1
|
Robin-Soriano A, Maurice K, Boivin S, Bourceret A, Laurent-Webb L, Youssef S, Nespoulous J, Boussière I, Berder J, Damasio C, Vincent B, Boukcim H, Ducousso M, Gros-Balthazard M. Absence of Gigasporales and rarity of spores in a hot desert revealed by a multimethod approach. MYCORRHIZA 2024; 34:251-270. [PMID: 39023766 DOI: 10.1007/s00572-024-01160-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024]
Abstract
Hot deserts impose extreme conditions on plants growing in arid soils. Deserts are expanding due to climate change, thereby increasing the vulnerability of ecosystems and the need to preserve them. Arbuscular mycorrhizal fungi (AMF) improve plant fitness by enhancing plant water/nutrient uptake and stress tolerance. However, few studies have focused on AMF diversity and community composition in deserts, and the soil and land use parameters affecting them. This study aimed to comprehensively describe AMF ecological features in a 5,000 km2 arid hyperalkaline region in AlUla, Saudi Arabia. We used a multimethod approach to analyse over 1,000 soil and 300 plant root samples of various species encompassing agricultural, old agricultural, urban and natural ecosystems. Our method involved metabarcoding using 18S and ITS2 markers, histological techniques for direct AMF colonization observation and soil spore extraction and observation. Our findings revealed a predominance of AMF taxa assigned to Glomeraceae, regardless of the local conditions, and an almost complete absence of Gigasporales taxa. Land use had little effect on the AMF richness, diversity and community composition, while soil texture, pH and substantial unexplained stochastic variance drove these compositions in AlUla soils. Mycorrhization was frequently observed in the studied plant species, even in usually non-mycorrhizal plant taxa (e.g. Amaranthaceae, Urticaceae). Date palms and Citrus trees, representing two major crops in the region, however, displayed a very low mycorrhizal frequency and intensity. AlUla soils had a very low concentration of spores, which were mostly small. This study generated new insight on AMF and specific behavioral features of these fungi in arid environments.
Collapse
Affiliation(s)
| | - Kenji Maurice
- AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Stéphane Boivin
- Department of Research and Development, VALORHIZ, Montferrier sur Lez, France
| | - Amelia Bourceret
- ISYEB, Muséum national d'Histoire naturelle, CNRS, EPHE-PSL, Sorbonne Université, Paris, France
| | - Liam Laurent-Webb
- ISYEB, Muséum national d'Histoire naturelle, CNRS, EPHE-PSL, Sorbonne Université, Paris, France
| | - Sami Youssef
- Department of Research and Development, VALORHIZ, Montferrier sur Lez, France
| | - Jérôme Nespoulous
- Department of Research and Development, VALORHIZ, Montferrier sur Lez, France
| | - Inès Boussière
- AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Julie Berder
- Department of Research and Development, VALORHIZ, Montferrier sur Lez, France
| | | | - Bryan Vincent
- AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Hassan Boukcim
- Department of Research and Development, VALORHIZ, Montferrier sur Lez, France
- ASARI, Mohammed VI Polytechnic University, Laâyoune, Morocco
| | - Marc Ducousso
- AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | | |
Collapse
|
2
|
Ben Zineb A, Lamine M, Khallef A, Hamdi H, Ahmed T, Al-Jabri H, Alsafran M, Mliki A, Sayadi S, Gargouri M. Harnessing rhizospheric core microbiomes from arid regions for enhancing date palm resilience to climate change effects. Front Microbiol 2024; 15:1362722. [PMID: 38646634 PMCID: PMC11027745 DOI: 10.3389/fmicb.2024.1362722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
Date palm cultivation has thrived in the Gulf Cooperation Council region since ancient times, where it represents a vital sector in agricultural and socio-economic development. However, climate change conditions prevailing for decades in this area, next to rarefication of rain, hot temperatures, intense evapotranspiration, rise of sea level, salinization of groundwater, and intensification of cultivation, contributed to increase salinity in the soil as well as in irrigation water and to seriously threaten date palm cultivation sustainability. There are also growing concerns about soil erosion and its repercussions on date palm oases. While several reviews have reported on solutions to sustain date productivity, including genetic selection of suitable cultivars for the local harsh environmental conditions and the implementation of efficient management practices, no systematic review of the desertic plants' below-ground microbial communities and their potential contributions to date palm adaptation to climate change has been reported yet. Indeed, desert microorganisms are expected to address critical agricultural challenges and economic issues. Therefore, the primary objectives of the present critical review are to (1) analyze and synthesize current knowledge and scientific advances on desert plant-associated microorganisms, (2) review and summarize the impacts of their application on date palm, and (3) identify possible gaps and suggest relevant guidance for desert plant microbes' inoculation approach to sustain date palm cultivation within the Gulf Cooperation Council in general and in Qatar in particular.
Collapse
Affiliation(s)
- Ameni Ben Zineb
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Mariem Lamine
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - Ahlem Khallef
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
- Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Helmi Hamdi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Talaat Ahmed
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Hareb Al-Jabri
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Mohammed Alsafran
- Agricultural Research Station, Office of VP for Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - Sami Sayadi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Mahmoud Gargouri
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| |
Collapse
|
3
|
Sayas-Barberá E, Paredes C, Salgado-Ramos M, Pallarés N, Ferrer E, Navarro-Rodríguez de Vera C, Pérez-Álvarez JÁ. Approaches to Enhance Sugar Content in Foods: Is the Date Palm Fruit a Natural Alternative to Sweeteners? Foods 2023; 13:129. [PMID: 38201157 PMCID: PMC10778573 DOI: 10.3390/foods13010129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The current levels of added sugars in processed foods impact dental health and contribute to a range of chronic non-communicable diseases, such as overweight, obesity, metabolic syndrome, type 2 diabetes, and cardiovascular diseases. This review presents sugars and sweeteners used in food processing, the current possibility to replace added sugars, and highlights the benefits of using dates as a new natural, nutritious and healthy alternative to synthetic and non-nutritive sweeteners. In the context of environmental sustainability, palm groves afford a propitious habitat for a diverse array of animal species and assume a pivotal social role by contributing to the provisioning of sustenance and livelihoods for local communities. The available literature shows the date as an alternative to added sugars due to its composition in macro and micronutrients, especially in bioactive components (fiber, polyphenols and minerals). Therefore, dates are presented as a health promoter and a preventative for certain diseases with the consequent added value. The use of damaged or unmarketable dates, due to its limited shelf life, can reduce losses and improve the sustainability of date palm cultivation. This review shows the potential use dates, date by-products and second quality dates as sugar substitutes in the production of sweet and healthier foods, in line with broader sustainability objectives and circular economy principles.
Collapse
Affiliation(s)
- Estrella Sayas-Barberá
- Instituto de Investigación en Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, EPS-Orihuela, Ctra. Beniel km 3.2, 03312 Orihuela, Alicante, Spain; (E.S.-B.); (C.P.); (J.Á.P.-Á.)
| | - Concepción Paredes
- Instituto de Investigación en Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, EPS-Orihuela, Ctra. Beniel km 3.2, 03312 Orihuela, Alicante, Spain; (E.S.-B.); (C.P.); (J.Á.P.-Á.)
| | - Manuel Salgado-Ramos
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 Burjassot, València, Spain; (M.S.-R.); (N.P.); (E.F.)
| | - Noelia Pallarés
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 Burjassot, València, Spain; (M.S.-R.); (N.P.); (E.F.)
| | - Emilia Ferrer
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 Burjassot, València, Spain; (M.S.-R.); (N.P.); (E.F.)
| | - Casilda Navarro-Rodríguez de Vera
- Instituto de Investigación en Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, EPS-Orihuela, Ctra. Beniel km 3.2, 03312 Orihuela, Alicante, Spain; (E.S.-B.); (C.P.); (J.Á.P.-Á.)
| | - José Ángel Pérez-Álvarez
- Instituto de Investigación en Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, EPS-Orihuela, Ctra. Beniel km 3.2, 03312 Orihuela, Alicante, Spain; (E.S.-B.); (C.P.); (J.Á.P.-Á.)
| |
Collapse
|
4
|
Aziz MA, Sabeem M, Kutty MS, Rahman S, Alneyadi MK, Alkaabi AB, Almeqbali ES, Brini F, Vijayan R, Masmoudi K. Enzyme stabilization and thermotolerance function of the intrinsically disordered LEA2 proteins from date palm. Sci Rep 2023; 13:11878. [PMID: 37482543 PMCID: PMC10363547 DOI: 10.1038/s41598-023-38426-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
In date palm, the LEA2 genes are of abundance with sixty-two members that are nearly all ubiquitous. However, their functions and interactions with potential target molecules are largely unexplored. In this study, five date palm LEA2 genes, PdLEA2.2, PdLEA2.3, PdLEA2.4, PdLEA2.6, and PdLEA2.7 were cloned, sequenced, and three of them, PdLEA2.2, PdLEA2.3, and PdLEA2.4 were functionally characterized for their effects on the thermostability of two distinct enzymes, lactate dehydrogenase (LDH) and β-glucosidase (bglG) in vitro. Overall, PdLEA2.3 and PdLEA2.4 were moderately hydrophilic, PdLEA2.7 was slightly hydrophobic, and PdLEA2.2 and PdLEA2.6 were neither. Sequence and structure prediction indicated the presence of a stretch of hydrophobic residues near the N-terminus that could potentially form a transmembrane helix in PdLEA2.2, PdLEA2.4, PdLEA2.6 and PdLEA2.7. In addition to the transmembrane helix, secondary and tertiary structures prediction showed the presence of a disordered region followed by a stacked β-sheet region in all the PdLEA2 proteins. Moreover, three purified recombinant PdLEA2 proteins were produced in vitro, and their presence in the LDH enzymatic reaction enhanced the activity and reduced the aggregate formation of LDH under the heat stress. In the bglG enzymatic assays, PdLEA2 proteins further displayed their capacity to preserve and stabilize the bglG enzymatic activity.
Collapse
Affiliation(s)
- Mughair Abdul Aziz
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - Miloofer Sabeem
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - M Sangeeta Kutty
- Department of Vegetable Science, College of Agriculture, Kerala Agricultural University, Vellanikkara, Thrissur, 680656, India
| | - Shafeeq Rahman
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - Maitha Khalfan Alneyadi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - Alia Binghushoom Alkaabi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - Eiman Saeed Almeqbali
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/ University of Sfax, Sfax, Tunisia
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al‑Ain, Abu‑Dhabi, UAE
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab, Emirates University, Al‑Ain, Abu‑Dhabi, UAE.
| |
Collapse
|
5
|
Arab L, Hoshika Y, Paoletti E, White PJ, Dannenmann M, Mueller H, Ache P, Hedrich R, Alfarraj S, Albasher G, Rennenberg H. Chronic ozone exposure impairs the mineral nutrition of date palm (Phoenix dactylifera) seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160675. [PMID: 36481139 DOI: 10.1016/j.scitotenv.2022.160675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/25/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Chronic ozone (O3) exposure in the atmosphere preferentially disturbs metabolic processes in the roots rather than the shoot as a consequence of reduced photosynthesis and carbohydrate allocation from the leaves to the roots. The aim of the present study was to elucidate if mineral nutrition is also impaired by chronic O3 exposure. For this purpose, date palm (Phoenix dactylifera) plants were fumigated with ambient, 1.5 × ambient and 2 × ambient O3 in a free air controlled exposure (FACE) system for one growing season and concentrations of major nutrients were analyzed in leaves and roots. In addition, concentrations of C and N and their partitioning between different metabolic C and N pools were determined in both organs. The results showed that calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), sodium (Na) and potassium (K) acquisition by roots was diminished by O3 exposure of the shoot. For Ca, Mg, Fe and Zn reduced uptake by the roots was combined with reduced allocation to the shoot, resulting in a decline of foliar concentrations; for Na and K, allocation to the shoot was maintained at the expense of the roots. Thus, elevated O3 impaired both mineral uptake by the roots and partitioning of minerals between roots and shoots, but in an element specific way. Thereby, elevated O3 affected roots and shoots differently already after one growing season. However, considerable changes in total C and N concentrations and their partitioning between different metabolic pools upon chronic O3 exposure were not observed in either leaves or roots, except for reduced foliar lignin concentrations at 2 × ambient O3. Significant differences in these parameters were shown between leaves and roots independent of O3 application. The physiological consequences of the effects of chronic O3 exposure on mineral acquisition and partitioning between leaves and roots are discussed.
Collapse
Affiliation(s)
- Leila Arab
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, 79110 Freiburg, Germany.
| | - Yasutomo Hoshika
- IRET-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Elena Paoletti
- IRET-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Philip J White
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK
| | - Michael Dannenmann
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, Garmisch-Partenkirchen 82467, Germany
| | - Heike Mueller
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Peter Ache
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Saleh Alfarraj
- King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Ghada Albasher
- King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, 79110 Freiburg, Germany; King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia; Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China
| |
Collapse
|
6
|
Sabeem M, Abdul Aziz M, Mullath SK, Brini F, Rouached H, Masmoudi K. Enhancing growth and salinity stress tolerance of date palm using Piriformospora indica. FRONTIERS IN PLANT SCIENCE 2022; 13:1037273. [PMID: 36507455 PMCID: PMC9733834 DOI: 10.3389/fpls.2022.1037273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Endophytic fungi are known to enhance plant growth and performance under salt stress. The current study investigated the growth, as well as biochemical and molecular properties of Phoenix dactylifera colonized with the mutualistic fungus Piriformospora indica, under control and salinity stress. Our findings indicated an increase in the plant biomass, lateral root density, and chlorophyll content of P. indica-colonized plants under both normal and salt stress conditions. Furthermore, there was a decline in the inoculated plants leaf and root Na+/K+ ratio. The colonization enhanced the levels of antioxidant enzymes such as catalase, superoxide dismutase, and peroxidase in plants. Increased ionic content of Zn and P were also found in salt-stressed date palm. The fungus colonization was also associated with altered expression levels of essential Na+ and K+ ion channels in roots like HKT1;5 and SOS1 genes. This alteration improved plant growth due to their preservation of Na+ and K+ ions balanced homeostasis under salinity stress. Moreover, it was confirmed that RSA1 and LEA2 genes were highly expressed in salt-stressed and colonized plant roots and leaves, respectively. The current study exploited P. indica as an effective natural salt stress modulator to ameliorate salinity tolerance in plants.
Collapse
Affiliation(s)
- Miloofer Sabeem
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al−Ain, Abu−Dhabi, United Arab Emirates
| | - Mughair Abdul Aziz
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al−Ain, Abu−Dhabi, United Arab Emirates
| | - Sangeeta K. Mullath
- Department of Vegetable Science, College of Agriculture, Kerala Agricultural University, Vellanikkara, Thrissur, India
| | - Faical Brini
- Plant Protection Laboratory, Center of Biotechnology, Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Hatem Rouached
- Michigan State University, Plant and Soil Science Building, East Lansing, MI, United States
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al−Ain, Abu−Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Shamim A, Sanka Loganathachetti D, Chandran S, Masmoudi K, Mundra S. Salinity of irrigation water selects distinct bacterial communities associated with date palm (Phoenix dactylifera L.) root. Sci Rep 2022; 12:12733. [PMID: 35882908 PMCID: PMC9325759 DOI: 10.1038/s41598-022-16869-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/18/2022] [Indexed: 01/18/2023] Open
Abstract
Saline water irrigation has been used in date palm (Phoenix dactylifera L.) agriculture as an alternative to non-saline water due to water scarcity in hyper-arid environments. However, the knowledge pertaining to saline water irrigation impact on the root-associated bacterial communities of arid agroecosystems is scarce. In this study, we investigated the effect of irrigation sources (non-saline freshwater vs saline groundwater) on date palm root-associated bacterial communities using 16S rDNA metabarcoding. The bacterial richness, Shannon diversity and evenness didn't differ significantly between the irrigation sources. Soil electrical conductivity (EC) and irrigation water pH were negatively related to Shannon diversity and evenness respectively, while soil organic matter displayed a positive correlation with Shannon diversity. 40.5% of total Operational Taxonomic Units were unique to non-saline freshwater irrigation, while 26% were unique to saline groundwater irrigation. The multivariate analyses displayed strong structuring of bacterial communities according to irrigation sources, and both soil EC and irrigation water pH were the major factors affecting bacterial communities. The genera Bacillus, Micromonospora and Mycobacterium were dominated while saline water irrigation whereas contrasting pattern was observed for Rhizobium, Streptomyces and Acidibacter. Taken together, we suggest that date-palm roots select specific bacterial taxa under saline groundwater irrigation, which possibly help in alleviating salinity stress and promote growth of the host plant.
Collapse
Affiliation(s)
- Azra Shamim
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu-Dhabi, UAE
| | | | - Subha Chandran
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, Abu-Dhabi, UAE
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu-Dhabi, UAE.
| | - Sunil Mundra
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, Abu-Dhabi, UAE.
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
8
|
Analyzing the Spatial Correspondence between Different Date Fruit Cultivars and Farms’ Cultivated Areas, Case Study: Al-Ahsa Oasis, Kingdom of Saudi Arabia. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diversity in date palm (DP) cultivars plays a crucial role in the agroecosystems of several countries, such as the Kingdom of Saudi Arabia (KSA). This study aims to map and analyze the spatial distribution of the most grown DP cultivars (Khlas, Ruziz, and Shishi) in the Al-Ahsa oasis in the KSA and to highlight their spatial correlation with the corresponding cultivated patches within farms. Descriptive and spatial data on 288 farms were analyzed using GIS, data curation, cross-TAB statistics, clustering maps, and spatial autocorrelation techniques. The obtained results revealed that most of the oasis’s DP farms are within a cultivated area of <500 m2. The larger cultivated areas are mostly in the oasis’s northern and central subregions, agreeing with the spatial distribution of trees. In total, 56.9% of the studied farms grew the cultivars together within the least rank (<500 m2) of cultivated area, having the greatest tendency for DP cultivation. Khlas was the most dominant cultivar being the least absent from cultivation with 3.1% compared to Ruziz (31.9%) and Shishi (37.8%). The spatial distribution of DP plantations in the oasis was also consistent with the spatial variation in soils and irrigation water salinity, necessitating the need for special agricultural extension programs. In conclusion, these outcomes indicate that this study is essential for DP sustainability, growers, authorities, and policy makers.
Collapse
|
9
|
Arab L, Hoshika Y, Müller H, Cotrozzi L, Nali C, Tonelli M, Ache P, Paoletti E, Alfarraj S, Albasher G, Hedrich R, Rennenberg H. Chronic ozone exposure preferentially modifies root rather than foliar metabolism of date palm (Phoenix dactylifera) saplings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150563. [PMID: 34601178 DOI: 10.1016/j.scitotenv.2021.150563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
In their natural environment, date palms are exposed to chronic atmospheric ozone (O3) concentrations from local and remote sources. In order to elucidate the consequences of this exposure, date palm saplings were treated with ambient, 1.5 and 2.0 times ambient O3 for three months in a free-air controlled exposure facility. Chronic O3 exposure reduced carbohydrate contents in leaves and roots, but this effect was much stronger in roots. Still, sucrose contents of both organs were maintained at elevated O3, though at different steady states. Reduced availability of carbohydrate for the Tricarboxylic acid cycle (TCA cycle) may be responsible for the observed reduced foliar contents of several amino acids, whereas malic acid accumulation in the roots indicates a reduced use of TCA cycle intermediates. Carbohydrate deficiency in roots, but not in leaves caused oxidative stress upon chronic O3 exposure, as indicated by enhanced malonedialdehyde, H2O2 and oxidized glutathione contents despite elevated glutathione reductase activity. Reduced levels of phenolics and flavonoids in the roots resulted from decreased production and, therefore, do not indicate oxidative stress compensation by secondary compounds. These results show that roots of date palms are highly susceptible to chronic O3 exposure as a consequence of carbohydrate deficiency.
Collapse
Affiliation(s)
- L Arab
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, 79110 Freiburg, Germany.
| | - Y Hoshika
- IRET-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - H Müller
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - L Cotrozzi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - C Nali
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - M Tonelli
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - P Ache
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - E Paoletti
- IRET-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - S Alfarraj
- King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - G Albasher
- King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - R Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - H Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, 79110 Freiburg, Germany; Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China
| |
Collapse
|
10
|
Du B, Ma Y, Yáñez-Serrano AM, Arab L, Fasbender L, Alfarraj S, Albasher G, Hedrich R, White PJ, Werner C, Rennenberg H. Physiological responses of date palm (Phoenix dactylifera) seedlings to seawater and flooding. THE NEW PHYTOLOGIST 2021; 229:3318-3329. [PMID: 33259640 DOI: 10.1111/nph.17123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
In their natural environment along coast lines, date palms are exposed to seawater inundation and, hence, combined stress by salinity and flooding. To elucidate the consequences of this combined stress on foliar gas exchange and metabolite abundances in leaves and roots, date palm seedlings were exposed to flooding with seawater and its major constituents under controlled conditions. Seawater flooding significantly reduced CO2 assimilation, transpiration and stomatal conductance, but did not affect isoprene emission. A similar effect was observed upon NaCl exposure. By contrast, flooding with distilled water or MgSO4 did not affect CO2 /H2 O gas exchange or stomatal conductance significantly, indicating that neither flooding itself, nor seawater sulfate, contributed greatly to stomatal closure. Seawater exposure increased Na and Cl contents in leaves and roots, but did not affect sulfate contents significantly. Metabolite analyses revealed reduced abundances of foliar compatible solutes, such as sugars and sugar alcohols, whereas nitrogen compounds accumulated in roots. Reduced transpiration upon seawater exposure may contribute to controlling the movement of toxic ions to leaves and, therefore, can be seen as a mechanism to cope with salinity. The present results indicate that date palm seedlings are tolerant towards seawater exposure to some extent, and highly tolerant to flooding.
Collapse
Affiliation(s)
- Baoguo Du
- College of Life Science and Biotechnology, Mianyang Normal University, Mianxing Road West 166, Mianyang, 621000, China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, Freiburg, 79110, Germany
| | - Yuhua Ma
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Ningda Road 251, Xining, 810016, China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, Freiburg, 79110, Germany
| | - Ana Maria Yáñez-Serrano
- Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
| | - Leila Arab
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, Freiburg, 79110, Germany
| | - Lukas Fasbender
- Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
| | - Saleh Alfarraj
- King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Gadah Albasher
- King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, Würzburg, 97082, Germany
| | - Philip J White
- King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Christiane Werner
- Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, Freiburg, 79110, Germany
- King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|