1
|
Lei M, Wang X, Chen K, Wei Q, Zhou M, Chen G, Su S, Tai Y, Zhuang K, Li D, Liu M, Zhang S, Wang Y. Sugar transporters: mediators of carbon flow between plants and microbes. FRONTIERS IN PLANT SCIENCE 2025; 16:1536969. [PMID: 40308299 PMCID: PMC12042665 DOI: 10.3389/fpls.2025.1536969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025]
Abstract
Pathogens and symbiotic microorganisms significantly influence plant growth and crop productivity. Enhancing crop disease resistance and maximizing the beneficial role of symbiotic microorganisms in agriculture constitute critical areas of scientific investigation. A fundamental aspect of plant-microorganisms interactions revolves around nutritional dynamics, characterized by either "food shortage" or "food supply" scenarios. Notably, pathogenic and symbiotic microorganisms predominantly utilize photosynthetic sugars as their primary carbon source during host colonization. This phenomenon has generated substantial interest in the regulatory mechanisms governing sugar transport and redistribution at the plant-microorganism interface. Sugar transporters, which primarily mediate the allocation of sugars to various sink organs, have emerged as crucial players in plant-pathogen interactions and the establishment of beneficial symbiotic associations. This review systematically categorized plant sugar transporters and highlighted their functional significance in mediating plant interactions with pathogenic and beneficial microorganisms. Furthermore, we synthesized recent advancements in understanding the molecular regulatory mechanisms of these transporters and identified key scientific questions warranting further investigation. Elucidating the roles of sugar transporters offers novel strategies for enhancing crop health and productivity, thereby contributing to agricultural sustainability and global food security.
Collapse
Affiliation(s)
- Mengyu Lei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaodi Wang
- State Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kuan Chen
- State Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qianqian Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Miaomiao Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Gong Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Shuai Su
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Yuying Tai
- State Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kexin Zhuang
- State Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dexiao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Mengjuan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Senlei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Youning Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Liu W, Jiang H, Zeng F. The sugar transporter proteins in plants: An elaborate and widespread regulation network-A review. Int J Biol Macromol 2025; 294:139252. [PMID: 39755309 DOI: 10.1016/j.ijbiomac.2024.139252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
In higher plants, sugars are the primary products of photosynthesis, where CO2 is converted into organic carbon within the mesophyll cells of leaves. These sugars serve as a critical source of carbon skeletons for the biosynthesis of essential cellular compounds, energy production, and as osmotic and signaling molecules. Plant sugar transporter proteins play a key role in facilitating the long-distance translocation of sugars from source to sink organs, thereby controlling their distribution and accumulation across the plant. Over the past decade, substantial progress has been achieved in identifying the functions of individual genes linked to sugar transporters; however, the diverse regulatory mechanisms influencing these transporters remain insufficiently explored. This review consolidates current and previous research on the functions of sugar transporter proteins, focusing on their involvement in phloem transport pathways their impact on crop yield, cross-talk with other signals, and plant-microbe interactions. Furthermore, we propose future directions for studying the mechanisms of sugar transporter proteins and their potential applications in agriculture, with the goal of improving sugar utilization efficiency in crops and ultimately increasing crop yield.
Collapse
Affiliation(s)
- Weigang Liu
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Hong Jiang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Fankui Zeng
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 262306, China; Qingdao Center of Resource Chemistry & New Materials, Qingdao 266100, China.
| |
Collapse
|
3
|
Lu L, Delrot S, Fan P, Zhang Z, Wu D, Dong F, García-Caparros P, Li S, Dai Z, Liang Z. The transcription factors ERF105 and NAC72 regulate expression of a sugar transporter gene and hexose accumulation in grape. THE PLANT CELL 2024; 37:koae326. [PMID: 39691057 PMCID: PMC11852290 DOI: 10.1093/plcell/koae326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
Sugar transport plays a pivotal role in determining the productivity of plants and their capacity to act as carbon sinks. In the major fruit crop grapevine (Vitis vinifera L.), the transporter gene V. vinifera Sugars Will Eventually be Exported Transporter 15 (VvSWEET15) is strongly expressed during berry ripening. However, the specific functions of VvSWEET15 and the mechanisms governing its transcriptional regulation remain largely unresolved. Here, we demonstrate that VvSWEET15 functions as a hexose transporter whose expression is associated with the strong sugar accumulation that starts at the véraison stage. We also characterize VvERF105 as a repressor that binds to the LTR-binding element in the VvSWEET15 promoter, thereby downregulating its expression and inhibiting hexose accumulation at the prevéraison stage. In contrast, VvNAC72 is an activator that binds to the VvNAC72-binding domain (CACATG) and promotes VvSWEET15 expression and hexose accumulation at postvéraison stages. Both transcription factors and VvSWEET15 are preferentially expressed in phloem cells. These results demonstrate that the balance between transcriptional activators and repressors is critical in regulating VvSWEET15 expression in sink organs. Further understanding of these processes will help improve plant productivity and their potential to be used as carbon sinks.
Collapse
Affiliation(s)
- Lizhen Lu
- State Key Laboratory of Plant Diversity and Specialty Crops, and Beijing Key Laboratory of Grape Science and Oenology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Serge Delrot
- Bordeaux University, Bordeaux Sciences Agro, INRAE, UMR EGFV, ISVV, 33882 Villenave d’Ornon, France
| | - Peige Fan
- State Key Laboratory of Plant Diversity and Specialty Crops, and Beijing Key Laboratory of Grape Science and Oenology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhan Zhang
- College of Life Science, Shanxi Normal University, Taiyuan 041004, PR China
| | - Die Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, and Beijing Key Laboratory of Grape Science and Oenology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengqin Dong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | - Shaohua Li
- State Key Laboratory of Plant Diversity and Specialty Crops, and Beijing Key Laboratory of Grape Science and Oenology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhanwu Dai
- State Key Laboratory of Plant Diversity and Specialty Crops, and Beijing Key Laboratory of Grape Science and Oenology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Specialty Crops, and Beijing Key Laboratory of Grape Science and Oenology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
4
|
Kong L, Sun J, Zhang W, Zhan Z, Piao Z. Functional analysis of the key BrSWEET genes for sugar transport involved in the Brassica rapa-Plasmodiophora brassicae interaction. Gene 2024; 927:148708. [PMID: 38885818 DOI: 10.1016/j.gene.2024.148708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Plasmodiophora brassicae, the causative agent of clubroot disease, establishes a long-lasting parasitic relationship with its host by inducing the expression of sugar transporters. Previous studies have indicated that most BrSWEET genes in Chinese cabbage are up-regulated upon infection with P. brassicae. However, the key BrSWEET genes responsive to P. brassicae have not been definitively identified. In this study, we selected five BrSWEET genes and conducted a functional analysis of them. These five BrSWEET genes showed a notable up-regulation in roots after P. brassicae inoculation. Furthermore, these BrSWEET proteins were localized to the plasma membrane. Yeast functional complementation assays confirmed transport activity for glucose, fructose, or sucrose in four BrSWEETs, with the exception of BrSWEET2a. Mutants and silenced plants of BrSWEET1a, -11a, and -12a showed lower clubroot disease severity compared to wild-type plants, while gain-of-function Arabidopsis thaliana plants overexpressing these three BrSWEET genes exhibited significantly higher disease incidence and severity. Our findings suggested that BrSWEET1a, BrSWEET11a, and BrSWEET12a play pivotal roles in P. brassicae-induced gall formation, shedding light on the role of sugar transporters in host-pathogen interactions.
Collapse
Affiliation(s)
- Liyan Kong
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Jiadi Sun
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Wenjun Zhang
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
5
|
Pan Y, Niu K, Miao P, Zhao G, Zhang Y, Ju Z, Chai J, Yang J, Cui X, Zhang R. Genome-wide analysis of the SWEET gene family and its response to powdery mildew and leaf spot infection in the common oat (Avena sativa L.). BMC Genomics 2024; 25:995. [PMID: 39448896 PMCID: PMC11515518 DOI: 10.1186/s12864-024-10933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024] Open
Abstract
The nutritional quality and yield of oats (Avena sativa) are often compromised by plant diseases such as red leaf, powdery mildew, and leaf spot. Sugars Will Eventually be Exported Transporters (SWEETs) are newly identified sugar transporters involved in regulating plant growth and stress responses. However, the roles of SWEET genes in biotic stress responses remain uncharacterized in oats. In this study, 13 AsSWEET genes were identified across nine chromosomes of the oat genome, all of which were predicted to contain seven transmembrane regions. Phylogenetic analysis revealed four clades of AsSWEET proteins, with high homology to SWEET proteins in the Poaceae family. Collinearity analysis demonstrated strong relationships between oat and Zea mays SWEETs. Using subcellular localization prediction tools, AsSWEET proteins were predicted to localize to the plasma membrane. Promoter analysis revealed cis-acting elements associated with light response, growth, and stress regulation. Six AsSWEET proteins were predicted to interact in a network centered on AsSWEET1a and AsSWEET11. Gene expression analysis of two oat varieties, 'ForagePlus' and 'Molasses', indicated significant expression differences in several AsSWEET genes following infection with powdery mildew or leaf spot, including AsSWEET1a, AsSWEET1b, AsSWEET2b, AsSWEET3a, AsSWEET11, and AsSWEET16. These SWEET genes are potential candidates for disease resistance in oats. This study provides a foundation for understanding the regulatory mechanisms of AsSWEET genes, particularly in response to powdery mildew and leaf spot, and offers insights for enhancing oat molecular breeding.
Collapse
Affiliation(s)
- Yuanbo Pan
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| | - Peiqin Miao
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Guiqin Zhao
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Yuehua Zhang
- National Center of Pratacultural Technology Innovation (under preparation), Hohhot, 810016, Inner Mongolia, China
| | - Zeliang Ju
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Jikuan Chai
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Juanjuan Yang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Xiaoning Cui
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Ran Zhang
- Institute of Ecological Protection and Restoration, Grassland Research Center, Chinese Academy of Forestry, National Forestry and Grassland Administration, Beijing, 100091, China
| |
Collapse
|
6
|
Chen D, Liu Y, Chen Y, Li B, Chen T, Tian S. Functions of membrane proteins in regulating fruit ripening and stress responses of horticultural crops. MOLECULAR HORTICULTURE 2024; 4:35. [PMID: 39313804 PMCID: PMC11421178 DOI: 10.1186/s43897-024-00111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024]
Abstract
Fruit ripening is accompanied by the development of fruit quality traits; however, this process also increases the fruit's susceptibility to various environmental stresses, including pathogen attacks and other stress factors. Therefore, modulating the fruit ripening process and defense responses is crucial for maintaining fruit quality and extending shelf life. Membrane proteins play intricate roles in mediating signal transduction, ion transport, and many other important biological processes, thus attracting extensive research interest. This review mainly focuses on the functions of membrane proteins in regulating fruit ripening and defense responses against biotic and abiotic factors, addresses their potential as targets for improving fruit quality and resistance to environmental challenges, and further highlights some open questions to be addressed.
Collapse
Affiliation(s)
- Daoguo Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhan Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Boqiang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Tong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Shiping Tian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Geng K, Zhan Z, Xue X, Hou C, Li D, Wang Z. Genome‑wide identification of the SWEET gene family in grape ( Vitis vinifera L.) and expression analysis of VvSWEET14a in response to water stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1565-1579. [PMID: 39310704 PMCID: PMC11413283 DOI: 10.1007/s12298-024-01501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/12/2024] [Accepted: 08/06/2024] [Indexed: 09/25/2024]
Abstract
Sugars are considered primary metabolites that determine the flavor and quality of grape berries, also playing a crucial role in the plants to resist stress. Sugars Will Eventually be Exported Transporters (SWEETs) gene family has been previously reported to be involved in the growth and development of grape, while the changes in transcriptional levels under water stress remain unclear. In this study, sixteen grape SWEETs members were identified and annotated based on their homologous genes in Arabidopsis and tomato, they were classified into four clades (Clades I to IV) with VvSWEETs by phylogenetic analysis. The highly conserved motifs and gene structures of VvSWEETs indicate that they are closely evolutionary conservation. Chromosomal localization and synteny analysis found that VvSWEETs were unevenly distributed on 11 chromosomes, and the VvSWEET5a, VvSWEET5b, VvSWEET14b and VvSWEET14c existed a relatively recent evolutionary relationship. Promoter cis-acting elements showed that the clade III has more ABRE motif, especially the VvSWEET14a. The regulation of VvSWEETs is mainly influenced by the Dof and MYB families, which are associated with grape ripening, while VvSWEET14a is closely related to the bHLH, MYB, NAC, and bZIP families. RT-qPCR data and subcellular localization show that VvSWEET14a was highly induced under early water stress and is located in the vacuole membrane. The instantaneous transformation assay identified that this gene could promote to transport hexose in the vacuole to maintain normal osmotic pressure. In summary, our study provides a basis for further research on SWEET genes function and regulatory mechanism in the future, and lays the foundation for stress resistance breeding of Vitis vinifera. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01501-1.
Collapse
Affiliation(s)
- Kangqi Geng
- School of Life Sciences, Ningxia University, Yinchuan, 750021 Ningxia People’s Republic of China
| | - Zhennan Zhan
- School of Life Sciences, Ningxia University, Yinchuan, 750021 Ningxia People’s Republic of China
| | - Xiaobin Xue
- Agriculture of College, Ningxia University, Yinchuan, 750021 Ningxia People’s Republic of China
| | - Chenyang Hou
- Agriculture of College, Ningxia University, Yinchuan, 750021 Ningxia People’s Republic of China
| | - Dongmei Li
- Agriculture of College, Ningxia University, Yinchuan, 750021 Ningxia People’s Republic of China
| | - Zhenping Wang
- School of Life Sciences, Ningxia University, Yinchuan, 750021 Ningxia People’s Republic of China
- Agriculture of College, Ningxia University, Yinchuan, 750021 Ningxia People’s Republic of China
| |
Collapse
|
8
|
Lu L, Delrot S, Liang Z. From acidity to sweetness: a comprehensive review of carbon accumulation in grape berries. MOLECULAR HORTICULTURE 2024; 4:22. [PMID: 38835095 DOI: 10.1186/s43897-024-00100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Most of the carbon found in fruits at harvest is imported by the phloem. Imported carbon provide the material needed for the accumulation of sugars, organic acids, secondary compounds, in addition to the material needed for the synthesis of cell walls. The accumulation of sugars during fruit development influences not only sweetness but also various parameters controlling fruit composition (fruit "quality"). The accumulation of organic acids and sugar in grape berry flesh cells is a key process for berry development and ripening. The present review presents an update of the research on grape berry development, anatomical structure, sugar and acid metabolism, sugar transporters, and regulatory factors.
Collapse
Affiliation(s)
- Lizhen Lu
- State Key Laboratory of Plant Diversity and Prominent Crop, Beijing Key Laboratory of Grape Science and Oenology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Serge Delrot
- Bordeaux University, Bordeaux Sciences Agro, INRAE, UMR EGFV, ISVV, Villenave d'Ornon, 33882, France
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Prominent Crop, Beijing Key Laboratory of Grape Science and Oenology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
9
|
Zhao S, Rong J. Single-cell RNA-seq reveals a link of ovule abortion and sugar transport in Camellia oleifera. FRONTIERS IN PLANT SCIENCE 2024; 15:1274013. [PMID: 38371413 PMCID: PMC10869455 DOI: 10.3389/fpls.2024.1274013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Abstract
Camellia oleifera is the most important woody oil crop in China. Seed number per fruit is an important yield trait in C. oleifera. Ovule abortion is generally observed in C. oleifera and significantly decreases the seed number per fruit. However, the mechanisms of ovule abortion remain poorly understood at present. Single-cell RNA sequencing (scRNA-seq) was performed using mature ovaries of two C. oleifera varieties with different ovule abortion rates (OARs). In total, 20,526 high-quality cells were obtained, and 18 putative cell clusters were identified. Six cell types including female gametophyte, protoxylem, protophloem, procambium, epidermis, and parenchyma cells were identified from three main tissue types of ovule, placenta, and pericarp inner layer. A comparative analysis on scRNA-seq data between high- and low-OAR varieties demonstrated that the overall expression of CoSWEET and CoCWINV in procambium cells, and CoSTP in the integument was significantly upregulated in the low-OAR variety. Both the infertile ovule before pollination and the abortion ovule producing after compatible pollination might be attributed to selective abortion caused by low sugar levels in the apoplast around procambium cells and a low capability of hexose uptake in the integument. Here, the first single-cell transcriptional landscape is reported in woody crop ovaries. Our investigation demonstrates that ovule abortion may be related to sugar transport in placenta and ovules and sheds light on further deciphering the mechanism of regulating sugar transport and the improvement of seed yield in C. oleifera.
Collapse
Affiliation(s)
- Songzi Zhao
- Jiangxi Province Key Laboratory of Camellia Germplasm Conservation and Utilization, Jiangxi Academy of Forestry, Nanchang, China
| | - Jun Rong
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Hu L, Tian J, Zhang F, Song S, Cheng B, Liu G, Liu H, Zhao X, Wang Y, He H. Functional Characterization of CsSWEET5a, a Cucumber Hexose Transporter That Mediates the Hexose Supply for Pollen Development and Rescues Male Fertility in Arabidopsis. Int J Mol Sci 2024; 25:1332. [PMID: 38279332 PMCID: PMC10816302 DOI: 10.3390/ijms25021332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Pollen cells require large amounts of sugars from the anther to support their development, which is critical for plant sexual reproduction and crop yield. Sugars Will Eventually be Exported Transporters (SWEETs) have been shown to play an important role in the apoplasmic unloading of sugars from anther tissues into symplasmically isolated developing pollen cells and thereby affect the sugar supply for pollen development. However, among the 17 CsSWEET genes identified in the cucumber (Cucumis sativus L.) genome, the CsSWEET gene involved in this process has not been identified. Here, a member of the SWEET gene family, CsSWEET5a, was identified and characterized. The quantitative real-time PCR and β-glucuronidase expression analysis revealed that CsSWEET5a is highly expressed in the anthers and pollen cells of male cucumber flowers from the microsporocyte stage (stage 9) to the mature pollen stage (stage 12). Its subcellular localization indicated that the CsSWEET5a protein is localized to the plasma membrane. The heterologous expression assays in yeast demonstrated that CsSWEET5a encodes a hexose transporter that can complement both glucose and fructose transport deficiencies. CsSWEET5a can significantly rescue the pollen viability and fertility of atsweet8 mutant Arabidopsis plants. The possible role of CsSWEET5a in supplying hexose to developing pollen cells via the apoplast is also discussed.
Collapse
Affiliation(s)
- Liping Hu
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (L.H.); (S.S.); (B.C.); (G.L.); (H.L.); (X.Z.)
| | - Jiaxing Tian
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (F.Z.)
| | - Feng Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (F.Z.)
| | - Shuhui Song
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (L.H.); (S.S.); (B.C.); (G.L.); (H.L.); (X.Z.)
| | - Bing Cheng
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (L.H.); (S.S.); (B.C.); (G.L.); (H.L.); (X.Z.)
| | - Guangmin Liu
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (L.H.); (S.S.); (B.C.); (G.L.); (H.L.); (X.Z.)
| | - Huan Liu
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (L.H.); (S.S.); (B.C.); (G.L.); (H.L.); (X.Z.)
| | - Xuezhi Zhao
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (L.H.); (S.S.); (B.C.); (G.L.); (H.L.); (X.Z.)
| | - Yaqin Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (L.H.); (S.S.); (B.C.); (G.L.); (H.L.); (X.Z.)
| | - Hongju He
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (L.H.); (S.S.); (B.C.); (G.L.); (H.L.); (X.Z.)
| |
Collapse
|
11
|
Huang J, Fu X, Li W, Ni Z, Zhao Y, Zhang P, Wang A, Xiao D, Zhan J, He L. Molecular Cloning, Expression Analysis, and Functional Analysis of Nine IbSWEETs in Ipomoea batatas (L.) Lam. Int J Mol Sci 2023; 24:16615. [PMID: 38068939 PMCID: PMC10706379 DOI: 10.3390/ijms242316615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Sugar Will Eventually be Exported Transporter (SWEET) genes play an important regulatory role in plants' growth and development, stress response, and sugar metabolism, but there are few reports on the role of SWEET proteins in sweet potato. In this study, nine IbSWEET genes were obtained via PCR amplification from the cDNA of sweet potato. Phylogenetic analysis showed that nine IbSWEETs separately belong to four clades (Clade I~IV) and contain two MtN3/saliva domains or PQ-loop superfamily and six~seven transmembrane domains. Protein interaction prediction showed that seven SWEETs interact with other proteins, and SWEETs interact with each other (SWEET1 and SWEET12; SWEET2 and SWEET17) to form heterodimers. qRT-PCR analysis showed that IbSWEETs were tissue-specific, and IbSWEET1b was highly expressed during root growth and development. In addition to high expression in leaves, IbSWEET15 was also highly expressed during root expansion, and IbSWEET7, 10a, 10b, and 12 showed higher expression in the leaves. The expression of SWEETs showed a significant positive/negative correlation with the content of soluble sugar and starch in storage roots. Under abiotic stress treatment, IbSWEET7 showed a strong response to PEG treatment, while IbSWEET10a, 10b, and 12 responded significantly to 4 °C treatment and, also, at 1 h after ABA, to NaCl treatment. A yeast mutant complementation assay showed that IbSWEET7 had fructose, mannose, and glucose transport activity; IbSWEET15 had glucose transport activity and weaker sucrose transport activity; and all nine IbSWEETs could transport 2-deoxyglucose. These results provide a basis for further elucidating the functions of SWEET genes and promoting molecular breeding in sweet potato.
Collapse
Affiliation(s)
- Jingli Huang
- College of Agriculture, Guangxi University, Nanning 530004, China; (J.H.); (X.F.); (W.L.); (Z.N.); (Y.Z.); (P.Z.); (A.W.); (D.X.); (J.Z.)
- Agricultural and Animal Husbandry Industry Development Research Institute, Guangxi University, Nanning 530004, China
| | - Xuezhen Fu
- College of Agriculture, Guangxi University, Nanning 530004, China; (J.H.); (X.F.); (W.L.); (Z.N.); (Y.Z.); (P.Z.); (A.W.); (D.X.); (J.Z.)
| | - Wenyan Li
- College of Agriculture, Guangxi University, Nanning 530004, China; (J.H.); (X.F.); (W.L.); (Z.N.); (Y.Z.); (P.Z.); (A.W.); (D.X.); (J.Z.)
| | - Zhongwang Ni
- College of Agriculture, Guangxi University, Nanning 530004, China; (J.H.); (X.F.); (W.L.); (Z.N.); (Y.Z.); (P.Z.); (A.W.); (D.X.); (J.Z.)
| | - Yanwen Zhao
- College of Agriculture, Guangxi University, Nanning 530004, China; (J.H.); (X.F.); (W.L.); (Z.N.); (Y.Z.); (P.Z.); (A.W.); (D.X.); (J.Z.)
| | - Pinggang Zhang
- College of Agriculture, Guangxi University, Nanning 530004, China; (J.H.); (X.F.); (W.L.); (Z.N.); (Y.Z.); (P.Z.); (A.W.); (D.X.); (J.Z.)
- Agricultural and Animal Husbandry Industry Development Research Institute, Guangxi University, Nanning 530004, China
| | - Aiqin Wang
- College of Agriculture, Guangxi University, Nanning 530004, China; (J.H.); (X.F.); (W.L.); (Z.N.); (Y.Z.); (P.Z.); (A.W.); (D.X.); (J.Z.)
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Dong Xiao
- College of Agriculture, Guangxi University, Nanning 530004, China; (J.H.); (X.F.); (W.L.); (Z.N.); (Y.Z.); (P.Z.); (A.W.); (D.X.); (J.Z.)
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jie Zhan
- College of Agriculture, Guangxi University, Nanning 530004, China; (J.H.); (X.F.); (W.L.); (Z.N.); (Y.Z.); (P.Z.); (A.W.); (D.X.); (J.Z.)
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Longfei He
- Agricultural and Animal Husbandry Industry Development Research Institute, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
12
|
Lata C, Manjul AS, Prasad P, Gangwar OP, Adhikari S, Sonu, Kumar S, Bhardwaj SC, Singh G, Samota MK, Choudhary M, Bohra A, Varshney RK. Unraveling the diversity and functions of sugar transporters for sustainable management of wheat rust. Funct Integr Genomics 2023; 23:213. [PMID: 37378707 DOI: 10.1007/s10142-023-01150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/03/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
Plant diseases threaten global food security by reducing the production and quality of produce. Identification of disease resistance sources and their utilization in crop improvement is of paramount significance. However, constant evolution and occurrence of new, more aggressive and highly virulent pathotypes disintegrates the resistance of cultivars and hence demanding the steady stream of disease resistance cultivars as the most sustainable way of disease management. In this context, molecular tools and technologies facilitate an efficient and rational engineering of crops to develop cultivars having resistance to multiple pathogens and pathotypes. Puccinia spp. is biotrophic fungi that interrupt crucial junctions for causing infection, thus risking nutrient access of wheat plants and their subsequent growth. Sugar is a major carbon source taken from host cells by pathogens. Sugar transporters (STPs) are key players during wheat-rust interactions that regulate the transport, exchange, and allocation of sugar at plant-pathogen interfaces. Intense competition for accessing sugars decides fate of incompatibility or compatibility between host and the pathogen. The mechanism of transport, allocation, and signaling of sugar molecules and role of STPs and their regulatory switches in determining resistance/susceptibility to rusts in wheat is poorly understood. This review discusses the molecular mechanisms involving STPs in distribution of sugar molecules for determination of rust resistance/susceptibility in wheat. We also present perspective on how detailed insights on the STP's role in wheat-rust interaction will be helpful in devising efficient strategies for wheat rust management.
Collapse
Affiliation(s)
- Charu Lata
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India.
| | | | - Pramod Prasad
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India
| | - O P Gangwar
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India
| | - Sneha Adhikari
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India
| | - Sonu
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India
| | - Subodh Kumar
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India
| | - S C Bhardwaj
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | | | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, Ludhiana, Punjab, 141004, India
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
| | - Abhishek Bohra
- Centre for Crop and Food Innovation, Food Futures Institute, WA State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, Food Futures Institute, WA State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| |
Collapse
|
13
|
Chen L, Ganguly DR, Shafik SH, Danila F, Grof CPL, Sharwood RE, Furbank RT. The role of SWEET4 proteins in the post-phloem sugar transport pathway of Setaria viridis sink tissues. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2968-2986. [PMID: 36883216 PMCID: PMC10560085 DOI: 10.1093/jxb/erad076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/06/2023] [Indexed: 05/21/2023]
Abstract
In the developing seeds of all higher plants, filial cells are symplastically isolated from the maternal tissue supplying photosynthate to the reproductive structure. Photoassimilates must be transported apoplastically, crossing several membrane barriers, a process facilitated by sugar transporters. Sugars Will Eventually be Exported Transporters (SWEETs) have been proposed to play a crucial role in apoplastic sugar transport during phloem unloading and the post-phloem pathway in sink tissues. Evidence for this is presented here for developing seeds of the C4 model grass Setaria viridis. Using immunolocalization, SvSWEET4 was detected in various maternal and filial tissues within the seed along the sugar transport pathway, in the vascular parenchyma of the pedicel, and in the xylem parenchyma of the stem. Expression of SvSWEET4a in Xenopus laevis oocytes indicated that it functions as a high-capacity glucose and sucrose transporter. Carbohydrate and transcriptional profiling of Setaria seed heads showed that there were some developmental shifts in hexose and sucrose content and consistent expression of SvSWEET4 homologues. Collectively, these results provide evidence for the involvement of SWEETs in the apoplastic transport pathway of sink tissues and allow a pathway for post-phloem sugar transport into the seed to be proposed.
Collapse
Affiliation(s)
- Lily Chen
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, New South Wales 2753, Australia
| | - Diep R Ganguly
- Research School of Biology, ARC Centre of Excellence in Plant Energy Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, Australian Capital Territory 2601, Australia
| | - Sarah H Shafik
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Florence Danila
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Christopher P L Grof
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Robert E Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, New South Wales 2753, Australia
| | - Robert T Furbank
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
14
|
Hu Z, Tang Z, Yang J, Bao S, Zhang Y, Ma L, Zheng Q, Yang F, Zhang D, Sun S, Hu Y. Knockout of OsSWEET15 Impairs Rice Embryo Formation and Seed-Setting. PLANT & CELL PHYSIOLOGY 2023; 64:258-268. [PMID: 36525532 DOI: 10.1093/pcp/pcac173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/27/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
We show that the knockout of a sugar transporter gene OsSWEET15 led to a significant drop in rice fertility with around half of the knockout mutant's spikelets bearing blighted or empty grains. The rest of the spikelets bore fertile grains with a slightly reduced weight. Notably, the ovaries in the blighted grains of the ossweet15 mutants expanded after flowering but terminated their development before the endosperm cellularization stage and subsequently aborted. β- glucuronidase (GUS) and Green Fluorescent Protein (GFP) reporter lines representing the OsSWEET15 expression showed that the gene was expressed in the endosperm tissues surrounding the embryo, which supposedly supplies nutrients to sustain embryo development. These results together with the protein's demonstrated sucrose transport capacity and plasma membrane localization suggest that OsSWEET15 plays a prominent role during the caryopsis formation stage, probably by releasing sucrose from the endosperm to support embryo development. By contrast, the empty grains were probably caused by the reduced pollen viability of the ossweet15 mutants. Investigation of ossweet11 mutant grains revealed similar phenotypes to those observed in the ossweet15 mutants. These results indicate that both OsSWEET15 and OsSWEET11 play important and similar roles in rice pollen development, caryopsis formation and seed-setting, in addition to their function in seed-filling that was demonstrated previously.
Collapse
Affiliation(s)
- Zhi Hu
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Zhenjia Tang
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Jing Yang
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Shuhui Bao
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Yuanyuan Zhang
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Lai Ma
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Qingsong Zheng
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Fang Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, No. 299 Bayi Road, Wuhan 430072, China
| | - Dechun Zhang
- Bio-Technology Research Center, China Three Gorges University, No. 8 Daxue Road, Yichang, Hubei 443002, China
| | - Shubin Sun
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Yibing Hu
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| |
Collapse
|
15
|
Su K, Zhao W, Lin H, Jiang C, Zhao Y, Guo Y. Candidate gene discovery of Botrytis cinerea resistance in grapevine based on QTL mapping and RNA-seq. FRONTIERS IN PLANT SCIENCE 2023; 14:1127206. [PMID: 36824203 PMCID: PMC9941706 DOI: 10.3389/fpls.2023.1127206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Grape gray mold disease (Botrytis cinerea) is widespread during grape production especially in Vitis vinifera and causes enormous losses to the grape industry. In nature, the grapevine cultivar 'Beta ' (Vitis riparia × Vitis labrusca) showed high resistance to grape gray mold. Until now, the candidate genes and their mechanism of gray mold resistance were poorly understood. In this study, we firstly conducted quantitative trait locus (QTL) mapping for grape gray mold resistance based on two hybrid offspring populations that showed wide separation in gray mold resistance. Notably, two stable QTL related to gray mold resistance were detected and located on linkage groups LG2 and LG7. The phenotypic variance ranged from 6.86% to 13.70% on LG2 and 4.40% to 11.40% on LG7. Combined with RNA sequencing (RNA-seq), one structural gene VlEDR2 (Vitvi02g00982) and three transcription factors VlERF039 (Vitvi00g00859), VlNAC047 (Vitvi08g01843), and VlWRKY51 (Vitvi07g01847) that may be involved in VlEDR2 expression and grape gray mold resistance were selected. This discovery of candidate gray mold resistance genes will provide an important theoretical reference for grape gray mold resistance mechanisms, research, and gray mold-resistant grape cultivar breeding in the future.
Collapse
Affiliation(s)
- Kai Su
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Wei Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, China
| | - Hong Lin
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Changyue Jiang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yuhui Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, China
| |
Collapse
|
16
|
Singh J, Das S, Jagadis Gupta K, Ranjan A, Foyer CH, Thakur JK. Physiological implications of SWEETs in plants and their potential applications in improving source-sink relationships for enhanced yield. PLANT BIOTECHNOLOGY JOURNAL 2022. [PMID: 36529911 PMCID: PMC10363763 DOI: 10.1111/pbi.13982] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The sugars will eventually be exported transporters (SWEET) family of transporters in plants is identified as a novel class of sugar carriers capable of transporting sugars, sugar alcohols and hormones. Functioning in intercellular sugar transport, SWEETs influence a wide range of physiologically important processes. SWEETs regulate the development of sink organs by providing nutritional support from source leaves, responses to abiotic stresses by maintaining intracellular sugar concentrations, and host-pathogen interactions through the modulation of apoplastic sugar levels. Many bacterial and fungal pathogens activate the expression of SWEET genes in species such as rice and Arabidopsis to gain access to the nutrients that support virulence. The genetic manipulation of SWEETs has led to the generation of bacterial blight (BB)-resistant rice varieties. Similarly, while the overexpression of the SWEETs involved in sucrose export from leaves and pathogenesis led to growth retardation and yield penalties, plants overexpressing SWEETs show improved disease resistance. Such findings demonstrate the complex functions of SWEETs in growth and stress tolerance. Here, we review the importance of SWEETs in plant-pathogen and source-sink interactions and abiotic stress resistance. We highlight the possible applications of SWEETs in crop improvement programmes aimed at improving sink and source strengths important for enhancing the sustainability of yield. We discuss how the adverse effects of the overexpression of SWEETs on plant growth may be overcome.
Collapse
Affiliation(s)
- Jitender Singh
- National Institute of Plant Genome Research, New Delhi, India
| | - Shubhashis Das
- National Institute of Plant Genome Research, New Delhi, India
| | | | - Aashish Ranjan
- National Institute of Plant Genome Research, New Delhi, India
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
| | - Jitendra Kumar Thakur
- National Institute of Plant Genome Research, New Delhi, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
17
|
Fakher B, Jakada BH, Greaves JG, Wang L, Niu X, Cheng Y, Zheng P, Aslam M, Qin Y, Wang X. Identification and expression analysis of pineapple sugar transporters reveal their role in the development and environmental response. FRONTIERS IN PLANT SCIENCE 2022; 13:964897. [PMID: 36352877 PMCID: PMC9638087 DOI: 10.3389/fpls.2022.964897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
In plants, sugars are required for several essential functions, including growth, storage, signaling, defense and reproduction. Sugar transporters carry out the controlled movement of sugars from source (leaves) to sink (fruits and roots) tissues and determine the overall development of the plant. Various types of sugar transporter families have been described in plants, including sucrose transporters (SUC/SUT), monosaccharide transporter (MST) and SWEET (from "Sugar Will Eventually be Exported Transporters"). However, the information about pineapple sugar transporters is minimal. This study systematically identified and classified 45 MST and 4 SUC/SUT genes in the pineapple genome. We found that the expression patterns of sugar transporter genes have a spatiotemporal expression in reproductive and vegetative tissues indicating their pivotal role in reproductive growth and development. Besides, different families of sugar transporters have a diel expression pattern in photosynthetic and non-photosynthetic tissues displaying circadian rhythm associated participation of sugar transporters in the CAM pathway. Moreover, regulation of the stress-related sugar transporters during cold stress indicates their contribution to cold tolerance in pineapple. Heterologous expression (yeast complementation assays) of sugar transporters in a mutant yeast strain suggested that SUT1/2 have the ability to transport sucrose, and STP13, STP26, pGlcT-L2 and TMT4 are able to transport glucose, whereas SWEET11/13 transport both sucrose and fructose. The information provided here would help researchers further explore the underlying molecular mechanism involved in the sugar metabolism of pineapple.
Collapse
Affiliation(s)
- Beenish Fakher
- Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Bello Hassan Jakada
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Joseph G. Greaves
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lulu Wang
- Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Xiaoping Niu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Cheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohammad Aslam
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Qin
- Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, China
| |
Collapse
|
18
|
Liu H, Liu X, Zhao Y, Nie J, Yao X, Lv L, Yang J, Ma N, Guo Y, Li Y, Yang X, Lin T, Sui X. Alkaline α-galactosidase 2 (CsAGA2) plays a pivotal role in mediating source-sink communication in cucumber. PLANT PHYSIOLOGY 2022; 189:1501-1518. [PMID: 35357489 PMCID: PMC9237694 DOI: 10.1093/plphys/kiac152] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/07/2022] [Indexed: 05/27/2023]
Abstract
Sugars are necessary for plant growth and fruit development. Cucumber (Cucumis sativus L.) transports sugars, mainly raffinose family oligosaccharides (RFOs), in the vascular bundle. As the dominant sugars in cucumber fruit, glucose and fructose are derived from sucrose, which is the product of RFO hydrolysis by α-galactosidase (α-Gal). Here, we characterized the cucumber alkaline α-galactosidase 2 (CsAGA2) gene and found that CsAGA2 has undergone human selection during cucumber domestication. Further experiments showed that the expression of CsAGA2 increases gradually during fruit development, especially in fruit vasculature. In CsAGA2-RNA interference (RNAi) lines, fruit growth was delayed because of lower hexose production in the peduncle and fruit main vascular bundle (MVB). In contrast, CsAGA2-overexpressing (OE) plants displayed bigger fruits. Functional enrichment analysis of transcriptional data indicated that genes related to sugar metabolism, cell wall metabolism, and hormone signaling were significantly downregulated in the peduncle and fruit MVBs of CsAGA2-RNAi plants. Moreover, downregulation of CsAGA2 also caused negative feedback regulation on source leaves, which was shown by reduced photosynthetic efficiency, fewer plasmodesmata at the surface between mesophyll cell and intermediary cell (IC) or between IC and sieve element, and downregulated gene expression and enzyme activities related to phloem loading, as well as decreased sugar production and exportation from leaves and petioles. The opposite trend was observed in CsAGA2-OE lines. Overall, we conclude that CsAGA2 is essential for cucumber fruit set and development through mediation of sugar communication between sink strength and source activity.
Collapse
Affiliation(s)
| | | | - Yalong Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jing Nie
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xuehui Yao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lijun Lv
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Junwei Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ning Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yicong Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yaxin Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xueyong Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tao Lin
- Authors for correspondence: (T.L.); (X.S.)
| | | |
Collapse
|
19
|
Versluys M, Toksoy Öner E, Van den Ende W. Fructan oligosaccharide priming alters apoplastic sugar dynamics and improves resistance against Botrytis cinerea in chicory. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4214-4235. [PMID: 35383363 DOI: 10.1093/jxb/erac140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Carbohydrates such as fructans can be involved in priming or defence stimulation, and hence potentially provide new strategies for crop protection against biotic stress. Chicory (Cichorium intybus) is a model plant for fructan research and is a crop with many known health benefits. Using the chicory-Botrytis cinerea pathosystem, we tested the effectiveness of fructan-induced immunity, focussing on different plant and microbial fructans. Sugar dynamics were followed after priming and subsequent pathogen infection. Our results indicated that many higher plants might detect extracellular levan oligosaccharides (LOS) of microbial origin, while chicory also detects extracellular small inulin-type fructooligosaccharides (FOS) of endogenous origin, thus differing from the findings of previous fructan priming studies. No clear positive effects were observed for inulin or mixed-type fructans. An elicitor-specific burst of reactive oxygen species was observed for sulfated LOS, while FOS and LOS both behaved as genuine priming agents. In addition, a direct antifungal effect was observed for sulfated LOS. Intriguingly, LOS priming led to a temporary increase in apoplastic sugar concentrations, mainly glucose, which could trigger downstream responses. Total sugar and starch contents in total extracts of LOS-primed leaves were higher after leaf detachment, indicating they could maintain their metabolic activity. Our results indicate the importance of balancing intra- and extracellular sugar levels (osmotic balance) in the context of 'sweet immunity' pathways.
Collapse
Affiliation(s)
- Maxime Versluys
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Ebru Toksoy Öner
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| |
Collapse
|
20
|
Tamayo E, Figueira-Galán D, Manck-Götzenberger J, Requena N. Overexpression of the Potato Monosaccharide Transporter StSWEET7a Promotes Root Colonization by Symbiotic and Pathogenic Fungi by Increasing Root Sink Strength. FRONTIERS IN PLANT SCIENCE 2022; 13:837231. [PMID: 35401641 PMCID: PMC8987980 DOI: 10.3389/fpls.2022.837231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Root colonization by filamentous fungi modifies sugar partitioning in plants by increasing the sink strength. As a result, a transcriptional reprogramming of sugar transporters takes place. Here we have further advanced in the characterization of the potato SWEET sugar transporters and their regulation in response to the colonization by symbiotic and pathogenic fungi. We previously showed that root colonization by the AM fungus Rhizophagus irregularis induces a major transcriptional reprogramming of the 35 potato SWEETs, with 12 genes induced and 10 repressed. In contrast, here we show that during the early colonization phase, the necrotrophic fungus Fusarium solani only induces one SWEET transporter, StSWEET7a, while represses most of the others (25). StSWEET7a was also induced during root colonization by the hemi-biotrophic fungus Fusarium oxysporum f. sp. tuberosi. StSWEET7a which belongs to the clade II of SWEET transporters localized to the plasma membrane and transports glucose, fructose and mannose. Overexpression of StSWEET7a in potato roots increased the strength of this sink as evidenced by an increase in the expression of the cell wall-bound invertase. Concomitantly, plants expressing StSWEET7a were faster colonized by R. irregularis and by F. oxysporum f. sp. tuberosi. The increase in sink strength induced by ectopic expression of StSWEET7a in roots could be abolished by shoot excision which reverted also the increased colonization levels by the symbiotic fungus. Altogether, these results suggest that AM fungi and Fusarium spp. might induce StSWEET7a to increase the sink strength and thus this gene might represent a common susceptibility target for root colonizing fungi.
Collapse
|
21
|
Versluys M, Van den Ende W. Sweet Immunity Aspects during Levan Oligosaccharide-Mediated Priming in Rocket against Botrytis cinerea. Biomolecules 2022; 12:370. [PMID: 35327562 PMCID: PMC8945012 DOI: 10.3390/biom12030370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
New strategies are required for crop protection against biotic stress. Naturally derived molecules, including carbohydrates such as fructans, can be used in priming or defense stimulation. Rocket (Eruca sativa) is an important leafy vegetable and a good source of antioxidants. Here, we tested the efficacy of fructan-induced immunity in the Botrytis cinerea pathosystem. Different fructan types of plant and microbial origin were considered and changes in sugar dynamics were analyzed. Immune resistance increased significantly after priming with natural and sulfated levan oligosaccharides (LOS). No clear positive effects were observed for fructo-oligosaccharides (FOS), inulin or branched-type fructans. Only sulfated LOS induced a direct ROS burst, typical for elicitors, while LOS behaved as a genuine priming compound. Total leaf sugar levels increased significantly both after LOS priming and subsequent infection. Intriguingly, apoplastic sugar levels temporarily increased after LOS priming but not after infection. We followed LOS and small soluble sugar dynamics in the apoplast as a function of time and found a temporal peak in small soluble sugar levels. Although similar dynamics were also found with inulin-type FOS, increased Glc and FOS levels may benefit B. cinerea. During LOS priming, LOS- and/or Glc-dependent signaling may induce downstream sweet immunity responses.
Collapse
Affiliation(s)
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium;
| |
Collapse
|
22
|
Skoppek CI, Punt W, Heinrichs M, Ordon F, Wehner G, Boch J, Streubel J. The barley HvSTP13GR mutant triggers resistance against biotrophic fungi. MOLECULAR PLANT PATHOLOGY 2022; 23:278-290. [PMID: 34816582 PMCID: PMC8743016 DOI: 10.1111/mpp.13161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 05/29/2023]
Abstract
High-yielding and stress-resistant crops are essential to ensure future food supply. Barley is an important crop to feed livestock and to produce malt, but the annual yield is threatened by pathogen infections. Pathogens can trigger an altered sugar partitioning in the host plant, which possibly leads to an advantage for the pathogen. Hampering these processes represents a promising strategy to potentially increase resistance. We analysed the response of the barley monosaccharide transporter HvSTP13 towards biotic stress and its potential use for plant protection. The expression of HvSTP13 increased on bacterial and fungal pathogen-associated molecular pattern (PAMP) application, suggesting a PAMP-triggered signalling that converged on the transcriptional induction of the gene. Promoter studies indicate a region that is probably targeted by transcription factors downstream of PAMP-triggered immunity pathways. We confirmed that the nonfunctional HvSTP13GR variant confers resistance against an economically relevant biotrophic rust fungus in barley. Our experimental setup provides basal prerequisites to further decode the role of HvSTP13 in response to biological stress. Moreover, in line with other studies, our experiments indicate that the alteration of sugar partitioning pathways, in a host-pathogen interaction, is a promising approach to achieve broad and durable resistance in plants.
Collapse
Affiliation(s)
- Caroline Ines Skoppek
- Department of Plant BiotechnologyInstitute of Plant GeneticsLeibniz Universität HannoverHanoverGermany
| | - Wilko Punt
- Department of Plant BiotechnologyInstitute of Plant GeneticsLeibniz Universität HannoverHanoverGermany
- Present address:
Institute for Plant SciencesUniversity of CologneCologneGermany
| | - Marleen Heinrichs
- Department of Plant BiotechnologyInstitute of Plant GeneticsLeibniz Universität HannoverHanoverGermany
- Present address:
Department of Cellular BiochemistryUniversity Medical Center GöttingenGöttingenGermany
| | - Frank Ordon
- Institute for Resistance Research and Stress ToleranceJulius Kühn Institute – Federal Research Centre for Cultivated PlantsQuedlinburgGermany
| | - Gwendolin Wehner
- Institute for Resistance Research and Stress ToleranceJulius Kühn Institute – Federal Research Centre for Cultivated PlantsQuedlinburgGermany
| | - Jens Boch
- Department of Plant BiotechnologyInstitute of Plant GeneticsLeibniz Universität HannoverHanoverGermany
| | - Jana Streubel
- Department of Plant BiotechnologyInstitute of Plant GeneticsLeibniz Universität HannoverHanoverGermany
| |
Collapse
|
23
|
Chen L, Ganguly DR, Shafik SH, Ermakova M, Pogson BJ, Grof CPL, Sharwood RE, Furbank RT. Elucidating the role of SWEET13 in phloem loading of the C 4 grass Setaria viridis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:615-632. [PMID: 34780111 DOI: 10.1111/tpj.15581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Photosynthetic efficiency and sink demand are tightly correlated with rates of phloem loading, where maintaining low cytosolic sugar concentrations is paramount to prevent the downregulation of photosynthesis. Sugars Will Eventually be Exported Transporters (SWEETs) are thought to have a pivotal role in the apoplastic phloem loading of C4 grasses. SWEETs have not been well studied in C4 species, and their investigation is complicated by photosynthesis taking place across two cell types and, therefore, photoassimilate export can occur from either one. SWEET13 homologues in C4 grasses have been proposed to facilitate apoplastic phloem loading. Here, we provide evidence for this hypothesis using the C4 grass Setaria viridis. Expression analyses on the leaf gradient of C4 species Setaria and Sorghum bicolor show abundant transcript levels for SWEET13 homologues. Carbohydrate profiling along the Setaria leaf shows total sugar content to be significantly higher in the mature leaf tip compared with the younger tissue at the base. We present the first known immunolocalization results for SvSWEET13a and SvSWEET13b using novel isoform-specific antisera. These results show localization to the bundle sheath and phloem parenchyma cells of both minor and major veins. We further present the first transport kinetics study of C4 monocot SWEETs by using a Xenopus laevis oocyte heterologous expression system. We demonstrate that SvSWEET13a and SvSWEET13b are high-capacity transporters of glucose and sucrose, with a higher apparent Vmax for sucrose, compared with glucose, typical of clade III SWEETs. Collectively, these results provide evidence for an apoplastic phloem loading pathway in Setaria and possibly other C4 species.
Collapse
Affiliation(s)
- Lily Chen
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, New South Wales, 2753, Australia
| | - Diep R Ganguly
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, Australian Capital Territory, 2601, Australia
| | - Sarah H Shafik
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Maria Ermakova
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Barry J Pogson
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Christopher P L Grof
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Robert E Sharwood
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, New South Wales, 2753, Australia
| | - Robert T Furbank
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| |
Collapse
|
24
|
Ji J, Yang L, Fang Z, Zhang Y, Zhuang M, Lv H, Wang Y. Plant SWEET Family of Sugar Transporters: Structure, Evolution and Biological Functions. Biomolecules 2022; 12:biom12020205. [PMID: 35204707 PMCID: PMC8961523 DOI: 10.3390/biom12020205] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
The SWEET (sugars will eventually be exported transporter) family was identified as a new class of sugar transporters that function as bidirectional uniporters/facilitators and facilitate the diffusion of sugars across cell membranes along a concentration gradient. SWEETs are found widely in plants and play central roles in many biochemical processes, including the phloem loading of sugar for long-distance transport, pollen nutrition, nectar secretion, seed filling, fruit development, plant–pathogen interactions and responses to abiotic stress. This review focuses on advances of the plant SWEETs, including details about their discovery, characteristics of protein structure, evolution and physiological functions. In addition, we discuss the applications of SWEET in plant breeding. This review provides more in-depth and comprehensive information to help elucidate the molecular basis of the function of SWEETs in plants.
Collapse
Affiliation(s)
- Jialei Ji
- Correspondence: ; Tel.: +86-10-82108756
| | | | | | | | | | | | | |
Collapse
|
25
|
Rienth M, Vigneron N, Walker RP, Castellarin SD, Sweetman C, Burbidge CA, Bonghi C, Famiani F, Darriet P. Modifications of Grapevine Berry Composition Induced by Main Viral and Fungal Pathogens in a Climate Change Scenario. FRONTIERS IN PLANT SCIENCE 2021; 12:717223. [PMID: 34956249 PMCID: PMC8693719 DOI: 10.3389/fpls.2021.717223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
The grapevine is subject to high number of fungal and viral diseases, which are responsible for important economic losses in the global wine sector every year. These pathogens deteriorate grapevine berry quality either directly via the modulation of fruit metabolic pathways and the production of endogenous compounds associated with bad taste and/or flavor, or indirectly via their impact on vine physiology. The most common and devastating fungal diseases in viticulture are gray mold, downy mildew (DM), and powdery mildew (PM), caused, respectively by Botrytis cinerea, Plasmopara viticola, and Erysiphe necator. Whereas B. cinerea mainly infects and deteriorates the ripening fruit directly, deteriorations by DM and PM are mostly indirect via a reduction of photosynthetic leaf area. Nevertheless, mildews can also infect berries at certain developmental stages and directly alter fruit quality via the biosynthesis of unpleasant flavor compounds that impair ultimate wine quality. The grapevine is furthermore host of a wide range of viruses that reduce vine longevity, productivity and berry quality in different ways. The most widespread virus-related diseases, that are known nowadays, are Grapevine Leafroll Disease (GLRD), Grapevine Fanleaf Disease (GFLD), and the more recently characterized grapevine red blotch disease (GRBD). Future climatic conditions are creating a more favorable environment for the proliferation of most virus-insect vectors, so the spread of virus-related diseases is expected to increase in most wine-growing regions. However, the impact of climate change on the evolution of fungal disease pressure will be variable and depending on region and pathogen, with mildews remaining certainly the major phytosanitary threat in most regions because their development rate is to a large extent temperature-driven. This paper aims to provide a review of published literature on most important grapevine fungal and viral pathogens and their impact on grape berry physiology and quality. Our overview of the published literature highlights gaps in our understanding of plant-pathogen interactions, which are valuable for conceiving future research programs dealing with the different pathogens and their impacts on grapevine berry quality and metabolism.
Collapse
Affiliation(s)
- Markus Rienth
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, Nyon, Switzerland
| | - Nicolas Vigneron
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, Nyon, Switzerland
| | - Robert P. Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Simone Diego Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Crystal Sweetman
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Crista A. Burbidge
- School of Agriculture and Food, Commonwealth Scientific and Industrial Research Organization (CSIRO), Glen Osmond, SA, Australia
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, Legnaro, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Philippe Darriet
- Univ. Bordeaux, Unité de recherche Œnologie EA 4577, USC 1366 INRAE, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France
| |
Collapse
|
26
|
Solairaj D, Yang Q, Guillaume Legrand NN, Routledge MN, Zhang H. Molecular explication of grape berry-fungal infections and their potential application in recent postharvest infection control strategies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Savoi S, Torregrosa L, Romieu C. Transcripts switched off at the stop of phloem unloading highlight the energy efficiency of sugar import in the ripening V. vinifera fruit. HORTICULTURE RESEARCH 2021; 8:193. [PMID: 34465746 PMCID: PMC8408237 DOI: 10.1038/s41438-021-00628-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/03/2021] [Accepted: 06/15/2021] [Indexed: 05/24/2023]
Abstract
Transcriptomic changes at the cessation of sugar accumulation in the pericarp of Vitis vinifera were addressed on single berries re-synchronised according to their individual growth patterns. The net rates of water, sugars and K+ accumulation inferred from individual growth and solute concentration confirmed that these inflows stopped simultaneously in the ripe berry, while the small amount of malic acid remaining at this stage was still being oxidised at low rate. Re-synchronised individual berries displayed negligible variations in gene expression among triplicates. RNA-seq studies revealed sharp reprogramming of cell-wall enzymes and structural proteins at the stop of phloem unloading, associated with an 80% repression of multiple sugar transporters and aquaporins on the plasma or tonoplast membranes, with the noticeable exception of H+/sugar symporters, which were rather weakly and constitutively expressed. This was verified in three genotypes placed in contrasted thermo-hydric conditions. The prevalence of SWEET suggests that electrogenic transporters would play a minor role on the plasma membranes of SE/CC complex and the one of the flesh, while sucrose/H+ exchangers dominate on its tonoplast. Cis-regulatory elements present in their promoters allowed to sort these transporters in different groups, also including specific TIPs and PIPs paralogs, and cohorts of cell wall-related genes. Together with simple thermodynamic considerations, these results lead to propose that H+/sugar exchangers at the tonoplast, associated with a considerably acidic vacuolar pH, may exhaust cytosolic sugars in the flesh and alleviate the need for supplementary energisation of sugar transport at the plasma membrane.
Collapse
Affiliation(s)
- Stefania Savoi
- AGAP, Montpellier University, CIRAD, INRAe, Institut Agro-Montpellier, UMT génovigne, 34060, 2 place Viala, Montpellier CEDEX, France
| | - Laurent Torregrosa
- AGAP, Montpellier University, CIRAD, INRAe, Institut Agro-Montpellier, UMT génovigne, 34060, 2 place Viala, Montpellier CEDEX, France
| | - Charles Romieu
- AGAP, Montpellier University, CIRAD, INRAe, Institut Agro-Montpellier, UMT génovigne, 34060, 2 place Viala, Montpellier CEDEX, France.
| |
Collapse
|
28
|
Chen T, Zhang Z, Li B, Qin G, Tian S. Molecular basis for optimizing sugar metabolism and transport during fruit development. ABIOTECH 2021; 2:330-340. [PMID: 36303881 PMCID: PMC9590571 DOI: 10.1007/s42994-021-00061-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/01/2021] [Indexed: 11/24/2022]
Abstract
Sugars are fundamental metabolites synthesized in leaves and further delivered to fruit in fruit crops. They not only provide "sweetness" as fruit quality traits, but also function as signaling molecules to modulate the responses of fruit to environmental stimuli. Therefore, the understanding to the molecular basis for sugar metabolism and transport is crucial for improving fruit quality and dissecting responses to abiotic/biotic factors. Here, we provide a review for molecular components involved in sugar metabolism and transport, crosstalk with hormone signaling, and the roles of sugars in responses to abiotic and biotic stresses. Moreover, we also envisage the strategies for optimizing sugar metabolism during fruit quality maintenance.
Collapse
Affiliation(s)
- Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
29
|
Gupta PK, Balyan HS, Gautam T. SWEET genes and TAL effectors for disease resistance in plants: Present status and future prospects. MOLECULAR PLANT PATHOLOGY 2021; 22:1014-1026. [PMID: 34076324 PMCID: PMC8295518 DOI: 10.1111/mpp.13075] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/13/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
SWEET genes encode sugar transporter proteins and often function as susceptibility (S) genes. Consequently, the recessive alleles of these SWEET genes provide resistance. This review summarizes the available literature on the molecular basis of the role of SWEET genes (as S genes) in the host and corresponding transcription activator-like effectors (TALEs) secreted by the pathogen. The review has four major sections, which follow a brief introduction: The first part gives some details about the occurrence and evolution of SWEET genes in approximately 30 plant species; the second part gives some details about systems where (a) SWEET genes with and without TALEs and (b) TALEs without SWEET genes cause different diseases; the third part summarizes the available information about TALEs along with interfering/truncated TALEs secreted by the pathogens; this section also summarizes the available information on effector-binding elements (EBEs) available in the promoters of either the SWEET genes or the Executor R genes; the code that is used for binding of TALEs to EBEs is also described in this section; the fourth part gives some details about the available approaches that are being used or can be used in the future for exploiting SWEET genes for developing disease-resistant cultivars. The review concludes with a section giving conclusions and future possibilities of using SWEET genes for developing disease-resistant cultivars using different approaches, including conventional breeding and genome editing.
Collapse
Affiliation(s)
| | | | - Tinku Gautam
- Department of Genetics and Plant BreedingCCS UniversityMeerutIndia
| |
Collapse
|
30
|
Zhang X, Feng C, Wang M, Li T, Liu X, Jiang J. Plasma membrane-localized SlSWEET7a and SlSWEET14 regulate sugar transport and storage in tomato fruits. HORTICULTURE RESEARCH 2021; 8:186. [PMID: 34333539 PMCID: PMC8325691 DOI: 10.1038/s41438-021-00624-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/22/2021] [Accepted: 04/19/2021] [Indexed: 05/25/2023]
Abstract
Sugars, especially glucose and fructose, contribute to the taste and quality of tomato fruits. These compounds are translocated from the leaves to the fruits and then unloaded into the fruits by various sugar transporters at the plasma membrane. SWEETs, are sugar transporters that regulate sugar efflux independently of energy or pH. To date, the role of SWEETs in tomato has received very little attention. In this study, we performed functional analysis of SlSWEET7a and SlSWEET14 to gain insight into the regulation of sugar transport and storage in tomato fruits. SlSWEET7a and SlSWEET14 were mainly expressed in peduncles, vascular bundles, and seeds. Both SlSWEET7a and SlSWEET14 are plasma membrane-localized proteins that transport fructose, glucose, and sucrose. Apart from the resulting increase in mature fruit sugar content, silencing SlSWEET7a or SlSWEET14 resulted in taller plants and larger fruits (in SlSWEET7a-silenced lines). We also found that invertase activity and gene expression of some SlSWEET members increased, which was consistent with the increased availability of sucrose and hexose in the fruits. Overall, our results demonstrate that suppressing SlSWEET7a and SlSWEET14 could be a potential strategy for enhancing the sugar content of tomato fruits.
Collapse
Affiliation(s)
- Xinsheng Zhang
- College of Horticulture, Shenyang Agricultural University, 110866, Shenyang, Liaoning, China
| | - Chaoyang Feng
- College of Horticulture, Shenyang Agricultural University, 110866, Shenyang, Liaoning, China
| | - Manning Wang
- College of Horticulture, Shenyang Agricultural University, 110866, Shenyang, Liaoning, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, 110866, Shenyang, Liaoning, China
- Key Laboratory of Protected Horticulture of Education Ministry, 110866, Shenyang, Liaoning, China
| | - Xin Liu
- College of Horticulture, Shenyang Agricultural University, 110866, Shenyang, Liaoning, China.
- Key Laboratory of Protected Horticulture of Education Ministry, 110866, Shenyang, Liaoning, China.
| | - Jing Jiang
- College of Horticulture, Shenyang Agricultural University, 110866, Shenyang, Liaoning, China.
- Key Laboratory of Protected Horticulture of Education Ministry, 110866, Shenyang, Liaoning, China.
| |
Collapse
|
31
|
Walker RP, Bonghi C, Varotto S, Battistelli A, Burbidge CA, Castellarin SD, Chen ZH, Darriet P, Moscatello S, Rienth M, Sweetman C, Famiani F. Sucrose Metabolism and Transport in Grapevines, with Emphasis on Berries and Leaves, and Insights Gained from a Cross-Species Comparison. Int J Mol Sci 2021; 22:7794. [PMID: 34360556 PMCID: PMC8345980 DOI: 10.3390/ijms22157794] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023] Open
Abstract
In grapevines, as in other plants, sucrose and its constituents glucose and fructose are fundamentally important and carry out a multitude of roles. The aims of this review are three-fold. First, to provide a summary of the metabolism and transport of sucrose in grapevines, together with new insights and interpretations. Second, to stress the importance of considering the compartmentation of metabolism. Third, to outline the key role of acid invertase in osmoregulation associated with sucrose metabolism and transport in plants.
Collapse
Affiliation(s)
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, 35020 Legnaro, Italy;
| | - Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, 35020 Legnaro, Italy;
| | - Alberto Battistelli
- Istituto di Ricerca sugli Ecosistemi Terrestri, Consiglio Nazionale delle Ricerche, 05010 Porano, Italy; (A.B.); (S.M.)
| | | | - Simone D. Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 0Z4, Canada;
| | - Zhi-Hui Chen
- College of Life Science, University of Dundee, Dundee DD1 5EH, UK;
| | - Philippe Darriet
- Cenologie, Institut des Sciences de la Vigne et du Vin (ISVV), 33140 Villenave d’Ornon, France;
| | - Stefano Moscatello
- Istituto di Ricerca sugli Ecosistemi Terrestri, Consiglio Nazionale delle Ricerche, 05010 Porano, Italy; (A.B.); (S.M.)
| | - Markus Rienth
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, 1260 Nyon, Switzerland;
| | - Crystal Sweetman
- College of Science & Engineering, Flinders University, GPO Box 5100, Adelaide, SA 5001, Australia;
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, 06121 Perugia, Italy
| |
Collapse
|
32
|
Breia R, Conde A, Badim H, Fortes AM, Gerós H, Granell A. Plant SWEETs: from sugar transport to plant-pathogen interaction and more unexpected physiological roles. PLANT PHYSIOLOGY 2021; 186:836-852. [PMID: 33724398 PMCID: PMC8195505 DOI: 10.1093/plphys/kiab127] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/05/2021] [Indexed: 05/19/2023]
Abstract
Sugars Will Eventually be Exported Transporters (SWEETs) have important roles in numerous physiological mechanisms where sugar efflux is critical, including phloem loading, nectar secretion, seed nutrient filling, among other less expected functions. They mediate low affinity and high capacity transport, and in angiosperms this family is composed by 20 paralogs on average. As SWEETs facilitate the efflux of sugars, they are highly susceptible to hijacking by pathogens, making them central players in plant-pathogen interaction. For instance, several species from the Xanthomonas genus are able to upregulate the transcription of SWEET transporters in rice (Oryza sativa), upon the secretion of transcription-activator-like effectors. Other pathogens, such as Botrytis cinerea or Erysiphe necator, are also capable of increasing SWEET expression. However, the opposite behavior has been observed in some cases, as overexpression of the tonoplast AtSWEET2 during Pythium irregulare infection restricted sugar availability to the pathogen, rendering plants more resistant. Therefore, a clear-cut role for SWEET transporters during plant-pathogen interactions has so far been difficult to define, as the metabolic signatures and their regulatory nodes, which decide the susceptibility or resistance responses, remain poorly understood. This fuels the still ongoing scientific question: what roles can SWEETs play during plant-pathogen interaction? Likewise, the roles of SWEET transporters in response to abiotic stresses are little understood. Here, in addition to their relevance in biotic stress, we also provide a small glimpse of SWEETs importance during plant abiotic stress, and briefly debate their importance in the particular case of grapevine (Vitis vinifera) due to its socioeconomic impact.
Collapse
Affiliation(s)
- Richard Breia
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga 4710-057, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga 4710-057, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
- Author for communication:
| | - Hélder Badim
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga 4710-057, Portugal
| | - Ana Margarida Fortes
- Lisbon Science Faculty, BioISI, University of Lisbon, Campo Grande, Lisbon 1749-016, Portugal
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga 4710-057, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
- Centre of Biological Engineering (CEB), Department of Engineering, University of Minho, Braga 4710-057, Portugal
| | - Antonio Granell
- Institute of Molecular and Cellular Biology of Plants, Spanish National Research Council (CSIC), Polytechnic University of Valencia, Valencia 46022, Spain
| |
Collapse
|
33
|
Li Y, Liu H, Yao X, Wang J, Feng S, Sun L, Ma S, Xu K, Chen LQ, Sui X. Hexose transporter CsSWEET7a in cucumber mediates phloem unloading in companion cells for fruit development. PLANT PHYSIOLOGY 2021; 186:640-654. [PMID: 33604597 PMCID: PMC8154047 DOI: 10.1093/plphys/kiab046] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/14/2021] [Indexed: 05/20/2023]
Abstract
In the fleshy fruit of cucumbers (Cucumis sativus L.), the phloem flow is unloaded via an apoplasmic pathway, which requires protein carriers to export sugars derived from stachyose and raffinose into the apoplasm. However, transporter(s) involved in this process remain unidentified. Here, we report that a hexose transporter, CsSWEET7a (Sugar Will Eventually be Exported Transporter 7a), was highly expressed in cucumber sink tissues and localized to the plasma membrane in companion cells of the phloem. Its expression level increased gradually during fruit development. Down-regulation of CsSWEET7a by RNA interference (RNAi) resulted in smaller fruit size along with reduced soluble sugar levels and reduced allocation of 14C-labelled carbon to sink tissues. CsSWEET7a overexpression lines showed an opposite phenotype. Interestingly, genes encoding alkaline α-galactosidase (AGA) and sucrose synthase (SUS) were also differentially regulated in CsSWEET7a transgenic lines. Immunohistochemical analysis demonstrated that CsAGA2 co-localized with CsSWEET7a in companion cells, indicating cooperation between AGA and CsSWEET7a in fruit phloem unloading. Our findings indicated that CsSWEET7a is involved in sugar phloem unloading in cucumber fruit by removing hexoses from companion cells to the apoplasmic space to stimulate the raffinose family of oligosaccharides (RFOs) metabolism so that additional sugars can be unloaded to promote fruit growth. This study also provides a possible avenue towards improving fruit production in cucumber.
Collapse
Affiliation(s)
- Yaxin Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
- Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huan Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xuehui Yao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jiang Wang
- Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sheng Feng
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lulu Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Si Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Kang Xu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Li-Qing Chen
- Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
34
|
Martins V, Soares C, Spormann S, Fidalgo F, Gerós H. Vineyard calcium sprays reduce the damage of postharvest grape berries by stimulating enzymatic antioxidant activity and pathogen defense genes, despite inhibiting phenolic synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:48-55. [PMID: 33667966 DOI: 10.1016/j.plaphy.2021.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/20/2021] [Indexed: 05/29/2023]
Abstract
Calcium supplements have been increasingly used for decay prevention, sanitation and nutritional enrichment of fruits, as more environmentally friendly alternatives to fungicides. However, little is known on the effects of these supplements on grape berry biochemical and molecular properties during storage. In this study, we addressed the hypothesis that the application of calcium chloride (CaCl2) in grapevines throughout the fruiting season reduces damage (and decay) of postharvest grape berries, through several biochemical and transcriptional modifications in sugar transport, secondary metabolism, antioxidant activity, cell wall organization and pathogen defense. Results showed that calcium (Ca) treatments in cv. "Vinhão" vines increased fruit Ca content and significantly decreased fruit damage by 60%, 10-d after storage at 4 °C. Grape berries from Ca-treated vines displayed lower levels of total phenolics and anthocyanins, compared to control fruits, corroborating the downregulation of PAL1 and STS which resulted in decreased non-enzymatic antioxidant capacity estimated by FRAP assay. In contrast, a strong upregulation of CAT1, ASPX1, ASPX3, GLPX1, CSD3 and CSD6 encoding antioxidant enzymes was observed. Accordingly, catalase enzyme activity was stimulated, significantly reducing hydrogen peroxide (H2O2) levels by 36%. The overexpression of the cell wall and pathogen defense genes PME, PGIP, PIN and PR1 likely contributed to the reduction in fruit rot. This work suggested that preharvest Ca treatment is an efficient agronomical strategy that prolongs the shelf life of grape berries through modifications at molecular and biochemical levels, bringing further insight on the benefits and drawbacks of preharvest Ca applications on postharvest fruit quality attributes.
Collapse
Affiliation(s)
- Viviana Martins
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal.
| | - Cristiano Soares
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - Sofia Spormann
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - Fernanda Fidalgo
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal; Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
35
|
Wan R, Guo C, Hou X, Zhu Y, Gao M, Hu X, Zhang S, Jiao C, Guo R, Li Z, Wang X. Comparative transcriptomic analysis highlights contrasting levels of resistance of Vitis vinifera and Vitis amurensis to Botrytis cinerea. HORTICULTURE RESEARCH 2021; 8:103. [PMID: 33931625 PMCID: PMC8087793 DOI: 10.1038/s41438-021-00537-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 02/23/2021] [Accepted: 03/08/2021] [Indexed: 05/08/2023]
Abstract
Botrytis cinerea is a major grapevine (Vitis spp.) pathogen, but some genotypes differ in their degree of resistance. For example, the Vitis vinifera cultivar Red Globe (RG) is highly susceptible, but V. amurensis Rupr Shuangyou (SY) is highly resistant. Here, we used RNA sequencing analysis to characterize the transcriptome responses of these two genotypes to B. cinerea inoculation at an early infection stage. Approximately a quarter of the genes in RG presented significant changes in transcript levels during infection, the number of which was greater than that in the SY leaves. The genes differentially expressed between infected leaves of SY and RG included those associated with cell surface structure, oxidation, cell death and C/N metabolism. We found evidence that an imbalance in the levels of reactive oxygen species (ROS) and redox homeostasis probably contributed to the susceptibility of RG to B. cinerea. SY leaves had strong antioxidant capacities and improved ROS homeostasis following infection. Regulatory network prediction suggested that WRKY and MYB transcription factors are associated with the abscisic acid pathway. Weighted gene correlation network analysis highlighted preinfection features of SY that might contribute to its increased resistance. Moreover, overexpression of VaWRKY10 in Arabidopsis thaliana and V. vinifera Thompson Seedless enhanced resistance to B. cinerea. Collectively, our study provides a high-resolution view of the transcriptional changes of grapevine in response to B. cinerea infection and novel insights into the underlying resistance mechanisms.
Collapse
Affiliation(s)
- Ran Wan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- College of Horticulture, Henan Agricultural University, 450002, Zhengzhou, Henan, China
| | - Chunlei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, 066004, Qinhuangdao, Hebei, China
| | - Xiaoqing Hou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
| | - Yanxun Zhu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
| | - Xiaoyan Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, 066004, Qinhuangdao, Hebei, China
| | - Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
| | - Chen Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
| | - Rongrong Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, 53000, Nanning, Guangxi, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China.
| |
Collapse
|
36
|
Nida H, Girma G, Mekonen M, Tirfessa A, Seyoum A, Bejiga T, Birhanu C, Dessalegn K, Senbetay T, Ayana G, Tesso T, Ejeta G, Mengiste T. Genome-wide association analysis reveals seed protein loci as determinants of variations in grain mold resistance in sorghum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1167-1184. [PMID: 33452894 DOI: 10.1007/s00122-020-03762-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
GWAS analysis revealed variations at loci harboring seed storage, late embryogenesis abundant protein, and a tannin biosynthesis gene associated with sorghum grain mold resistance. Grain mold is the most important disease of sorghum [Sorghum bicolor (L.) Moench]. It starts at the early stages of grain development due to concurrent infection by multiple fungal species. The genetic architecture of resistance to grain mold is poorly understood. Using a diverse set of 635 Ethiopian sorghum accessions, we conducted a multi-stage disease rating for resistance to grain mold under natural infestation in the field. Through genome-wide association analyses with 173,666 SNPs and multiple models, two novel loci were identified that were consistently associated with grain mold resistance across environments. Sequence variation at new loci containing sorghum KAFIRIN gene encoding a seed storage protein affecting seed texture and LATE EMBRYOGENESIS ABUNDANT 3 (LEA3) gene encoding a protein that accumulates in seeds, previously implicated in stress tolerance, were significantly associated with grain mold resistance. The KAFIRIN and LEA3 loci were also significant factors in grain mold resistance in accessions with non-pigmented grains. Moreover, we consistently detected the known SNP (S4_62316425) in TAN1 gene, a regulator of tannin accumulation in sorghum grain to be significantly associated with grain mold resistance. Identification of loci associated with new mechanisms of resistance provides fresh insight into genetic control of the trait, while the highly resistant accessions can serve as sources of resistance genes for breeding. Overall, our association data suggest the critical role of loci harboring seed protein genes and implicate grain chemical and physical properties in sorghum grain mold resistance.
Collapse
Affiliation(s)
- Habte Nida
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Gezahegn Girma
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Moges Mekonen
- Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Alemu Tirfessa
- Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Amare Seyoum
- Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Tamirat Bejiga
- Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Chemeda Birhanu
- Oromia Agricultural Research Institute, P.O. Box 81265, Addis Ababa, Ethiopia
| | - Kebede Dessalegn
- Oromia Agricultural Research Institute, P.O. Box 81265, Addis Ababa, Ethiopia
| | - Tsegau Senbetay
- Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Getachew Ayana
- Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Tesfaye Tesso
- Department of Agronomy, Kansas State University, 3007 Throckmorton PSC, 1712 Claflin Road, Manhattan, KS, 66506, USA
| | - Gebisa Ejeta
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
37
|
Devanna BN, Jaswal R, Singh PK, Kapoor R, Jain P, Kumar G, Sharma Y, Samantaray S, Sharma TR. Role of transporters in plant disease resistance. PHYSIOLOGIA PLANTARUM 2021; 171:849-867. [PMID: 33639002 DOI: 10.1111/ppl.13377] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 05/11/2023]
Abstract
Plants being sessile have evolved numerous mechanisms to meet the changing environmental and growth conditions. Plant pathogens are responsible for devastating disease epidemics in many species. Transporter proteins are an integral part of plant growth and development, and several studies have documented their role in pathogen disease resistance. In this review, we analyze the studies on genome-wide identifications of plant transporters like sugars will eventually be exported transporters (SWEET), multidrug and toxic compound extrusion (MATE) transporters, ATP-binding cassette (ABC) transporters, natural resistance-associated macrophage proteins (NRAMP), and sugar transport proteins (STPs), all having a significant role in plant disease resistance. The mechanism of action of these transporters, their solute specificity, and the potential application of recent molecular biology approaches deploying these transporters for the development of disease-resistant plants are also discussed. The applications of genome editing tools, such as CRIPSR/Cas9, are also presented. Altogether the information included in this article gives a better understanding of the role of transporter proteins during plant-pathogen interaction.
Collapse
Affiliation(s)
| | - Rajdeep Jaswal
- National Agri-Food Biotechnology Institute, Mohali, India
| | | | - Ritu Kapoor
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Priyanka Jain
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Gulshan Kumar
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Yogesh Sharma
- National Agri-Food Biotechnology Institute, Mohali, India
| | | | - Tilak R Sharma
- Indian Council of Agricultural Research, Division of Crop Science, New Delhi, India
| |
Collapse
|
38
|
van den Herik B, Bergonzi S, Bachem CWB, ten Tusscher K. Modelling the physiological relevance of sucrose export repression by an Flowering Time homolog in the long-distance phloem of potato. PLANT, CELL & ENVIRONMENT 2021; 44:792-806. [PMID: 33314152 PMCID: PMC7986384 DOI: 10.1111/pce.13977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 05/31/2023]
Abstract
Yield of harvestable plant organs depends on photosynthetic assimilate production in source leaves, long-distance sucrose transport and sink-strength. While photosynthesis optimization has received considerable interest for optimizing plant yield, the potential for improving long-distance sucrose transport has received far less attention. Interestingly, a recent potato study demonstrates that the tuberigen StSP6A binds to and reduces activity of the StSWEET11 sucrose exporter. While the study suggested that reducing phloem sucrose efflux may enhance tuber yield, the precise mechanism and physiological relevance of this effect remained an open question. Here, we develop the first mechanistic model for sucrose transport, parameterized for potato plants. The model incorporates SWEET-mediated sucrose export, SUT-mediated sucrose retrieval from the apoplast and StSP6A-StSWEET11 interactions. Using this model, we were able to substantiate the physiological relevance of the StSP6A-StSWEET11 interaction in the long-distance phloem for potato tuber yield, as well as to show the non-linear nature of this effect.
Collapse
Affiliation(s)
- Bas van den Herik
- Computational Developmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Sara Bergonzi
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | | | | |
Collapse
|
39
|
Sáez C, Flores-León A, Montero-Pau J, Sifres A, Dhillon NPS, López C, Picó B. RNA-Seq Transcriptome Analysis Provides Candidate Genes for Resistance to Tomato Leaf Curl New Delhi Virus in Melon. FRONTIERS IN PLANT SCIENCE 2021; 12:798858. [PMID: 35116050 PMCID: PMC8805612 DOI: 10.3389/fpls.2021.798858] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) emerged in the Mediterranean Basin in 2012 as the first DNA bipartite begomovirus (Geminiviridae family), causing severe yield and economic losses in cucurbit crops. A major resistance locus was identified in the wild melon accession WM-7 (Cucumis melo kachri group), but the mechanisms involved in the resistant response remained unknown. In this work, we used RNA-sequencing to identify disease-associated genes that are differentially expressed in the course of ToLCNDV infection and could contribute to resistance. Transcriptomes of the resistant WM-7 genotype and the susceptible cultivar Piñonet Piel de Sapo (PS) (C. melo ibericus group) in ToLCNDV and mock inoculated plants were compared at four time points during infection (0, 3, 6, and 12 days post inoculation). Different gene expression patterns were observed over time in the resistant and susceptible genotypes in comparison to their respective controls. Differentially expressed genes (DEGs) in ToLCNDV-infected plants were classified using gene ontology (GO) terms, and genes of the categories transcription, DNA replication, and helicase activity were downregulated in WM-7 but upregulated in PS, suggesting that reduced activity of these functions reduces ToLCNDV replication and intercellular spread and thereby contributes to resistance. DEGs involved in the jasmonic acid signaling pathway, photosynthesis, RNA silencing, transmembrane, and sugar transporters entail adverse consequences for systemic infection in the resistant genotype, and lead to susceptibility in PS. The expression levels of selected candidate genes were validated by qRT-PCR to corroborate their differential expression upon ToLCNDV infection in resistant and susceptible melon. Furthermore, single nucleotide polymorphism (SNPs) with an effect on structural functionality of DEGs linked to the main QTLs for ToLCNDV resistance have been identified. The obtained results pinpoint cellular functions and candidate genes that are differentially expressed in a resistant and susceptible melon line in response to ToLCNDV, an information of great relevance for breeding ToLCNDV-resistant melon cultivars.
Collapse
Affiliation(s)
- Cristina Sáez
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
- *Correspondence: Cristina Sáez,
| | - Alejandro Flores-León
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| | - Javier Montero-Pau
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València, Valencia, Spain
| | - Alicia Sifres
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| | - Narinder P. S. Dhillon
- World Vegetable Center, East and Southeast Asia, Research and Training Station, Kasetsart University, Nakhon Pathom, Thailand
| | - Carmelo López
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
- Carmelo López,
| | - Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
- Belén Picó,
| |
Collapse
|
40
|
Breia R, Conde A, Conde C, Fortes AM, Granell A, Gerós H. VvERD6l13 is a grapevine sucrose transporter highly up-regulated in response to infection by Botrytis cinerea and Erysiphe necator. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:508-516. [PMID: 32688295 DOI: 10.1016/j.plaphy.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/02/2020] [Indexed: 05/23/2023]
Abstract
The Early-Response to Dehydration six-like (ERD6l) is one of the largest families of sugar transporters in plants, however, is also one of the less studied with very few members characterized. In this work, we identified 18 members of the grapevine ERD6l family, analyzed their promoters and putative topology and additionally functionally characterized the member VvERD6l13. VvERD6l13 was strongly up-regulated in grape berries infected with Botrytis cinerea and Erysiphe necator in cv. Trincadeira and Carignan, respectively, suggesting an important role in grape berry-pathogen interaction, as we had hypothesized. In Cabernet Sauvignon Berry suspension cultured cells, VvERD6l13 was also up-regulated, by 4-fold, 48 h after elicitation with mycelium extract of B. cinerea. Besides being expressed in grape berries from various developmental stages, VvERD6l13 is also expressed in leaves, canes, flowers and, noticeably, in roots. Using tobacco and an hxt-null Saccharomyces cerevisiae strain as heterologous expression models, we showed that VvERD6l13 is localized at the plasma membrane and mediates the H+-dependent transport of sucrose (Km = 33 mM) thus confirming VvERD6l13 as a bona fide sugar transporter involved in sugar mobilization in grapevine and transcriptionally induced in response to biotic stress.
Collapse
Affiliation(s)
- Richard Breia
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal.
| | - Carlos Conde
- i3S-Institute of Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal; IBMC-Institute for Molecular and Cell Biology, University of Porto, 4200-135, Porto, Portugal
| | - Ana Margarida Fortes
- University of Lisbon, Lisbon Science Faculty, BioISI, Campo Grande, 1749-016, Lisbon, Portugal
| | - Antonio Granell
- Institute of Molecular and Cellular Biology of Plants, Spanish National Research Council (CSIC), Polytechnic University of Valencia, Valencia, Spain
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| |
Collapse
|
41
|
Li YM, Forney C, Bondada B, Leng F, Xie ZS. The Molecular Regulation of Carbon Sink Strength in Grapevine ( Vitis vinifera L.). FRONTIERS IN PLANT SCIENCE 2020; 11:606918. [PMID: 33505415 PMCID: PMC7829256 DOI: 10.3389/fpls.2020.606918] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/08/2020] [Indexed: 05/17/2023]
Abstract
Sink organs, the net receivers of resources from source tissues, provide food and energy for humans. Crops yield and quality are improved by increased sink strength and source activity, which are affected by many factors, including sugars and hormones. With the growing global population, it is necessary to increase photosynthesis into crop biomass and yield on a per plant basis by enhancing sink strength. Sugar translocation and accumulation are the major determinants of sink strength, so understanding molecular mechanisms and sugar allocation regulation are conducive to develop biotechnology to enhance sink strength. Grapevine (Vitis vinifera L.) is an excellent model to study the sink strength mechanism and regulation for perennial fruit crops, which export sucrose from leaves and accumulates high concentrations of hexoses in the vacuoles of fruit mesocarp cells. Here recent advances of this topic in grape are updated and discussed, including the molecular biology of sink strength, including sugar transportation and accumulation, the genes involved in sugar mobilization and their regulation of sugar and other regulators, and the effects of hormones on sink size and sink activity. Finally, a molecular basis model of the regulation of sugar accumulation in the grape is proposed.
Collapse
Affiliation(s)
- You-Mei Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Charles Forney
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS, Canada
| | - Bhaskar Bondada
- Wine Science Center, Washington State University, Richland, WA, United States
| | - Feng Leng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhao-Sen Xie
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- *Correspondence: Zhao-Sen Xie,
| |
Collapse
|