1
|
Cao W, Sun H, Wang C, Yang L, Zhang Y, Zhuang M, Lv H, Wang Y, Liu F, Ji J. Genome-wide identification of the ECERIFERUM (CER) gene family in cabbage and critical role of BoCER4.1 in wax biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109718. [PMID: 40037175 DOI: 10.1016/j.plaphy.2025.109718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
The ECERIFERUM (CER) gene family is essential for the biosynthesis of plant cuticular wax. In this study, 32 BoCER genes were identified in cabbage through genome-wide analysis. We found that the BoCER genes are highly conserved with their homologous counterparts in Arabidopsis thaliana. However, there was a significant divergence in the expression pattern among the BoCER paralogs, which suggests the occurrence of functional specialization during evolution. The expression analysis also showed that most of the BoCER genes are expressed in the aboveground part. Cis-regulatory element analysis suggested that BoCER genes could potentially be regulated through coordinated light and hormonal signaling. Furthermore, the abscisic acid and drought treatments markedly upregulated multiple BoCER genes, highlighting their involvement in abiotic stress responses. The functional analysis using CRISPR/Cas9-mediated knockout showed that BoCER4.1 governs the biosynthesis of alcohol. In situ hybridization localized the expression of BoCER4.1 to the tapetum, microspores, stem epidermis, and vascular bundles, while subcellular localization assays indicated its location in the endoplasmic reticulum, which aligns it with the biosynthetic machinery for wax. A phenotypic analysis revealed that the cuticles of the BoCER4.1 mutants were more permeable, and this was characterized by accelerated water loss and chlorophyll leaching. Correspondingly, the drought resistance of cababge with BoCER4.1 knockout was significantly reduced, accompanied by increased malondialdehyde content and decreased proline content under drought condition. This study provides new insights into the role of BoCERs in wax biosynthesis of cabbage, and also provides scientific basis for genetic improvement of drought resistance in cabbage.
Collapse
Affiliation(s)
- Wenxue Cao
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huagang Sun
- China Vegetable Seed Technology Co. Ltd. (Chongqing), Chongqing, 402561, China
| | - Caihong Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Limei Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yangyong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mu Zhuang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Honghao Lv
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yong Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Feng Liu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China.
| | - Jialei Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; China Vegetable Seed Technology Co. Ltd. (Chongqing), Chongqing, 402561, China.
| |
Collapse
|
2
|
Gerasimova SV, Korotkova AM, Rodrigues TDS, Vikhorev A, Kolosovskaya EV, Vasiliev GV, Melzer M, Hertig CW, Kumlehn J, Khlestkina EK. Shedding New Light on the Hull-Pericarp Adhesion Mechanisms of Barley Grains by Transcriptomics Analysis of Isogenic NUD1 and nud1 Lines. Int J Mol Sci 2024; 25:13108. [PMID: 39684819 DOI: 10.3390/ijms252313108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
In barley having adherent hulls, an irreversible connection between the pericarp with both palea and lemma is formed during grain maturation. A mutation in the NUDUM 1 (NUD1) gene prevents this connection and leads to the formation of barley with non-adherent hulls. A genetic model of two isogenic lines was used to elucidate the genetic mechanisms of hull adhesion: a doubled haploid line having adherent hulls and its derivative with non-adherent hulls obtained by targeted mutagenesis of the NUD1 gene. Comparative transcriptomics analysis of the grain coats was performed at two stages of development: the milk stage, when the hulls can still be easily detached from the pericarp, and the dough stage when the hull adhesion process occurs. It was shown that the main differences in the transcriptomes lie in the genes related to DNA replication and chromatin assembly, cell wall organization, and cuticle formation. Meanwhile, genes involved in lipid biosynthesis mostly show minor differences in expression between stages and genotypes and represent a limited set of active genes. Among the 3-ketoacyl-CoA synthase (KCS) genes active during grain development, candidates for key enzymes responsible for very long-chain fatty acid elongation were identified.
Collapse
Affiliation(s)
- Sophia V Gerasimova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Anna M Korotkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
| | - Tamires de S Rodrigues
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas 13083-875, Brazil
| | - Alexander Vikhorev
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ekaterina V Kolosovskaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Gennady V Vasiliev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Christian W Hertig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Elena K Khlestkina
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
| |
Collapse
|
3
|
Urano K, Oshima Y, Ishikawa T, Kajino T, Sakamoto S, Sato M, Toyooka K, Fujita M, Kawai‐Yamada M, Taji T, Maruyama K, Yamaguchi‐Shinozaki K, Shinozaki K. Arabidopsis DREB26/ERF12 and its close relatives regulate cuticular wax biosynthesis under drought stress condition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2057-2075. [PMID: 39466828 PMCID: PMC11629741 DOI: 10.1111/tpj.17100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
Land plants have evolved a hydrophobic cuticle on the surface of aerial organs as an adaptation to ensure survival in terrestrial environments. Cuticle is mainly composed of lipids, namely cutin and intracuticular wax, with epicuticular wax deposited on plant surface. The composition and permeability of cuticle have a large influence on its ability to protect plants against drought stress. However, the regulatory mechanisms underlying cuticular wax biosynthesis in response to drought stress have not been fully elucidated. Here, we identified three AP2/ERF transcription factors (DREB26/ERF12, ERF13 and ERF14) involved in the regulation of water permeability of the plant surface. Transmission electron microscopy revealed thicker cuticle on the leaves of DREB26-overexpressing (DREB26OX) plants, and thinner cuticle on the leaves of transgenic plants expressing SRDX repression domain-fused DREB26 (DREB26SR). Genes involved in cuticular wax formation were upregulated in DREB26OX and downregulated in DREB26SR. The levels of very-long chain (VLC) alkanes, which are a major wax component, increased in DREB26OX leaves and decreased in DREB26SR leaves. Under dehydration stress, water loss was reduced in DREB26OX and increased in DREB26SR. The erf12/13/14 triple mutant showed delayed growth, decreased leaf water content, and reduced drought-inducible VLC alkane accumulation. Taken together, our results indicate that the DREB26/ERF12 and its closed family members, ERF13 and ERF14, play an important role in cuticular wax biosynthesis in response to drought stress. The complex transcriptional cascade involved in the regulation of cuticular wax biosynthesis under drought stress conditions is discussed.
Collapse
Affiliation(s)
- Kaoru Urano
- RIKEN Center for Sustainable Resource Science3‐1‐1 KoyadaiTsukuba305‐0074IbarakiJapan
- Institute of Agrobiological SciencesNARO3‐1‐3 KannondaiTsukuba305‐8604IbarakiJapan
| | - Yoshimi Oshima
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)Higashi 1‐1‐1Tsukuba305‐8566Japan
| | - Toshiki Ishikawa
- Graduate School of Science and EngineeringSaitama UniversityShimo‐Ohkubo 255, Sakura‐ku, Saitama‐shiSaitama338‐8570Japan
| | - Takuma Kajino
- Department of BioscienceTokyo University of Agriculture1‐1‐1 Sakuragaoka, Setagaya‐kuTokyo156‐8502Japan
| | - Shingo Sakamoto
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)Higashi 1‐1‐1Tsukuba305‐8566Japan
| | - Mayuko Sato
- Mass Spectrometry and Microscopy UnitRIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐cho, Tsurumi‐kuYokohama230‐0045Japan
| | - Kiminori Toyooka
- Mass Spectrometry and Microscopy UnitRIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐cho, Tsurumi‐kuYokohama230‐0045Japan
| | - Miki Fujita
- Mass Spectrometry and Microscopy UnitRIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐cho, Tsurumi‐kuYokohama230‐0045Japan
| | - Maki Kawai‐Yamada
- Graduate School of Science and EngineeringSaitama UniversityShimo‐Ohkubo 255, Sakura‐ku, Saitama‐shiSaitama338‐8570Japan
| | - Teruaki Taji
- Department of BioscienceTokyo University of Agriculture1‐1‐1 Sakuragaoka, Setagaya‐kuTokyo156‐8502Japan
| | - Kyonoshin Maruyama
- Biological Resources and Post‐Harvest DivisionJapan International Research Center for Agricultural Sciences (JIRCAS)1‐1 OhwashiTsukuba305‐8686IbarakiJapan
- Institute of Life and Environmental SciencesUniversity of Tsukuba1‐1‐1 TennodaiTsukuba305‐8572IbarakiJapan
| | | | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science3‐1‐1 KoyadaiTsukuba305‐0074IbarakiJapan
| |
Collapse
|
4
|
Wang X, Li S, Zhang X, Wang J, Hou T, He J, Li J. Integration of Transcriptome and Metabolome Reveals Wax Serves a Key Role in Preventing Leaf Water Loss in Goji ( Lycium barbarum). Int J Mol Sci 2024; 25:10939. [PMID: 39456725 PMCID: PMC11507121 DOI: 10.3390/ijms252010939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Drought stress is one of the main abiotic stresses that limit plant growth and affect fruit quality and yield. Plants primarily lose water through leaf transpiration, and wax effectively reduces the rate of water loss from the leaves. However, the relationship between water loss and the wax formation mechanism in goji (Lycium barbarum) leaves remains unclear. 'Ningqi I' goji and 'Huangguo' goji are two common varieties. In this study, 'Ningqi I' goji and 'Huangguo' goji were used as samples of leaf material to detect the differences in the water loss rate, chlorophyll leaching rate, wax phenotype, wax content, and components of the two materials. The differences in wax-synthesis-related pathways were analyzed using the transcriptome and metabolome methods, and the correlation among the wax components, wax synthesis genes, and transcription factors was analyzed. The results show that the leaf permeability of 'Ningqi I' goji was significantly lower than that of 'Huangguo' goji. The total wax content of the 'Ningqi I' goji leaves was 2.32 times that of the 'Huangguo' goji leaves, and the epidermal wax membrane was dense. The main components of the wax of 'Ningqi I' goji were alkanes, alcohols, esters, and fatty acids, the amounts of which were 191.65%, 153.01%, 6.09%, and 9.56% higher than those of 'Huangguo' goji, respectively. In the transcriptome analysis, twenty-two differentially expressed genes (DEGs) and six transcription factors (TFs) were screened for wax synthesis; during the metabolomics analysis, 11 differential metabolites were screened, which were dominated by lipids, some of which, like D-Glucaro-1, 4-Lactone, phosphatidic acid (PA), and phosphatidylcholine (PE), serve as prerequisites for wax synthesis, and were significantly positively correlated with wax components such as alkanes by the correlation analysis. A combined omics analysis showed that DEGs such as LbaWSD1, LbaKCS1, and LbaFAR2, and transcription factors such as LbaMYB306, LbaMYB60, and LbaMYBS3 were strongly correlated with wax components such as alkanes and alcohols. The high expression of DEGs and transcription factors is an important reason for the high wax content in the leaf epidermis of 'Ningqi I' goji plants. Therefore, by regulating the expression of wax-synthesis-related genes, the accumulation of leaf epidermal wax can be promoted, and the epidermal permeability of goji leaves can be weakened, thereby reducing the water loss rate of goji leaves. The research results can lay a foundation for cultivating drought-tolerant goji varieties.
Collapse
Affiliation(s)
- Xingbin Wang
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (X.Z.); (J.W.); (T.H.); (J.H.)
| | - Sitian Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xiao Zhang
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (X.Z.); (J.W.); (T.H.); (J.H.)
| | - Jing Wang
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (X.Z.); (J.W.); (T.H.); (J.H.)
| | - Tong Hou
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (X.Z.); (J.W.); (T.H.); (J.H.)
| | - Jing He
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (X.Z.); (J.W.); (T.H.); (J.H.)
- Wolfberry Harmless Cultivation Engineering Research Center of Gansu Province, Lanzhou 730070, China
| | - Jie Li
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (X.Z.); (J.W.); (T.H.); (J.H.)
- Wolfberry Harmless Cultivation Engineering Research Center of Gansu Province, Lanzhou 730070, China
| |
Collapse
|
5
|
An Y, Wang Q, Cui Y, Liu X, Wang P, Zhou Y, Kang P, Chen Y, Wang Z, Zhou Q, Wang P. Comparative physiological and transcriptomic analyses reveal genotype specific response to drought stress in Siberian wildrye (Elymus sibiricus). Sci Rep 2024; 14:21060. [PMID: 39256456 PMCID: PMC11387644 DOI: 10.1038/s41598-024-71847-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024] Open
Abstract
Siberian wildrye (Elymus sibiricus) is a xero-mesophytic forage grass with high nutritional quality and stress tolerance. Among its numerous germplasm resources, some possess superior drought resistance. In this study, we firstly investigated the physiological differences between the leaves of drought-tolerant (DT) and drought-sensitive (DS) genotypes under different field water contents (FWC) in soil culture. The results showed that, under drought stress, DT maintained a lower leaf water potential for water absorption, sustained higher photosynthetic efficiency, and reduced oxidative damage in leaves by efficiently maintaining the ascorbic acid-glutathione (ASA-GSH) cycle to scavenge reactive oxygen species (ROS) compared to DS. Secondly, using RNA sequencing (RNA-seq), we analyzed the gene expression profiles of DT and DS leaves under osmotic stress of hydroponics induced by PEG-6000. Through differential analysis, we identified 1226 candidate unigenes, from which we subsequently screened out 115/212 differentially expressed genes (DEGs) that were more quickly induced/reduced in DT than in DS under osmotic stress. Among them, Unigene0005863 (EsSnRK2), Unigene0053902 (EsLRK10) and Unigene0031985 (EsCIPK5) may be involved in stomatal closure induced by abscisic acid (ABA) signaling pathway. Unigene0047636 (EsCER1) may positively regulates the synthesis of very-long-chain (VLC) alkanes in cuticular wax biosynthesis, influencing plant responses to abiotic stresses. Finally, the contents of wax and cutin were measured by GC-MS under osmotic stress of hydroponics induced by PEG-6000. Corresponding to RNA-seq, contents of wax monomers, especially alkanes and alcohols, showed significant induction by osmotic stress in DT but not in DS. It is suggested that limiting stomatal and cuticle transpiration under drought stress to maintain higher photosynthetic efficiency and water use efficiency (WUE) is one of the critical mechanisms that confer stronger drought resistance to DT. This study provides some insights into the molecular mechanisms underlying drought tolerance in E. sibiricus. The identified genes may provide a foundation for the selection and breeding of drought-tolerant crops.
Collapse
Affiliation(s)
- Yongping An
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Qian Wang
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Yannong Cui
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Xin Liu
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Yue Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Peng Kang
- College of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, China
| | - Youjun Chen
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Zhiwei Wang
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Qingping Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Pei Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China.
| |
Collapse
|
6
|
Xing J, Xu H, Zhu M, Zhang Y, Bai M, Zhou X, Liu H, Wang Y. Gas Chromatography-Mass Spectrometry Metabolite Analysis Combined with Transcriptomics Reveals Genes Involved in Wax Biosynthesis in Allium fistulosum L. Int J Mol Sci 2024; 25:6106. [PMID: 38892292 PMCID: PMC11173144 DOI: 10.3390/ijms25116106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Cuticular waxes are essential for protecting plants from various environmental stresses. Allium fistulosum serves as an excellent model for investigating the regulatory mechanisms underlying cuticular wax synthesis with notable epidermal wax characteristics. A combination of gas chromatography-mass spectrometry (GC-MS) metabolite analysis and transcriptomics was used to investigate variations in metabolites and gene expression patterns between the wild type (WT) and glossy mutant type (gl2) of A. fistulosum. The WT surface had a large number of acicular and lamellar waxy crystals, whereas the leaf surface of gl2 was essentially devoid of waxy crystals. And the results revealed a significant decrease in the content of 16-hentriacontanone, the principal component of cuticular wax, in the gl2 mutant. Transcriptomic analysis revealed 3084 differentially expressed genes (DEGs) between WT and gl2. Moreover, we identified 12 genes related to fatty acid or wax synthesis. Among these, 10 DEGs were associated with positive regulation of wax synthesis, whereas 2 genes exhibited negative regulatory functions. Furthermore, two of these genes were identified as key regulators through weighted gene co-expression network analysis. Notably, the promoter region of AfisC5G01838 (AfCER1-LIKE1) exhibited a 258-bp insertion upstream of the coding region in gl2 and decreased the transcription of the AfCER1-LIKE1 gene. This study provided insights into the molecular mechanisms governing cuticular wax synthesis in A. fistulosum, laying the foundation for future breeding strategies.
Collapse
Affiliation(s)
- Jiayi Xing
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), Beijing 100097, China; (J.X.); (H.X.); (M.Z.); (Y.Z.); (M.B.); (X.Z.)
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Huanhuan Xu
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), Beijing 100097, China; (J.X.); (H.X.); (M.Z.); (Y.Z.); (M.B.); (X.Z.)
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingzhao Zhu
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), Beijing 100097, China; (J.X.); (H.X.); (M.Z.); (Y.Z.); (M.B.); (X.Z.)
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
| | - Yuchen Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), Beijing 100097, China; (J.X.); (H.X.); (M.Z.); (Y.Z.); (M.B.); (X.Z.)
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
| | - Mifeng Bai
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), Beijing 100097, China; (J.X.); (H.X.); (M.Z.); (Y.Z.); (M.B.); (X.Z.)
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
| | - Xuyang Zhou
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), Beijing 100097, China; (J.X.); (H.X.); (M.Z.); (Y.Z.); (M.B.); (X.Z.)
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
| | - Huiying Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Yongqin Wang
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), Beijing 100097, China; (J.X.); (H.X.); (M.Z.); (Y.Z.); (M.B.); (X.Z.)
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
| |
Collapse
|
7
|
Hamid R, Ghorbanzadeh Z, Jacob F, Nekouei MK, Zeinalabedini M, Mardi M, Sadeghi A, Ghaffari MR. Decoding drought resilience: a comprehensive exploration of the cotton Eceriferum (CER) gene family and its role in stress adaptation. BMC PLANT BIOLOGY 2024; 24:468. [PMID: 38811873 PMCID: PMC11134665 DOI: 10.1186/s12870-024-05172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND The cuticular wax serves as a primary barrier that protects plants from environmental stresses. The Eceriferum (CER) gene family is associated with wax production and stress resistance. RESULTS In a genome-wide identification study, a total of 52 members of the CER family were discovered in four Gossypium species: G. arboreum, G. barbadense, G. raimondii, and G. hirsutum. There were variations in the physicochemical characteristics of the Gossypium CER (GCER) proteins. Evolutionary analysis classified the identified GCERs into five groups, with purifying selection emerging as the primary evolutionary force. Gene structure analysis revealed that the number of conserved motifs ranged from 1 to 15, and the number of exons varied from 3 to 13. Closely related GCERs exhibited similar conserved motifs and gene structures. Analyses of chromosomal positions, selection pressure, and collinearity revealed numerous fragment duplications in the GCER genes. Additionally, nine putative ghr-miRNAs targeting seven G. hirsutum CER (GhCER) genes were identified. Among them, three miRNAs, including ghr-miR394, ghr-miR414d, and ghr-miR414f, targeted GhCER09A, representing the most targeted gene. The prediction of transcription factors (TFs) and the visualization of the regulatory TF network revealed interactions with GhCER genes involving ERF, MYB, Dof, bHLH, and bZIP. Analysis of cis-regulatory elements suggests potential associations between the CER gene family of cotton and responses to abiotic stress, light, and other biological processes. Enrichment analysis demonstrated a robust correlation between GhCER genes and pathways associated with cutin biosynthesis, fatty acid biosynthesis, wax production, and stress response. Localization analysis showed that most GCER proteins are localized in the plasma membrane. Transcriptome and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) expression assessments demonstrated that several GhCER genes, including GhCER15D, GhCER04A, GhCER06A, and GhCER12D, exhibited elevated expression levels in response to water deficiency stress compared to control conditions. The functional identification through virus-induced gene silencing (VIGS) highlighted the pivotal role of the GhCER04A gene in enhancing drought resistance by promoting increased tissue water retention. CONCLUSIONS This investigation not only provides valuable evidence but also offers novel insights that contribute to a deeper understanding of the roles of GhCER genes in cotton, their role in adaptation to drought and other abiotic stress and their potential applications for cotton improvement.
Collapse
Affiliation(s)
- Rasmieh Hamid
- Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
| | - Zahra Ghorbanzadeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Feba Jacob
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India
| | | | - Mehrshad Zeinalabedini
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohsen Mardi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Akram Sadeghi
- Department of Microbial Biotechnology and Biosafety, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
8
|
Wen L, Cao J, Li W, Guo Y. Changes in volatile profile and related gene expression during senescence of tobacco leaves. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6540-6552. [PMID: 37223951 DOI: 10.1002/jsfa.12733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/30/2022] [Accepted: 05/24/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Volatile organic compounds are critical for food flavor and play important roles in plant-plant interactions and plants' communications with the environment. Tobacco is well-studied for secondary metabolism and most of the typical flavor substances in tobacco leaves are generated at the mature stage of leaf development. However, the changes in volatiles during leaf senescence are rarely studied. RESULTS The volatile composition of tobacco leaves at different stages of senescence was characterized for the first time. Comparative volatile profiling of tobacco leaves at different stages was performed using solid-phase microextraction coupled with gas chromatography/mass spectrometry. In total, 45 volatile compounds were identified and quantified, including terpenoids, green leaf volatiles (GLVs), phenylpropanoids, Maillard reaction products, esters, and alkanes. Most of the volatile compounds showed differential accumulation during leaf senescence. Some terpenoids, including neophytadiene, β-springene, and 6-methyl-5-hepten-2-one, increased significantly with the progress of leaf senescence. Hexanal and phenylacetaldehyde also showed increased accumulation in leaves during senescence. The results from gene expression profiling indicated that genes involved in metabolism of terpenoids, phenylpropanoids, and GLVs were differentially expressed during leaf yellowing. CONCLUSION Dynamic changes in volatile compounds during tobacco leaf senescence are observed and the integration of gene-metabolites datasets offers important readouts for the genetic control of volatile production during the process of leaf senescence. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lichao Wen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jianmin Cao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Wei Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
9
|
Genome-wide identification of the CER1 gene family in apple and response of MdCER1-1 to drought stress. Funct Integr Genomics 2022; 23:17. [PMID: 36562852 DOI: 10.1007/s10142-022-00940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Plant cuticular wax was a major consideration affecting the growth and quality of plants through protecting the plant from drought and other diseases. According to existing studies, CER1, as the core enzyme encoding the synthesis of alkanes, the main component of wax, can directly affect the response of plants to stress. However, there were few studies on the related functions of CER1 in apple. In this study, three MdCER1 genes in Malus domestica were identified and named MdCER1-1, MdCER1-2, and MdCER1-3 according to their distribution on chromosomes. Then, their physicochemical properties, sequence characteristics, and expression patterns were analyzed. MdCER1-1, with the highest expression level among the three members, was screened for cloning and functional verification. Real-time fluorescence quantitative PCR (qRT-PCR) analysis also showed that drought stress could increase the expression level of MdCER1-1. The experiment of water loss showed that overexpression of MdCER1-1 could effectively prevent water loss in apple calli, and the effect was more significant under drought stress. Meanwhile, MdYPB5, MdCER3, and MdKCS1 were significantly up-regulated, which would be bound up with waxy metabolism. Gas chromatography-mass spectrometer assay of wax fraction makes known that overexpression of MdCER1-1 apparently scaled up capacity of alkanes. The enzyme activities (SOD, POD) of overexpressed apple calli increased significantly, while the contents of proline increased compared with wild-type calli. In conclusion, MdCER1-1 can resist drought stress by reducing water loss in apple calli epidermis, increasing alkanes component content, stimulating the expression of waxy related genes (MdYPB5, MdCER3, and MdKCS1), and increasing antioxidant enzyme activity, which also provided a theoretical basis for exploring the role of waxy in other stresses.
Collapse
|
10
|
Zhao S, Nie X, Liu X, Wang B, Liu S, Qin L, Xing Y. Genome-Wide Identification of the CER Gene Family and Significant Features in Climate Adaptation of Castanea mollissima. Int J Mol Sci 2022; 23:ijms232416202. [PMID: 36555843 PMCID: PMC9787725 DOI: 10.3390/ijms232416202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The plant cuticle is the outermost layer of the aerial organs and an important barrier against biotic and abiotic stresses. The climate varies greatly between the north and south of China, with large differences in temperature and humidity, but Chinese chestnut is found in both regions. This study investigated the relationship between the wax layer of chestnut leaves and environmental adaptation. Firstly, semi-thin sections were used to verify that there is a significant difference in the thickness of the epicuticular wax layer between wild chestnut leaves in northwest and southeast China. Secondly, a whole-genome selective sweep was used to resequence wild chestnut samples from two typical regional populations, and significant genetic divergence was identified between the two populations in the CmCER1-1, CmCER1-5 and CmCER3 genes. Thirty-four CER genes were identified in the whole chestnut genome, and a series of predictive analyses were performed on the identified CmCER genes. The expression patterns of CmCER genes were classified into three trends-upregulation, upregulation followed by downregulation and continuous downregulation-when chestnut seedlings were treated with drought stress. Analysis of cultivars from two resource beds in Beijing and Liyang showed that the wax layer of the northern variety was thicker than that of the southern variety. For the Y-2 (Castanea mollissima genome sequencing material) cultivar, there were significant differences in the expression of CmCER1-1, CmCER1-5 and CmCER3 between the southern variety and the northern one-year-grafted variety. Therefore, this study suggests that the CER family genes play a role in environmental adaptations in chestnut, laying the foundation for further exploration of CmCER genes. It also demonstrates the importance of studying the adaptation of Chinese chestnut wax biosynthesis to the southern and northern environments.
Collapse
Affiliation(s)
| | | | | | | | | | - Ling Qin
- Correspondence: (L.Q.); (Y.X.); Tel.: +86-10-8079-7229 (Y.X.)
| | - Yu Xing
- Correspondence: (L.Q.); (Y.X.); Tel.: +86-10-8079-7229 (Y.X.)
| |
Collapse
|
11
|
He J, Li C, Hu N, Zhu Y, He Z, Sun Y, Wang Z, Wang Y. ECERIFERUM1-6A is required for the synthesis of cuticular wax alkanes and promotes drought tolerance in wheat. PLANT PHYSIOLOGY 2022; 190:1640-1657. [PMID: 36000923 PMCID: PMC9614490 DOI: 10.1093/plphys/kiac394] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 05/27/2023]
Abstract
Cuticular waxes cover the aerial surfaces of land plants and protect them from various environmental stresses. Alkanes are major wax components and contribute to plant drought tolerance, but the biosynthesis and regulation of alkanes remain largely unknown in wheat (Triticum aestivum L.). Here, we identified and functionally characterized a key alkane biosynthesis gene ECERIFERUM1-6A (TaCER1-6A) from wheat. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated knockout mutation in TaCER1-6A greatly reduced the contents of C27, C29, C31, and C33 alkanes in wheat leaves, while TaCER1-6A overexpression significantly increased the contents of these alkanes in wheat leaves, suggesting that TaCER1-6A is specifically involved in the biosynthesis of C27, C29, C31, and C33 alkanes on wheat leaf surfaces. TaCER1-6A knockout lines exhibited increased cuticle permeability and reduced drought tolerance, whereas TaCER1-6A overexpression lines displayed reduced cuticle permeability and enhanced drought tolerance. TaCER1-6A was highly expressed in flag leaf blades and seedling leaf blades and could respond to abiotic stresses and abscisic acid. TaCER1-6A was located in the endoplasmic reticulum, which is the subcellular compartment responsible for wax biosynthesis. A total of three haplotypes (HapI/II/III) of TaCER1-6A were identified in 43 wheat accessions, and HapI was the dominant haplotype (95%) in these wheat varieties. Additionally, we identified two R2R3-MYB transcription factors TaMYB96-2D and TaMYB96-5D that bound directly to the conserved motif CAACCA in promoters of the cuticular wax biosynthesis genes TaCER1-6A, TaCER1-1A, and fatty acyl-CoA reductase4. Collectively, these results suggest that TaCER1-6A is required for C27, C29, C31, and C33 alkanes biosynthesis and improves drought tolerance in wheat.
Collapse
Affiliation(s)
- Jiajia He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chongzhao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ning Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuyao Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhaofeng He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yulin Sun
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4 Canada
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
12
|
Yang F, Han Y, Zhu QH, Zhang X, Xue F, Li Y, Luo H, Qin J, Sun J, Liu F. Impact of water deficiency on leaf cuticle lipids and gene expression networks in cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2022; 22:404. [PMID: 35978290 PMCID: PMC9382817 DOI: 10.1186/s12870-022-03788-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Water deficit (WD) has serious effect on the productivity of crops. Formation of cuticular layer with increased content of wax and cutin on leaf surfaces is closely related to drought tolerance. Identification of drought tolerance associated wax components and cutin monomers and the genes responsible for their biosynthesis is essential for understanding the physiological and genetic mechanisms underlying drought tolerance and improving crop drought resistance. RESULT In this study, we conducted comparative phenotypic and transcriptomic analyses of two Gossypium hirsutum varieties that are tolerant (XL22) or sensitive (XL17) to drought stress. XL17 consumed more water than XL22, particularly under the WD conditions. WD significantly induced accumulation of most major wax components (C29 and C31 alkanes) and cutin monomers (palmitic acid and stearic acid) in leaves of both XL22 and XL17, although accumulation of the major cutin monomers, i.e., polyunsaturated linolenic acid (C18:3n-3) and linoleic acid (C18:2n-6), were significantly repressed by WD in both XL22 and XL17. According to the results of transcriptome analysis, although many genes and their related pathways were commonly induced or repressed by WD in both XL22 and XL17, WD-induced differentially expressed genes specific to XL22 or XL17 were also evident. Among the genes that were commonly induced by WD were the GhCER1 genes involved in biosynthesis of alkanes, consistent with the observation of enhanced accumulation of alkanes in cotton leaves under the WD conditions. Interestingly, under the WD conditions, several GhCYP86 genes, which encode enzymes catalyzing the omega-hydroxylation of fatty acids and were identified to be the hub genes of one of the co-expression gene modules, showed a different expression pattern between XL22 and XL17 that was in agreement with the WD-induced changes of the content of hydroxyacids or fatty alcohols in these two varieties. CONCLUSION The results contribute to our comprehending the physiological and genetic mechanisms underlying drought tolerance and provide possible solutions for the difference of drought resistance of different cotton varieties.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yongchao Han
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, 2601, Australia
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Fei Xue
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yanjun Li
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Honghai Luo
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Jianghong Qin
- Shihezi Academy of Agricultural Sciences, Shihezi, 832000, China
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
13
|
Rizwan HM, Waheed A, Ma S, Li J, Arshad MB, Irshad M, Li B, Yang X, Ali A, Ahmed MAA, Shaheen N, Scholz SS, Oelmüller R, Lin Z, Chen F. Comprehensive Genome-Wide Identification and Expression Profiling of Eceriferum ( CER) Gene Family in Passion Fruit ( Passiflora edulis) Under Fusarium kyushuense and Drought Stress Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:898307. [PMID: 35832215 PMCID: PMC9272567 DOI: 10.3389/fpls.2022.898307] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Plant surfaces are covered with cuticle wax and are the first barrier between a plant and environmental stresses. Eceriferum (CER) is an important gene family involved in wax biosynthesis and stress resistance. In this study, for the first time, 34 CER genes were identified in the passion fruit (Passiflora edulis) genome, and PeCER proteins varied in physicochemical properties. A phylogenetic tree was constructed and divided into seven clades to identify the evolutionary relationship with other plant species. Gene structure analyses revealed that conserved motifs ranged from 1 to 24, and that exons ranged from 1 to 29. The cis-element analysis provides insight into possible roles of PeCER genes in plant growth, development and stress responses. The syntenic analysis revealed that segmental (six gene pairs) and tandem (six gene pairs) gene duplication played an important role in the expansion of PeCER genes and underwent a strong purifying selection. In addition, 12 putative ped-miRNAs were identified to be targeting 16 PeCER genes, and PeCER6 was the most targeted by four miRNAs including ped-miR157a-5p, ped-miR164b-5p, ped-miR319b, and ped-miR319l. Potential transcription factors (TFs) such as ERF, AP2, MYB, and bZIP were predicted and visualized in a TF regulatory network interacting with PeCER genes. GO and KEGG annotation analysis revealed that PeCER genes were highly related to fatty acid, cutin, and wax biosynthesis, plant-pathogen interactions, and stress response pathways. The hypothesis that most PeCER proteins were predicted to localize to the plasma membrane was validated by transient expression assays of PeCER32 protein in onion epidermal cells. qRT-PCR expression results showed that most of the PeCER genes including PeCER1, PeCER11, PeCER15, PeCER17, and PeCER32 were upregulated under drought and Fusarium kyushuense stress conditions compared to controls. These findings provide a foundation for further studies on functions of PeCER genes to further facilitate the genetic modification of passion fruit wax biosynthesis and stress resistance.
Collapse
Affiliation(s)
| | - Abdul Waheed
- Key Laboratory for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Songfeng Ma
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiankun Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Muhammad Bilal Arshad
- Department of Plant Breeding and Genetics, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Irshad
- College of Horticulture, The University of Agriculture, Peshawar, Pakistan
| | - Binqi Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuelian Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ahmad Ali
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed A. A. Ahmed
- Plant Production Department (Horticulture-Medicinal and Aromatic Plants), Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Nusrat Shaheen
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Sandra S. Scholz
- Matthias Schleiden Institute, Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Ralf Oelmüller
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Matthias Schleiden Institute, Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Zhimin Lin
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
Dunemann F, He W, Böttcher C, Reichardt S, Nothnagel T, Heuvelmans P, Hermans F. The genetic control of polyacetylenes involved in bitterness of carrots (Daucus carota L.): Identification of QTLs and candidate genes from the plant fatty acid metabolism. BMC PLANT BIOLOGY 2022; 22:92. [PMID: 35232393 PMCID: PMC8889737 DOI: 10.1186/s12870-022-03484-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Falcarinol-type polyacetylenes (PAs) such as falcarinol (FaOH) and falcarindiol (FaDOH) are produced by several Apiaceae vegetables such as carrot, parsnip, celeriac and parsley. They are known for numerous biological functions and contribute to the undesirable bitter off-taste of carrots and their products. Despite their interesting biological functions, the genetic basis of their structural diversity and function is widely unknown. A better understanding of the genetics of the PA levels present in carrot roots might support breeding of carrot cultivars with tailored PA levels for food production or nutraceuticals. RESULTS A large carrot F2 progeny derived from a cross of a cultivated inbred line with an inbred line derived from a Daucus carota ssp. commutatus accession rich in PAs was used for linkage mapping and quantitative trait locus (QTL) analysis. Ten QTLs for FaOH and FaDOH levels in roots were identified in the carrot genome. Major QTLs for FaOH and FaDOH with high LOD values of up to 40 were identified on chromosomes 4 and 9. To discover putative candidate genes from the plant fatty acid metabolism, we examined an extended version of the inventory of the carrot FATTY ACID DESATURASE2 (FAD2) gene family. Additionally, we used the carrot genome sequence for a first inventory of ECERIFERUM1 (CER1) genes possibly involved in PA biosynthesis. We identified genomic regions on different carrot chromosomes around the found QTLs that contain several FAD2 and CER1 genes within their 2-LOD confidence intervals. With regard to the major QTLs on chromosome 9 three putative CER1 decarbonylase gene models are proposed as candidate genes. CONCLUSION The present study increases the current knowledge on the genetics of PA accumulation in carrot roots. Our finding that carrot candidate genes from the fatty acid metabolism are significantly associated with major QTLs for both major PAs, will facilitate future functional gene studies and a further dissection of the genetic factors controlling PA accumulation. Characterization of such candidate genes will have a positive impact on carrot breeding programs aimed at both lowering or increasing PA concentrations in carrot roots.
Collapse
Affiliation(s)
- Frank Dunemann
- Julius Kühn-Institut (JKI), Institute for Breeding Research on Horticultural Crops, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany.
| | - Wanying He
- Julius Kühn-Institut (JKI), Institute for Breeding Research on Horticultural Crops, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Christoph Böttcher
- Julius Kühn-Institut (JKI), Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Str. 19, 14195 Berlin, Germany
| | - Sven Reichardt
- Julius Kühn-Institut (JKI), Institute for Biosafety in Plant Biotechnology, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Thomas Nothnagel
- Julius Kühn-Institut (JKI), Institute for Breeding Research on Horticultural Crops, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Paul Heuvelmans
- Nunhems Netherlands BV, Napoleonsweg 152, 6083 AB Nunhem, The Netherlands
| | - Freddy Hermans
- Nunhems Netherlands BV, Napoleonsweg 152, 6083 AB Nunhem, The Netherlands
| |
Collapse
|
15
|
Yang Y, Cai C, Wang Y, Wang Y, Ju H, Chen X. Cucumber glossy fruit 1 ( CsGLF1) encodes the zinc finger protein 6 that regulates fruit glossiness by enhancing cuticular wax biosynthesis. HORTICULTURE RESEARCH 2022; 10:uhac237. [PMID: 36643740 PMCID: PMC9832831 DOI: 10.1093/hr/uhac237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 10/29/2022] [Accepted: 10/16/2022] [Indexed: 06/17/2023]
Abstract
Cucumber glossiness is an important visual quality trait that affects consumer choice. Accumulating evidence suggests that glossy trait is associated with cuticular wax accumulation. However, the molecular genetic mechanism controlling cucumber glossiness remains largely unknown. Here, we report the map-based cloning and functional characterization of CsGLF1, a locus that determines the glossy trait in cucumber. CsGLF1 encodes a homolog of the Cys2His2-like fold group (C2H2) -type zinc finger protein 6 (ZFP6) and its deletion leads to glossier pericarp and decreased cuticular wax accumulation. Consistently, transcriptomic analysis demonstrated that a group of wax biosynthetic genes were downregulated when CsZFP6 was absent. Further, transient expression assay revealed that CsZFP6 acted as a transcription activator of cuticular wax biosynthetic genes. Taken together, our findings demonstrated a novel regulator of fruit glossiness, which will provide new insights into regulatory mechanism of fruit glossiness in cucumber.
Collapse
Affiliation(s)
| | | | - Yipeng Wang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Yanran Wang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Haolun Ju
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | | |
Collapse
|
16
|
Wu H, Liu L, Chen Y, Liu T, Jiang Q, Wei Z, Li C, Wang Z. Tomato SlCER1-1 catalyzes the synthesis of wax alkanes which increases the drought tolerance and fruit storability. HORTICULTURE RESEARCH 2022; 9:uhac004. [PMID: 35147189 PMCID: PMC9071378 DOI: 10.1093/hr/uhac004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 12/12/2021] [Indexed: 05/19/2023]
Abstract
Very-long-chain (VLC) alkanes are the main wax compounds of tomato fruit and leaf. ECERIFERUM1 (CER1) and ECERIFERUM3 (CER3) are the two key genes involved in VLC alkane biosynthesis in Arabidopsis thaliana. However, the CER1 and CER3 homologous genes in tomato have not been investigated and their exact biological function remains unknown. We analyzed the wax profiles in tomato leaves and fruits at different growth stages, and characterized the CER1 and CER3 homologous genes. VLC alkanes were the predominant wax compounds both in the leaf and fruit at all developmental stages. We identified five CER1 homologs and two CER3 homologs in tomato, which were designated as SlCER1-1 to SlCER1-5 and SlCER3-1 and SlCER3-2 respectively. The genes exhibited tissue- and organ-dependent expression patterns and were induced by abiotic stresses. SlCER1-1 was localized to the endoplasmic reticulum (ER), which is also the main site of wax biosynthesis. Silencing the SlCER1-1 gene in tomato significantly reduced the amounts of n-Alkanes and branched alkanes, whereas its overexpression in Arabidopsis had the opposite effect. Under drought stress, both n-Alkanes and branched alkanes increased significantly in wild-type but not the SlCER1-1 RNAi tomato plants. Furthermore, SlCER1-1 silencing also increased the cuticular permeabilities of the leaves and fruits. In conclusion, SlCER1-1 is involved in wax alkane biosynthesis in tomato and plays an important role in the drought tolerance and fruit storability.
Collapse
Affiliation(s)
- Hongqi Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Le Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Yaofeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Tianxiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Qinqin Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Zhengyang Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Chunlian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
17
|
Yang Q, Nong X, Xu J, Huang F, Wang F, Wu J, Zhang C, Liu C. Unraveling the Genetic Basis of Fertility Restoration for Cytoplasmic Male Sterile Line WNJ01A Originated From Brassica juncea in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:721980. [PMID: 34531887 PMCID: PMC8438535 DOI: 10.3389/fpls.2021.721980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Crosses that lead to heterosis have been widely used in the rapeseed (Brassica napus L.) industry. Cytoplasmic male sterility (CMS)/restorer-of-fertility (Rf) systems represent one of the most useful tools for rapeseed production. Several CMS types and their restorer lines have been identified in rapeseed, but there are few studies on the mechanisms underlying fertility restoration. Here, we performed morphological observation, map-based cloning, and transcriptomic analysis of the F2 population developed by crossing the CMS line WNJ01A with its restorer line Hui01. Paraffin-embedded sections showed that the sporogenous cell stage was the critical pollen degeneration period, with major sporogenous cells displaying loose and irregular arrangement in sterile anthers. Most mitochondrial electron transport chain (mtETC) complex genes were upregulated in fertile compared to sterile buds. Using bulked segregant analysis (BSA)-seq to analyze mixed DNA pools from sterile and fertile F2 buds, respectively, we identified a 6.25 Mb candidate interval where Rfw is located. Using map-based cloning experiments combined with bacterial artificial chromosome (BAC) clone sequencing, the candidate interval was reduced to 99.75 kb and two pentatricopeptide repeat (PPR) genes were found among 28 predicted genes in this interval. Transcriptome sequencing showed that there were 1679 DEGs (1023 upregulated and 656 downregulated) in fertile compared to sterile F2 buds. The upregulated differentially expressed genes (DEGs) were enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) lysine degradation pathway and phenylalanine metabolism, and the downregulated DEGs were enriched in cutin, suberine, and wax biosynthesis. Furthermore, 44 DEGs were involved in pollen and anther development, such as tapetum, microspores, and pollen wall development. All of them were upregulated except a few such as POE1 genes (which encode Pollen Ole e I allergen and extensin family proteins). There were 261 specifically expressed DEGs (9 and 252 in sterile and fertile buds, respectively). Regarding the fertile bud-specific upregulated DEGs, the ubiquitin-proteasome pathway was enriched. The top four hub genes in the protein-protein interaction network (BnaA09g56400D, BnaA10g18210D, BnaA10g18220D, and BnaC09g41740D) encode RAD23d proteins, which deliver ubiquitinated substrates to the 26S proteasome. These findings provide evidence on the pathways regulated by Rfw and improve our understanding of fertility restoration.
Collapse
|
18
|
Zhang X, Ni Y, Xu D, Busta L, Xiao Y, Jetter R, Guo Y. Integrative analysis of the cuticular lipidome and transcriptome of Sorghum bicolor reveals cultivar differences in drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:285-295. [PMID: 33887646 DOI: 10.1016/j.plaphy.2021.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Cuticular wax and cutin are directly involved in the mechanisms by which plants acclimate to water-limited environments. However, how the two lipid forms balance their contributions to plant drought-tolerance is still not clear. The present study examined the responses of cutin monomers and cuticular waxes to drought stress in two sorghum (Sorghum bicolor (L.) Moench) cultivars, drought-tolerant cv. Kangsi and drought-sensitive cv. Hongyingzi, by combining lipidomic and transcriptomic analysis. Drought increased total cutin contents by 41.3%, the contents of alkanoic acids by 72.6% and 2-hydroxyacids by 117.8% in Kangsi but unchanged those in Hongyingzi. The abundance of cutin monomers were relatively stable for cv Hongyingzi, excepting for a decrease of ω-hydroxyacids from 35.0% to 27.4% in drought-stressed plants. However, for cv Kangsi, the abundance of ω-hydroxyacids decreased from 36.8% to 21.0% and that of alkanoic acids increased from 30.5% to 37.1% in drought-stressed plants. Drought increased total wax coverage in Hongyingzi but reduced it in Kangsi. However, the abundance of aldehydes decreased from 51.2% to 39.3% in drought-stressed cv Kangsi, but increased from 25.2% to 36.1% in drought-stressed cv Hongyingzi. A decrease of sterols (by 76%) and an increase of primary alcohol (by 443%) was also observed in drought-stressed cv Hongyingzi. Transcriptome analysis also revealed that many genes implicated by homology in cutin monomer and cuticular wax biosynthesis also differed in their responses to drought stress between the two sorghum cultivars. Therefore, sorghum cultivars differed in their mechanisms in adjusting chemical profiles of both cutin and cuticular wax under water deficit condition.
Collapse
Affiliation(s)
- Xuefeng Zhang
- College of Animal Science and Technology, Southwest University, Chongqing, 400716, China; College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yu Ni
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Daixiang Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Luke Busta
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska Lincoln, Lincoln, NE, 68588, USA
| | - Yu Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada; Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Yanjun Guo
- College of Animal Science and Technology, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
19
|
Harb A, Simpson C, Guo W, Govindan G, Kakani VG, Sunkar R. The Effect of Drought on Transcriptome and Hormonal Profiles in Barley Genotypes With Contrasting Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2020; 11:618491. [PMID: 33424910 PMCID: PMC7786106 DOI: 10.3389/fpls.2020.618491] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/27/2020] [Indexed: 05/21/2023]
Abstract
Like many cereal crops, barley is also negatively affected by drought stress. However, due to its simple genome as well as enhanced stress resilient nature compared to rice and wheat, barley has been considered as a model to decipher drought tolerance in cereals. In the present study, transcriptomic and hormonal profiles along with several biochemical features were compared between drought-tolerant (Otis) and drought-sensitive (Baronesse) barley genotypes subjected to drought to identify molecular and biochemical differences between the genotypes. The drought-induced decrease in the leaf relative water content, net photosynthesis, and biomass accumulation was relatively low in Otis compared to Baronesse. The hormonal profiles did not reveal significant differences for majority of the compounds other than the GA20 and the cis-zeatin-o-glucoside (c-ZOG), whose levels were greatly increased in Otis compared to Baronesse under drought. The major differences that emerged from the transcriptome analysis are; (1), the overall number of differentially expressed genes was relatively low in drought-tolerant Otis compared to drought-sensitive Baronesse; (2), a wax biosynthesis gene (CER1), and NAC transcription factors were specifically induced in Otis but not in Baronesse; (3), the degree of upregulation of betaine aldehyde dehydrogenase and a homeobox transcription factor (genes with proven roles in imparting drought tolerance), was greater in Otis compared to Baronesse; (4) the extent of downregulation of gene expression profiles for proteins of the reaction center photosystem II (PSII) (D1 and D2) was low in Otis compared to Baronesse; and, (5), alternative splicing (AS) was also found to differ between the genotypes under drought. Taken together, the overall transcriptional responses were low in drought-tolerant Otis but the genes that could confer drought tolerance were either specifically induced or greatly upregulated in the tolerant genotype and these differences could be important for drought tolerance in barley.
Collapse
Affiliation(s)
- Amal Harb
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, Jordan
- *Correspondence: Amal Harb ;
| | - Craig Simpson
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Wenbin Guo
- Informatics and Computational Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Ganesan Govindan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
| | - Vijaya Gopal Kakani
- Department of Plant and Soil Science, Oklahoma State University, Stillwater, OK, United States
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
- Ramanjulu Sunkar
| |
Collapse
|