1
|
Khan N, Choi SH, Lee CH, Qu M, Jeon JS. Photosynthesis: Genetic Strategies Adopted to Gain Higher Efficiency. Int J Mol Sci 2024; 25:8933. [PMID: 39201620 PMCID: PMC11355022 DOI: 10.3390/ijms25168933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The global challenge of feeding an ever-increasing population to maintain food security requires novel approaches to increase crop yields. Photosynthesis, the fundamental energy and material basis for plant life on Earth, is highly responsive to environmental conditions. Evaluating the operational status of the photosynthetic mechanism provides insights into plants' capacity to adapt to their surroundings. Despite immense effort, photosynthesis still falls short of its theoretical maximum efficiency, indicating significant potential for improvement. In this review, we provide background information on the various genetic aspects of photosynthesis, explain its complexity, and survey relevant genetic engineering approaches employed to improve the efficiency of photosynthesis. We discuss the latest success stories of gene-editing tools like CRISPR-Cas9 and synthetic biology in achieving precise refinements in targeted photosynthesis pathways, such as the Calvin-Benson cycle, electron transport chain, and photorespiration. We also discuss the genetic markers crucial for mitigating the impact of rapidly changing environmental conditions, such as extreme temperatures or drought, on photosynthesis and growth. This review aims to pinpoint optimization opportunities for photosynthesis, discuss recent advancements, and address the challenges in improving this critical process, fostering a globally food-secure future through sustainable food crop production.
Collapse
Affiliation(s)
- Naveed Khan
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea;
| | - Seok-Hyun Choi
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
| | - Choon-Hwan Lee
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea;
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Mingnan Qu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
| |
Collapse
|
2
|
Huang Y, Weng Z, Li S, Zhang S, Chen H, Luo Q, Yang R, Liu T, Wang T, Zhang P, Chen J. The photosynthetic performance and photoprotective role of carotenoids response to light stress in intertidal red algae Neoporphyra haitanensis. JOURNAL OF PHYCOLOGY 2024; 60:942-955. [PMID: 39016211 DOI: 10.1111/jpy.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 07/18/2024]
Abstract
Neoporphyra haitanensis, a red alga harvested for food, thrives in the intertidal zone amid dynamic and harsh environments. High irradiance represents a major stressor in this habitat, posing a threat to the alga's photosynthetic apparatus. Interestingly, N. haitanensis has adapted to excessive light despite the absence of a crucial xanthophyll cycle-dependent photoprotection pathway. Thus, it is valuable to investigate the mechanisms by which N. haitanensis copes with excessive light and to understand the photoprotective roles of carotenoids. Under high light intensities and prolonged irradiation time, N. haitanensis displayed reduction in photosynthetic efficiency and phycobiliproteins levels, as well as different responses in carotenoids. The decreased carotene contents suggested their involvement in the synthesis of xanthophylls, as evidenced by the up-regulation of lycopene-β-cyclase (lcyb) and zeaxanthin epoxidase (zep) genes. Downstream xanthophylls such as lutein, zeaxanthin, and antheraxanthin increased proportionally to light stress, potentially participating in scavenging reactive oxygen species (ROS). When accompanied by the enhanced activity of ascorbate peroxidase (APX), these factors resulted in a reduction in ROS production. The responses of intermediates α-cryptoxanthin and β-cryptoxanthin were felt somewhere between carotenes and zeaxanthin/lutein. Furthermore, these changes were ameliorated when the organism was placed in darkness. In summary, down-regulation of the organism's photosynthetic capacity, coupled with heightened xanthophylls and APX activity, activates photoinhibition quenching (qI) and antioxidant activity, helping N. haitanensis to protect the organism from the damaging effects of excessive light exposure. These findings provide insights into how red algae adapt to intertidal lifestyles.
Collapse
Affiliation(s)
- Yongbo Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Ziyu Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Shuang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Shuyu Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Haimin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Qijun Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Rui Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Tao Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, China
| | - Tiegan Wang
- Zhejiang Mariculture Research Institute, Wenzhou, Zhejiang, China
| | - Peng Zhang
- Zhejiang Mariculture Research Institute, Wenzhou, Zhejiang, China
| | - Juanjuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Zhang L, Yang C, Liu C. Revealing the significance of chlorophyll b in the moss Physcomitrium patens by knocking out two functional chlorophyllide a oxygenase. PHOTOSYNTHESIS RESEARCH 2023; 158:171-180. [PMID: 37653264 DOI: 10.1007/s11120-023-01044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
The chlorophyllide a oxygenase (CAO) plays a crucial role in the biosynthesis of chlorophyll b (Chl b). In the moss Physcomitrium patens (P. patens), two distinct gene copies, PpCAO1 and PpCAO2, are present. In this study, we investigate the differential expression of these CAOs following light exposure after a period of darkness (24 h) and demonstrate that the accumulation of Chl b is only abolished when both genes are knocked out. In the ppcao1cao2 mutant, most of the antenna proteins associated with both photosystems (PS) I and II are absent. Despite of the existence of LHCSR proteins and zeaxanthin, the mutant exhibits minimal non-photochemical quenching (NPQ) capacity. Nevertheless, the ppcao1cao2 mutant retains a certain level of pseudo-cyclic electron transport to provide photoprotection for PSI. These findings shed light on the dual dependency of Chl b synthesis on two CAOs and highlight the distinct effects of Chl b deprival on PSI and PSII core complexes in P. patens, a model species for bryophytes.
Collapse
Affiliation(s)
- Lin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chunhong Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Janik-Zabrotowicz E, Gruszecki W. LHCII - a protein like a 'Swiss Army knife' with many mechanisms and functions. PHOTOSYNTHETICA 2023; 61:405-416. [PMID: 39649481 PMCID: PMC11586845 DOI: 10.32615/ps.2023.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/07/2023] [Indexed: 12/10/2024]
Abstract
The review highlights the relationship between the molecular organization of the light-harvesting complex of photosystem II (LHCII) and sunlight utilization by higher plants. The molecular form of LHCII switches rapidly and reversibly during diurnal changes of light intensity, from low (ca. 10) to high [ca. 1,000 μmol(photon) m-2 s-1], so the sensitivity of LHCII to light may control the balance between light harvesting and photoprotection state. Our understanding and concept of this mechanism are based on the knowledge of the structure and photophysics of different LHCII molecular forms: monomer, dimer, trimer, and aggregate. It is proposed that LHCII monomers, dimers, and lateral aggregates are fundamental blocks of excess light-dissipation machinery. Trimer is exceptionally well suited to play a physiological role of an antenna complex. A correlation between the LHCII molecular form and the presence of xanthophyll cycle pigment violaxanthin and zeaxanthin in the complex structure is also shown. Moreover, the role of LHCII protein phosphorylation in thylakoid membrane architecture is also discussed. The dual function of LHCII has been studied in the natural thylakoid membranes of chloroplasts, in the artificial lipid-LHCII model membranes, and by suspension of LHCII in a detergent solution.
Collapse
Affiliation(s)
- E. Janik-Zabrotowicz
- Department of Cell Biology, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, ul. Akademicka 19, 20-033 Lublin, Poland
| | - W.I. Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Pl. Marii Curie-Sklodowskiej 1, 20-031 Lublin, Poland
| |
Collapse
|
5
|
Anugerahanti P, Tagliabue A. Process controlling iron-manganese regulation of the Southern Ocean biological carbon pump. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220065. [PMID: 37150202 PMCID: PMC10164462 DOI: 10.1098/rsta.2022.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/07/2023] [Indexed: 05/09/2023]
Abstract
Iron (Fe) is a key limiting nutrient driving the biological carbon pump and is routinely represented in global ocean biogeochemical models. However, in the Southern Ocean, the potential role for other micronutrients has not received the same attention. For example, although manganese (Mn) is essential to photosynthetic oxygen production and combating oxidative stress, it is not included in ocean models and a clear understanding of its interaction with Fe in the region is lacking. This is especially important for the Southern Ocean because both Mn and Fe are strongly depleted. We use a hierarchical modelling approach to explore how the physiological traits associated with Fe and Mn contribute to driving the footprint of micronutrient stress across different phytoplankton functional types (PFTs). We find that PFT responses are driven by physiological traits associated with their physiological requirements and acclimation to environmental conditions. Southern Ocean-specific adaptations to prevailing low Fe, such as large photosynthetic antenna sizes, are of major significance for the regional biological carbon pump. Other traits more strongly linked to Mn, such as dealing with oxidative stress, may become more important under a changing Fe supply regime. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.
Collapse
Affiliation(s)
- Prima Anugerahanti
- Department of Earth, University of Liverpool, Ocean, and Ecological Sciences, 4 Brownlow Street, Liverpool L69 3GP, UK
| | - Alessandro Tagliabue
- Department of Earth, University of Liverpool, Ocean, and Ecological Sciences, 4 Brownlow Street, Liverpool L69 3GP, UK
| |
Collapse
|
6
|
Vetoshkina D, Balashov N, Ivanov B, Ashikhmin A, Borisova-Mubarakshina M. Light harvesting regulation: A versatile network of key components operating under various stress conditions in higher plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:576-588. [PMID: 36529008 DOI: 10.1016/j.plaphy.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/22/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Light harvesting is finetuned through two main strategies controlling energy transfer to the reaction centers of photosystems: i) regulating the amount of light energy at the absorption level, ii) regulating the amount of the absorbed energy at the utilization level. The first strategy is ensured by changes in the cross-section, i.e., the size of the photosynthetic antenna. These changes can occur in a short-term (state transitions) or long-term way (changes in antenna protein biosynthesis) depending on the light conditions. The interrelation of these two ways is still underexplored. Regulating light absorption through the long-term modulation of photosystem II antenna size has been mostly considered as an acclimatory mechanism to light conditions. The present review highlights that this mechanism represents one of the most versatile mechanisms of higher plant acclimation to various conditions including drought, salinity, temperature changes, and even biotic factors. We suggest that H2O2 is the universal signaling agent providing the switch from the short-term to long-term modulation of photosystem II antenna size under these factors. The second strategy of light harvesting is represented by redirecting energy to waste mainly via thermal energy dissipation in the photosystem II antenna in high light through PsbS protein and xanthophyll cycle. In the latter case, H2O2 also plays a considerable role. This circumstance may explain the maintenance of the appropriate level of zeaxanthin not only upon high light but also upon other stress factors. Thus, the review emphasizes the significance of both strategies for ensuring plant sustainability under various environmental conditions.
Collapse
Affiliation(s)
- Daria Vetoshkina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya St., 2, Pushchino, Russia.
| | - Nikolay Balashov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya St., 2, Pushchino, Russia
| | - Boris Ivanov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya St., 2, Pushchino, Russia
| | - Aleksandr Ashikhmin
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya St., 2, Pushchino, Russia
| | - Maria Borisova-Mubarakshina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya St., 2, Pushchino, Russia.
| |
Collapse
|
7
|
Burgess AJ, Masclaux‐Daubresse C, Strittmatter G, Weber APM, Taylor SH, Harbinson J, Yin X, Long S, Paul MJ, Westhoff P, Loreto F, Ceriotti A, Saltenis VLR, Pribil M, Nacry P, Scharff LB, Jensen PE, Muller B, Cohan J, Foulkes J, Rogowsky P, Debaeke P, Meyer C, Nelissen H, Inzé D, Klein Lankhorst R, Parry MAJ, Murchie EH, Baekelandt A. Improving crop yield potential: Underlying biological processes and future prospects. Food Energy Secur 2022; 12:e435. [PMID: 37035025 PMCID: PMC10078444 DOI: 10.1002/fes3.435] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant-derived products. In the coming years, plant-based research will be among the major drivers ensuring food security and the expansion of the bio-based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop. This review focuses on intrinsic yield potential, since understanding its determinants and their biological basis will allow to maximize the plant's potential in food and energy production. Yield potential is determined by a variety of complex traits that integrate strictly regulated processes and their underlying gene regulatory networks. Due to this inherent complexity, numerous potential targets have been identified that could be exploited to increase crop yield. These encompass diverse metabolic and physical processes at the cellular, organ and canopy level. We present an overview of some of the distinct biological processes considered to be crucial for yield determination that could further be exploited to improve future crop productivity.
Collapse
Affiliation(s)
- Alexandra J. Burgess
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | | | - Günter Strittmatter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Andreas P. M. Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | | | - Jeremy Harbinson
- Laboratory for Biophysics Wageningen University and Research Wageningen The Netherlands
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences Wageningen University & Research Wageningen The Netherlands
| | - Stephen Long
- Lancaster Environment Centre Lancaster University Lancaster UK
- Plant Biology and Crop Sciences University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | | | - Peter Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of Italy (CNR), Rome, Italy and University of Naples Federico II Napoli Italy
| | - Aldo Ceriotti
- Institute of Agricultural Biology and Biotechnology National Research Council (CNR) Milan Italy
| | - Vandasue L. R. Saltenis
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Mathias Pribil
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Philippe Nacry
- BPMP, Univ Montpellier, INRAE, CNRS Institut Agro Montpellier France
| | - Lars B. Scharff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Poul Erik Jensen
- Department of Food Science University of Copenhagen Copenhagen Denmark
| | - Bertrand Muller
- Université de Montpellier ‐ LEPSE – INRAE Institut Agro Montpellier France
| | | | - John Foulkes
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Peter Rogowsky
- INRAE UMR Plant Reproduction and Development Lyon France
| | | | - Christian Meyer
- IJPB UMR1318 INRAE‐AgroParisTech‐Université Paris Saclay Versailles France
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - René Klein Lankhorst
- Wageningen Plant Research Wageningen University & Research Wageningen The Netherlands
| | | | - Erik H. Murchie
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| |
Collapse
|
8
|
Hura T, Hura K, Ostrowska A, Urban K. Non-rolling flag leaves use an effective mechanism to reduce water loss and light-induced damage under drought stress. ANNALS OF BOTANY 2022; 130:393-408. [PMID: 35294964 PMCID: PMC9486892 DOI: 10.1093/aob/mcac035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/15/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS The study reports on four different types of flag leaf rolling under soil drought in relation to the level of cell wall-bound phenolics. The flag leaf colonization by aphids, as a possible bioindicator of the accumulation of cell wall-bound phenolics, was also estimated. METHODS The proteins of the photosynthetic apparatus that form its core and are crucial for maintaining its stability (D1/PsbA protein), limit destructive effects of light (PsbS, a protein binding carotenoids in the antennas) and participate in efficient electron transport between photosystems II (PSII) and PSI (Rieske iron-sulfur protein of the cytochrome b6f complex) were evaluated in two types of flag leaf rolling. Additionally, biochemical and physiological reactions to drought stress in rolling and non-rolling flag leaves were compared. KEY RESULTS The study identified four types of genome-related types of flag leaf rolling. The biochemical basis for these differences was a different number of phenolic molecules incorporated into polycarbohydrate structures of the cell wall. In an extreme case of non-rolling dehydrated flag leaves, they were found to accumulate high amounts of cell wall-bound phenolics that limited cell water loss and protected the photosynthetic apparatus against excessive light. PSII was also additionally protected against excess light by the accumulation of photosynthetic apparatus proteins that ensured stable and efficient transport of excitation energy beyond PSII and its dissipation as far-red fluorescence and heat. Our analysis revealed a new type of flag leaf rolling brought about by an interaction between wheat and rye genomes, and resulting in biochemical specialization of flexible, rolling and rigid, non-rolling parts of the flag leaf. The study confirmed limited aphid colonization of the flag leaves with enhanced content of cell wall-bound phenolics. CONCLUSIONS Non-rolling leaves developed effective adaptation mechanisms to reduce both water loss and photoinhibitory damage to the photosynthetic apparatus under drought stress.
Collapse
Affiliation(s)
| | - Katarzyna Hura
- Department of Plant Breeding, Physiology and Seed Science, Faculty of Agriculture and Economics, Agricultural University, Podłużna 3, 30-239 Kraków, Poland
| | - Agnieszka Ostrowska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland
| | - Karolina Urban
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland
| |
Collapse
|
9
|
Asaeda T, Rahman M, Liping X, Schoelynck J. Hydrogen Peroxide Variation Patterns as Abiotic Stress Responses of Egeria densa. FRONTIERS IN PLANT SCIENCE 2022; 13:855477. [PMID: 35651776 PMCID: PMC9149424 DOI: 10.3389/fpls.2022.855477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/16/2022] [Indexed: 06/15/2023]
Abstract
In vegetation management, understanding the condition of submerged plants is usually based on long-term growth monitoring. Reactive oxygen species (ROS) accumulate in organelles under environmental stress and are highly likely to be indicators of a plant's condition. However, this depends on the period of exposure to environmental stress, as environmental conditions are always changing in nature. Hydrogen peroxide (H2O2) is the most common ROS in organelles. The responses of submerged macrophytes, Egeria densa, to high light and iron (Fe) stressors were investigated by both laboratory experiments and natural river observation. Plants were incubated with combinations of 30-200 μmol m-2 s-1 of photosynthetically active radiation (PAR) intensity and 0-10 mg L-1 Fe concentration in the media. We have measured H2O2, photosynthetic pigment concentrations, chlorophyll a (Chl-a), chlorophyll b (Chl-b), carotenoid (CAR), Indole-3-acetic acid (IAA) concentrations of leaf tissues, the antioxidant activity of catalase (CAT), ascorbic peroxidase (APX), peroxidase (POD), the maximal quantum yield of PSII (Fv Fm -1), and the shoot growth rate (SGR). The H2O2 concentration gradually increased with Fe concentration in the media, except at very low concentrations and at an increased PAR intensity. However, with extremely high PAR or Fe concentrations, first the chlorophyll contents and then the H2O2 concentration prominently declined, followed by SGR, the maximal quantum yield of PSII (Fv Fm -1), and antioxidant activities. With an increasing Fe concentration in the substrate, the CAT and APX antioxidant levels decreased, which led to an increase in H2O2 accumulation in the plant tissues. Moreover, increased POD activity was proportionate to H2O2 accumulation, suggesting the low-Fe independent nature of POD. Diurnally, H2O2 concentration varies following the PAR variation. However, the CAT and APX antioxidant activities were delayed, which increased the H2O2 concentration level in the afternoon compared with the level in morning for the same PAR intensities. Similar trends were also obtained for the natural river samples where relatively low light intensity was preferable for growth. Together with our previous findings on macrophyte stress responses, these results indicate that H2O2 concentration is a good indicator of environmental stressors and could be used instead of long-term growth monitoring in macrophyte management.
Collapse
Affiliation(s)
- Takashi Asaeda
- Hydro Technology Institute Co, Ltd., Tokyo, Japan
- Research and Development Center, Ibaraki, Japan
- Department of Environmental Science, Saitama University, Saitama, Japan
| | - Mizanur Rahman
- Department of Environmental Science, Saitama University, Saitama, Japan
| | - Xia Liping
- Department of Environmental Science, Saitama University, Saitama, Japan
| | | |
Collapse
|
10
|
Walter J, Kromdijk J. Here comes the sun: How optimization of photosynthetic light reactions can boost crop yields. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:564-591. [PMID: 34962073 PMCID: PMC9302994 DOI: 10.1111/jipb.13206] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/22/2021] [Indexed: 05/22/2023]
Abstract
Photosynthesis started to evolve some 3.5 billion years ago CO2 is the substrate for photosynthesis and in the past 200-250 years, atmospheric levels have approximately doubled due to human industrial activities. However, this time span is not sufficient for adaptation mechanisms of photosynthesis to be evolutionarily manifested. Steep increases in human population, shortage of arable land and food, and climate change call for actions, now. Thanks to substantial research efforts and advances in the last century, basic knowledge of photosynthetic and primary metabolic processes can now be translated into strategies to optimize photosynthesis to its full potential in order to improve crop yields and food supply for the future. Many different approaches have been proposed in recent years, some of which have already proven successful in different crop species. Here, we summarize recent advances on modifications of the complex network of photosynthetic light reactions. These are the starting point of all biomass production and supply the energy equivalents necessary for downstream processes as well as the oxygen we breathe.
Collapse
Affiliation(s)
- Julia Walter
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
| | - Johannes Kromdijk
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
- Carl R Woese Institute for Genomic BiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinois61801USA
| |
Collapse
|
11
|
Effect of Various Mulch Materials on Chemical Properties of Soil, Leaves and Shoot Characteristics in Dendrocalamus Latiflorus Munro Forests. PLANTS 2021; 10:plants10112302. [PMID: 34834665 PMCID: PMC8619054 DOI: 10.3390/plants10112302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022]
Abstract
The effectiveness of mulch treatments on soil quality as well as on the yield and growth rates of bamboo are major considerations and require further attention. The present work was aimed at assessing the impacts of three different mulch materials on soil available nutrients, biochemical traits, and growth patterns of Dendrocalamus latiflorus Munro. We found that relative to the control (CK), bamboo leaves (MB) and organic fertilizers (MF) treatments significantly (P < 0.05) increased the number of bamboo shoots (47.5 and 22.7%) and yield (21.4 and 9.1%), respectively. We observed that under MB and MF treatments, the concentrations of soil available nutrients (nitrogen, phosphorus, and potassium) increased and played a key role in the differences in chlorophyll, leaf carbohydrate contents (soluble sugar and starch) and were essential to promote bamboo shoot development. Furthermore, we infer from principal component analysis (PCA), that both MB and MF appear to be a better choice than rice husks (MR) to improve nutrient availability, biochemical traits of the leaves, and increased bamboo shoot productivity. Consequently, we suggest using organic fertilizers and bamboo leaves as mulch materials are effective for soil conservation to attain high-quality bamboo production.
Collapse
|
12
|
Lewis VR, Farrell AD, Umaharan P, Lennon AM. Genetic variation in high light responses of Theobroma cacao L. accessions. Heliyon 2021; 7:e07404. [PMID: 34307928 PMCID: PMC8258650 DOI: 10.1016/j.heliyon.2021.e07404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/07/2021] [Accepted: 06/22/2021] [Indexed: 10/27/2022] Open
Abstract
Cacao (Theobroma cacao L.) is a shade-tolerant tree species, but in recent years it has increasingly been cultivated under full sun conditions in an orchard system where photoinhibition is likely. Here we investigate the extent of photoinhibition in 17 cacao accessions from a range of genetic groups, growing under high light conditions. The ability of the photosynthetic systems to respond to high light was assessed using chlorophyll fluorescence parameters (diurnal F v /F m and instantaneous light response curves), and differences in photosynthetic pigment content were compared using biochemical assays. Damage due to photoinhibition was assessed using electrolyte leakage, lipid peroxidation, and reactive oxygen species scavenging systems were compared using biochemical assays (for APX, CAT and SOD). There was significant variation between the 17 accessions for photosynthetic parameters, although in all cases the light saturation points were well below the midday light levels. Light acclimation of photosynthetic pigments was evident and variation in the total chlorophyll to total carotenoid ratio was significantly correlated with electrolyte leakage. Significant genetic variation was observed across the 17 accessions in the activities of CAT, APX and SOD. Across all accessions, photoprotection appeared to be restricted by the ability of leaves to generate SOD. Significant negative correlations were observed between SOD activity and both APX activity and electrolyte leakage, while significant positive correlations were observed between electrolyte leakage and both APX and CAT activity. Accessions with higher light saturation points, as well as high carotenoid and high SOD concentrations were able to tolerate the moderately high light, however, none of the accessions were clearly superior to the commonly grown Amelonado accession. The results imply that screening for SOD activity, total carotenoid content and light saturation point can aid in selection of genotypes with better tolerance to high light.
Collapse
Affiliation(s)
- Vernessa R Lewis
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, College Road, Trinidad and Tobago
| | - Aidan D Farrell
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, College Road, Trinidad and Tobago
| | - Pathmanathan Umaharan
- Cocoa Research Centre, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago
| | - Adrian M Lennon
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, College Road, Trinidad and Tobago
| |
Collapse
|
13
|
Wu G, Ma L, Yuan C, Dai J, Luo L, Poudyal RS, Sayre RT, Lee CH. Formation of light-harvesting complex II aggregates from LHCII-PSI-LHCI complexes in rice plants under high light. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4938-4948. [PMID: 33939808 DOI: 10.1093/jxb/erab188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
During low light- (LL) induced state transitions in dark-adapted rice (Oryza sativa) leaves, light-harvesting complex (LHC) II become phosphorylated and associate with PSI complexes to form LHCII-PSI-LHCI supercomplexes. When the leaves are subsequently transferred to high light (HL) conditions, phosphorylated LHCII complexes are no longer phosphorylated. Under the HL-induced transition in LHC phosphorylation status, we observed a new green band in the stacking gel of native green-PAGE, which was determined to be LHCII aggregates by immunoblotting and 77K chlorophyll fluorescence analysis. Knockout mutants of protein phosphatase 1 (PPH1) which dephosphorylates LHCII failed to form these LHCII aggregates. In addition, the ability to develop non-photochemical quenching in the PPH1 mutant under HL was less than for wild-type plants. As determined by immunoblotting analysis, LHCII proteins present in LHCII-PSI-LHCI supercomplexes included the Lhcb1 and Lhcb2 proteins. In this study, we provide evidence suggesting that LHCII in the LHCII-PSI-LHCI supercomplexes are dephosphorylated and subsequently form aggregates to dissipate excess light energy under HL conditions. We propose that this LHCII aggregation, involving LHCII L-trimers, is a newly observed photoprotective light-quenching process operating in the early stage of acclimation to HL in rice plants.
Collapse
Affiliation(s)
- Guangxi Wu
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Lin Ma
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Cai Yuan
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Jiahao Dai
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Lai Luo
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Roshan Sharma Poudyal
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | | | - Choon-Hwan Lee
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| |
Collapse
|