a myriad of pathogens. In crops, pathogen infections result in significant agronomical losses worldwide posing a threat to food security. In order to enter plant tissues and establish a successful infection, phytopathogens have to surpass several physical, and chemical defense barriers. In recent years, post-translational modification (PTM) mechanisms have emerged as key players in plant defense against pathogens. PTMs allow a highly dynamic and rapid response in front of external challenges, increasing the complexity and precision of cellular responses. In this review, we focus on the role of SUMO conjugation (SUMOylation) in plant immunity against fungi, bacteria, and viruses. In plants, SUMO regulates multiple biological processes, ranging from development to responses arising from environmental challenges. During pathogen attack, SUMO not only modulates the activity of plant defense components, but also serves as a target of pathogen effectors, highlighting its broad role in plant immunity. Here, we summarize known pathogenic strategies targeting plant SUMOylation and, the plant SUMO conjugates involved in host-pathogen interactions. We also provide a catalog of candidate SUMO conjugates according to their role in defense responses. Finally, we discuss the complex role of SUMO in plant defense, focusing on key biological and experimental aspects that contribute to some controversial conclusions, and the opportunities for improving agricultural productivity by engineering SUMOylation in crop species.
Collapse
Affiliation(s)
- Manisha Sharma
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain.,Biosciences, College of Life and Environment Sciences, University of Exeter, Exeter, United Kingdom
| | - Diana Fuertes
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Jordi Perez-Gil
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - L Maria Lois
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain.,Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
41
|
Jiang J, Kuo YW, Salem N, Erickson A, Falk BW. Carrot mottle virus ORF4 movement protein targets plasmodesmata by interacting with the host cell SUMOylation system. THE NEW PHYTOLOGIST 2021; 231:382-398. [PMID: 33774829 DOI: 10.1111/nph.17370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Plant virus movement proteins (MPs) facilitate virus spread in their plant hosts, and some of them are known to target plasmodesmata (PD). However, how the MPs target PD is still largely unknown. Carrot mottle virus (CMoV) encodes the ORF3 and ORF4 proteins, which are involved in CMoV movement. In this study, we used CMoV as a model to study the PD targeting of a plant virus MP. We showed that the CMoV ORF4 protein, but not the ORF3 protein, modified PD and led to the virus movement. We found that the CMoV ORF4 protein interacts with the host cell small ubiquitin-like modifier (SUMO) 1, 2 and the SUMO-conjugating enzyme SCE1, resulting in the ORF4 protein SUMOylation. Downregulation of mRNAs for NbSCE1 and NbSUMO impaired CMoV infection. The SUMO-interacting motifs (SIMs) LVIVF, VIWV, and a lysine residue at position 78 (K78) are required for the ORF4 protein SUMOylation. The mutation of these motifs prevented the protein to efficiently target PD, and further slowed or completely abolished CMoV systemic movement. Finally, we found that some of these motifs are highly conserved among umbraviruses. Our data suggest that the CMoV ORF4 protein targets PD by interacting with the host cell SUMOylation system.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Yen-Wen Kuo
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Nidà Salem
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman, 11942, Jordan
| | - Anna Erickson
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Bryce W Falk
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
42
|
EMS Derived Wheat Mutant BIG8-1 ( Triticum aestivum L.)-A New Drought Tolerant Mutant Wheat Line. Int J Mol Sci 2021; 22:ijms22105314. [PMID: 34070033 PMCID: PMC8158095 DOI: 10.3390/ijms22105314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
Drought response in wheat is considered a highly complex process, since it is a multigenic trait; nevertheless, breeding programs are continuously searching for new wheat varieties with characteristics for drought tolerance. In a previous study, we demonstrated the effectiveness of a mutant known as RYNO3936 that could survive 14 days without water. In this study, we reveal another mutant known as BIG8-1 that can endure severe water deficit stress (21 days without water) with superior drought response characteristics. Phenotypically, the mutant plants had broader leaves, including a densely packed fibrous root architecture that was not visible in the WT parent plants. During mild (day 7) drought stress, the mutant could maintain its relative water content, chlorophyll content, maximum quantum yield of PSII (Fv/Fm) and stomatal conductance, with no phenotypic symptoms such as wilting or senescence despite a decrease in soil moisture content. It was only during moderate (day 14) and severe (day 21) water deficit stress that a decline in those variables was evident. Furthermore, the mutant plants also displayed a unique preservation of metabolic activity, which was confirmed by assessing the accumulation of free amino acids and increase of antioxidative enzymes (peroxidases and glutathione S-transferase). Proteome reshuffling was also observed, allowing slow degradation of essential proteins such as RuBisCO during water deficit stress. The LC-MS/MS data revealed a high abundance of proteins involved in energy and photosynthesis under well-watered conditions, particularly Serpin-Z2A and Z2B, SGT1 and Calnexin-like protein. However, after 21 days of water stress, the mutants expressed ABC transporter permeases and xylanase inhibitor protein, which are involved in the transport of amino acids and protecting cells, respectively. This study characterizes a new mutant BIG8-1 with drought-tolerant characteristics suited for breeding programs.
Collapse
|
43
|
Lessons from Comparison of Hypoxia Signaling in Plants and Mammals. PLANTS 2021; 10:plants10050993. [PMID: 34067566 PMCID: PMC8157222 DOI: 10.3390/plants10050993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Hypoxia is an important stress for organisms, including plants and mammals. In plants, hypoxia can be the consequence of flooding and causes important crop losses worldwide. In mammals, hypoxia stress may be the result of pathological conditions. Understanding the regulation of responses to hypoxia offers insights into novel approaches for crop improvement, particularly for the development of flooding-tolerant crops and for producing better therapeutics for hypoxia-related diseases such as inflammation and cancer. Despite their evolutionary distance, plants and mammals deploy strikingly similar mechanisms to sense and respond to the different aspects of hypoxia-related stress, including low oxygen levels and the resulting energy crisis, nutrient depletion, and oxidative stress. Over the last two decades, the ubiquitin/proteasome system and the ubiquitin-like protein SUMO have been identified as key regulators that act in concert to regulate core aspects of responses to hypoxia in plants and mammals. Here, we review ubiquitin and SUMO-dependent mechanisms underlying the regulation of hypoxia response in plants and mammals. By comparing and contrasting these mechanisms in plants and mammals, this review seeks to pinpoint conceptually similar mechanisms but also highlight future avenues of research at the junction between different fields of research.
Collapse
|
44
|
Teramura H, Yamada K, Ito K, Kasahara K, Kikuchi T, Kioka N, Fukuda M, Kusano H, Tanaka K, Shimada H. Characterization of novel SUMO family genes in the rice genome. Genes Genet Syst 2021; 96:25-32. [PMID: 33731501 DOI: 10.1266/ggs.20-00034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Small ubiquitin-related modifier (SUMO) is a post-translational modification factor composed of about 100 amino acid residues. Most plant species express a family of SUMO isoforms. We found three novel homologs of rice (Oryza sativa L.) SUMO genes, OsSUMO4, OsSUMO5 and OsSUMO6, in addition to the known SUMO genes OsSUMO1-OsSUMO3. Phylogenetic tree analysis revealed that rice SUMO genes have diverged considerably during their evolution. All six of these SUMO genes complemented the phenotype of the SUMO-deficient pmt3Δ mutant of fission yeast. Among the amino acid sequences of rice SUMO proteins, consensus motifs (ΨKXE/D) of the SUMO acceptor site were found in OsSUMO3, OsSUMO4, OsSUMO5 and OsSUMO6. The heat shock protein HSF7 is known to be SUMOylated in Arabidopsis thaliana. SUMOylation using a bacterial expression system revealed that the rice HSF7 homolog was modified by the six rice SUMOs, and further suggested that OsSUMO1, OsSUMO3, OsSUMO4 and OsSUMO6 are involved in its multiple SUMOylation.
Collapse
Affiliation(s)
- Hiroshi Teramura
- Department of Biological Science and Technology, Tokyo University of Science
| | - Kazuma Yamada
- Department of Biological Science and Technology, Tokyo University of Science
| | - Kahori Ito
- Department of Biological Science and Technology, Tokyo University of Science
| | - Keisuke Kasahara
- Department of Biological Science and Technology, Tokyo University of Science
| | - Tsubasa Kikuchi
- Department of Biological Science and Technology, Tokyo University of Science
| | - Naoya Kioka
- Department of Biological Science and Technology, Tokyo University of Science
| | - Masato Fukuda
- Department of Biological Science and Technology, Tokyo University of Science
| | - Hiroaki Kusano
- Department of Biological Science and Technology, Tokyo University of Science
| | - Katsunori Tanaka
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| | - Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science
| |
Collapse
|
45
|
Alomrani S, Kunert KJ, Foyer CH. Papain-like cysteine proteases are required for the regulation of photosynthetic gene expression and acclimation to high light stress. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3441-3454. [PMID: 33686435 PMCID: PMC8256631 DOI: 10.1093/jxb/erab101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/01/2021] [Indexed: 05/24/2023]
Abstract
Chloroplasts are considered to be devoid of cysteine proteases. Using transgenic Arabidopsis lines expressing the rice cystatin, oryzacystatin I (OC-I), in the chloroplasts (PC lines) or cytosol (CYS lines), we explored the hypothesis that cysteine proteases regulate photosynthesis. The CYS and PC lines flowered later than the wild type (WT) and accumulated more biomass after flowering. In contrast to the PC rosettes, which accumulated more leaf chlorophyll and carotenoid pigments than the WT, the CYS lines had lower amounts of leaf pigments. High-light-dependent decreases in photosynthetic carbon assimilation and the abundance of the Rubisco large subunit protein, the D1 protein, and the phosphorylated form of D1 proteins were attenuated in the CYS lines and reversed in the PC lines relative to the WT. However, the transgenic lines had higher amounts of LHC, rbcs, pasbA, and pasbD transcripts than the WT, and also showed modified chloroplast to nucleus signalling. We conclude that cysteine proteases accelerate the reconfiguration of the chloroplast proteome after flowering and in response to high-light stress. Inhibition of cysteine proteases, such as AtCEP1, slows chloroplast protein degradation and stimulates photosynthetic gene expression and chloroplast to nucleus signalling, enhancing stress tolerance traits.
Collapse
Affiliation(s)
- Sarah Alomrani
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Karl J Kunert
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Christine H Foyer
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
46
|
Roy D, Sadanandom A. SUMO mediated regulation of transcription factors as a mechanism for transducing environmental cues into cellular signaling in plants. Cell Mol Life Sci 2021; 78:2641-2664. [PMID: 33452901 PMCID: PMC8004507 DOI: 10.1007/s00018-020-03723-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/25/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022]
Abstract
Across all species, transcription factors (TFs) are the most frequent targets of SUMOylation. The effect of SUMO conjugation on the functions of transcription factors has been extensively studied in animal systems, with over 200 transcription factors being documented to be modulated by SUMOylation. This has resulted in the establishment of a number of paradigms that seek to explain the mechanisms by which SUMO regulates transcription factor functions. For instance, SUMO has been shown to modulate TF DNA binding activity; regulate both localization as well as the abundance of TFs and also influence the association of TFs with chromatin. With transcription factors being implicated as master regulators of the cellular signalling pathways that maintain phenotypic plasticity in all organisms, in this review, we will discuss how SUMO mediated regulation of transcription factor activity facilitates molecular pathways to mount an appropriate and coherent biological response to environmental cues.
Collapse
Affiliation(s)
- Dipan Roy
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK.
| |
Collapse
|
47
|
Doroodian P, Hua Z. The Ubiquitin Switch in Plant Stress Response. PLANTS (BASEL, SWITZERLAND) 2021; 10:246. [PMID: 33514032 PMCID: PMC7911189 DOI: 10.3390/plants10020246] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/20/2022]
Abstract
Ubiquitin is a 76 amino acid polypeptide common to all eukaryotic organisms. It functions as a post-translationally modifying mark covalently linked to a large cohort of yet poorly defined protein substrates. The resulting ubiquitylated proteins can rapidly change their activities, cellular localization, or turnover through the 26S proteasome if they are no longer needed or are abnormal. Such a selective modification is essential to many signal transduction pathways particularly in those related to stress responses by rapidly enhancing or quenching output. Hence, this modification system, the so-called ubiquitin-26S proteasome system (UPS), has caught the attention in the plant research community over the last two decades for its roles in plant abiotic and biotic stress responses. Through direct or indirect mediation of plant hormones, the UPS selectively degrades key components in stress signaling to either negatively or positively regulate plant response to a given stimulus. As a result, a tightly regulated signaling network has become of much interest over the years. The ever-increasing changes of the global climate require both the development of new crops to cope with rapid changing environment and new knowledge to survey the dynamics of ecosystem. This review examines how the ubiquitin can switch and tune plant stress response and poses potential avenues to further explore this system.
Collapse
Affiliation(s)
- Paymon Doroodian
- Department of Environment and Plant Biology, Ohio University, Athens, OH 45701, USA;
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| | - Zhihua Hua
- Department of Environment and Plant Biology, Ohio University, Athens, OH 45701, USA;
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
48
|
Jmii S, Cappadocia L. Plant SUMO E3 Ligases: Function, Structural Organization, and Connection With DNA. FRONTIERS IN PLANT SCIENCE 2021; 12:652170. [PMID: 33897743 PMCID: PMC8064691 DOI: 10.3389/fpls.2021.652170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/22/2021] [Indexed: 05/04/2023]
Abstract
Protein modification by the small ubiquitin-like modifier (SUMO) plays an important role in multiple plant processes, including growth, development, and the response to abiotic stresses. Mechanistically, SUMOylation is a sequential multi-enzymatic process where SUMO E3 ligases accelerate SUMO conjugation while also influencing target identity and interactions. This review explores the biological functions of plant SUMO E3 ligases [SAP AND MIZ1 DOMAIN-CONTAINING LIGASE (SIZs), METHYL METHANESULFONATE-SENSITIVITY PROTEIN 21 (MMS21s), and PROTEIN INHIBITOR OF ACTIVATED STAT-LIKE (PIALs)] in relation to their molecular activities and domains. We also explore the sub-cellular localization of SUMO E3 ligases and review evidence suggesting a connection between certain SUMO E3 ligases and DNA that contributes to gene expression regulation.
Collapse
|
49
|
Srivastava M, Sadanandom A, Srivastava AK. Towards understanding the multifaceted role of SUMOylation in plant growth and development. PHYSIOLOGIA PLANTARUM 2021; 171:77-85. [PMID: 32880960 DOI: 10.1111/ppl.13204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Post-translational modifications (PTMs) play a critical role in regulating plant growth and development through the modulation of protein functionality and its interaction with its partners. Analysis of the functional implication of PTMs on plant cellular signalling presents grand challenges in understanding their significance. Proteins decorated or modified with another chemical group or polypeptide play a significant role in regulating physiological processes as compared with non-decorated or non-modified proteins. In the past decade, SUMOylation has been emerging as a potent PTM influencing the adaptability of plants to growth, in response to various environmental cues. Deciphering the SUMO-mediated regulation of plant stress responses and its consequences is required to understand the mechanism underneath. Here, we will discuss the recent advances in the role and significance of SUMOylation in plant growth, development and stress response.
Collapse
Affiliation(s)
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | | |
Collapse
|
50
|
Blanco-Touri��n N, Serrano-Mislata A, Alabad� D. Regulation of DELLA Proteins by Post-translational Modifications. PLANT & CELL PHYSIOLOGY 2020; 61:1891-1901. [PMID: 32886774 PMCID: PMC7758031 DOI: 10.1093/pcp/pcaa113] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/15/2020] [Indexed: 05/02/2023]
Abstract
DELLA proteins are the negative regulators of the gibberellin (GA) signaling pathway. GAs have a pervasive effect on plant physiology, influencing processes that span the entire life cycle of the plant. All the information encoded by GAs, either environmental or developmental in origin, is canalized through DELLAs, which modulate the activity of many transcription factors and transcriptional regulators. GAs unlock the signaling pathway by triggering DELLA polyubiquitination and degradation by the 26S proteasome. Recent reports indicate, however, that there are other pathways that trigger DELLA polyubiquitination and degradation independently of GAs. Moreover, results gathered during recent years indicate that other post-translational modifications (PTMs), namely phosphorylation, SUMOylation and glycosylation, modulate DELLA function. The convergence of several PTMs in DELLA therefore highlights the strict regulation to which these proteins are subject. In this review, we summarize these discoveries and discuss DELLA PTMs from an evolutionary perspective and examine the possibilities these and other post-translational regulations offer to improve DELLA-dependent agronomic traits.
Collapse
Affiliation(s)
- Noel Blanco-Touri��n
- Instituto de Biolog�a Molecular y Celular de Plantas (CSIC-Universitat Polit�cnica de Val�ncia), Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Antonio Serrano-Mislata
- Instituto de Biolog�a Molecular y Celular de Plantas (CSIC-Universitat Polit�cnica de Val�ncia), Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - David Alabad�
- Instituto de Biolog�a Molecular y Celular de Plantas (CSIC-Universitat Polit�cnica de Val�ncia), Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| |
Collapse
|