1
|
Geilfus CM, Zörb C, Jones JJ, Wimmer MA, Schmöckel SM. Water for agriculture: more crop per drop. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:499-507. [PMID: 38773740 DOI: 10.1111/plb.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 04/04/2024] [Indexed: 05/24/2024]
Abstract
Global crop production in agriculture depends on water availability. Future scenarios predict increasing occurrence of flash floods and rapidly developing droughts accompanied by heatwaves in humid regions that rely on rain-fed agriculture. It is challenging to maintain high crop yields, even in arid and drought-prone regions that depend on irrigation. The average water demand of crops varies significantly, depending on plant species, development stage, and climate. Most crops, such as maize and wheat, require relatively more water during the vegetative phase compared to the ripening phase. In this review, we explain WUE and options to improve water use and thus crop yield. Nutrient management might represent another possibility to manipulate water uptake and use by plants. An emerging topic involves agroforest co-cultivation, where trees in the system facilitate water transfer through hydraulic lift, benefiting neighbouring crops. Other options to enhance crop yield per water use are discussed.
Collapse
Affiliation(s)
- C-M Geilfus
- Department of Plant Nutrition and Soil Science, Hochschule Geisenheim University, Geisenheim, Germany
| | - C Zörb
- Department Quality of Plant Products, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - J J Jones
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Berlin, Germany
| | - M A Wimmer
- Department Quality of Plant Products, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - S M Schmöckel
- Department Physiology of Yield Stability, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
2
|
Ru C, Hu X, Wang W. Nitrogen mitigates the negative effects of combined heat and drought stress on winter wheat by improving physiological characteristics. PHYSIOLOGIA PLANTARUM 2024; 176:e14236. [PMID: 38454803 DOI: 10.1111/ppl.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 03/09/2024]
Abstract
Extreme drought stress is often accompanied by heat stress after anthesis in winter wheat. Whether nitrogen (N) can mitigate the damage caused by combined stress on wheat plants by regulating root physiological characteristics is still unclear. Thus, this study aimed to study the effects of combined heat and drought stress on photosynthesis, leaf water relations, root antioxidant system, osmoregulatory, and yield in wheat to reveal the physiological mechanism of N regulating the adverse impacts of combined stress on wheat. Heat and drought stress markedly reduced photosynthesis, leaf water content, root vitality, and bleeding sap. The combination of heat and drought strengthens these changes. Within a certain stress range, the increase in soluble sugar and proline contents and the activities of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase under combined stress effectively alleviated the oxidative damage. Compared with those under high N application (N3), wheat plants under low N application (N1) maintained higher yield and yield components under combined stress; the number of grains per spike, 1000-grain weight, and yield increased by 13.65%, 9.07%, and 15.33%, respectively, under N1 compared with those under N3 treatment, which may be attributed to the greater maintenance of photosynthesis, leaf water status, root vitality, and antioxidant and osmoregulation capacities. In summary, reduced N application mitigated the damage caused by combined heat and drought stress in wheat by improving root physiological characteristics and enhanced adaptability to combined stress, which is an appropriate strategy to compensate for yield losses.
Collapse
Affiliation(s)
- Chen Ru
- School of Engineering, Anhui Agricultural University, Hefei, China
| | - Xiaotao Hu
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, China
| | - Wene Wang
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Hernandez-Santana V, Rodriguez-Dominguez CM, Sebastian-Azcona J, Perez-Romero LF, Diaz-Espejo A. Role of hydraulic traits in stomatal regulation of transpiration under different vapour pressure deficits across five Mediterranean tree crops. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4597-4612. [PMID: 37115664 PMCID: PMC10433928 DOI: 10.1093/jxb/erad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/27/2023] [Indexed: 06/19/2023]
Abstract
The differential stomatal regulation of transpiration among plant species in response to water deficit is not fully understood, although several hydraulic traits have been reported to influence it. This knowledge gap is partly due to a lack of direct and concomitant experimental data on transpiration, stomatal conductance, and hydraulic traits. We measured sap flux density (Js), stomatal conductance (gs), and different hydraulic traits in five crop species. Our aim was to contribute to establishing the causal relationship between water consumption and its regulation using a hydraulic trait-based approach. The results showed that the species-specific regulation of Js by gs was overall coordinated with the functional hydraulic traits analysed. Particularly relevant was the negative and significant relationship found between the Huber value (Hv) and its functional analogue ratio between maximum Js and gs (Jsmax/gsmax) which can be understood as a compensation to maintain the hydraulic supply to the leaves. The Hv was also significantly related to the slope of the relationship between gs and Js response to vapour pressure deficit and explained most of its variability, adding up to evidence recognizing Hv as a major trait in plant water relations. Thus, a hydraulic basis for regulation of tree water use should be considered.
Collapse
Affiliation(s)
- Virginia Hernandez-Santana
- Irrigation and Ecophysiology Group. Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Avda Reina Mercedes, 41012 Seville, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Avda Reina Mercedes, 41012 Seville, Spain
| | - Celia M Rodriguez-Dominguez
- Irrigation and Ecophysiology Group. Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Avda Reina Mercedes, 41012 Seville, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Avda Reina Mercedes, 41012 Seville, Spain
| | - Jaime Sebastian-Azcona
- Irrigation and Ecophysiology Group. Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Avda Reina Mercedes, 41012 Seville, Spain
| | - Luis Felipe Perez-Romero
- Escuela Técnica Superior de Ingeniería, Universidad de Huelva, Avenida del Ejercito s/n. 21007 Huelva, Spain
| | - Antonio Diaz-Espejo
- Irrigation and Ecophysiology Group. Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Avda Reina Mercedes, 41012 Seville, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Avda Reina Mercedes, 41012 Seville, Spain
| |
Collapse
|
4
|
Jiao X, Yu X, Yuan Y, Li J. Effects of vapor pressure deficit combined with different N levels on tomato seedling anatomy, photosynthetic performance, and N uptake. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111448. [PMID: 36041564 DOI: 10.1016/j.plantsci.2022.111448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Vapor pressure difference (VPD) is the main driving force of plant transpiration and the main factor of greenhouse environment regulation. Nitrogen is the main element of crop growth and development. It is significant to explore the regulation of VPD on nitrogen absorption and its effect on tomato photosynthesis. In this paper, using tomato as material, using an artificial climate chamber, the effect of VPD and nitrogen level coupling on nitrogen absorption and distribution, hydraulic characteristics, and photosynthetic characteristics of tomato was studied and analyzed. The optimal regulation of VPD and nitrogen was analyzed. Studies have shown that appropriately reducing the VPD can promote the absorption of nitrogen by plants. The increased surface area and volume of tomato roots and the increased activity of nitrogen assimilation-related enzymes were beneficial to nitrogen absorption and assimilation. Compared with high VPD (HVPD) plants, the leaf thickness and spongy tissue thickness of low VPD (LVPD) plants decreased, and the palisade/spongy tissue thickness ratio (P/S) increased; Leaf water conductance (Kleaf) increased with the increase of nitrogen level. The Kleaf at normal and high nitrogen plants increased by 4.00 % and 33.93 %, respectively, compared with HVPD plants of the same nitrogen level (significant difference at high nitrogen level) but significantly decreased at low nitrogen level. The decrease of spongy tissue thickness, the increase of palisade/sponge tissue, and the up-regulation of aquaporin expression were all beneficial to increasing Kleaf. Decreasing VPD and increasing nitrogen application under LVPD both increased specific leaf area (SLA). Compared with HVPD treatment, the photosynthetic rate of LVPD-treated plants increased by 7.06 % and 30.48 % at normal and high nitrogen levels, respectively.
Collapse
Affiliation(s)
- Xiaocong Jiao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuemei Yu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yajing Yuan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianming Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Li S, Hamani AKM, Zhang Y, Liang Y, Gao Y, Duan A. Coordination of leaf hydraulic, anatomical, and economical traits in tomato seedlings acclimation to long-term drought. BMC PLANT BIOLOGY 2021; 21:536. [PMID: 34781896 PMCID: PMC8591842 DOI: 10.1186/s12870-021-03304-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Leaf hydraulic and economics traits are critical for balancing plant water and CO2 exchange, and their relationship has been widely studied. Leaf anatomical traits determine the efficiency of CO2 diffusion within mesophyll structure. However, it remains unclear whether leaf anatomical traits are associated with leaf hydraulic and economics traits acclimation to long-term drought. RESULTS To address this knowledge gap, eight hydraulic traits, including stomatal and venation structures, four economics traits, including leaf dry mass per area (LMA) and the ratio between palisade and spongy mesophyll thickness (PT/ST), and four anatomical traits related to CO2 diffusion were measured in tomato seedlings under the long-term drought conditions. Redundancy analysis indicated that the long-term drought decreased stomatal conductance (gs) mainly due to a synchronized reduction in hydraulic structure such as leaf hydraulic conductance (Kleaf) and major vein width. Simultaneously, stomatal aperture on the adaxial surface and minor vein density (VDminor) also contributed a lot to this reduction. The decreases in mesophyll thickness (Tmes) and chlorophyll surface area exposed to leaf intercellular air spaces (Sc/S) were primarily responsible for the decline of mesophyll conductance (gm) thereby affecting photosynthesis. Drought increased leaf density (LD) thus limited CO2 diffusion. In addition, LMA may not be important in regulating gm in tomato under drought. Principal component analysis revealed that main anatomical traits such as Tmes and Sc/S were positively correlated to Kleaf, VDminor and leaf thickness (LT), while negatively associated with PT/ST. CONCLUSIONS These findings indicated that leaf anatomy plays an important role in maintaining the balance between water supply and CO2 diffusion responses to drought. There was a strong coordination between leaf hydraulic, anatomical, and economical traits in tomato seedlings acclimation to long-term drought.
Collapse
Affiliation(s)
- Shuang Li
- Farmland Irrigation Research Institute, Key Laboratory of Crop Water Use and Regulation, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang, Henan, 453002, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Abdoul Kader Mounkaila Hamani
- Farmland Irrigation Research Institute, Key Laboratory of Crop Water Use and Regulation, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang, Henan, 453002, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yingying Zhang
- Farmland Irrigation Research Institute, Key Laboratory of Crop Water Use and Regulation, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang, Henan, 453002, China
| | - Yueping Liang
- Farmland Irrigation Research Institute, Key Laboratory of Crop Water Use and Regulation, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang, Henan, 453002, China
| | - Yang Gao
- Farmland Irrigation Research Institute, Key Laboratory of Crop Water Use and Regulation, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang, Henan, 453002, China.
| | - Aiwang Duan
- Farmland Irrigation Research Institute, Key Laboratory of Crop Water Use and Regulation, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang, Henan, 453002, China.
| |
Collapse
|
6
|
Chieppa J, Brown T, Giresi P, Juenger TE, Resco de Dios V, Tissue DT, Aspinwall MJ. Climate and stomatal traits drive covariation in nighttime stomatal conductance and daytime gas exchange rates in a widespread C 4 grass. THE NEW PHYTOLOGIST 2021; 229:2020-2034. [PMID: 33037633 DOI: 10.1111/nph.16987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Nighttime stomatal conductance (gsn ) varies among plant functional types and species, but factors shaping the evolution of gsn remain unclear. Examinations of intraspecific variation in gsn as a function of climate and co-varying leaf traits may provide new insight into the evolution of gsn and its adaptive significance. We grew 11 genotypes of Panicum virgatum (switchgrass) representing differing home-climates in a common garden experiment and measured nighttime and daytime leaf gas exchange, as well as stomatal density (SD) and size during early-, mid-, and late-summer. We used piecewise structural equation modelling to determine direct and indirect relationships between home-climate, gas exchange, and stomatal traits. We found no direct relationship between home-climate and gsn . However, genotypes from hotter climates possessed higher SD, which resulted in higher gsn . Across genotypes, higher gsn was associated with higher daytime stomatal conductance and net photosynthesis. Our results indicate that higher gsn may arise in genotypes from hotter climates via increased SD. High SD may provide benefits to genotypes from hotter climates through enhanced daytime transpirational cooling or by permitting maximal gas exchange when conditions are suitable. These results highlight the role of climate and trait coordination in shaping genetic differentiation in gsn .
Collapse
Affiliation(s)
- Jeff Chieppa
- Department of Biology, University of North Florida, Jacksonville, FL, 32224, USA
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tia Brown
- Department of Biology, Haverford College, Haverford, PA, 19041, USA
| | - Presley Giresi
- Department of Biology, University of North Florida, Jacksonville, FL, 32224, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78717, USA
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Michael J Aspinwall
- Department of Biology, University of North Florida, Jacksonville, FL, 32224, USA
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|